SlideShare uma empresa Scribd logo
1 de 30
EEEC6430310 ELECTROMAGNETIC FIELDS AND WAVES
Maxwell’s Equation
FACULTY OF ENGINEERING AND COMPUTER TECHNOLOGY
BENG (HONS) IN ELECTRICALAND ELECTRONIC ENGINEERING
Ravandran Muttiah BEng (Hons) MSc MIET
Maxwell’s Equation
I. Maxwell’s Equation For Linear Media
𝛻 × 𝑬 = −𝜇
𝜕𝑯
𝜕𝑡
Faraday′
s Law
𝛻 × 𝑯 = 𝑱 + 𝜀
𝜕𝑬
𝜕𝑡
Ampere′
s Law
𝛻 ∙ 𝑬 =
𝜌f
𝜀
Gauss′
s Law
𝛻 ∙ 𝑯 = 0 Gauss′
s Law
where, 𝛻 = vector differential (del) operator
𝑬 = electric field intensity
𝑯 = magnetic field intensity
𝑱 = electric current density
𝜌f = free electric charge density
1
2
II. Pointing’s Theorem
A. Power Flow And Electromagnetic Energy
𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯
= −𝜇𝑯 ∙
𝜕𝑯
𝜕𝑡
− 𝑬 ∙ 𝑱 + 𝜀
𝜕𝑬
𝜕𝑡
= −
𝜇
2
𝜕
𝜕𝑡
𝑯 2
−
𝜀
2
𝜕
𝜕𝑡
𝑬 2
− 𝑬 ∙ 𝑱
𝛻 ∙ 𝑬 × 𝑯 +
𝜕
𝜕𝑡
1
2
𝜀 𝑬 2
+
1
2
𝜇 𝑯 2
= −𝑬 ∙ 𝑱
3
V
𝛻 ∙ 𝑬 × 𝑯 d𝑉 =
S
𝑬 × 𝑯 ∙ d𝑺
S
𝑬 × 𝑯 ∙ d𝒂 +
d
d𝑡 V
1
2
𝜀 𝑬 2
+
1
2
𝜇 𝑯 2
d𝑉 = −
𝑉
𝑬 ∙ 𝑱 d𝑉
𝑺 = 𝑬 × 𝑯 Poynting Vector
Watt
m2
𝑊 = V
1
2
𝜀 𝑬 2
+
1
2
𝜇 𝑯 2
d𝑉 Electromagnetic Stored Energy
𝑃d = V
𝑬 ∙ 𝑱 d𝑉 Power dissipated if 𝐽 ∙ 𝑬 > 0
e.g., 𝑱 = 𝜎𝑬 ⇒ 𝐽 ∙ 𝑬 = 𝜎 𝑬 𝟐
Power source if 𝐽 ∙ 𝑬 < 0
𝑃out =
S
𝑬 × 𝑯 ∙ d𝒂 =
S
𝑺 ∙ d𝒂
𝑃out +
d𝑊
d𝑡
= −𝑃d
𝑤e =
1
2
𝜀 𝑬 2
Electric energy density in
Joules
m3
𝑤m =
1
2
𝜇 𝑯 2
Magnetic energy density in
Joules
m3
4
Figure 1: The circuit power into an N terminal network 𝑘=1
𝑁
𝑉𝑘𝐼𝑘 equals the
electromagnetic power flow into the surface surrounding the network, − s
𝑬 × 𝑯 · d𝑺
B. Power In Electric Circuits
E
H
𝑆 = 𝐸 × 𝐻
𝑉1
𝑉2
𝑉3
𝑉𝑁−1
𝑉𝑁
𝐼1
𝐼2
𝐼3
𝐼𝑁−1
𝐼𝑁
𝑆
5
Outside circuit elements
C
𝑬 ∙ d𝒍 ≈ 0, 𝛻 × 𝑬 = 0 ⇒ 𝑬 = −𝛻Ф (Kirchoff’s Voltage Law 𝑘 𝑣𝑘 = 0)
𝛻 × 𝑯 = 𝑱 ⇒ 𝛻 ∙ 𝑱 = 0, S
𝑱 ∙ d𝑺 = 0 (Kirchoff’s Current Law 𝑘 𝑖𝑘 = 0)
𝑃in = −
S
𝑬 × 𝑯 ∙ d𝑺
= −
V
𝛻 ∙ 𝑬 × 𝑯 d𝑉
𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯 = −𝑬 ∙ 𝑱 = 𝛻Ф ∙ 𝑱
𝛻 ∙ 𝑱Ф = Ф𝛻 ∙ 𝑱 + 𝑱 ∙ 𝛻Ф
𝛻 ∙ 𝑬 × 𝑯 = 𝑱 ∙ 𝛻Ф = 𝛻 ∙ Ф𝑱
𝑃in = −
V
𝛻 ∙ 𝑬 × 𝑯 d𝑉 = −
V
𝛻 ∙ 𝑱Ф d𝑉 = −
S
𝑱Ф ∙ d𝑺
On 𝑆, Ф = voltages on each wire, 𝑱 is non-zero only on wires.
𝑃in = −
S
𝑱Ф ∙ d𝑺 = −
𝑘=1
𝑁
𝑣𝑘
S
𝑱 ∙ d𝑺 =
𝑘=1
𝑁
𝑣𝑘𝑖𝑘
0
0
−𝑖𝑘
C. Complex Poynting’s Theorem (Sinusoidal Steady State, ej𝜔𝑡
)
6
𝑬 𝒓, 𝑡 = Re 𝑬 𝒓 ej𝜔𝑡
=
1
2
𝑬∗
𝒓 ej𝜔𝑡
+ 𝑬∗
𝒓 e−j𝜔𝑡
𝑯 𝒓, 𝑡 = Re 𝑯 𝒓 ej𝜔𝑡
=
1
2
𝑯∗
𝒓 ej𝜔𝑡
+ 𝑯∗
𝒓 e−j𝜔𝑡
The real part of a complex number is
one-half of the sum of the number
and its complex conjugate
7
Maxwell’s Equations In Sinusoidal Steady State
𝛻 × 𝑬 𝒓 = −j𝜔𝜇𝑯 𝒓
𝛻 × 𝑯 𝒓 = 𝑱 𝒓 + j𝜔𝜀 𝒓
𝛻 ∙ 𝑬 𝒓 =
𝝆f 𝒓
𝜀
𝛻 ∙ 𝑯 𝒓 = 0
8
𝑺 𝒓, 𝑡 = 𝑬 𝒓, 𝑡 × 𝑯 𝒓, 𝑡
=
1
4
𝑬 𝒓 ej𝜔𝑡
+ 𝑬 𝒓 e−j𝜔𝑡
× 𝑯 𝒓 ej𝜔𝑡
+ 𝑯∗
𝒓 e−j𝜔𝑡
=
1
4
𝑬 𝒓 × 𝑯 𝒓 e2j𝜔𝑡
+𝑬∗
𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗
𝒓 + 𝑬∗
𝒓 × 𝑯∗
𝒓 e−2j𝜔𝑡
𝑺 =
1
4
𝑬∗
𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗
𝒓
=
1
2
Re 𝑬 𝒓 × 𝑯∗
𝒓
=
1
2
Re 𝑬∗
𝒓 × 𝑯 𝒓
(A complex number plus its complex conjugate is twice the real part of that number)
9
𝑺 =
1
2
Re 𝑬 𝒓 × 𝑯∗
𝒓
𝛻 ∙ 𝑺 = 𝛻 ∙
1
2
𝑬 𝒓 × 𝑯∗
𝒓 =
1
2
𝑯∗
𝒓 ∙ 𝛻 × 𝑬 𝒓 − 𝑬 𝒓 ∙ 𝛻 × 𝑯∗
𝒓
=
1
2
𝑯∗
𝒓 −j𝜔𝜇𝑯 𝒓 − 𝑬 𝒓 ∙ 𝑱∗
𝒓 − j𝜔𝜀𝑬∗
𝒓
=
1
2
−j𝜔𝜇 𝑯 𝒓 2
+ j𝜔𝜀 𝑬 𝒓 2
−
1
2
𝑬 𝒓 ∙ 𝑱∗
𝒓
𝑤m =
1
4
𝜇 𝑯 𝒓 2
, 𝑤e =
1
4
𝜀 𝑬 𝒓 2
𝑷d =
1
2
𝑬 𝒓 ∙ 𝑱∗
𝒓
𝛻 ∙ 𝑺 + 2j𝜔 𝑤m − 𝑤e = −𝑷d
III. Transverse Electromagnetic Waves (𝑱 = 0, 𝜌f = 0)
10
The great success of Maxwell’s equations lies partly in the simple prediction of
electromagnetic waves and their simple characterization of materials in terms of
conductivity 𝜎, permittivity 𝜀, and permeability 𝜇. In vacuum we find 𝜎 = 0, 𝜀 = 𝜀o
