Nss fourier

Significance of Fourier Series and Fourier
Transform
Dr.R.Subasri
Professor
Kongu Engineering College
Perundurai
Courtesy: Referred and collected from various web sources and arranged
Any periodic function f(t) can be expressed as
a weighted sum (infinite) of sine and cosine
functions of increasing frequency:
Our building block:
Add enough of them to get any signal f(x) you want!
)+ xAsin(
Fourier Series
A Sum of Sinusoids
• Decompose a periodic input signal into
primitive periodic components.
T
nt
b
T
nt
a
a
tf
n
n
n
n

+

+= 

=

=
2
sin
2
cos
2
)(
11
0
DC Part
Even Part Odd Part
T is a period of all the above signals
Let 0=2/T
)sin()cos(
2
)( 0
1
0
1
0
tnbtna
a
tf
n
n
n
n ++= 

=

=
DC part is the average value of the given continuous time signal
fundamental angular frequency.
the n-th harmonic of the periodic function
The integrations can be performed from
0 to 2
( ) 


dfa =
2
00
2
1
( ) ,,ndncosfan 21
1 2
0
==  


( ) ,,ndnsinfbn 21
1 2
0
==  


Waveform Symmetry
• Even Functions
• Odd Functions
)()( tftf −=
)()( tftf −−=
Even Functions

f()
The value of the
function would be
the same when we
walk equal
distances along the
X-axis in opposite
directions.
( ) ( ) ff =−
Mathematically speaking -
Odd Functions The value of the
function would
change its sign but
with the same
magnitude when
we walk equal
distances along the
X-axis in opposite
directions.
( ) ( ) ff −=−
Mathematically speaking -

f()
Even functions can solely be represented by
cosine waves because, cosine waves are even
functions. A sum of even functions is another
even function.
10 0 10
5
0
5

Odd functions can solely be represented by sine
waves because, sine waves are odd functions. A
sum of odd functions is another odd function.
10 0 10
5
0
5

The Fourier series of an even function ( )f
is expressed in terms of a cosine series.
( ) 

=
+=
1
0 cos
n
n naaf 
The Fourier series of an odd function ( )f
is expressed in terms of a sine series.
( ) 

=
=
1
sin
n
n nbf 
Example 1. Find the Fourier series of the
following periodic function.
0

f ( )
 2 3 4 5
A
-A
( )
−=
=
2
0
whenA
whenAf
( ) ( ) ff =+ 2
( )
( ) ( )
0
2
1
2
1
2
1
2
0
2
0
2
0
0
=



 −+=



 +=
=
















dAdA
dfdf
dfa
( )
( )
0
11
1
1
2
0
2
0
2
0
=





−+





=



 −+=
=

















n
nsin
A
n
nsin
A
dncosAdncosA
dncosfan
( )
( )
 
















ncosncoscosncos
n
A
n
ncos
A
n
ncos
A
dnsinAdnsinA
dnsinfbn
−++−=






+





−=



 −+=
=


20
11
1
1
2
0
2
0
2
0
 
 
oddisnwhen
4
1111
20




n
A
n
A
ncosncoscosncos
n
A
bn
=
+++=
−++−=
 
 
evenisnwhen0
1111
20
=
−++−=
−++−=



n
A
ncosncoscosncos
n
A
bn
Therefore, the corresponding Fourier series is






++++ 

7sin
7
1
5sin
5
1
3sin
3
1
sin
4A
In writing the Fourier series we may not be able to
consider infinite number of terms for practical
reasons. The question therefore, is – how many
terms to consider?
When we consider 4 terms as shown in the previous
slide, the function looks like the following.
1.5
1
0.5
0
0.5
1
1.5
f ( )

When we consider 6 terms, the function looks like the
following.
1.5
1
0.5
0
0.5
1
1.5
f ( )

When we consider 8 terms, the function looks like the
following.
1.5
1
0.5
0
0.5
1
1.5
f ( )

When we consider 12 terms, the function looks like
the following.
1.5
1
0.5
0
0.5
1
1.5
f ( )

