SlideShare uma empresa Scribd logo
1 de 28
Baixar para ler offline
A
Project Report
On
“90 DEGREE STEERING MECHANISM”
Submitted in partial fulfilment of the requirement
For the award of the
Degree of
Bachelor of Technology
In
Mechanical Engineering
Department of Mechanical Engineering
CAREER POINT UNIVERSITY
KOTA
Submitted by:
Rohan Sharma (K10188)
Sovil Modi (K10192)
Nishant Sharma (K10459)
Jitendra (K10465)
Submitted to:
Mr. Bhupendra gehlot
Assistant Professor
Dept. of Mechanical Engineering
Career point university, Kota
 
 
 
  1 
CERTIFICATE
This is to certify that Sovil Modi (K10192), Rohan Sharma (K10188), Nishant Sharma
(K10459), Jitendar (K10465) has submitted the Project report entitled “90 degree steering
mechanism’’ in partial fulfillment for the award of the degree of Bachelor of Technology
(Mechanical Engineering). The report has been prepared as per the prescribed format and
is approved for submission and presentation.
Project Guide
 
 
  2 
ACKNOWLEDGEMENT
We would like to express our heartfelt gratitude to our guide Assistant Professor Mr.Bhupendra
Gehlot, Department of Mechanical Engineering for his valuable time and guidance that made the
project work a success. They have inspired us such a spirit of devotion, precision and unbiased
observation, which is essentially a corner stone of technical study. We are highly grateful to Mr.
/Ms. ..........................., Head of the Department of Mechanical Engineering and our Guide
Mr./Ms. Bhupendra Gehlot ,Assistant Professor in Department of Mechanical Engineering, for
their kind support for the project work. We thank all our friends and all those who have helped us
carrying out this work directly or indirectly without whom completion of this project work was
not possible.
We would also like to sincerely thank Vice-chancellor of Career Point University for giving us a
platform to carry out the project.
Sincerely yours,
Rohan Sharma (K10188)
Sovil Modi (K10192)
Nishant Sharma (K10459)
Jitendra (K10465)
 
 
  3 
ABSTRACT
The Soft Car design proposal has swing 90 degrees. It can pull up alongside a parking
space and drive in sideways.
Conventional steering mechanism involves either the use of Ackerman or Davis steering
systems. The disadvantage associated with these systems is the minimum turning radius
that is possible for the steering action. This difficulty that is associated with the
conventional methods of steering is eliminated by employing a four wheel 90 degree
steering system.
This innovation promises to ease the task of parking on narrow Cambridge streets. The
most striking elements of the car are wheels that incorporate electric motors and the
suspension inside their circumference. By working through the problem so logically and
indeed unemotionally we will anticipate discovering new possibilities. "We want to step
back and rethink the automobile from scratch. The process is like diagramming a
sentence steering and so on. The goal is to dissect the structure of the car and look at it a
fresh." The wheels drive-by-wire controls that replace mechanical links to the brakes and
throttle with electronic connections.
 
 
  4 
TABLE OF CONTENT
TITLE PAGE
NO.
ACKNOWLEDGEMENT 2
ABSTRACT 3
LIST OF FIGURES 6
LIST OF TABLE 6
CHAPTER 1: INTRODUCTION 7
CHAPTER 2: WORKING 8
CHAPTER 3: PART LIST 12
3.1 CHASSIS BOARD 12
3.2 L-CLAMP 13
3.3 D.C MOTOR 14
3.4 FIBER WHEEL 15
3.5 MILD STEEL FRAME 16
3.6 NUT BOLTS 17
 
 
  5 
3.7 ROCKER SWITCH 19
3.8 D.C. POWER SUPPLY 20
3.9 BEARINGS 21
CHAPTER 4: COST ESTIMATION 23
CHAPTER 5: PROJECT GOAL 24
CHAPTER 6: ADVANTAGES 25
CHAPTER 7: DISADVANTAGES 25
CHAPTER 8: APPLICATION 25
CONCLUSION 26
REFERENCES 27
 
 
  6 
LIST OF FIGURES
Fig. No. Description Pg. No.
1 90 degree steering mechanism 9
2 Electric power steering 11
3 Chassis board 13
4 L clamps 14
5 D.C Motor 15
6 D.C Motor Used 15
7 Fiber wheels 16
8 Nut and bolt 19
9 Rocker switch 20
LIST OF TABLE
S. No. Fig. No. Description Pg. No.
1. 1 Specification of wiper motor 16
 
 
  7 
1. Introduction
In highly populated areas it can be difficult to find available parking spots. Frequently
parking spots are located on the side of the road, leaving the driver with no choice but to
attempt parallel parking. In general it is considered to be a rather challenging maneuver.
Since parallel parking requires driving backwards it becomes difficult to coordinate the
correct motion of the car. Some drivers have to perform multiple corrections before they
park the car properly. In the worst case an accident can occur.
A car that can perform parallel parking by itself would save drivers time,
especially those that are not very good with parallel parking. In addition cars that can
parallel park autonomously in a reliable manner would most probably reduce the number
of accidents related to parking. The objective of our work is to implement parallel
parking using a car like robot. We restricted the motion of the robot to model the motion
of a car. Using our model we present a solution to the autonomous parallel parking
problem.
 
 
  8 
2.Working
In this project battery provides the power supply to the control unit. The equipment
contains totally six motors, two motors coupled with the vehicle’s left and right wheels of
the front side, the next two motors are connected to the vehicle’s left and right side of the
back side. The four motors are used to run the vehicle. Another two motors are connected
to rotate the vehicle wheel 90 degree by the chain drive arrangements. The keypad in the
control unit has six keys they are left, right, forward, reverse, park left and park right.
We press the left key in the keypad the vehicle turns left side in a required angle,
we press the right key in the keypad the vehicle turns at the right side in required angle.
Similarly the forward and reverse key in the keypad controls the forward and reverse
motion of the vehicle. We want to park the vehicle in left side by press the park left key
then the motor connected in the chain drive is turns the wheel left side 90 degree
automatically and the vehicle is parked in left side. Using this we can easily park the
vehicle in various areas.
In heavy traffic performance of steering system need powerful working without extra
effort that’s why we design this project or prototype of four-wheel electric steering
system with 90 degree electric powered steering system.
In the project total 4 d.c motors are used. Two motors used for transmission to
alternative wheel of vehicle when key is operated by operator the front wheel as well as
the rear wheel are positioned as parallel to each other which are normal in condition
before operation left and right keys on keypad is used for movement of left and right
wheel respectively. When third key is operated front wheel are parallel to rear wheel and
makes an angle of 90 degree to normal wheel system. In this position we directly turn the
vehicle without any turning radius. As well as we position the wheel 45 degree to normal
position.
 
 
  9 
Figure 1: 90‐degree steering mechanism
 
 
  10 
2.1 Electric power steering (EPS):
It is designed to use an electric motor to reduce effort by providing steering assist to the
driver of a vehicle. The system allows engineers to tailor steering gear response to
variable-rate and variable-damping suspension system. Achieving an ideal blend of ride,
handling, and steering of each vehicle.
On fiat group cars the amount can be regulated using a button named
“CITY” that switch between two different assist curves, while most others EPS system
have variable assist, which allows for more assistance as the speed of vehicle decreases
and less assistance from the system during high speed situation.
In the event of component failure, a mechanical linkage such as a rack and pinion serves
as back up in manner similar to that of hydraulic system. Electric power steering should
not be confused with drive-by-wire or steer-by-wire system which use electric motor for
steering, but without any mechanical linkage to the steering wheel.
Electric system have a slight advantage in fuel efficiency because there is belt-
driven hydraulic pump constantly running whether assistance is required or not, and this
is a major reason for their introduction.
Another major advantage is the elimination of a belt-driven engine accessory, and several
high dispressure hydraulic hoses between the hydraulic pump, mounted on the engine,
and the steering gear, mounted on the chassis. This greatly simplifies maintenance. By
incorporating electronic stability control electric power steering system can instantly vary
torque assist level to aid the driver in evasive manoeuvres.
The peak power output of the electrical system of a vehicle limits the capability of
electric steering assist. A 12v electrical system, for example is limited to about 80amps of
current which, in turn, limits the size of the motor to less than 1kv ( 12.5v time 80amps
equals 1000watts). This amount of power would be adequate for smaller vehicles.
 