and 𝜇 = 𝜇o. Therefore, 𝑱 = 𝜎𝑬 = 0 and 𝜌f = 0.
A. Wave Equation
𝛻 × 𝑬 = −𝜇
𝜕𝑯
𝜕𝑡
𝛻 × 𝑯 = 𝜀
𝜕𝑬
𝜕𝑡
𝛻 ∙ 𝑬 = 0
𝛻 ∙ 𝑯 = 0
In contrast the nano-structure of media can be quite complex and requires quantum
mechanics and for its full explanation. Fortunately, simple classical approximations
to atoms and molecules suffice to understand the origin of 𝜎, 𝜀 and 𝜇.
11
𝛻 × 𝛻 × 𝑬 = −𝜇
𝜕
𝜕𝑡
𝛻 × 𝐻 = −𝜇
𝜕
𝜕𝑡
𝜀
𝜕𝑬
𝜕𝑡
𝛻 × 𝛻 × 𝑬 = 𝛻 𝛻 ∙ 𝑬 − 𝛻2
𝑬 = −𝜀𝜇
𝜕2
𝑬
𝜕𝑡2
Wave equation,
𝛻2
𝑬 =
1
𝑐2
𝜕2
𝑬
𝜕𝑡2
where, 𝑐 =
1
𝜀𝜇
is the velocity of the electromagnetic wave. In free space (i.e.
vacuum), 𝜇 = 𝜇o = 4π × 10−7 henries
m
and 𝜀 = 𝜀o ≈
10−9
36π
farads
m
, which leads to
𝑐o =
1
𝜀o𝜇o
≈ 3 × 108 m
s
. Similarly,
𝛻 × 𝛻 × 𝑯 = 𝛻 𝛻 ∙ 𝑯 − 𝛻2
𝑯 = 𝜀
𝜕
𝜕𝑡
𝛻 × 𝑬 = −𝜀𝜇
𝜕2
𝑯
𝜕𝑡2
𝛻2
𝑯 =
1
𝑐2
𝜕2
𝑯
𝜕𝑡2
, 𝑐 =
1
𝜀𝜇
0
0
12
x
z
y
𝜀1, 𝜇1
𝐸𝑥− = Re 𝑬𝑥− 𝑧 ej𝜔𝑡
𝐻𝑦− = Re 𝑯y− 𝑧 ej𝜔𝑡
𝐻𝑦+ = Re 𝑯y+ 𝑧 ej𝜔𝑡
𝐸𝑥+ = Re 𝑬𝑥+ 𝑧 ej𝜔𝑡
𝐾𝑥+ = Re 𝑲0 𝑧 ej𝜔𝑡
𝜀2, 𝜇2
B. Plane Waves
𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡
d2
𝑬𝑥
d𝑧2 = −
𝜔2
𝑐2 𝑬𝑥
d2𝑬𝑥
d𝑧2
+ 𝑘2𝑬𝑥 = 0
13
where we have,
𝑘2
=
𝜔2
𝑐2
= 𝜔2
𝜀𝜇
𝑘 =
2π
𝜆
is the wavenumber, 𝜆 is the wavelength
𝑘 = ±
𝜔
𝑐
⇒ 𝜔 = 𝑘𝑐
𝜔 = 2π𝑓 =
2π
𝜆
𝑐 ⇒ 𝑓𝜆 = 𝑐
𝑬𝑥 = 𝐴1ej𝑘𝑧
+ 𝐴2e−j𝑘𝑧
𝐸𝑥 = Re 𝐴1ej 𝜔𝑡+𝑘𝑧
+ 𝐴2ej 𝜔𝑡−𝑘𝑧
For the wave in the −𝑧 direction we have:
𝜔𝑡 + 𝑘𝑧 = constant, 𝜔d𝑡 + 𝑘d𝑧 = 0
d𝑧
d𝑡
= −
𝜔
𝑘
= −𝑐
travelling wave in the
− 𝑧 direction
travelling wave in
the +𝑧 direction
14
For the wave in the +𝑧 direction we have:
𝜔𝑡 − 𝑧 = constant, 𝜔d𝑡 − 𝑘d𝑧 = 0,
d𝑧
d𝑡
=
𝜔
𝑘
= +𝑐
𝑬𝑥 𝑧 =
𝑬𝑥+e−j𝑘𝑧
𝑧 > 0
𝑬𝑥−ej𝑘𝑧
𝑧 < 0
𝛻 × 𝑬 = −𝜇
𝜕𝑯
𝜕𝑡
⇒
d𝑬𝑥
d𝑧
= −j𝜔𝜇𝑯𝑦 ⇒ 𝑯𝑦 = −
1
j𝜔𝜇
d𝑬𝑥
d𝑧
𝛻 × 𝑯 = 𝜀
𝜕𝑬
𝜕𝑡
⇒
d𝑯𝑦
d𝑧
= −j𝜔𝜀𝑬𝑥
𝑯𝑦 =
𝑘
𝜔𝜇
𝑬𝑥+e−j𝑘𝑧
𝑧 > 0
−
𝑘
𝜔𝜇
𝑬𝑥−ej𝑘𝑧
𝑧 < 0
𝑘
𝜔𝜇
=
𝜔 𝜀𝜇
𝜔𝜇
=
𝜀
𝜇
, 𝜂 =
𝜇
𝜀
is the wave impedance
𝑯𝑦 =
𝑬𝑥+
𝜂
e−j𝑘𝑧
𝑧 > 0
−
𝑬𝑥−
𝜂
ej𝑘𝑧
𝑧 < 0
15
Now we look at the boundary conditions:
𝑬𝑥 𝑧 = 0+, 𝑡 = 𝑬𝑥 𝑧 = 0−, 𝑡 ⇒ 𝑬𝑥+ = 𝑬𝑥−
𝑯𝑦 𝑧 = 0−, 𝑡 − 𝑯𝑦 𝑧 = 0+, 𝑡 = 𝑲𝑥 𝑧 = 0, 𝑡 ⇒
−𝑬𝑥− − 𝑬𝑥+
𝜂
= 𝑲0
𝑬𝑥+ = 𝑬𝑥− = −
𝜂𝑲0
2
𝑬𝑥 𝑧 =
−
𝜂𝑲0
2
e−j𝑘𝑧
𝑧 > 0
−
𝜂𝑲0
2
ej𝑘𝑧
𝑧 < 0
𝑯𝑦 𝑧 =
−
𝑲0
2
e−j𝑘𝑧
𝑧 > 0
𝑲0
2
ej𝑘𝑧
𝑧 < 0
𝑺 =
1
2
𝑬 × 𝑯∗
=
𝜂𝐾0
2
8
𝒊𝑧 𝑧 > 0
−
𝜂𝐾0
2
8
𝒊𝑧 𝑧 < 0
(𝑲0 real)
16
𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡
=
−
𝜂𝑲0
2
cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0
−
𝜂𝑲0
2
cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0
𝐻𝑦 𝑧, 𝑡 = Re 𝑯𝑦 𝑧 ej𝜔𝑡
=
−
𝑲0
2
cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0
𝑲0
2
cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0
𝑆𝑧 = 𝐸𝑥𝐻𝑦 =
𝜂𝐾0
2
4
cos2
𝜔𝑡 − 𝑘𝑧 𝑧 > 0
−
𝜂𝐾0
2
4
cos2
𝜔𝑡 + 𝑘𝑧 𝑧 < 0
𝑆𝑧 =
𝜂𝐾0
2
8
𝑧 > 0
−
𝜂𝐾0
2
8
𝑧 < 0
17
C. Normal Incidence Onto A Perfect Conductor
Incident Fields: 𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘𝑧
𝒊𝑥
𝑯i 𝑧, 𝑡 = Re
𝑬i
𝜂
ej 𝜔𝑡−𝑘𝑧
𝒊𝑦
Reflected Fields: 𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘𝑧
𝒊𝑥
𝑯r 𝑧, 𝑡 = Re −
𝑬r
𝜂
ej 𝜔𝑡+𝑘𝑧
𝒊𝑦
𝑘 = 𝜔 𝜀𝜇, 𝜂 =
𝜇
𝜀
The boundary conditions require that,
𝐸𝑥 𝑧 = 0, 𝑡 = 𝐸𝑥, i 𝑧 = 0, 𝑡 + 𝐸𝑥, r 𝑧 = 0, 𝑡 = 0
𝑬i + 𝑬r = 0 ⇒ 𝑬r = −𝑬i
18
Figure 2: Time varying electromagnetic phenomena differ only in the scaling of time
(frequency) and size (wavelength). In linear dielectric media the frequency and
wavelength are related as 𝑓λ = 𝑐 (𝜔 = 𝑘𝑐), where 𝑐 =
1
𝜀𝜇
is the velocity of light in the
medium.
sin 𝑘z
𝜆 =
2π
𝑘
𝑇 =
2π
𝜔
2π
𝑘
2π
𝜔
𝑧
𝑡
π
𝜔
π
𝑘
−1
−1
1
1 sin 𝜔𝑡
0 102
104 106
108 1010
1012
1014 1016 1018
1020
Circuit Theory Microwaves
f (Hz)
Visible Light Ultraviolet X-Rays Gamma Rays