Nss fourier
Nss fourier
Nss fourier






++++ 

7sin
7
1
5sin
5
1
3sin
3
1
sin
4A
Therefore, the corresponding Fourier series is
Frequency Spectrum
Spectral representation
The frequency representation of periodic and aperiodic
signals indicates how their power or energy is allocated to
different frequencies. Such a distribution over frequency is
called the spectrum of the signal.
For a periodic signal the spectrum is discrete function
of frequency and povides information as to how the
power of the signal is distributed over the different
frequencies present in the signal. We thus learn not
only what frequency components are present in the
signal but also the strength of these frequency
components
On the other hand, the spectrum of an aperiodic signal is
a continuous function of frequency.
Application of Fourier analysis
The frequency representation of signals and systems is
extremely important in signal processing and in
communications. It explains filtering, modulation of
messages in a communication system, the meaning of
bandwidth, and how to design filters.
Likewise, the frequency representation turns out to be
essential in the sampling of analog signals the
bridge between analog and digital signal processing.
Fourier Series vs. Fourier Integral


−=

=
n
tjn
nectf 0
)(
Fourier
Series:
Fourier
Integral:
dtetf
T
c
T
T
tjn
Tn −
−
=
2/
2/
0
)(
1
dtetfjF tj


−
−
= )()(


= 

−

dejFtf tj
)(
2
1
)(
Period Function
Discrete Spectra
Non-Period
Function
Continuous Spectra
Fourier Transform Pair
dtetfjF tj


−
−
= )()(


= 

−

dejFtf tj
)(
2
1
)( Synthesis
Analysis
Fourier Transform:
Inverse Fourier Transform:
dtetfjF tj


−
−
= )()(
Continuous Spectra
)()()( += jjFjFjF IR
)(
|)(| 
= j
ejF FR(j)
FI(j)
()
Magnitude
Phase
Example
1-1
1
t
f(t)
dtetfjF tj


−
−
= )()( dte tj
−
−
=
1
1
1
1
1
−
−
−
= tj
e
j
)( −
−

= jj
ee
j


=
sin2
Example
1-1
1
t
f(t)
dtetfjF tj


−
−
= )()( dte tj
−
−
=
1
1
1
1
1
−
−
−
= tj
e
j
)( −
−

= jj
ee
j


=
sin2
-10 -5 0 5 10
-1
0
1
2
3
F()
-10 -5 0 5 10
0
1
2
3
|F()|
-10 -5 0 5 10
0
2
4arg[F()]
Example
dtetfjF tj


−
−
= )()( dtee tjt


−−
=
0
t
f(t)
e−t
dte tj


+−
=
0
)(
+
=
j
1
Example
dtetfjF tj


−
−
= )()( dtee tjt


−−
=
0
t
f(t)
e−t
dte tj


+−
=
0
)(
+
=
j
1
-10 -5 0 5 10
0
0.5
1
|F(j)|
-10 -5 0 5 10
-2
0
2
arg[F(j)]
=2
Parseval’s Theorem:
Energy Preserving (Fourier Transform)


= 

−

−
djFdttf 22
|)(|
2
1
|)(|
dtetftf tj


−
−
= )(*)](*[F
−−

= 

−
djFjF )]([*)(
2
1
dttftfdttf 

−

−
= )(*)(|)(| 2
*
)( 



= 

−

dtetf tj )(* −= jF


= 

−
djF 2
|)(|
2
1
Parseval’s Theorem:
Power Preserving (Fourier Series)
2
2
0
)(
1
 =
k
k
T
cdttf
T
222
0
2
0 2
1
)(
1
kk
T
baadttf
T
++= 
C1- In one period, the number of discontinuous points is finite.
C2- In one period, the number of maximum and minimum points is finite.
C3- In one period, the function is absolutely integrable.
Existence of the Fourier Transform


−
dttf |)(|
Sufficient Condition:
f(t) is absolutely integrable, i.e.,
Nss fourier
Nss fourier
Nss fourier
Nss fourier
Nss fourier
Thank you
1 de 45