 
  11 
It would probably be considered in sufficient for larger vehicles such as trucks and
SUV’s. there other types of variants used for hybrid and electric vehicles. These have
greater capacity that enables use of multi kw motors needed for large and mid-size
vehicles.
Figure 2: electric power steering
 
 
  12 
3.Part list
There are different parts which will be used during the process they are as follows:
3.1 Chassis board
An example of a chassis is the under part of a motor vehicle, consisting of the frame (on
which the body is mounted). If the running gear such as wheels and transmission, and
sometimes even the driver's seat, are included, then the assembly is described as a
rolling chassis.
A chassis consists of an internal framework that supports a manmade object in its
construction and use. It is analogous to an animal's skeleton. An example of a chassis is
the underpart of a motor vehicle, consisting of the frame (on which the body is
mounted).
A body (sometimes referred to as "coachwork"), which is usually not necessary for
integrity of the structure, is built on the chassis to complete the vehicle. In an electronic
device, the chassis consists of a frame or other internal supporting structure on which
the circuit boards and other electronics are mounted.
 
 
  13 
Figure 3: chassis board
3.2 L-clamp
L clamps are woodworking clamps used to secure wood for cutting, screwing, or gluing.
These clamps resemble the letters for which they are named.
• A device used to hold an object in a fixed position.
• A wheel clamp is a device used with road vehicles to prevent theft or enforce
parking restrictions.
 
 
  14 
Figure 4: L clamps
3.3 D. C. Motor
A DC motor is any of a class of electrical machines that converts direct current
electrical power into mechanical power. The most common types rely on the forces
produced by magnetic fields. Nearly all types of DC motors have some internal
mechanism, either electromechanical or electronic, to periodically change the direction
of current flow in part of the motor. Most types produce rotary motion; a linear motor
directly produces force and motion in a straight line.
DC motors were the first type widely used, since they could be powered from
existing direct-current lighting power distribution systems. A DC motor's speed can be
controlled over a wide range, using either a variable supply voltage or by changing the
strength of current in its field windings. Small DC motors are used in tools, toys, and
appliances. The universal motor can operate on direct current but is a lightweight motor
used for portable power tools and appliances.
 
 
  15 
Larger DC motors are used in propulsion of electric vehicles, elevator and hoists,
or in drives for steel rolling mills. The advent of power electronics has made
replacement of DC motors with AC motors possible in many applications.
Figure 5: D.C Motor 
Figure 6: D.C Motor used 
 
 
  16 
In this project we use wiper motor because of high required power comparatively.
A wiper motor is electric motor that moves the windshield wiper. Electric motor - a
motor that converts electricity to mechanical work.
• Specification of wiper motor:
Rated voltage 12v 24v
No load current ≤ 2.5 ≤1.3
No load speed 90±10 90±10
Rated current ≤8 ≤4.5
Rated speed 65±15 65±15
3.4 Fiber wheels
A fiber wheel are used in this project reason being the normal wheel will produce very
high friction while rotating it at the angle of 90 degree. The normal wheel used in cars
are made for the angle of approx. 43 degree in the case of 90 degree there are very high
friction which normal wheel can not bear.
Figure 7: representation of fiber wheels
 
 
  17 
3.5 Mild steel frame
Mild steel is steel in which the main interstitial alloying constituent is carbon in the
range of 0.12–2.0%. The American Iron and Steel Institute (AISI) definition says:
Steel is considered to be carbon steel when no minimum content is specified or
required for chromium, cobalt, molybdenum, nickel, niobium, titanium, tungsten,
vanadium or zirconium, or any other element to be added to obtain a desired alloying
effect; when the specified minimum for copper does not exceed 0.40 percent; or when
the maximum content specified for any of the following elements does not exceed the
percentages noted: manganese 1.65, silicon 0.60, copper 0.60.
The term "carbon steel" may also be used in reference to steel which is not stainless
steel; in this use carbon steel may include alloy steels. As the carbon percentage content
rises, steel has the ability to become harder and stronger through heat treating; however,
it becomes less ductile. Regardless of the heat treatment, a higher carbon content
reduces weld ability. In carbon steels, the higher carbon content lowers the melting
point.
3.6 Nut & Bolts
A nut is a type of fastener with a threaded hole. Nuts are almost always used opposite a
mating bolt to fasten a stack of parts together. A combination of their threads’ friction, a
slight stretch of the bolt, and compression of the parts keep the two partners together. In
applications where vibration or rotation may work a nut loose, various locking
mechanisms may be employed: Adhesives, safety pins or lock wire, nylon inserts, or
slightly oval-shaped threads.
The most common shape is hexagonal, for similar reasons as the bolt head - 6 sides give
a good granularity of angles for a tool to approach from (good in tight spots), but more
(and smaller) corners would be vulnerable to being rounded off. Also It takes only 1/6th
of a rotation to obtain the next side of the hexagon and grip is optimal.
 
 
  18 
However polygons with more than 6 sides do not give the requisite grip and polygons
with less than 6 sides take more time to be given a complete rotation. Other specialized
shapes exist for certain needs, such as wing nuts for finger adjustment and captive nuts
for inaccessible areas.
The distinction between a bolt and a screw is usually unclear and
misunderstood. There are several practical differences, but most have some degree of
overlap between bolts and screws. The defining distinction, per Machinery's Handbook,
is in their intended purpose: Bolts are for the assembly of two unthreaded components,
with the aid of a nut.
Screws in contrast are used with components, at least one of which contains its own
internal thread, which even may be formed by the installation of the screw itself. Many
threaded fasteners can be described as either screws or bolts, depending on how they are
used. Bolts are often used to make a bolted joint.
This is a combination of the nut applying an axial clamping force and also the shank of
the bolt acting as a dowel, pinning the joint against sideways shear forces. For this
reason, many bolts have a plain unthreaded shank as this makes for a better, stronger
dowel.
The presence of the unthreaded shank has often been given as characteristic of bolts vs.
screws, but this is incidental to its use, rather than defining. Where a fastener forms its
own thread in the component being fastened, it is called a screw.
This is most obviously so when the thread is tapered (i.e. traditional wood screws),
precluding the use of a nut, or when a sheet metal screw or other thread-forming screw is
used. A screw must always be turned to assemble the joint.
Many bolts are held fixed in place during assembly, either by a tool or by a design of
non-rotating bolt, such as a carriage bolt, and only the corresponding nut is turned.
 
 
  19 
Figure 8: nut and bolt 
3.7 Rocker switch
A rocker switch is an on/off switch that rocks (rather than trips) when pressed, which
means one side of the switch is raised while the other side is depressed much like a
rocking horse rocks back and forth. A rocker switch may have a circle (for "on") on one
end and a horizontal dash or line (for "off") on the other to let the user known if the
device is on or off. Rocker switches are used in surge protector s, display monitors,
computer power supplies, and many other devices and applications.
A rocker switch with independent circuitry can have a light activated on the face
of the switch in both the on and off positions, which allows the switch to be found easily
in the dark. With dependent circuitry, the light is activated only when the switch is on.
 