Power Infrared (Heat)
Radio and Television
AM FM
3 × 106
λ meters 3 × 104 3 × 102 3 3 × 10−2
3 × 10−4
3 × 10−6 3 × 10−8
3 × 10−10 3 × 10−12
19
For 𝑬i = 𝐸i real we have:
𝐸𝑥 𝑧, 𝑡 = 𝐸𝑥, i 𝑧, 𝑡 + 𝐸𝑥, r 𝑧, 𝑡 = Re 𝑬i e−j𝑘𝑧
− ej𝑘𝑧
ej𝜔𝑡
= 2𝐸i sin 𝑘𝑧 sin 𝜔𝑡
𝐻𝑦 𝑧, 𝑡 = 𝐻𝑦, i 𝑧, 𝑡 + 𝐻𝑦, r 𝑧, 𝑡 = Re
𝑬i
𝜂
e−j𝑘𝑧
− ej𝑘𝑧
ej𝜔𝑡
=
2𝐸i
𝜂
cos 𝑘𝑧 cos 𝜔𝑡
𝐾𝑧 𝑧 = 0, 𝑡 = 𝐻𝑦 𝑧 = 0, 𝑡 =
2𝐸i
𝜂
cos 𝜔𝑡
Radiation pressure in free space 𝜇 = 𝜇o, 𝜀 = 𝜀o
Force𝑧
Area 𝑧=0
=
1
2
𝑲 × 𝜇o𝑯 =
1
2
𝜇o𝐾𝑥𝐻𝑦
𝑧=0
𝒊𝑧 =
1
2
𝜇o𝐻𝑦
2
𝑧 = 0 𝒊𝑧
=
2𝜇o𝐸i
2
𝜂o
2 cos2
𝜔𝑡 𝒊𝑧
=
2𝜇o
𝜂o
𝜀o
𝐸i
2
cos2
𝜔𝑡 𝒊𝑧
= 2𝜀o 𝐸i
2
cos2
𝜔𝑡 𝒊𝑧
20
Figure 3: A uniform plane wave normally incident upon a perfect conductor has zero
electric field at the conducting surface thus requiring a reflected wave. The source of this
reflected wave is the surface current at 𝑧 = 0, which equals the magnetic field there. The
total electric and magnetic fields are 90° out of phase in time and space.
x
z
y
𝐸i = Re 𝑬iej 𝜔𝑡−𝑘𝑧
𝒊𝑥
𝐻i = Re
𝑬i
𝑍o
ej 𝜔𝑡−𝑘𝑧
𝒊𝑦
𝑘 =
𝜔
𝑐
𝒊𝑧
𝐻r = Re −
𝑬r
𝑍o
ej 𝜔𝑡+𝑘𝑧
𝒊𝑦
𝐸r = Re 𝑬rej 𝜔𝑡+𝑘𝑧
𝒊𝑥
𝑘r = −
𝜔
c1
𝒊𝑧
𝜀o, 𝜇o 𝜂o = 𝑍o=
𝜇o
𝜀o
𝐻𝑦 𝑠, 𝑡 =
2𝑬i
𝑍o
cos 𝑘𝑠 cos 𝜔𝑡
𝐸𝑥 𝑠, 𝑡 = 2𝑬isin 𝑘𝑠 sin 𝜔𝑡
𝜎 → ∞
21
Figure 4: A uniform plane wave normally incident upon a dielectric interface separating
two different materials has part of its power reflected and part transmitted.
IV. Normal Incidence Onto A Dielectric
x
z
y
𝜀1, 𝜇1 𝜂1 = 𝑍1 =
𝜇1
𝜀1
, 𝑐1 =
1
𝜀1𝜇1
𝜀2, 𝜇2 𝑍2 =
𝜇2
𝜀2
, 𝑐2 =
1
𝜀2𝜇2
𝐸i = Re 𝑬iej 𝜔𝑡−𝑘1𝑧
𝒊𝑥
𝐸t = Re 𝑬tej 𝜔𝑡−𝑘2𝑧
𝒊𝑥
𝐻t = Re
𝑬t
𝑍2
ej 𝜔𝑡−𝑘2𝑧
𝒊𝑦
𝐻r = Re −
𝑬r
𝑍1
ej 𝜔𝑡+𝑘1𝑧
𝒊𝑦
𝐻i = Re
𝑬i
𝑍1
ej 𝜔𝑡−𝑘1𝑧
𝒊𝑦
𝐸r = Re 𝑬rej 𝜔𝑡+𝑘1𝑧
𝒊𝑥
𝑘i = 𝑘1𝒊𝑧 =
𝜔
𝑐1
𝒊𝑧
𝑘r = −𝑘1𝒊𝑧 =
−𝜔
𝑐1
𝒊𝑧
𝑘t = 𝑘2𝒊𝑧 =
𝜔
𝑐2
𝒊𝑧
22
𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘1𝑧
𝑖𝑥 , 𝑘1 = 𝜔 𝜀1𝜇1
𝑯i 𝑧, 𝑡 = Re
𝑯i
𝜂1
ej 𝜔𝑡−𝑘1𝑧
𝑖𝑦 , 𝜂1 = 𝜔
𝜇1
𝜀1
𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘1𝑧
𝑖𝑥
𝑯r 𝑧, 𝑡 = Re −
𝑬r
𝜂1
ej 𝜔𝑡+𝑘1𝑧
𝑖𝑦
𝑬t 𝑧, 𝑡 = Re 𝑬tej 𝜔𝑡−𝑘2𝑧
𝑖𝑥 , 𝑘2 = 𝜔 𝜀2𝜇2
𝑯t 𝑧, 𝑡 = Re
𝑬t
𝜂2
ej 𝜔𝑡−𝑘2𝑧
𝑖𝑦 , 𝜂2 = 𝜔
𝜇2
𝜀2
23
𝐸𝑥 𝑧 = 0− = 𝐸𝑥 𝑧 = 0+ ⇒ 𝑬i + 𝑬r = 𝑬t
𝐻𝑦 𝑧 = 0− = 𝐻𝑦 𝑧 = 0+ ⇒
𝑬i − 𝑬r
𝜂1
=
𝑬t
𝜂2
𝑅 =
𝐸r
𝐸i
=
𝜂2 − 𝜂1
𝜂1 + 𝜂2
is the Reflection coefficient
𝑇 =
𝐸t
𝐸i
=
2𝜂2
𝜂1 + 𝜂2
is the Transmission coefficient
1 + 𝑅 = 𝑇
24
𝑆𝑧, i =
1
2
Re 𝑬𝑥 𝑧 𝑯𝑦
∗
𝑧
=
1
2𝜂1
Re 𝑬ie−j𝑘1𝑧
+ 𝑬rej𝑘1𝑧
𝑬i
∗
ej𝑘1𝑧
− 𝑬r
∗
e−j𝑘1𝑧
=
1
2𝜂1
𝑬i
2
− 𝑬r
2
+
1
2𝜂1
Re 𝑬r𝑬i
∗
e2j𝑘1𝑧
− 𝑬r
∗
𝑬ie−2j𝑘1𝑧
=
1
2𝜂1
𝑬i
2
− 𝑬r
2
=
𝑬i
2
2𝜂1
1 − 𝑅2
𝑆𝑧, t =
1
2𝜂2
𝑬t
2
=
𝑬i
2
𝑇2
2𝜂2
=
𝑬i
2
1 − 𝑅2
2𝜂2
= 𝑆𝑧, i
pure imaginary
25
V. Lossy Dielectrics, 𝑱 = 𝜎𝑬
Ampere′
s Law: 𝛻 × 𝑯 = 𝑱 + 𝜀
𝜕𝑬
𝜕𝑡
= 𝜎𝑬 + 𝜀
𝜕𝑬
𝜕𝑡
For ej𝜔𝑡
fields,
𝛻 × 𝑯 = j𝜔𝜀 + 𝜎 𝑬
= j𝜔𝜀 1 +
𝜎
j𝜔𝜀
𝑬
where, 𝜎 = conductivity of a medium (
Siemens
m
)
26
Define complex permittivity by 𝜺 = 𝜀 1 +
𝜎
j𝜔𝜀
. Then complex amplitude
solutions are the same as real amplitude solutions if we replace 𝜀 by 𝜺:
𝑘 = 𝜔 𝜺𝜇
𝜂 =
𝜇
𝜺
=
𝜇
𝜀 1 +
𝜎
j𝜔𝜀
𝑘 = 𝜔 𝜀𝜇 1 +
𝜎
j𝜔𝜀
27
A. Low Loss Limit:
𝜎
𝜔𝜀
≪ 1
𝑘 = 𝜔 𝜀𝜇 1 +
𝜎
j𝜔𝜀
≈ 𝜔 𝜀𝜇 1 +
1
2
𝜎
j𝜔𝜀
≈ 𝜔 𝜀𝜇 −
j𝜎
2
𝜇
𝜀
≈ 𝜔 𝜀𝜇 − j
𝜎𝜂
2
e−j𝑘𝑧
= e−j𝜔 𝜀𝜇𝑧
e
−j −j
𝜎𝜂
2
𝑧
= e−j𝜔 𝜀𝜇𝑧
e−
𝜎𝜂
2
𝑧
slow exponential decay
28
B. Large Loss Limit:
𝜎
𝜔𝜀
≫ 1
𝑘 = 𝜔 𝜀𝜇 1 +
𝜎
j𝜔𝜀
≈ 𝜔 𝜀𝜇
𝜎
𝜔𝜀
−j we know that,
𝜔
𝜔
= 𝜔
≈
𝜔𝜇𝜎
2
1 − j
≈
1 − j
𝛿
𝛿 =
2
𝜔𝜇𝜎
is the skin depth
e−j𝑘𝑧
= e
−j
1−j 𝑧
𝛿 = e
−j
𝑧
𝛿 e
−
𝑧
𝛿
fast exponential decay
1 − j
2
(1) Markus Zahn, Electromagnetics and Applications, Massachusetts
Institute of Technology: MIT Open Course Ware, 2005.
References
29