Recomendados

Fourier series 1 por
Fourier series 1Fourier series 1
Fourier series 1Faiza Saher
1.9K visualizações15 slides
Fourier series por
Fourier seriesFourier series
Fourier seriesShiv Prasad Gupta
7.2K visualizações52 slides
Nt lecture skm-iiit-bh por
Nt lecture skm-iiit-bhNt lecture skm-iiit-bh
Nt lecture skm-iiit-bhIIIT Bhubaneswar
197 visualizações45 slides
Fourier series example por
Fourier series exampleFourier series example
Fourier series exampleAbi finni
17K visualizações19 slides
Half range sine cosine fourier series por
Half range sine cosine fourier seriesHalf range sine cosine fourier series
Half range sine cosine fourier seriesHardik Parmar
52.4K visualizações8 slides
fourier transforms por
fourier transformsfourier transforms
fourier transformsUmang Gupta
12.4K visualizações40 slides

Mais conteúdo relacionado

Mais procurados

Fourier series and fourier integral por
Fourier series and fourier integralFourier series and fourier integral
Fourier series and fourier integralashuuhsaqwe
7.7K visualizações23 slides
Half range sine and cosine series por
Half range sine and cosine seriesHalf range sine and cosine series
Half range sine and cosine seriesChandan S
31.8K visualizações12 slides
Fourier series por
Fourier series Fourier series
Fourier series Pinky Chaudhari
10.2K visualizações24 slides
Ic batch b1 sem 3(2015) introduction to some special functions and fourier se... por
Ic batch b1 sem 3(2015) introduction to some special functions and fourier se...Ic batch b1 sem 3(2015) introduction to some special functions and fourier se...
Ic batch b1 sem 3(2015) introduction to some special functions and fourier se...Jitin Pillai
1.9K visualizações30 slides
periodic functions and Fourier series por
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier seriesUmang Gupta
9.3K visualizações81 slides
Fourier series Introduction por
Fourier series IntroductionFourier series Introduction
Fourier series IntroductionRizwan Kazi
2.3K visualizações22 slides

Mais procurados(20)

Fourier series and fourier integral por ashuuhsaqwe
Fourier series and fourier integralFourier series and fourier integral
Fourier series and fourier integral
ashuuhsaqwe7.7K visualizações
Half range sine and cosine series por Chandan S
Half range sine and cosine seriesHalf range sine and cosine series
Half range sine and cosine series
Chandan S31.8K visualizações
Fourier series por Pinky Chaudhari
Fourier series Fourier series
Fourier series
Pinky Chaudhari10.2K visualizações
Ic batch b1 sem 3(2015) introduction to some special functions and fourier se... por Jitin Pillai
Ic batch b1 sem 3(2015) introduction to some special functions and fourier se...Ic batch b1 sem 3(2015) introduction to some special functions and fourier se...
Ic batch b1 sem 3(2015) introduction to some special functions and fourier se...
Jitin Pillai1.9K visualizações
periodic functions and Fourier series por Umang Gupta
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier series
Umang Gupta9.3K visualizações
Fourier series Introduction por Rizwan Kazi
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
Rizwan Kazi2.3K visualizações
Fourier slide por ssuser65bfce
Fourier slideFourier slide
Fourier slide
ssuser65bfce139 visualizações
5. fourier properties por skysunilyadav
5. fourier properties5. fourier properties
5. fourier properties
skysunilyadav1.3K visualizações
Fourier Transform por Aamir Saeed
Fourier TransformFourier Transform
Fourier Transform
Aamir Saeed739 visualizações
Solved problems por Mulugeta Ashango
Solved problemsSolved problems
Solved problems
Mulugeta Ashango164K visualizações
Fourier transform por Solo Hermelin
Fourier transformFourier transform
Fourier transform
Solo Hermelin10.1K visualizações
aem : Fourier series of Even and Odd Function por Sukhvinder Singh
aem :  Fourier series of Even and Odd Functionaem :  Fourier series of Even and Odd Function
aem : Fourier series of Even and Odd Function
Sukhvinder Singh9.2K visualizações
Fourier series por Faiza Saher
Fourier seriesFourier series
Fourier series
Faiza Saher1.5K visualizações
1531 fourier series- integrals and trans por Dr Fereidoun Dejahang
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
Dr Fereidoun Dejahang834 visualizações
Laplace periodic function por Kaushal Surti
Laplace periodic functionLaplace periodic function
Laplace periodic function
Kaushal Surti1.2K visualizações
Fourier3 por bubud75
Fourier3Fourier3
Fourier3
bubud75706 visualizações
07 periodic functions and fourier series por Krishna Gali
07 periodic functions and fourier series07 periodic functions and fourier series
07 periodic functions and fourier series
Krishna Gali1.3K visualizações
Chapter4 - The Continuous-Time Fourier Transform por Attaporn Ninsuwan
Chapter4 - The Continuous-Time Fourier TransformChapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier Transform
Attaporn Ninsuwan1.2K visualizações
History and Real Life Applications of Fourier Analaysis por Syed Ahmed Zaki
History and Real Life Applications of Fourier AnalaysisHistory and Real Life Applications of Fourier Analaysis
History and Real Life Applications of Fourier Analaysis
Syed Ahmed Zaki18.2K visualizações