 
  20 
Figure 9: Rocker switch 
3.8 D.C power supply
A battery is used for the DC power supply. An electric battery is a device consisting of
two or more electrochemical cells that convert stored chemical energy into electrical
energy. Each cell has a positive terminal, or cathode, and a negative terminal, or anode.
The terminal marked positive is at a higher electrical potential energy than is the terminal
marked negative.
The terminal marked positive is the source of electrons that when connected to an
external circuit will flow and deliver energy to an external device. When a battery is
connected to an external circuit, electrolytes are able to move as ions within, allowing the
chemical reactions to be completed at the separate terminals and so deliver energy to the
external circuit. It is the movement of those ions within the battery, which allows current
to flow out of the battery to perform work. Although the term battery technically means a
device with multiple cells, single cells are also popularly called batteries.
 
 
  21 
Primary (single-use or "disposable") batteries are used once and discarded; the
electrode materials are irreversibly changed during discharge. Common examples are the
alkaline battery used for flashlights and a multitude of portable devices. Secondary
(rechargeable batteries) can be discharged and recharged multiple times; the original
composition of the electrodes can be restored by reverse current. Examples include the
lead-acid batteries used in vehicles and lithium-ion batteries used for portable electronics.
Batteries come in many shapes and sizes, from miniature cells used to power hearing aids
and wristwatches to battery banks the size of rooms that provide standby power for
telephone exchanges and computer data centers. Batteries have much lower specific
energy (energy per unit mass) than common fuels such as gasoline. This is somewhat
offset by the higher efficiency of electric motors in producing mechanical work,
compared to combustion engines.
3.9 bearing
3.9.1 Rolling Bearings
Rolling bearings come in many shapes and varieties, each with its own distinctive
features. However, when compared with sliding bearings, rolling bearings all have the
following advantages:
(1) The starting friction coefficient is lower and there is little difference between this and
the dynamic friction coefficient.
(2) They are internationally standardized, interchangeable and readily obtainable.
(3) They are easy to lubricate and consume less lubricant.
(4) As a general rule, one bearing can carry both radial and axial loads at the same time.
(5) May be used in either high or low temperature applications.
(6) Bearing rigidity can be improved by preloading.
3.9.2 Radial and Thrust Bearings
Almost all types of rolling bearings can carry both radial and axial loads at the same time.
 
 
  22 
Generally, bearings with a contact angle of less than 45°have a much greater radial load
capacity and are classed as radial bearings; whereas bearings which have a contact angle
over 45°have a greater axial load capacity and are classed as thrust bearings. There are
also bearings classed as complex bearings which combine the loading characteristics of
both radial and thrust bearings.
3.9.3 Standard bearings and special bearings
The boundary dimensions and shapes of bearings conforming to international standards
are interchangeable and can be obtained easily and economically over the world over. It
is therefore better to design mechanical equipment to use standard bearings. However,
depending on the type of machine they are to be used in, and the expected application and
function, a non-standard or specially designed bearing may be best to use. Bearings that
are adapted to specific applications, and "unit bearings" which are integrated (built-in)
into a machine's components, and other specially designed bearings are also available.
 
 
  23 
4.Cost estimation
Parts Qty Rates
Chassis board 1 500/-
L-clamp 4 250/-
D.C. Motor 4 3600/-
Fibre wheel 4 1000/-
Nut and bolts 20 150/-
Mild steel pipes 1 200/-
Rocker switch 3 200/-
DC power supply 1 2000/-
Wiring and fitting lab 2500/-
Travelling and other expenses 2000/-
Report work 1500/-
Chain drive 2 1200/-
Total 15,100/-
 
 
  24 
5.Project goal
The aim is development of the specifications of the original 90 degree turning wheels for
transverse parking project are outlined in this chapter. The development of suitable goals
and specifications were crucial to the project’s success as they guided both the design and
aims of the project team.
As part of the requirements of the project a number of goals were established to measure
the success of the project. The primary goals were defined as the goals the group hoped
to achieve a minimum for success. The main objectives of the project are:
• Better parking at home in narrow space and at multiplexes
• This type of car can be taken through traffic jam
• Car can be move easily
• Use of electrical drives to optimize power consumption.
• Maintenance is low
• Saving of Fuel
• Saving of Time.
 
 
  25 
6.Advantages
• Easy to design
• Cheap in cost
• Easy to maintain
• Easy to operate
• Easy to installed
• Advance technology
7.Disadvantages
• Requires four motors
• Individual drive system
• Unsuitable for engine powered vehicle
• Only used in individual drive system
8.Application
• Electric vehicles
• Mini fork lift
• Go kart ( mini race car)
 
 
  26 
9.Conclusion
The project carried out by us made an impressing task in the field of automobile
industries. It is very useful for driver while driving the vehicle. This project has also
reduced the cost involved in the concern. Project has been designed to perform the
entire requirement task, which has also been provided.
The purpose of developing this project is to avoid parking problem, minimize the
space between two parked cars to minimize the time required for parking reduces the
problem of accidents during parking and to improve the design of existing vehicles.
 
 
  27 
10.References
• WWW.WIKIPEDIA.ORG [ 1 ] , [ 2 ]
• WWW.VISIONENGINEER.COM [ 5 ], fig 1 & 2
• WWW.FUTUREENERGIES.COM [ 3 ] , [ 6 ]
• WWW.SCRIBD.COM

Mais conteúdo relacionado

Mais procurados

Wheels and tyres for automobile
Wheels and tyres for automobileWheels and tyres for automobile
Wheels and tyres for automobile
sgrsoni45
 
Mercedes benz service centre training report
Mercedes benz service centre training reportMercedes benz service centre training report
Mercedes benz service centre training report
Panchal Anand
 
AUTOMONBILE CHASSIS & BODY ENGINEERING
AUTOMONBILE CHASSIS & BODY  ENGINEERING AUTOMONBILE CHASSIS & BODY  ENGINEERING
AUTOMONBILE CHASSIS & BODY ENGINEERING
Devendra Hembade
 

Mais procurados (20)

PPT ON CONTINUOUSLY VARIABLE TRANSMISSION CVT by Pukhraj Palariya
PPT ON CONTINUOUSLY VARIABLE   TRANSMISSION CVT by Pukhraj PalariyaPPT ON CONTINUOUSLY VARIABLE   TRANSMISSION CVT by Pukhraj Palariya
PPT ON CONTINUOUSLY VARIABLE TRANSMISSION CVT by Pukhraj Palariya
 
suspension and braking system
suspension and braking systemsuspension and braking system
suspension and braking system
 
Automobile chassis frame
Automobile chassis frameAutomobile chassis frame
Automobile chassis frame
 
Steering system project report
Steering system project reportSteering system project report
Steering system project report
 
FOUR WHEEL STEERING SYSTEM
FOUR WHEEL STEERING SYSTEMFOUR WHEEL STEERING SYSTEM
FOUR WHEEL STEERING SYSTEM
 
Wheels and tyres for automobile
Wheels and tyres for automobileWheels and tyres for automobile
Wheels and tyres for automobile
 
Unit 2 Front and Rear Axles, Steering Sysytem, Wheels and Tyres
Unit 2 Front and Rear Axles, Steering Sysytem, Wheels and TyresUnit 2 Front and Rear Axles, Steering Sysytem, Wheels and Tyres
Unit 2 Front and Rear Axles, Steering Sysytem, Wheels and Tyres
 
Mercedes benz service centre training report
Mercedes benz service centre training reportMercedes benz service centre training report
Mercedes benz service centre training report
 