Mais conteúdo relacionado

Mais procurados

06 scr & ujt
06  scr & ujt06  scr & ujt
06 scr & ujt
Gowtham P
 
3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)
firozamin
 
slew rate in opamp
slew rate in opampslew rate in opamp
slew rate in opamp
Jay Patel
 

Mais procurados (20)

Op amp application as Oscillator
Op amp application as Oscillator Op amp application as Oscillator
Op amp application as Oscillator
 
Transistor biasing
Transistor biasing Transistor biasing
Transistor biasing
 
Transient response of RC , RL circuits with step input
Transient response of RC , RL circuits  with step inputTransient response of RC , RL circuits  with step input
Transient response of RC , RL circuits with step input
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Antenna Basics
Antenna BasicsAntenna Basics
Antenna Basics
 
power system transients.pptx
power system transients.pptxpower system transients.pptx
power system transients.pptx
 
Space wave propagation ppt
Space wave propagation pptSpace wave propagation ppt
Space wave propagation ppt
 
FAULT ANALYSIS USING PSCAD/EMTDC for 150 kV SOUTH SULAWESI TRANSMISSION SYSTEM
 FAULT ANALYSIS USING PSCAD/EMTDC for 150 kV SOUTH SULAWESI TRANSMISSION SYSTEM FAULT ANALYSIS USING PSCAD/EMTDC for 150 kV SOUTH SULAWESI TRANSMISSION SYSTEM
FAULT ANALYSIS USING PSCAD/EMTDC for 150 kV SOUTH SULAWESI TRANSMISSION SYSTEM
 
06 scr & ujt
06  scr & ujt06  scr & ujt
06 scr & ujt
 
Constant voltage transformers and stabilizers
Constant voltage transformers and stabilizersConstant voltage transformers and stabilizers
Constant voltage transformers and stabilizers
 
Lecture No:1 Signals & Systems
Lecture No:1 Signals & SystemsLecture No:1 Signals & Systems
Lecture No:1 Signals & Systems
 
3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)
 
slew rate in opamp
slew rate in opampslew rate in opamp
slew rate in opamp
 
Colpitts Oscillator - Working and Applications
Colpitts Oscillator - Working and ApplicationsColpitts Oscillator - Working and Applications
Colpitts Oscillator - Working and Applications
 
Ultra Fast Acting Electronic Circuit Breaker
Ultra Fast Acting Electronic Circuit BreakerUltra Fast Acting Electronic Circuit Breaker
Ultra Fast Acting Electronic Circuit Breaker
 
EC6602-Antenna fundamentals new
EC6602-Antenna fundamentals new EC6602-Antenna fundamentals new
EC6602-Antenna fundamentals new
 
Initial Conditions of Resistor, Inductor & Capacitor
Initial Conditions of Resistor, Inductor & CapacitorInitial Conditions of Resistor, Inductor & Capacitor
Initial Conditions of Resistor, Inductor & Capacitor
 