Similar a Nss fourier

Signal & system por
Signal & systemSignal & system
Signal & systemGhulam Shabbir
3.8K visualizações163 slides
Circuit Network Analysis - [Chapter3] Fourier Analysis por
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisSimen Li
12.4K visualizações61 slides
DSP, Differences between Fourier series ,Fourier Transform and Z transform por
DSP, Differences between  Fourier series ,Fourier Transform and Z transform DSP, Differences between  Fourier series ,Fourier Transform and Z transform
DSP, Differences between Fourier series ,Fourier Transform and Z transform Naresh Biloniya
3.6K visualizações12 slides
Lecture7 Signal and Systems por
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systemsbabak danyal
3.1K visualizações16 slides
Ch1 representation of signal pg 130 por
Ch1 representation of signal pg 130Ch1 representation of signal pg 130
Ch1 representation of signal pg 130Prateek Omer
1.2K visualizações130 slides
Digital Signal Processing Tutorial:Chapt 3 frequency analysis por
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisChandrashekhar Padole
3.8K visualizações96 slides

Similar a Nss fourier(20)

Signal & system por Ghulam Shabbir
Signal & systemSignal & system
Signal & system
Ghulam Shabbir3.8K visualizações
Circuit Network Analysis - [Chapter3] Fourier Analysis por Simen Li
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
Simen Li12.4K visualizações
DSP, Differences between Fourier series ,Fourier Transform and Z transform por Naresh Biloniya
DSP, Differences between  Fourier series ,Fourier Transform and Z transform DSP, Differences between  Fourier series ,Fourier Transform and Z transform
DSP, Differences between Fourier series ,Fourier Transform and Z transform
Naresh Biloniya3.6K visualizações
Lecture7 Signal and Systems por babak danyal
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
babak danyal3.1K visualizações
Ch1 representation of signal pg 130 por Prateek Omer
Ch1 representation of signal pg 130Ch1 representation of signal pg 130
Ch1 representation of signal pg 130
Prateek Omer1.2K visualizações
Digital Signal Processing Tutorial:Chapt 3 frequency analysis por Chandrashekhar Padole
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Chandrashekhar Padole3.8K visualizações
Eece 301 note set 14 fourier transform por Sandilya Sridhara
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
Sandilya Sridhara1.6K visualizações
Find the compact trigonometric Fourier series for the periodic signal.pdf por arihantelectronics
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdf
arihantelectronics13 visualizações
233_Sample-Chapter.pdf por Sampathkumar477190
233_Sample-Chapter.pdf233_Sample-Chapter.pdf
233_Sample-Chapter.pdf
Sampathkumar47719027 visualizações
233_Sample-Chapter (1).pdf por ssuser4dafea
233_Sample-Chapter (1).pdf233_Sample-Chapter (1).pdf
233_Sample-Chapter (1).pdf
ssuser4dafea97 visualizações
Lecture 9 por Wael Sharba
Lecture 9Lecture 9
Lecture 9
Wael Sharba623 visualizações
rcg-ch4a.pdf por Kaviprathi
rcg-ch4a.pdfrcg-ch4a.pdf
rcg-ch4a.pdf
Kaviprathi2 visualizações