Differential Gear Box
Differential Gear BoxDifferential Gear Box
Differential Gear Box
 
Differential in automobile
Differential in automobileDifferential in automobile
Differential in automobile
 
Automobile chassis and classification (frames)
Automobile chassis and classification (frames) Automobile chassis and classification (frames)
Automobile chassis and classification (frames)
 
Power Steering
Power SteeringPower Steering
Power Steering
 
rear axle ppt
rear axle  pptrear axle  ppt
rear axle ppt
 
Automobile safety system
Automobile safety systemAutomobile safety system
Automobile safety system
 
Suspension system
Suspension systemSuspension system
Suspension system
 
steering gear mechanism ppt
steering gear mechanism pptsteering gear mechanism ppt
steering gear mechanism ppt
 
Automobile chassis and body
Automobile chassis and bodyAutomobile chassis and body
Automobile chassis and body
 
Automobile chassis,types of automobile
Automobile chassis,types of automobileAutomobile chassis,types of automobile
Automobile chassis,types of automobile
 
Vehicle Body Engineering - Introduction
Vehicle Body Engineering - IntroductionVehicle Body Engineering - Introduction
Vehicle Body Engineering - Introduction
 
AUTOMONBILE CHASSIS & BODY ENGINEERING
AUTOMONBILE CHASSIS & BODY  ENGINEERING AUTOMONBILE CHASSIS & BODY  ENGINEERING
AUTOMONBILE CHASSIS & BODY ENGINEERING
 

Destaque

Four Wheel Steering System
Four  Wheel  Steering  SystemFour  Wheel  Steering  System
Four Wheel Steering System
Nirbhay Agarwal
 
90 Degree Side Mirrors
90 Degree Side Mirrors90 Degree Side Mirrors
90 Degree Side Mirrors
kktv
 
Four wheel steering mechanism
Four wheel steering mechanismFour wheel steering mechanism
Four wheel steering mechanism
ravinder
 
PELTON WHEEL TURBINE
PELTON WHEEL TURBINEPELTON WHEEL TURBINE
PELTON WHEEL TURBINE
gyan singh
 
RF_final_projectreport
RF_final_projectreportRF_final_projectreport
RF_final_projectreport
Rahul Ekhande
 
90 degree gearbox,90 degree bevel gearbox,90 degree 1:1 ratio gearbox,90 degr...
90 degree gearbox,90 degree bevel gearbox,90 degree 1:1 ratio gearbox,90 degr...90 degree gearbox,90 degree bevel gearbox,90 degree 1:1 ratio gearbox,90 degr...
90 degree gearbox,90 degree bevel gearbox,90 degree 1:1 ratio gearbox,90 degr...
Jacton Electromechanical Co.,Ltd
 

Destaque (20)

Four Wheel Steering System
Four  Wheel  Steering  SystemFour  Wheel  Steering  System
Four Wheel Steering System
 
90 Degree Side Mirrors
90 Degree Side Mirrors90 Degree Side Mirrors
90 Degree Side Mirrors
 
Steering system
Steering systemSteering system
Steering system
 
Four wheel steering mechanism
Four wheel steering mechanismFour wheel steering mechanism
Four wheel steering mechanism
 
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLEDESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLE
 
PELTON WHEEL TURBINE
PELTON WHEEL TURBINEPELTON WHEEL TURBINE
PELTON WHEEL TURBINE
 
SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)
SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)
SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)
 
Four wheel steering system
Four wheel steering systemFour wheel steering system
Four wheel steering system
 
Preparing for winter driving mb
Preparing for winter driving mbPreparing for winter driving mb
Preparing for winter driving mb
 
IJRET-V1I1P2 -A Survey Paper On Single Image and Video Dehazing Methods
IJRET-V1I1P2 -A Survey Paper On Single Image and Video Dehazing MethodsIJRET-V1I1P2 -A Survey Paper On Single Image and Video Dehazing Methods
IJRET-V1I1P2 -A Survey Paper On Single Image and Video Dehazing Methods
 
RF_final_projectreport
RF_final_projectreportRF_final_projectreport
RF_final_projectreport
 
Accident alert in Fog
Accident alert in FogAccident alert in Fog
Accident alert in Fog
 
90 degree gearbox,90 degree bevel gearbox,90 degree 1:1 ratio gearbox,90 degr...
90 degree gearbox,90 degree bevel gearbox,90 degree 1:1 ratio gearbox,90 degr...90 degree gearbox,90 degree bevel gearbox,90 degree 1:1 ratio gearbox,90 degr...
90 degree gearbox,90 degree bevel gearbox,90 degree 1:1 ratio gearbox,90 degr...
 
Digital Red Light Jump Checking System
Digital Red Light Jump Checking SystemDigital Red Light Jump Checking System
Digital Red Light Jump Checking System
 
Collins - Transporting Wind Turbine Blades: The Challenges and the Myths
Collins - Transporting Wind Turbine Blades: The Challenges and the MythsCollins - Transporting Wind Turbine Blades: The Challenges and the Myths
Collins - Transporting Wind Turbine Blades: The Challenges and the Myths
 
Wind energy
Wind energyWind energy
Wind energy
 
Wind turbine project presentation
Wind turbine project presentationWind turbine project presentation
Wind turbine project presentation
 
Sprocket -Side Stand Retrieve System
Sprocket -Side Stand Retrieve SystemSprocket -Side Stand Retrieve System
Sprocket -Side Stand Retrieve System
 
Project Report G1
Project Report G1Project Report G1
Project Report G1
 
Sprocket side stand retrieve system ppt
Sprocket side stand retrieve system pptSprocket side stand retrieve system ppt
Sprocket side stand retrieve system ppt
 

Semelhante a 90 degree steering system

Automatic-gear-shift-mechanism
 Automatic-gear-shift-mechanism Automatic-gear-shift-mechanism
Automatic-gear-shift-mechanism
veeresh844
 
EPAS report Electric power assisted steering
EPAS report Electric power assisted steeringEPAS report Electric power assisted steering
EPAS report Electric power assisted steering
Suchit Moon
 
Electronic Power Steering Bench Test Fixture - Public
Electronic Power Steering Bench Test Fixture - PublicElectronic Power Steering Bench Test Fixture - Public
Electronic Power Steering Bench Test Fixture - Public
Chapin Griffith
 

Semelhante a 90 degree steering system (20)

Automatic-gear-shift-mechanism
 Automatic-gear-shift-mechanism Automatic-gear-shift-mechanism
Automatic-gear-shift-mechanism
 
Automatic-gear-shift-mechanism
 Automatic-gear-shift-mechanism Automatic-gear-shift-mechanism
Automatic-gear-shift-mechanism
 
EPAS report Electric power assisted steering
EPAS report Electric power assisted steeringEPAS report Electric power assisted steering
EPAS report Electric power assisted steering
 
Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...
Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...
Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...
 