EMF PPT Presentions
EMF PPT  Presentions EMF PPT  Presentions
EMF PPT Presentions
 
Loss tangent delta test
Loss tangent delta testLoss tangent delta test
Loss tangent delta test
 
BJT - Operational Principle
BJT - Operational PrincipleBJT - Operational Principle
BJT - Operational Principle
 

Semelhante a Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equation

7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
PhysicsLover
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
HebaEng
 

Semelhante a Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equation (20)

Reflection & Refraction.pptx
Reflection & Refraction.pptxReflection & Refraction.pptx
Reflection & Refraction.pptx
 
Waveguides
WaveguidesWaveguides
Waveguides
 
LC oscillations.pdf
LC oscillations.pdfLC oscillations.pdf
LC oscillations.pdf
 
Ac/AC conveter
Ac/AC conveterAc/AC conveter
Ac/AC conveter
 
Easy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdfEasy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdf
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
 
Resonance.pdf
Resonance.pdfResonance.pdf
Resonance.pdf
 
An Introduction to Microwave Imaging
An Introduction to Microwave ImagingAn Introduction to Microwave Imaging
An Introduction to Microwave Imaging
 
Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)
 
AC- circuits (combination).pdf
AC- circuits (combination).pdfAC- circuits (combination).pdf
AC- circuits (combination).pdf
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
 
Network analysis unit 2
Network analysis unit 2Network analysis unit 2
Network analysis unit 2
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
 
ME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdfME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdf
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضلية
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 

Mais de AIMST University

Mais de AIMST University (20)

Future Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyFuture Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication Technology
 
Research Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GResearch Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6G
 
1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology
 
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartLecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
 
Mini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge OscillatorMini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge Oscillator
 
Experiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarExperiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous Polar
 
Experiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarExperiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous Polar
 
Experiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorExperiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of Thermistor
 
Mini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorMini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light Detector
 
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - InstrumentationLecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission LineLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
 
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
 
Mini Project 1: Impedance Matching With A Single Stub Tuner
Mini Project 1:  Impedance Matching With A Single Stub TunerMini Project 1:  Impedance Matching With A Single Stub Tuner
Mini Project 1: Impedance Matching With A Single Stub Tuner
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes:  EEEC6440315 Communication Systems - Spectral AnalysisLecture Notes:  EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Efficiency
Lecture Notes:  EEEC6440315 Communication Systems - Spectral EfficiencyLecture Notes:  EEEC6440315 Communication Systems - Spectral Efficiency
Lecture Notes: EEEC6440315 Communication Systems - Spectral Efficiency
 

Último

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Último (20)

Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 

Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equation

  • 1. EEEC6430310 ELECTROMAGNETIC FIELDS AND WAVES Maxwell’s Equation FACULTY OF ENGINEERING AND COMPUTER TECHNOLOGY BENG (HONS) IN ELECTRICALAND ELECTRONIC ENGINEERING Ravandran Muttiah BEng (Hons) MSc MIET
  • 2. Maxwell’s Equation I. Maxwell’s Equation For Linear Media 𝛻 × 𝑬 = −𝜇 𝜕𝑯 𝜕𝑡 Faraday′ s Law 𝛻 × 𝑯 = 𝑱 + 𝜀 𝜕𝑬 𝜕𝑡 Ampere′ s Law 𝛻 ∙ 𝑬 = 𝜌f 𝜀 Gauss′ s Law 𝛻 ∙ 𝑯 = 0 Gauss′ s Law where, 𝛻 = vector differential (del) operator 𝑬 = electric field intensity 𝑯 = magnetic field intensity 𝑱 = electric current density 𝜌f = free electric charge density 1
  • 3. 2 II. Pointing’s Theorem A. Power Flow And Electromagnetic Energy 𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯 = −𝜇𝑯 ∙ 𝜕𝑯 𝜕𝑡 − 𝑬 ∙ 𝑱 + 𝜀 𝜕𝑬 𝜕𝑡 = − 𝜇 2 𝜕 𝜕𝑡 𝑯 2 − 𝜀 2 𝜕 𝜕𝑡 𝑬 2 − 𝑬 ∙ 𝑱 𝛻 ∙ 𝑬 × 𝑯 + 𝜕 𝜕𝑡 1 2 𝜀 𝑬 2 + 1 2 𝜇 𝑯 2 = −𝑬 ∙ 𝑱
  • 4. 3 V 𝛻 ∙ 𝑬 × 𝑯 d𝑉 = S 𝑬 × 𝑯 ∙ d𝑺 S 𝑬 × 𝑯 ∙ d𝒂 + d d𝑡 V 1 2 𝜀 𝑬 2 + 1 2 𝜇 𝑯 2 d𝑉 = − 𝑉 𝑬 ∙ 𝑱 d𝑉 𝑺 = 𝑬 × 𝑯 Poynting Vector Watt m2 𝑊 = V 1 2 𝜀 𝑬 2 + 1 2 𝜇 𝑯 2 d𝑉 Electromagnetic Stored Energy 𝑃d = V 𝑬 ∙ 𝑱 d𝑉 Power dissipated if 𝐽 ∙ 𝑬 > 0 e.g., 𝑱 = 𝜎𝑬 ⇒ 𝐽 ∙ 𝑬 = 𝜎 𝑬 𝟐 Power source if 𝐽 ∙ 𝑬 < 0 𝑃out = S 𝑬 × 𝑯 ∙ d𝒂 = S 𝑺 ∙ d𝒂 𝑃out + d𝑊 d𝑡 = −𝑃d 𝑤e = 1 2 𝜀 𝑬 2 Electric energy density in Joules m3 𝑤m = 1 2 𝜇 𝑯 2 Magnetic energy density in Joules m3
  • 5. 4 Figure 1: The circuit power into an N terminal network 𝑘=1 𝑁 𝑉𝑘𝐼𝑘 equals the electromagnetic power flow into the surface surrounding the network, − s 𝑬 × 𝑯 · d𝑺 B. Power In Electric Circuits E H 𝑆 = 𝐸 × 𝐻 𝑉1 𝑉2 𝑉3 𝑉𝑁−1 𝑉𝑁 𝐼1 𝐼2 𝐼3 𝐼𝑁−1 𝐼𝑁 𝑆
  • 6. 5 Outside circuit elements C 𝑬 ∙ d𝒍 ≈ 0, 𝛻 × 𝑬 = 0 ⇒ 𝑬 = −𝛻Ф (Kirchoff’s Voltage Law 𝑘 𝑣𝑘 = 0) 𝛻 × 𝑯 = 𝑱 ⇒ 𝛻 ∙ 𝑱 = 0, S 𝑱 ∙ d𝑺 = 0 (Kirchoff’s Current Law 𝑘 𝑖𝑘 = 0) 𝑃in = − S 𝑬 × 𝑯 ∙ d𝑺 = − V 𝛻 ∙ 𝑬 × 𝑯 d𝑉 𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯 = −𝑬 ∙ 𝑱 = 𝛻Ф ∙ 𝑱 𝛻 ∙ 𝑱Ф = Ф𝛻 ∙ 𝑱 + 𝑱 ∙ 𝛻Ф 𝛻 ∙ 𝑬 × 𝑯 = 𝑱 ∙ 𝛻Ф = 𝛻 ∙ Ф𝑱 𝑃in = − V 𝛻 ∙ 𝑬 × 𝑯 d𝑉 = − V 𝛻 ∙ 𝑱Ф d𝑉 = − S 𝑱Ф ∙ d𝑺 On 𝑆, Ф = voltages on each wire, 𝑱 is non-zero only on wires. 𝑃in = − S 𝑱Ф ∙ d𝑺 = − 𝑘=1 𝑁 𝑣𝑘 S 𝑱 ∙ d𝑺 = 𝑘=1 𝑁 𝑣𝑘𝑖𝑘 0 0 −𝑖𝑘
  • 7. C. Complex Poynting’s Theorem (Sinusoidal Steady State, ej𝜔𝑡 ) 6 𝑬 𝒓, 𝑡 = Re 𝑬 𝒓 ej𝜔𝑡 = 1 2 𝑬∗ 𝒓 ej𝜔𝑡 + 𝑬∗ 𝒓 e−j𝜔𝑡 𝑯 𝒓, 𝑡 = Re 𝑯 𝒓 ej𝜔𝑡 = 1 2 𝑯∗ 𝒓 ej𝜔𝑡 + 𝑯∗ 𝒓 e−j𝜔𝑡 The real part of a complex number is one-half of the sum of the number and its complex conjugate
  • 8. 7 Maxwell’s Equations In Sinusoidal Steady State 𝛻 × 𝑬 𝒓 = −j𝜔𝜇𝑯 𝒓 𝛻 × 𝑯 𝒓 = 𝑱 𝒓 + j𝜔𝜀 𝒓 𝛻 ∙ 𝑬 𝒓 = 𝝆f 𝒓 𝜀 𝛻 ∙ 𝑯 𝒓 = 0
  • 9. 8 𝑺 𝒓, 𝑡 = 𝑬 𝒓, 𝑡 × 𝑯 𝒓, 𝑡 = 1 4 𝑬 𝒓 ej𝜔𝑡 + 𝑬 𝒓 e−j𝜔𝑡 × 𝑯 𝒓 ej𝜔𝑡 + 𝑯∗ 𝒓 e−j𝜔𝑡 = 1 4 𝑬 𝒓 × 𝑯 𝒓 e2j𝜔𝑡 +𝑬∗ 𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗ 𝒓 + 𝑬∗ 𝒓 × 𝑯∗ 𝒓 e−2j𝜔𝑡 𝑺 = 1 4 𝑬∗ 𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗ 𝒓 = 1 2 Re 𝑬 𝒓 × 𝑯∗ 𝒓 = 1 2 Re 𝑬∗ 𝒓 × 𝑯 𝒓 (A complex number plus its complex conjugate is twice the real part of that number)
  • 10. 9 𝑺 = 1 2 Re 𝑬 𝒓 × 𝑯∗ 𝒓 𝛻 ∙ 𝑺 = 𝛻 ∙ 1 2 𝑬 𝒓 × 𝑯∗ 𝒓 = 1 2 𝑯∗ 𝒓 ∙ 𝛻 × 𝑬 𝒓 − 𝑬 𝒓 ∙ 𝛻 × 𝑯∗ 𝒓 = 1 2 𝑯∗ 𝒓 −j𝜔𝜇𝑯 𝒓 − 𝑬 𝒓 ∙ 𝑱∗ 𝒓 − j𝜔𝜀𝑬∗ 𝒓 = 1 2 −j𝜔𝜇 𝑯 𝒓 2 + j𝜔𝜀 𝑬 𝒓 2 − 1 2 𝑬 𝒓 ∙ 𝑱∗ 𝒓 𝑤m = 1 4 𝜇 𝑯 𝒓 2 , 𝑤e = 1 4 𝜀 𝑬 𝒓 2 𝑷d = 1 2 𝑬 𝒓 ∙ 𝑱∗ 𝒓 𝛻 ∙ 𝑺 + 2j𝜔 𝑤m − 𝑤e = −𝑷d