CVD020 - Lecture Week 2 por Alessandro Palmeri
CVD020 - Lecture Week 2CVD020 - Lecture Week 2
CVD020 - Lecture Week 2
Alessandro Palmeri10.8K visualizações
Lecture1 por srirenga
Lecture1Lecture1
Lecture1
srirenga88 visualizações
Fourier Specturm via MATLAB por ZunAib Ali
Fourier Specturm via MATLABFourier Specturm via MATLAB
Fourier Specturm via MATLAB
ZunAib Ali1.4K visualizações
SDEE: Lectures 3 and 4 por Alessandro Palmeri
SDEE: Lectures 3 and 4SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4
Alessandro Palmeri16.1K visualizações
TPDE_UNIT II-FOURIER SERIES_PPT.pptx por ragavvelmurugan
TPDE_UNIT II-FOURIER SERIES_PPT.pptxTPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
ragavvelmurugan13 visualizações
lec07_DFT.pdf por shannlevia123
lec07_DFT.pdflec07_DFT.pdf
lec07_DFT.pdf
shannlevia1236 visualizações
03 Cap 2 - fourier-analysis-2015.pdf por ROCIOMAMANIALATA1
03 Cap 2 - fourier-analysis-2015.pdf03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf
ROCIOMAMANIALATA1110 visualizações
4 matched filters and ambiguity functions for radar signals por Solo Hermelin
4 matched filters and ambiguity functions for radar signals4 matched filters and ambiguity functions for radar signals
4 matched filters and ambiguity functions for radar signals
Solo Hermelin3.3K visualizações

Mais de Ramaiahsubasri

Bode plot por
Bode plotBode plot
Bode plotRamaiahsubasri
390 visualizações33 slides
Induction motor 3ph por
Induction motor 3phInduction motor 3ph
Induction motor 3phRamaiahsubasri
671 visualizações40 slides
Transformer por
TransformerTransformer
TransformerRamaiahsubasri
4.9K visualizações54 slides
Sliding Mode Controller por
Sliding Mode Controller Sliding Mode Controller
Sliding Mode Controller Ramaiahsubasri
895 visualizações24 slides
Root locus compensation por
Root locus compensationRoot locus compensation
Root locus compensationRamaiahsubasri
2.1K visualizações24 slides
Optimal c ontrol por
Optimal c ontrolOptimal c ontrol
Optimal c ontrolRamaiahsubasri
83 visualizações30 slides

Mais de Ramaiahsubasri(9)

Bode plot por Ramaiahsubasri
Bode plotBode plot
Bode plot
Ramaiahsubasri390 visualizações
Induction motor 3ph por Ramaiahsubasri
Induction motor 3phInduction motor 3ph
Induction motor 3ph
Ramaiahsubasri671 visualizações
Transformer por Ramaiahsubasri
TransformerTransformer
Transformer
Ramaiahsubasri4.9K visualizações
Sliding Mode Controller por Ramaiahsubasri
Sliding Mode Controller Sliding Mode Controller
Sliding Mode Controller
Ramaiahsubasri895 visualizações
Root locus compensation por Ramaiahsubasri
Root locus compensationRoot locus compensation
Root locus compensation
Ramaiahsubasri2.1K visualizações
Optimal c ontrol por Ramaiahsubasri
Optimal c ontrolOptimal c ontrol
Optimal c ontrol
Ramaiahsubasri83 visualizações
Feedback linearisation por Ramaiahsubasri
Feedback linearisationFeedback linearisation
Feedback linearisation
Ramaiahsubasri1.5K visualizações
Ethics por Ramaiahsubasri
EthicsEthics
Ethics
Ramaiahsubasri1.3K visualizações
Bode plot por Ramaiahsubasri
Bode plotBode plot
Bode plot
Ramaiahsubasri5.4K visualizações