Zero Turn Vehicle
 Zero Turn Vehicle  Zero Turn Vehicle
Zero Turn Vehicle
 
IRJET- Automatic Side Stand and Foot Rest Retrieval System
IRJET- Automatic Side Stand and Foot Rest Retrieval SystemIRJET- Automatic Side Stand and Foot Rest Retrieval System
IRJET- Automatic Side Stand and Foot Rest Retrieval System
 
4-WHEEL STEERING SYSTEM MECHANISM USING DPDT SWITCH
4-WHEEL STEERING SYSTEM MECHANISM USING DPDT SWITCH4-WHEEL STEERING SYSTEM MECHANISM USING DPDT SWITCH
4-WHEEL STEERING SYSTEM MECHANISM USING DPDT SWITCH
 
gearless power transmission using elbow mechanism
gearless power transmission using elbow mechanismgearless power transmission using elbow mechanism
gearless power transmission using elbow mechanism
 
IRJET- Developing a System for Reducing the Turning Radius of a Car
IRJET- Developing a System for Reducing the Turning Radius of a CarIRJET- Developing a System for Reducing the Turning Radius of a Car
IRJET- Developing a System for Reducing the Turning Radius of a Car
 
Dynamic Balancing of the Vehicle while Cornering
Dynamic Balancing of the Vehicle while CorneringDynamic Balancing of the Vehicle while Cornering
Dynamic Balancing of the Vehicle while Cornering
 
IRJET - A Review on Design and Assembly of Go- Kart Steering System
IRJET -  	  A Review on Design and Assembly of Go- Kart Steering SystemIRJET -  	  A Review on Design and Assembly of Go- Kart Steering System
IRJET - A Review on Design and Assembly of Go- Kart Steering System
 
009
009009
009
 
An approach to parallel parking and zero turning radius in automobiles
An approach to parallel parking and zero turning radius in automobilesAn approach to parallel parking and zero turning radius in automobiles
An approach to parallel parking and zero turning radius in automobiles
 
Design and Manufacturing of Gearbox for Four-Wheel Steering
Design and Manufacturing of Gearbox for Four-Wheel SteeringDesign and Manufacturing of Gearbox for Four-Wheel Steering
Design and Manufacturing of Gearbox for Four-Wheel Steering
 
IRJET- Fifth Wheel Car Parking Mechanism
IRJET- Fifth Wheel Car Parking MechanismIRJET- Fifth Wheel Car Parking Mechanism
IRJET- Fifth Wheel Car Parking Mechanism
 
Fabrication of CVT operated bike
Fabrication of CVT operated bikeFabrication of CVT operated bike
Fabrication of CVT operated bike
 
Dj36661666
Dj36661666Dj36661666
Dj36661666
 
Electronic Power Steering Bench Test Fixture - Public
Electronic Power Steering Bench Test Fixture - PublicElectronic Power Steering Bench Test Fixture - Public
Electronic Power Steering Bench Test Fixture - Public
 
Mechanism for Transverse Car Parking
Mechanism for Transverse Car ParkingMechanism for Transverse Car Parking
Mechanism for Transverse Car Parking
 
POWER STEERING SYSTEM
POWER STEERING SYSTEMPOWER STEERING SYSTEM
POWER STEERING SYSTEM
 

Último

Majestic Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Majestic Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...Majestic Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Majestic Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
amitlee9823
 
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...
amitlee9823
 
Sanjay Nagar Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalor...
Sanjay Nagar Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalor...Sanjay Nagar Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalor...
Sanjay Nagar Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalor...
amitlee9823
 
83778-77756 ( HER.SELF ) Brings Call Girls In Laxmi Nagar
83778-77756 ( HER.SELF ) Brings Call Girls In Laxmi Nagar83778-77756 ( HER.SELF ) Brings Call Girls In Laxmi Nagar
83778-77756 ( HER.SELF ) Brings Call Girls In Laxmi Nagar
dollysharma2066
 
Call Girls in Patel Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Patel Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Patel Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Patel Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
➥🔝 7737669865 🔝▻ Bhiwandi Call-girls in Women Seeking Men 🔝Bhiwandi🔝 Escor...
➥🔝 7737669865 🔝▻ Bhiwandi Call-girls in Women Seeking Men  🔝Bhiwandi🔝   Escor...➥🔝 7737669865 🔝▻ Bhiwandi Call-girls in Women Seeking Men  🔝Bhiwandi🔝   Escor...
➥🔝 7737669865 🔝▻ Bhiwandi Call-girls in Women Seeking Men 🔝Bhiwandi🔝 Escor...
amitlee9823
 
Top Rated Call Girls Vashi : 9920725232 We offer Beautiful and sexy Call Girl...
Top Rated Call Girls Vashi : 9920725232 We offer Beautiful and sexy Call Girl...Top Rated Call Girls Vashi : 9920725232 We offer Beautiful and sexy Call Girl...
Top Rated Call Girls Vashi : 9920725232 We offer Beautiful and sexy Call Girl...
amitlee9823
 
➥🔝 7737669865 🔝▻ narsinghpur Call-girls in Women Seeking Men 🔝narsinghpur🔝 ...
➥🔝 7737669865 🔝▻ narsinghpur Call-girls in Women Seeking Men  🔝narsinghpur🔝  ...➥🔝 7737669865 🔝▻ narsinghpur Call-girls in Women Seeking Men  🔝narsinghpur🔝  ...
➥🔝 7737669865 🔝▻ narsinghpur Call-girls in Women Seeking Men 🔝narsinghpur🔝 ...
nirzagarg
 
➥🔝 7737669865 🔝▻ Asansol Call-girls in Women Seeking Men 🔝Asansol🔝 Escorts...
➥🔝 7737669865 🔝▻ Asansol Call-girls in Women Seeking Men  🔝Asansol🔝   Escorts...➥🔝 7737669865 🔝▻ Asansol Call-girls in Women Seeking Men  🔝Asansol🔝   Escorts...
➥🔝 7737669865 🔝▻ Asansol Call-girls in Women Seeking Men 🔝Asansol🔝 Escorts...
amitlee9823
 
Escorts Service Rajajinagar ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Rajajinagar ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Rajajinagar ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Rajajinagar ☎ 7737669865☎ Book Your One night Stand (Bangalore)
amitlee9823
 
Madiwala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Madiwala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...Madiwala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Madiwala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
amitlee9823
 
Vip Mumbai Call Girls Colaba Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Colaba Call On 9920725232 With Body to body massage wit...Vip Mumbai Call Girls Colaba Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Colaba Call On 9920725232 With Body to body massage wit...
amitlee9823
 

Último (20)

Majestic Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Majestic Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...Majestic Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Majestic Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
 
BOOK FARIDABAD CALL GIRL(VIP Sunny Leone) @8168257667 BOOK 24/7
BOOK FARIDABAD CALL GIRL(VIP Sunny Leone) @8168257667 BOOK  24/7BOOK FARIDABAD CALL GIRL(VIP Sunny Leone) @8168257667 BOOK  24/7
BOOK FARIDABAD CALL GIRL(VIP Sunny Leone) @8168257667 BOOK 24/7
 
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdfJohn Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
 
What Causes BMW Chassis Stabilization Malfunction Warning To Appear
What Causes BMW Chassis Stabilization Malfunction Warning To AppearWhat Causes BMW Chassis Stabilization Malfunction Warning To Appear
What Causes BMW Chassis Stabilization Malfunction Warning To Appear
 
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...
 
Sanjay Nagar Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalor...
Sanjay Nagar Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalor...Sanjay Nagar Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalor...
Sanjay Nagar Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalor...
 
83778-77756 ( HER.SELF ) Brings Call Girls In Laxmi Nagar
83778-77756 ( HER.SELF ) Brings Call Girls In Laxmi Nagar83778-77756 ( HER.SELF ) Brings Call Girls In Laxmi Nagar
83778-77756 ( HER.SELF ) Brings Call Girls In Laxmi Nagar
 
Call Girls in Patel Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Patel Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Patel Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Patel Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
➥🔝 7737669865 🔝▻ Bhiwandi Call-girls in Women Seeking Men 🔝Bhiwandi🔝 Escor...
➥🔝 7737669865 🔝▻ Bhiwandi Call-girls in Women Seeking Men  🔝Bhiwandi🔝   Escor...➥🔝 7737669865 🔝▻ Bhiwandi Call-girls in Women Seeking Men  🔝Bhiwandi🔝   Escor...
➥🔝 7737669865 🔝▻ Bhiwandi Call-girls in Women Seeking Men 🔝Bhiwandi🔝 Escor...
 