  • 11. III. Transverse Electromagnetic Waves (𝑱 = 0, 𝜌f = 0) 10 The great success of Maxwell’s equations lies partly in the simple prediction of electromagnetic waves and their simple characterization of materials in terms of conductivity 𝜎, permittivity 𝜀, and permeability 𝜇. In vacuum we find 𝜎 = 0, 𝜀 = 𝜀o and 𝜇 = 𝜇o. Therefore, 𝑱 = 𝜎𝑬 = 0 and 𝜌f = 0. A. Wave Equation 𝛻 × 𝑬 = −𝜇 𝜕𝑯 𝜕𝑡 𝛻 × 𝑯 = 𝜀 𝜕𝑬 𝜕𝑡 𝛻 ∙ 𝑬 = 0 𝛻 ∙ 𝑯 = 0 In contrast the nano-structure of media can be quite complex and requires quantum mechanics and for its full explanation. Fortunately, simple classical approximations to atoms and molecules suffice to understand the origin of 𝜎, 𝜀 and 𝜇.
  • 12. 11 𝛻 × 𝛻 × 𝑬 = −𝜇 𝜕 𝜕𝑡 𝛻 × 𝐻 = −𝜇 𝜕 𝜕𝑡 𝜀 𝜕𝑬 𝜕𝑡 𝛻 × 𝛻 × 𝑬 = 𝛻 𝛻 ∙ 𝑬 − 𝛻2 𝑬 = −𝜀𝜇 𝜕2 𝑬 𝜕𝑡2 Wave equation, 𝛻2 𝑬 = 1 𝑐2 𝜕2 𝑬 𝜕𝑡2 where, 𝑐 = 1 𝜀𝜇 is the velocity of the electromagnetic wave. In free space (i.e. vacuum), 𝜇 = 𝜇o = 4π × 10−7 henries m and 𝜀 = 𝜀o ≈ 10−9 36π farads m , which leads to 𝑐o = 1 𝜀o𝜇o ≈ 3 × 108 m s . Similarly, 𝛻 × 𝛻 × 𝑯 = 𝛻 𝛻 ∙ 𝑯 − 𝛻2 𝑯 = 𝜀 𝜕 𝜕𝑡 𝛻 × 𝑬 = −𝜀𝜇 𝜕2 𝑯 𝜕𝑡2 𝛻2 𝑯 = 1 𝑐2 𝜕2 𝑯 𝜕𝑡2 , 𝑐 = 1 𝜀𝜇 0 0
  • 13. 12 x z y 𝜀1, 𝜇1 𝐸𝑥− = Re 𝑬𝑥− 𝑧 ej𝜔𝑡 𝐻𝑦− = Re 𝑯y− 𝑧 ej𝜔𝑡 𝐻𝑦+ = Re 𝑯y+ 𝑧 ej𝜔𝑡 𝐸𝑥+ = Re 𝑬𝑥+ 𝑧 ej𝜔𝑡 𝐾𝑥+ = Re 𝑲0 𝑧 ej𝜔𝑡 𝜀2, 𝜇2 B. Plane Waves 𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡 d2 𝑬𝑥 d𝑧2 = − 𝜔2 𝑐2 𝑬𝑥 d2𝑬𝑥 d𝑧2 + 𝑘2𝑬𝑥 = 0
  • 14. 13 where we have, 𝑘2 = 𝜔2 𝑐2 = 𝜔2 𝜀𝜇 𝑘 = 2π 𝜆 is the wavenumber, 𝜆 is the wavelength 𝑘 = ± 𝜔 𝑐 ⇒ 𝜔 = 𝑘𝑐 𝜔 = 2π𝑓 = 2π 𝜆 𝑐 ⇒ 𝑓𝜆 = 𝑐 𝑬𝑥 = 𝐴1ej𝑘𝑧 + 𝐴2e−j𝑘𝑧 𝐸𝑥 = Re 𝐴1ej 𝜔𝑡+𝑘𝑧 + 𝐴2ej 𝜔𝑡−𝑘𝑧 For the wave in the −𝑧 direction we have: 𝜔𝑡 + 𝑘𝑧 = constant, 𝜔d𝑡 + 𝑘d𝑧 = 0 d𝑧 d𝑡 = − 𝜔 𝑘 = −𝑐 travelling wave in the − 𝑧 direction travelling wave in the +𝑧 direction
  • 15. 14 For the wave in the +𝑧 direction we have: 𝜔𝑡 − 𝑧 = constant, 𝜔d𝑡 − 𝑘d𝑧 = 0, d𝑧 d𝑡 = 𝜔 𝑘 = +𝑐 𝑬𝑥 𝑧 = 𝑬𝑥+e−j𝑘𝑧 𝑧 > 0 𝑬𝑥−ej𝑘𝑧 𝑧 < 0 𝛻 × 𝑬 = −𝜇 𝜕𝑯 𝜕𝑡 ⇒ d𝑬𝑥 d𝑧 = −j𝜔𝜇𝑯𝑦 ⇒ 𝑯𝑦 = − 1 j𝜔𝜇 d𝑬𝑥 d𝑧 𝛻 × 𝑯 = 𝜀 𝜕𝑬 𝜕𝑡 ⇒ d𝑯𝑦 d𝑧 = −j𝜔𝜀𝑬𝑥 𝑯𝑦 = 𝑘 𝜔𝜇 𝑬𝑥+e−j𝑘𝑧 𝑧 > 0 − 𝑘 𝜔𝜇 𝑬𝑥−ej𝑘𝑧 𝑧 < 0 𝑘 𝜔𝜇 = 𝜔 𝜀𝜇 𝜔𝜇 = 𝜀 𝜇 , 𝜂 = 𝜇 𝜀 is the wave impedance 𝑯𝑦 = 𝑬𝑥+ 𝜂 e−j𝑘𝑧 𝑧 > 0 − 𝑬𝑥− 𝜂 ej𝑘𝑧 𝑧 < 0
  • 16. 15 Now we look at the boundary conditions: 𝑬𝑥 𝑧 = 0+, 𝑡 = 𝑬𝑥 𝑧 = 0−, 𝑡 ⇒ 𝑬𝑥+ = 𝑬𝑥− 𝑯𝑦 𝑧 = 0−, 𝑡 − 𝑯𝑦 𝑧 = 0+, 𝑡 = 𝑲𝑥 𝑧 = 0, 𝑡 ⇒ −𝑬𝑥− − 𝑬𝑥+ 𝜂 = 𝑲0 𝑬𝑥+ = 𝑬𝑥− = − 𝜂𝑲0 2 𝑬𝑥 𝑧 = − 𝜂𝑲0 2 e−j𝑘𝑧 𝑧 > 0 − 𝜂𝑲0 2 ej𝑘𝑧 𝑧 < 0 𝑯𝑦 𝑧 = − 𝑲0 2 e−j𝑘𝑧 𝑧 > 0 𝑲0 2 ej𝑘𝑧 𝑧 < 0 𝑺 = 1 2 𝑬 × 𝑯∗ = 𝜂𝐾0 2 8 𝒊𝑧 𝑧 > 0 − 𝜂𝐾0 2 8 𝒊𝑧 𝑧 < 0 (𝑲0 real)
  • 17. 16 𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡 = − 𝜂𝑲0 2 cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0 − 𝜂𝑲0 2 cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0 𝐻𝑦 𝑧, 𝑡 = Re 𝑯𝑦 𝑧 ej𝜔𝑡 = − 𝑲0 2 cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0 𝑲0 2 cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0 𝑆𝑧 = 𝐸𝑥𝐻𝑦 = 𝜂𝐾0 2 4 cos2 𝜔𝑡 − 𝑘𝑧 𝑧 > 0 − 𝜂𝐾0 2 4 cos2 𝜔𝑡 + 𝑘𝑧 𝑧 < 0 𝑆𝑧 = 𝜂𝐾0 2 8 𝑧 > 0 − 𝜂𝐾0 2 8 𝑧 < 0
  • 18. 17 C. Normal Incidence Onto A Perfect Conductor Incident Fields: 𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘𝑧 𝒊𝑥 𝑯i 𝑧, 𝑡 = Re 𝑬i 𝜂 ej 𝜔𝑡−𝑘𝑧 𝒊𝑦 Reflected Fields: 𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘𝑧 𝒊𝑥 𝑯r 𝑧, 𝑡 = Re − 𝑬r 𝜂 ej 𝜔𝑡+𝑘𝑧 𝒊𝑦 𝑘 = 𝜔 𝜀𝜇, 𝜂 = 𝜇 𝜀 The boundary conditions require that, 𝐸𝑥 𝑧 = 0, 𝑡 = 𝐸𝑥, i 𝑧 = 0, 𝑡 + 𝐸𝑥, r 𝑧 = 0, 𝑡 = 0 𝑬i + 𝑬r = 0 ⇒ 𝑬r = −𝑬i
  • 19. 18 Figure 2: Time varying electromagnetic phenomena differ only in the scaling of time (frequency) and size (wavelength). In linear dielectric media the frequency and wavelength are related as 𝑓λ = 𝑐 (𝜔 = 𝑘𝑐), where 𝑐 = 1 𝜀𝜇 is the velocity of light in the medium. sin 𝑘z 𝜆 = 2π 𝑘 𝑇 = 2π 𝜔 2π 𝑘 2π 𝜔 𝑧 𝑡 π 𝜔 π 𝑘 −1 −1 1 1 sin 𝜔𝑡 0 102 104 106 108 1010 1012 1014 1016 1018 1020 Circuit Theory Microwaves f (Hz) Visible Light Ultraviolet X-Rays Gamma Rays Power Infrared (Heat) Radio and Television AM FM 3 × 106 λ meters 3 × 104 3 × 102 3 3 × 10−2 3 × 10−4 3 × 10−6 3 × 10−8 3 × 10−10 3 × 10−12