Último

REPORT Data Science EXPERT LECTURE.doc por
REPORT Data Science EXPERT LECTURE.docREPORT Data Science EXPERT LECTURE.doc
REPORT Data Science EXPERT LECTURE.docParulkhatri11
7 visualizações9 slides
Robotics in construction enterprise por
Robotics in construction enterpriseRobotics in construction enterprise
Robotics in construction enterpriseKhalid Abdel Naser Abdel Rahim
5 visualizações1 slide
CCNA_questions_2021.pdf por
CCNA_questions_2021.pdfCCNA_questions_2021.pdf
CCNA_questions_2021.pdfVUPHUONGTHAO9
11 visualizações196 slides
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf por
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdfASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdfAlhamduKure
11 visualizações11 slides
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc... por
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...csegroupvn
17 visualizações210 slides
unit 1.pptx por
unit 1.pptxunit 1.pptx
unit 1.pptxrrbornarecm
6 visualizações53 slides

Último(20)

REPORT Data Science EXPERT LECTURE.doc por Parulkhatri11
REPORT Data Science EXPERT LECTURE.docREPORT Data Science EXPERT LECTURE.doc
REPORT Data Science EXPERT LECTURE.doc
Parulkhatri117 visualizações
CCNA_questions_2021.pdf por VUPHUONGTHAO9
CCNA_questions_2021.pdfCCNA_questions_2021.pdf
CCNA_questions_2021.pdf
VUPHUONGTHAO911 visualizações
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf por AlhamduKure
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdfASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
AlhamduKure11 visualizações
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc... por csegroupvn
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
csegroupvn17 visualizações
unit 1.pptx por rrbornarecm
unit 1.pptxunit 1.pptx
unit 1.pptx
rrbornarecm6 visualizações
Building source code level profiler for C++.pdf por ssuser28de9e
Building source code level profiler for C++.pdfBuilding source code level profiler for C++.pdf
Building source code level profiler for C++.pdf
ssuser28de9e12 visualizações
CPM Schedule Float.pptx por Mathew Joseph
CPM Schedule Float.pptxCPM Schedule Float.pptx
CPM Schedule Float.pptx
Mathew Joseph9 visualizações
Ansari: Practical experiences with an LLM-based Islamic Assistant por M Waleed Kadous
Ansari: Practical experiences with an LLM-based Islamic AssistantAnsari: Practical experiences with an LLM-based Islamic Assistant
Ansari: Practical experiences with an LLM-based Islamic Assistant
M Waleed Kadous13 visualizações
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R... por IJCNCJournal
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...
IJCNCJournal5 visualizações
Programmable Logic Devices : SPLD and CPLD por Usha Mehta
Programmable Logic Devices : SPLD and CPLDProgrammable Logic Devices : SPLD and CPLD
Programmable Logic Devices : SPLD and CPLD
Usha Mehta44 visualizações
Programmable Switches for Programmable Logic Devices por Usha Mehta
Programmable Switches for Programmable Logic DevicesProgrammable Switches for Programmable Logic Devices
Programmable Switches for Programmable Logic Devices
Usha Mehta37 visualizações
IRJET-Productivity Enhancement Using Method Study.pdf por SahilBavdhankar
IRJET-Productivity Enhancement Using Method Study.pdfIRJET-Productivity Enhancement Using Method Study.pdf
IRJET-Productivity Enhancement Using Method Study.pdf
SahilBavdhankar11 visualizações
GPS Survery Presentation/ Slides por OmarFarukEmon1
GPS Survery Presentation/ SlidesGPS Survery Presentation/ Slides
GPS Survery Presentation/ Slides
OmarFarukEmon19 visualizações
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth por Innomantra
BCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for GrowthBCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for Growth
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth
Innomantra 28 visualizações
Pitchbook Repowerlab.pdf por VictoriaGaleano
Pitchbook Repowerlab.pdfPitchbook Repowerlab.pdf
Pitchbook Repowerlab.pdf
VictoriaGaleano10 visualizações
Field Programmable Gate Arrays : Architecture por Usha Mehta
Field Programmable Gate Arrays : ArchitectureField Programmable Gate Arrays : Architecture
Field Programmable Gate Arrays : Architecture
Usha Mehta33 visualizações
MongoDB.pdf por ArthyR3
MongoDB.pdfMongoDB.pdf
MongoDB.pdf
ArthyR353 visualizações
PIT Interpretation - Use only PIT-W EN.ppt por Rabindra Shrestha
PIT Interpretation - Use only PIT-W EN.pptPIT Interpretation - Use only PIT-W EN.ppt
PIT Interpretation - Use only PIT-W EN.ppt
Rabindra Shrestha5 visualizações