Lecture-20 Kleene’s Theorem-1.pptx best for understanding the automata
Lecture-20 Kleene’s Theorem-1.pptx best for understanding the automataLecture-20 Kleene’s Theorem-1.pptx best for understanding the automata
Lecture-20 Kleene’s Theorem-1.pptx best for understanding the automata
 
Top Rated Call Girls Vashi : 9920725232 We offer Beautiful and sexy Call Girl...
Top Rated Call Girls Vashi : 9920725232 We offer Beautiful and sexy Call Girl...Top Rated Call Girls Vashi : 9920725232 We offer Beautiful and sexy Call Girl...
Top Rated Call Girls Vashi : 9920725232 We offer Beautiful and sexy Call Girl...
 
➥🔝 7737669865 🔝▻ narsinghpur Call-girls in Women Seeking Men 🔝narsinghpur🔝 ...
➥🔝 7737669865 🔝▻ narsinghpur Call-girls in Women Seeking Men  🔝narsinghpur🔝  ...➥🔝 7737669865 🔝▻ narsinghpur Call-girls in Women Seeking Men  🔝narsinghpur🔝  ...
➥🔝 7737669865 🔝▻ narsinghpur Call-girls in Women Seeking Men 🔝narsinghpur🔝 ...
 
ENJOY Call Girls In Okhla Vihar Delhi Call 9654467111
ENJOY Call Girls In Okhla Vihar Delhi Call 9654467111ENJOY Call Girls In Okhla Vihar Delhi Call 9654467111
ENJOY Call Girls In Okhla Vihar Delhi Call 9654467111
 
➥🔝 7737669865 🔝▻ Asansol Call-girls in Women Seeking Men 🔝Asansol🔝 Escorts...
➥🔝 7737669865 🔝▻ Asansol Call-girls in Women Seeking Men  🔝Asansol🔝   Escorts...➥🔝 7737669865 🔝▻ Asansol Call-girls in Women Seeking Men  🔝Asansol🔝   Escorts...
➥🔝 7737669865 🔝▻ Asansol Call-girls in Women Seeking Men 🔝Asansol🔝 Escorts...
 
Escorts Service Rajajinagar ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Rajajinagar ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Rajajinagar ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Rajajinagar ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
(INDIRA) Call Girl Surat Call Now 8250077686 Surat Escorts 24x7
(INDIRA) Call Girl Surat Call Now 8250077686 Surat Escorts 24x7(INDIRA) Call Girl Surat Call Now 8250077686 Surat Escorts 24x7
(INDIRA) Call Girl Surat Call Now 8250077686 Surat Escorts 24x7
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
What Does The Engine Malfunction Reduced Power Message Mean For Your BMW X5
What Does The Engine Malfunction Reduced Power Message Mean For Your BMW X5What Does The Engine Malfunction Reduced Power Message Mean For Your BMW X5
What Does The Engine Malfunction Reduced Power Message Mean For Your BMW X5
 
Madiwala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Madiwala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...Madiwala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Madiwala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
 
Vip Mumbai Call Girls Colaba Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Colaba Call On 9920725232 With Body to body massage wit...Vip Mumbai Call Girls Colaba Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Colaba Call On 9920725232 With Body to body massage wit...
 