  • 20. 19 For 𝑬i = 𝐸i real we have: 𝐸𝑥 𝑧, 𝑡 = 𝐸𝑥, i 𝑧, 𝑡 + 𝐸𝑥, r 𝑧, 𝑡 = Re 𝑬i e−j𝑘𝑧 − ej𝑘𝑧 ej𝜔𝑡 = 2𝐸i sin 𝑘𝑧 sin 𝜔𝑡 𝐻𝑦 𝑧, 𝑡 = 𝐻𝑦, i 𝑧, 𝑡 + 𝐻𝑦, r 𝑧, 𝑡 = Re 𝑬i 𝜂 e−j𝑘𝑧 − ej𝑘𝑧 ej𝜔𝑡 = 2𝐸i 𝜂 cos 𝑘𝑧 cos 𝜔𝑡 𝐾𝑧 𝑧 = 0, 𝑡 = 𝐻𝑦 𝑧 = 0, 𝑡 = 2𝐸i 𝜂 cos 𝜔𝑡 Radiation pressure in free space 𝜇 = 𝜇o, 𝜀 = 𝜀o Force𝑧 Area 𝑧=0 = 1 2 𝑲 × 𝜇o𝑯 = 1 2 𝜇o𝐾𝑥𝐻𝑦 𝑧=0 𝒊𝑧 = 1 2 𝜇o𝐻𝑦 2 𝑧 = 0 𝒊𝑧 = 2𝜇o𝐸i 2 𝜂o 2 cos2 𝜔𝑡 𝒊𝑧 = 2𝜇o 𝜂o 𝜀o 𝐸i 2 cos2 𝜔𝑡 𝒊𝑧 = 2𝜀o 𝐸i 2 cos2 𝜔𝑡 𝒊𝑧
  • 21. 20 Figure 3: A uniform plane wave normally incident upon a perfect conductor has zero electric field at the conducting surface thus requiring a reflected wave. The source of this reflected wave is the surface current at 𝑧 = 0, which equals the magnetic field there. The total electric and magnetic fields are 90° out of phase in time and space. x z y 𝐸i = Re 𝑬iej 𝜔𝑡−𝑘𝑧 𝒊𝑥 𝐻i = Re 𝑬i 𝑍o ej 𝜔𝑡−𝑘𝑧 𝒊𝑦 𝑘 = 𝜔 𝑐 𝒊𝑧 𝐻r = Re − 𝑬r 𝑍o ej 𝜔𝑡+𝑘𝑧 𝒊𝑦 𝐸r = Re 𝑬rej 𝜔𝑡+𝑘𝑧 𝒊𝑥 𝑘r = − 𝜔 c1 𝒊𝑧 𝜀o, 𝜇o 𝜂o = 𝑍o= 𝜇o 𝜀o 𝐻𝑦 𝑠, 𝑡 = 2𝑬i 𝑍o cos 𝑘𝑠 cos 𝜔𝑡 𝐸𝑥 𝑠, 𝑡 = 2𝑬isin 𝑘𝑠 sin 𝜔𝑡 𝜎 → ∞
  • 22. 21 Figure 4: A uniform plane wave normally incident upon a dielectric interface separating two different materials has part of its power reflected and part transmitted. IV. Normal Incidence Onto A Dielectric x z y 𝜀1, 𝜇1 𝜂1 = 𝑍1 = 𝜇1 𝜀1 , 𝑐1 = 1 𝜀1𝜇1 𝜀2, 𝜇2 𝑍2 = 𝜇2 𝜀2 , 𝑐2 = 1 𝜀2𝜇2 𝐸i = Re 𝑬iej 𝜔𝑡−𝑘1𝑧 𝒊𝑥 𝐸t = Re 𝑬tej 𝜔𝑡−𝑘2𝑧 𝒊𝑥 𝐻t = Re 𝑬t 𝑍2 ej 𝜔𝑡−𝑘2𝑧 𝒊𝑦 𝐻r = Re − 𝑬r 𝑍1 ej 𝜔𝑡+𝑘1𝑧 𝒊𝑦 𝐻i = Re 𝑬i 𝑍1 ej 𝜔𝑡−𝑘1𝑧 𝒊𝑦 𝐸r = Re 𝑬rej 𝜔𝑡+𝑘1𝑧 𝒊𝑥 𝑘i = 𝑘1𝒊𝑧 = 𝜔 𝑐1 𝒊𝑧 𝑘r = −𝑘1𝒊𝑧 = −𝜔 𝑐1 𝒊𝑧 𝑘t = 𝑘2𝒊𝑧 = 𝜔 𝑐2 𝒊𝑧
  • 23. 22 𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘1𝑧 𝑖𝑥 , 𝑘1 = 𝜔 𝜀1𝜇1 𝑯i 𝑧, 𝑡 = Re 𝑯i 𝜂1 ej 𝜔𝑡−𝑘1𝑧 𝑖𝑦 , 𝜂1 = 𝜔 𝜇1 𝜀1 𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘1𝑧 𝑖𝑥 𝑯r 𝑧, 𝑡 = Re − 𝑬r 𝜂1 ej 𝜔𝑡+𝑘1𝑧 𝑖𝑦 𝑬t 𝑧, 𝑡 = Re 𝑬tej 𝜔𝑡−𝑘2𝑧 𝑖𝑥 , 𝑘2 = 𝜔 𝜀2𝜇2 𝑯t 𝑧, 𝑡 = Re 𝑬t 𝜂2 ej 𝜔𝑡−𝑘2𝑧 𝑖𝑦 , 𝜂2 = 𝜔 𝜇2 𝜀2
  • 24. 23 𝐸𝑥 𝑧 = 0− = 𝐸𝑥 𝑧 = 0+ ⇒ 𝑬i + 𝑬r = 𝑬t 𝐻𝑦 𝑧 = 0− = 𝐻𝑦 𝑧 = 0+ ⇒ 𝑬i − 𝑬r 𝜂1 = 𝑬t 𝜂2 𝑅 = 𝐸r 𝐸i = 𝜂2 − 𝜂1 𝜂1 + 𝜂2 is the Reflection coefficient 𝑇 = 𝐸t 𝐸i = 2𝜂2 𝜂1 + 𝜂2 is the Transmission coefficient 1 + 𝑅 = 𝑇
  • 25. 24 𝑆𝑧, i = 1 2 Re 𝑬𝑥 𝑧 𝑯𝑦 ∗ 𝑧 = 1 2𝜂1 Re 𝑬ie−j𝑘1𝑧 + 𝑬rej𝑘1𝑧 𝑬i ∗ ej𝑘1𝑧 − 𝑬r ∗ e−j𝑘1𝑧 = 1 2𝜂1 𝑬i 2 − 𝑬r 2 + 1 2𝜂1 Re 𝑬r𝑬i ∗ e2j𝑘1𝑧 − 𝑬r ∗ 𝑬ie−2j𝑘1𝑧 = 1 2𝜂1 𝑬i 2 − 𝑬r 2 = 𝑬i 2 2𝜂1 1 − 𝑅2 𝑆𝑧, t = 1 2𝜂2 𝑬t 2 = 𝑬i 2 𝑇2 2𝜂2 = 𝑬i 2 1 − 𝑅2 2𝜂2 = 𝑆𝑧, i pure imaginary
  • 26. 25 V. Lossy Dielectrics, 𝑱 = 𝜎𝑬 Ampere′ s Law: 𝛻 × 𝑯 = 𝑱 + 𝜀 𝜕𝑬 𝜕𝑡 = 𝜎𝑬 + 𝜀 𝜕𝑬 𝜕𝑡 For ej𝜔𝑡 fields, 𝛻 × 𝑯 = j𝜔𝜀 + 𝜎 𝑬 = j𝜔𝜀 1 + 𝜎 j𝜔𝜀 𝑬 where, 𝜎 = conductivity of a medium ( Siemens m )
  • 27. 26 Define complex permittivity by 𝜺 = 𝜀 1 + 𝜎 j𝜔𝜀 . Then complex amplitude solutions are the same as real amplitude solutions if we replace 𝜀 by 𝜺: 𝑘 = 𝜔 𝜺𝜇 𝜂 = 𝜇 𝜺 = 𝜇 𝜀 1 + 𝜎 j𝜔𝜀 𝑘 = 𝜔 𝜀𝜇 1 + 𝜎 j𝜔𝜀
  • 28. 27 A. Low Loss Limit: 𝜎 𝜔𝜀 ≪ 1 𝑘 = 𝜔 𝜀𝜇 1 + 𝜎 j𝜔𝜀 ≈ 𝜔 𝜀𝜇 1 + 1 2 𝜎 j𝜔𝜀 ≈ 𝜔 𝜀𝜇 − j𝜎 2 𝜇 𝜀 ≈ 𝜔 𝜀𝜇 − j 𝜎𝜂 2 e−j𝑘𝑧 = e−j𝜔 𝜀𝜇𝑧 e −j −j 𝜎𝜂 2 𝑧 = e−j𝜔 𝜀𝜇𝑧 e− 𝜎𝜂 2 𝑧 slow exponential decay
  • 29. 28 B. Large Loss Limit: 𝜎 𝜔𝜀 ≫ 1 𝑘 = 𝜔 𝜀𝜇 1 + 𝜎 j𝜔𝜀 ≈ 𝜔 𝜀𝜇 𝜎 𝜔𝜀 −j we know that, 𝜔 𝜔 = 𝜔 ≈ 𝜔𝜇𝜎 2 1 − j ≈ 1 − j 𝛿 𝛿 = 2 𝜔𝜇𝜎 is the skin depth e−j𝑘𝑧 = e −j 1−j 𝑧 𝛿 = e −j 𝑧 𝛿 e − 𝑧 𝛿 fast exponential decay 1 − j 2
  • 30. (1) Markus Zahn, Electromagnetics and Applications, Massachusetts Institute of Technology: MIT Open Course Ware, 2005. References 29