Nss fourier

  • 1. Significance of Fourier Series and Fourier Transform Dr.R.Subasri Professor Kongu Engineering College Perundurai Courtesy: Referred and collected from various web sources and arranged
  • 2. Any periodic function f(t) can be expressed as a weighted sum (infinite) of sine and cosine functions of increasing frequency: Our building block: Add enough of them to get any signal f(x) you want! )+ xAsin( Fourier Series
  • 3. A Sum of Sinusoids
  • 4. • Decompose a periodic input signal into primitive periodic components. T nt b T nt a a tf n n n n  +  +=   =  = 2 sin 2 cos 2 )( 11 0 DC Part Even Part Odd Part T is a period of all the above signals Let 0=2/T )sin()cos( 2 )( 0 1 0 1 0 tnbtna a tf n n n n ++=   =  = DC part is the average value of the given continuous time signal fundamental angular frequency. the n-th harmonic of the periodic function
  • 5. The integrations can be performed from 0 to 2 ( )    dfa = 2 00 2 1 ( ) ,,ndncosfan 21 1 2 0 ==     ( ) ,,ndnsinfbn 21 1 2 0 ==    
  • 6. Waveform Symmetry • Even Functions • Odd Functions )()( tftf −= )()( tftf −−=
  • 7. Even Functions  f() The value of the function would be the same when we walk equal distances along the X-axis in opposite directions. ( ) ( ) ff =− Mathematically speaking -
  • 8. Odd Functions The value of the function would change its sign but with the same magnitude when we walk equal distances along the X-axis in opposite directions. ( ) ( ) ff −=− Mathematically speaking -  f()
  • 9. Even functions can solely be represented by cosine waves because, cosine waves are even functions. A sum of even functions is another even function. 10 0 10 5 0 5 
  • 10. Odd functions can solely be represented by sine waves because, sine waves are odd functions. A sum of odd functions is another odd function. 10 0 10 5 0 5 
  • 11. The Fourier series of an even function ( )f is expressed in terms of a cosine series. ( )   = += 1 0 cos n n naaf  The Fourier series of an odd function ( )f is expressed in terms of a sine series. ( )   = = 1 sin n n nbf 
  • 12. Example 1. Find the Fourier series of the following periodic function. 0  f ( )  2 3 4 5 A -A ( ) −= = 2 0 whenA whenAf ( ) ( ) ff =+ 2
  • 13. ( ) ( ) ( ) 0 2 1 2 1 2 1 2 0 2 0 2 0 0 =     −+=     += =                 dAdA dfdf dfa
  • 14. ( ) ( ) 0 11 1 1 2 0 2 0 2 0 =      −+      =     −+= =                  n nsin A n nsin A dncosAdncosA dncosfan
  • 15. ( ) ( )                   ncosncoscosncos n A n ncos A n ncos A dnsinAdnsinA dnsinfbn −++−=       +      −=     −+= =   20 11 1 1 2 0 2 0 2 0
  • 18. Therefore, the corresponding Fourier series is       ++++   7sin 7 1 5sin 5 1 3sin 3 1 sin 4A In writing the Fourier series we may not be able to consider infinite number of terms for practical reasons. The question therefore, is – how many terms to consider?
  • 19. When we consider 4 terms as shown in the previous slide, the function looks like the following. 1.5 1 0.5 0 0.5 1 1.5 f ( ) 
  • 20. When we consider 6 terms, the function looks like the following. 1.5 1 0.5 0 0.5 1 1.5 f ( ) 