90 degree steering system

  • 1. A Project Report On “90 DEGREE STEERING MECHANISM” Submitted in partial fulfilment of the requirement For the award of the Degree of Bachelor of Technology In Mechanical Engineering Department of Mechanical Engineering CAREER POINT UNIVERSITY KOTA Submitted by: Rohan Sharma (K10188) Sovil Modi (K10192) Nishant Sharma (K10459) Jitendra (K10465) Submitted to: Mr. Bhupendra gehlot Assistant Professor Dept. of Mechanical Engineering Career point university, Kota  
  • 2.       1  CERTIFICATE This is to certify that Sovil Modi (K10192), Rohan Sharma (K10188), Nishant Sharma (K10459), Jitendar (K10465) has submitted the Project report entitled “90 degree steering mechanism’’ in partial fulfillment for the award of the degree of Bachelor of Technology (Mechanical Engineering). The report has been prepared as per the prescribed format and is approved for submission and presentation. Project Guide
  • 3.       2  ACKNOWLEDGEMENT We would like to express our heartfelt gratitude to our guide Assistant Professor Mr.Bhupendra Gehlot, Department of Mechanical Engineering for his valuable time and guidance that made the project work a success. They have inspired us such a spirit of devotion, precision and unbiased observation, which is essentially a corner stone of technical study. We are highly grateful to Mr. /Ms. ..........................., Head of the Department of Mechanical Engineering and our Guide Mr./Ms. Bhupendra Gehlot ,Assistant Professor in Department of Mechanical Engineering, for their kind support for the project work. We thank all our friends and all those who have helped us carrying out this work directly or indirectly without whom completion of this project work was not possible. We would also like to sincerely thank Vice-chancellor of Career Point University for giving us a platform to carry out the project. Sincerely yours, Rohan Sharma (K10188) Sovil Modi (K10192) Nishant Sharma (K10459) Jitendra (K10465)
  • 4.       3  ABSTRACT The Soft Car design proposal has swing 90 degrees. It can pull up alongside a parking space and drive in sideways. Conventional steering mechanism involves either the use of Ackerman or Davis steering systems. The disadvantage associated with these systems is the minimum turning radius that is possible for the steering action. This difficulty that is associated with the conventional methods of steering is eliminated by employing a four wheel 90 degree steering system. This innovation promises to ease the task of parking on narrow Cambridge streets. The most striking elements of the car are wheels that incorporate electric motors and the suspension inside their circumference. By working through the problem so logically and indeed unemotionally we will anticipate discovering new possibilities. "We want to step back and rethink the automobile from scratch. The process is like diagramming a sentence steering and so on. The goal is to dissect the structure of the car and look at it a fresh." The wheels drive-by-wire controls that replace mechanical links to the brakes and throttle with electronic connections.
  • 5.       4  TABLE OF CONTENT TITLE PAGE NO. ACKNOWLEDGEMENT 2 ABSTRACT 3 LIST OF FIGURES 6 LIST OF TABLE 6 CHAPTER 1: INTRODUCTION 7 CHAPTER 2: WORKING 8 CHAPTER 3: PART LIST 12 3.1 CHASSIS BOARD 12 3.2 L-CLAMP 13 3.3 D.C MOTOR 14 3.4 FIBER WHEEL 15 3.5 MILD STEEL FRAME 16 3.6 NUT BOLTS 17
  • 6.       5  3.7 ROCKER SWITCH 19 3.8 D.C. POWER SUPPLY 20 3.9 BEARINGS 21 CHAPTER 4: COST ESTIMATION 23 CHAPTER 5: PROJECT GOAL 24 CHAPTER 6: ADVANTAGES 25 CHAPTER 7: DISADVANTAGES 25 CHAPTER 8: APPLICATION 25 CONCLUSION 26 REFERENCES 27
  • 7.       6  LIST OF FIGURES Fig. No. Description Pg. No. 1 90 degree steering mechanism 9 2 Electric power steering 11 3 Chassis board 13 4 L clamps 14 5 D.C Motor 15 6 D.C Motor Used 15 7 Fiber wheels 16 8 Nut and bolt 19 9 Rocker switch 20 LIST OF TABLE S. No. Fig. No. Description Pg. No. 1. 1 Specification of wiper motor 16
  • 8.       7  1. Introduction In highly populated areas it can be difficult to find available parking spots. Frequently parking spots are located on the side of the road, leaving the driver with no choice but to attempt parallel parking. In general it is considered to be a rather challenging maneuver. Since parallel parking requires driving backwards it becomes difficult to coordinate the correct motion of the car. Some drivers have to perform multiple corrections before they park the car properly. In the worst case an accident can occur. A car that can perform parallel parking by itself would save drivers time, especially those that are not very good with parallel parking. In addition cars that can parallel park autonomously in a reliable manner would most probably reduce the number of accidents related to parking. The objective of our work is to implement parallel parking using a car like robot. We restricted the motion of the robot to model the motion of a car. Using our model we present a solution to the autonomous parallel parking problem.
  • 9.       8  2.Working In this project battery provides the power supply to the control unit. The equipment contains totally six motors, two motors coupled with the vehicle’s left and right wheels of the front side, the next two motors are connected to the vehicle’s left and right side of the back side. The four motors are used to run the vehicle. Another two motors are connected to rotate the vehicle wheel 90 degree by the chain drive arrangements. The keypad in the control unit has six keys they are left, right, forward, reverse, park left and park right. We press the left key in the keypad the vehicle turns left side in a required angle, we press the right key in the keypad the vehicle turns at the right side in required angle. Similarly the forward and reverse key in the keypad controls the forward and reverse motion of the vehicle. We want to park the vehicle in left side by press the park left key then the motor connected in the chain drive is turns the wheel left side 90 degree automatically and the vehicle is parked in left side. Using this we can easily park the vehicle in various areas. In heavy traffic performance of steering system need powerful working without extra effort that’s why we design this project or prototype of four-wheel electric steering system with 90 degree electric powered steering system. In the project total 4 d.c motors are used. Two motors used for transmission to alternative wheel of vehicle when key is operated by operator the front wheel as well as the rear wheel are positioned as parallel to each other which are normal in condition before operation left and right keys on keypad is used for movement of left and right wheel respectively. When third key is operated front wheel are parallel to rear wheel and makes an angle of 90 degree to normal wheel system. In this position we directly turn the vehicle without any turning radius. As well as we position the wheel 45 degree to normal position.
  • 11.       10  2.1 Electric power steering (EPS): It is designed to use an electric motor to reduce effort by providing steering assist to the driver of a vehicle. The system allows engineers to tailor steering gear response to variable-rate and variable-damping suspension system. Achieving an ideal blend of ride, handling, and steering of each vehicle. On fiat group cars the amount can be regulated using a button named “CITY” that switch between two different assist curves, while most others EPS system have variable assist, which allows for more assistance as the speed of vehicle decreases and less assistance from the system during high speed situation. In the event of component failure, a mechanical linkage such as a rack and pinion serves as back up in manner similar to that of hydraulic system. Electric power steering should not be confused with drive-by-wire or steer-by-wire system which use electric motor for steering, but without any mechanical linkage to the steering wheel. Electric system have a slight advantage in fuel efficiency because there is belt- driven hydraulic pump constantly running whether assistance is required or not, and this is a major reason for their introduction. Another major advantage is the elimination of a belt-driven engine accessory, and several high dispressure hydraulic hoses between the hydraulic pump, mounted on the engine, and the steering gear, mounted on the chassis. This greatly simplifies maintenance. By incorporating electronic stability control electric power steering system can instantly vary torque assist level to aid the driver in evasive manoeuvres. The peak power output of the electrical system of a vehicle limits the capability of electric steering assist. A 12v electrical system, for example is limited to about 80amps of current which, in turn, limits the size of the motor to less than 1kv ( 12.5v time 80amps equals 1000watts). This amount of power would be adequate for smaller vehicles.
  • 12.       11  It would probably be considered in sufficient for larger vehicles such as trucks and SUV’s. there other types of variants used for hybrid and electric vehicles. These have greater capacity that enables use of multi kw motors needed for large and mid-size vehicles. Figure 2: electric power steering
  • 13.       12  3.Part list There are different parts which will be used during the process they are as follows: 3.1 Chassis board An example of a chassis is the under part of a motor vehicle, consisting of the frame (on which the body is mounted). If the running gear such as wheels and transmission, and sometimes even the driver's seat, are included, then the assembly is described as a rolling chassis. A chassis consists of an internal framework that supports a manmade object in its construction and use. It is analogous to an animal's skeleton. An example of a chassis is the underpart of a motor vehicle, consisting of the frame (on which the body is mounted). A body (sometimes referred to as "coachwork"), which is usually not necessary for integrity of the structure, is built on the chassis to complete the vehicle. In an electronic device, the chassis consists of a frame or other internal supporting structure on which the circuit boards and other electronics are mounted.
  • 14.       13  Figure 3: chassis board 3.2 L-clamp L clamps are woodworking clamps used to secure wood for cutting, screwing, or gluing. These clamps resemble the letters for which they are named. • A device used to hold an object in a fixed position. • A wheel clamp is a device used with road vehicles to prevent theft or enforce parking restrictions.
  • 15.       14  Figure 4: L clamps 3.3 D. C. Motor A DC motor is any of a class of electrical machines that converts direct current electrical power into mechanical power. The most common types rely on the forces produced by magnetic fields. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current flow in part of the motor. Most types produce rotary motion; a linear motor directly produces force and motion in a straight line. DC motors were the first type widely used, since they could be powered from existing direct-current lighting power distribution systems. A DC motor's speed can be controlled over a wide range, using either a variable supply voltage or by changing the strength of current in its field windings. Small DC motors are used in tools, toys, and appliances. The universal motor can operate on direct current but is a lightweight motor used for portable power tools and appliances.
  • 16.       15  Larger DC motors are used in propulsion of electric vehicles, elevator and hoists, or in drives for steel rolling mills. The advent of power electronics has made replacement of DC motors with AC motors possible in many applications. Figure 5: D.C Motor  Figure 6: D.C Motor used 
  • 17.       16  In this project we use wiper motor because of high required power comparatively. A wiper motor is electric motor that moves the windshield wiper. Electric motor - a motor that converts electricity to mechanical work. • Specification of wiper motor: Rated voltage 12v 24v No load current ≤ 2.5 ≤1.3 No load speed 90±10 90±10 Rated current ≤8 ≤4.5 Rated speed 65±15 65±15 3.4 Fiber wheels A fiber wheel are used in this project reason being the normal wheel will produce very high friction while rotating it at the angle of 90 degree. The normal wheel used in cars are made for the angle of approx. 43 degree in the case of 90 degree there are very high friction which normal wheel can not bear. Figure 7: representation of fiber wheels
  • 18.       17  3.5 Mild steel frame Mild steel is steel in which the main interstitial alloying constituent is carbon in the range of 0.12–2.0%. The American Iron and Steel Institute (AISI) definition says: Steel is considered to be carbon steel when no minimum content is specified or required for chromium, cobalt, molybdenum, nickel, niobium, titanium, tungsten, vanadium or zirconium, or any other element to be added to obtain a desired alloying effect; when the specified minimum for copper does not exceed 0.40 percent; or when the maximum content specified for any of the following elements does not exceed the percentages noted: manganese 1.65, silicon 0.60, copper 0.60. The term "carbon steel" may also be used in reference to steel which is not stainless steel; in this use carbon steel may include alloy steels. As the carbon percentage content rises, steel has the ability to become harder and stronger through heat treating; however, it becomes less ductile. Regardless of the heat treatment, a higher carbon content reduces weld ability. In carbon steels, the higher carbon content lowers the melting point. 3.6 Nut & Bolts A nut is a type of fastener with a threaded hole. Nuts are almost always used opposite a mating bolt to fasten a stack of parts together. A combination of their threads’ friction, a slight stretch of the bolt, and compression of the parts keep the two partners together. In applications where vibration or rotation may work a nut loose, various locking mechanisms may be employed: Adhesives, safety pins or lock wire, nylon inserts, or slightly oval-shaped threads. The most common shape is hexagonal, for similar reasons as the bolt head - 6 sides give a good granularity of angles for a tool to approach from (good in tight spots), but more (and smaller) corners would be vulnerable to being rounded off. Also It takes only 1/6th of a rotation to obtain the next side of the hexagon and grip is optimal.
  • 19.       18  However polygons with more than 6 sides do not give the requisite grip and polygons with less than 6 sides take more time to be given a complete rotation. Other specialized shapes exist for certain needs, such as wing nuts for finger adjustment and captive nuts for inaccessible areas. The distinction between a bolt and a screw is usually unclear and misunderstood. There are several practical differences, but most have some degree of overlap between bolts and screws. The defining distinction, per Machinery's Handbook, is in their intended purpose: Bolts are for the assembly of two unthreaded components, with the aid of a nut. Screws in contrast are used with components, at least one of which contains its own internal thread, which even may be formed by the installation of the screw itself. Many threaded fasteners can be described as either screws or bolts, depending on how they are used. Bolts are often used to make a bolted joint. This is a combination of the nut applying an axial clamping force and also the shank of the bolt acting as a dowel, pinning the joint against sideways shear forces. For this reason, many bolts have a plain unthreaded shank as this makes for a better, stronger dowel. The presence of the unthreaded shank has often been given as characteristic of bolts vs. screws, but this is incidental to its use, rather than defining. Where a fastener forms its own thread in the component being fastened, it is called a screw. This is most obviously so when the thread is tapered (i.e. traditional wood screws), precluding the use of a nut, or when a sheet metal screw or other thread-forming screw is used. A screw must always be turned to assemble the joint. Many bolts are held fixed in place during assembly, either by a tool or by a design of non-rotating bolt, such as a carriage bolt, and only the corresponding nut is turned.
  • 20.       19  Figure 8: nut and bolt  3.7 Rocker switch A rocker switch is an on/off switch that rocks (rather than trips) when pressed, which means one side of the switch is raised while the other side is depressed much like a rocking horse rocks back and forth. A rocker switch may have a circle (for "on") on one end and a horizontal dash or line (for "off") on the other to let the user known if the device is on or off. Rocker switches are used in surge protector s, display monitors, computer power supplies, and many other devices and applications. A rocker switch with independent circuitry can have a light activated on the face of the switch in both the on and off positions, which allows the switch to be found easily in the dark. With dependent circuitry, the light is activated only when the switch is on.
  • 21.       20  Figure 9: Rocker switch  3.8 D.C power supply A battery is used for the DC power supply. An electric battery is a device consisting of two or more electrochemical cells that convert stored chemical energy into electrical energy. Each cell has a positive terminal, or cathode, and a negative terminal, or anode. The terminal marked positive is at a higher electrical potential energy than is the terminal marked negative. The terminal marked positive is the source of electrons that when connected to an external circuit will flow and deliver energy to an external device. When a battery is connected to an external circuit, electrolytes are able to move as ions within, allowing the chemical reactions to be completed at the separate terminals and so deliver energy to the external circuit. It is the movement of those ions within the battery, which allows current to flow out of the battery to perform work. Although the term battery technically means a device with multiple cells, single cells are also popularly called batteries.
  • 22.       21  Primary (single-use or "disposable") batteries are used once and discarded; the electrode materials are irreversibly changed during discharge. Common examples are the alkaline battery used for flashlights and a multitude of portable devices. Secondary (rechargeable batteries) can be discharged and recharged multiple times; the original composition of the electrodes can be restored by reverse current. Examples include the lead-acid batteries used in vehicles and lithium-ion batteries used for portable electronics. Batteries come in many shapes and sizes, from miniature cells used to power hearing aids and wristwatches to battery banks the size of rooms that provide standby power for telephone exchanges and computer data centers. Batteries have much lower specific energy (energy per unit mass) than common fuels such as gasoline. This is somewhat offset by the higher efficiency of electric motors in producing mechanical work, compared to combustion engines. 3.9 bearing 3.9.1 Rolling Bearings Rolling bearings come in many shapes and varieties, each with its own distinctive features. However, when compared with sliding bearings, rolling bearings all have the following advantages: (1) The starting friction coefficient is lower and there is little difference between this and the dynamic friction coefficient. (2) They are internationally standardized, interchangeable and readily obtainable. (3) They are easy to lubricate and consume less lubricant. (4) As a general rule, one bearing can carry both radial and axial loads at the same time. (5) May be used in either high or low temperature applications. (6) Bearing rigidity can be improved by preloading. 3.9.2 Radial and Thrust Bearings Almost all types of rolling bearings can carry both radial and axial loads at the same time.
  • 23.       22  Generally, bearings with a contact angle of less than 45°have a much greater radial load capacity and are classed as radial bearings; whereas bearings which have a contact angle over 45°have a greater axial load capacity and are classed as thrust bearings. There are also bearings classed as complex bearings which combine the loading characteristics of both radial and thrust bearings. 3.9.3 Standard bearings and special bearings The boundary dimensions and shapes of bearings conforming to international standards are interchangeable and can be obtained easily and economically over the world over. It is therefore better to design mechanical equipment to use standard bearings. However, depending on the type of machine they are to be used in, and the expected application and function, a non-standard or specially designed bearing may be best to use. Bearings that are adapted to specific applications, and "unit bearings" which are integrated (built-in) into a machine's components, and other specially designed bearings are also available.
  • 24.       23  4.Cost estimation Parts Qty Rates Chassis board 1 500/- L-clamp 4 250/- D.C. Motor 4 3600/- Fibre wheel 4 1000/- Nut and bolts 20 150/- Mild steel pipes 1 200/- Rocker switch 3 200/- DC power supply 1 2000/- Wiring and fitting lab 2500/- Travelling and other expenses 2000/- Report work 1500/- Chain drive 2 1200/- Total 15,100/-
  • 25.       24  5.Project goal The aim is development of the specifications of the original 90 degree turning wheels for transverse parking project are outlined in this chapter. The development of suitable goals and specifications were crucial to the project’s success as they guided both the design and aims of the project team. As part of the requirements of the project a number of goals were established to measure the success of the project. The primary goals were defined as the goals the group hoped to achieve a minimum for success. The main objectives of the project are: • Better parking at home in narrow space and at multiplexes • This type of car can be taken through traffic jam • Car can be move easily • Use of electrical drives to optimize power consumption. • Maintenance is low • Saving of Fuel • Saving of Time.
  • 26.       25  6.Advantages • Easy to design • Cheap in cost • Easy to maintain • Easy to operate • Easy to installed • Advance technology 7.Disadvantages • Requires four motors • Individual drive system • Unsuitable for engine powered vehicle • Only used in individual drive system 8.Application • Electric vehicles • Mini fork lift • Go kart ( mini race car)
  • 27.       26  9.Conclusion The project carried out by us made an impressing task in the field of automobile industries. It is very useful for driver while driving the vehicle. This project has also reduced the cost involved in the concern. Project has been designed to perform the entire requirement task, which has also been provided. The purpose of developing this project is to avoid parking problem, minimize the space between two parked cars to minimize the time required for parking reduces the problem of accidents during parking and to improve the design of existing vehicles.
  • 28.       27  10.References • WWW.WIKIPEDIA.ORG [ 1 ] , [ 2 ] • WWW.VISIONENGINEER.COM [ 5 ], fig 1 & 2 • WWW.FUTUREENERGIES.COM [ 3 ] , [ 6 ] • WWW.SCRIBD.COM