  • 21. When we consider 8 terms, the function looks like the following. 1.5 1 0.5 0 0.5 1 1.5 f ( ) 
  • 22. When we consider 12 terms, the function looks like the following. 1.5 1 0.5 0 0.5 1 1.5 f ( ) 
  • 27. Spectral representation The frequency representation of periodic and aperiodic signals indicates how their power or energy is allocated to different frequencies. Such a distribution over frequency is called the spectrum of the signal. For a periodic signal the spectrum is discrete function of frequency and povides information as to how the power of the signal is distributed over the different frequencies present in the signal. We thus learn not only what frequency components are present in the signal but also the strength of these frequency components On the other hand, the spectrum of an aperiodic signal is a continuous function of frequency.
  • 28. Application of Fourier analysis The frequency representation of signals and systems is extremely important in signal processing and in communications. It explains filtering, modulation of messages in a communication system, the meaning of bandwidth, and how to design filters. Likewise, the frequency representation turns out to be essential in the sampling of analog signals the bridge between analog and digital signal processing.
  • 29. Fourier Series vs. Fourier Integral   −=  = n tjn nectf 0 )( Fourier Series: Fourier Integral: dtetf T c T T tjn Tn − − = 2/ 2/ 0 )( 1 dtetfjF tj   − − = )()(   =   −  dejFtf tj )( 2 1 )( Period Function Discrete Spectra Non-Period Function Continuous Spectra
  • 30. Fourier Transform Pair dtetfjF tj   − − = )()(   =   −  dejFtf tj )( 2 1 )( Synthesis Analysis Fourier Transform: Inverse Fourier Transform:
  • 31. dtetfjF tj   − − = )()( Continuous Spectra )()()( += jjFjFjF IR )( |)(|  = j ejF FR(j) FI(j) () Magnitude Phase
  • 32. Example 1-1 1 t f(t) dtetfjF tj   − − = )()( dte tj − − = 1 1 1 1 1 − − − = tj e j )( − −  = jj ee j   = sin2
  • 33. Example 1-1 1 t f(t) dtetfjF tj   − − = )()( dte tj − − = 1 1 1 1 1 − − − = tj e j )( − −  = jj ee j   = sin2 -10 -5 0 5 10 -1 0 1 2 3 F() -10 -5 0 5 10 0 1 2 3 |F()| -10 -5 0 5 10 0 2 4arg[F()]
  • 34. Example dtetfjF tj   − − = )()( dtee tjt   −− = 0 t f(t) e−t dte tj   +− = 0 )( + = j 1
  • 35. Example dtetfjF tj   − − = )()( dtee tjt   −− = 0 t f(t) e−t dte tj   +− = 0 )( + = j 1 -10 -5 0 5 10 0 0.5 1 |F(j)| -10 -5 0 5 10 -2 0 2 arg[F(j)] =2
  • 36. Parseval’s Theorem: Energy Preserving (Fourier Transform)   =   −  − djFdttf 22 |)(| 2 1 |)(| dtetftf tj   − − = )(*)](*[F −−  =   − djFjF )]([*)( 2 1 dttftfdttf   −  − = )(*)(|)(| 2 * )(     =   −  dtetf tj )(* −= jF   =   − djF 2 |)(| 2 1
  • 37. Parseval’s Theorem: Power Preserving (Fourier Series) 2 2 0 )( 1  = k k T cdttf T 222 0 2 0 2 1 )( 1 kk T baadttf T ++= 
  • 38. C1- In one period, the number of discontinuous points is finite. C2- In one period, the number of maximum and minimum points is finite. C3- In one period, the function is absolutely integrable.
  • 39. Existence of the Fourier Transform   − dttf |)(| Sufficient Condition: f(t) is absolutely integrable, i.e.,