SlideShare uma empresa Scribd logo
1 de 47
Ecological
Risk
Assessme
nt of
Heavy
Metals
PRESENTED BY
AFIFA (2)
FAKIHA (12)
H.ARSALNA (30)
BISMAH (35)
QURAT UL AIN (17)
AFIFA GOHAR (48)
TAYYAB (41E )
Jens
Martensson
2
Heavy metals
Heavy metals are a group of metals and metalloids that have relatively high
density and are toxic even at ppb levels
Essential elements are often required in trace amounts in the level of 10–15 ppm
and are known as micronutrients.
EPA and the International Agency for Research on Cancer (IARC) have classified
heavy metals as human carcinogen.
Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and
mercury rank among the priority metals that are of public health significance.
Heavy metals are also considered as trace elements because of their presence in
trace concentrations (ppb range to less than 10ppm) in various environmental
matrices
Jens
Martensson
3
The HMs can be broadly
classified into two categories:
essential and nonessential
heavy metals
Essential HMs are those required by living organisms for carrying out the
fundamental processes like growth, metabolism, and development of
different organs. There are numerous essential heavy metals like Cu, Fe,
Mn, Co, Zn, and Ni required by plants as they form cofactors that are
structurally and functionally vital for enzymes and other proteins.
Nonessential heavy metals like Cd, Pb, Hg, Cr, and Al are not required by
plants, even in trace amounts, for any of the metabolic processes. Table
6.1 depicts the manifestation of toxicity induced by copper, zinc,
cadmium, and lead to different plant species.
There is a very narrow range of concentrations between beneficial and
toxic effects
Jens
Martensson
4
Properties
Unlike organic pollutants, heavy metals are nonbiodegradable and have
tendency to accumulate in living beings.
Heavy metals induce detrimental effects, including developmental toxicity, cell
death, neurotoxicity, oxidative stress, and immunotoxicity.
Owing to their bioaccumulative potential along the food chain, high toxicity,
prevalence, and persistence in the environment, heavy metals have become a
major public health concern.
Heavy metals commonly accumulate in living organisms because of the non-
biodegradable, toxic nature of heavy metals, and non-thermo degradable.
Jens
Martensson
5
Sources
Although heavy metals are naturally occurring elements that are found
throughout the earth’s crust, most environmental contamination and human
exposure result from anthropogenic activities such as mining and smelting
operations, industrial production and use, and domestic and agricultural use of
metals and metal-containing compounds metals are released into the
environment by both natural and anthropogenic sources such as industrial
discharge, automobiles exhaust, and mining.
Their multiple Industrial, domestic, agricultural, medical and technological
applications have led to their wide distribution in the environment; raising
concerns over their potential effects on human health and the environment.
Industrial sources include metal processing in refineries, coal burning in power
plants, petroleum combustion, nuclear power stations and high tension lines,
plastics, textiles, microelectronics, wood preservation and paper processing
plants.
Jens
Martensson
Routes Of Exposure
Jens
Martensson
• effects of exposure to heavy metals can vary
depending on the type of metal, the route of
exposure, and the duration and level of exposure.
• Some heavy metals, such as lead and mercury, can
have serious health effects even at low levels of
exposure.
• Other heavy metals, such as copper and zinc, are
essential to human health in small amounts but can
be toxic at higher levels.
Routes Of Exposure
7
Jens
Martensson
8
Toxicokinetics
Toxicokinetics describes how the body handles a chemical, as a function of
dose and time, in terms of the concept of ADME (absorption, distribution,
metabolism and excretion): The rate of chemical absorption from the site of
application into the blood stream.
Jens
Martensson
ABSORPTION
• Inhalation: Heavy metals can be inhaled as fumes, dust, or
mist. This is a common route of exposure for workers in
industries that involve metal processing, smelting, and welding.
• Ingestion: Heavy metals can enter the body through the
gastrointestinal tract, either by consuming contaminated food
or water or by accidental ingestion.
• Dermal Contact: Heavy metals can also enter the body
through the skin, for example, through contact with
contaminated soil or through the use of cosmetics or other
personal care products that contain heavy metals.
Toxicokinetic Of Heavy Metal
9
Jens
Martensson
• DISTRIBUTION
• Some heavy metals, such as lead and cadmium, have a high
affinity for bone and can accumulate in bone tissue over time.
Other heavy metals, such as mercury, tend to accumulate in the
kidneys and brain.
• Some heavy metals, such as iron, are essential for the body's
normal function and are tightly regulated. Others, such as lead,
cadmium, and mercury, have no known essential function in the
body and can accumulate in the body over time with repeated
exposure.
Toxicokinetic Of Heavy Metal
10
Jens
Martensson
• METABOLISM
heavy metals, such as lead, cadmium, and mercury,
have no known essential function in the body and can
accumulate in the body over time with repeated
exposure. These metals can disrupt normal cellular
processes and can bind to various proteins, enzymes,
and nucleic acids, altering their function.
Toxicokinetic Of Heavy Metal
11
Jens
Martensson
• Lead: Lead can bind to several enzymes and proteins
in the body, causing them to malfunction.
• Cadmium: Cadmium can bind to metallothionein, a
protein that regulates the uptake and elimination of
heavy metals, which can lead to the accumulation of
cadmium in the body.
• Mercury: Mercury can bind to and inactivate enzymes
in the body, and can also form a complex with a
specific protein called metallothionein, which can lead
to the accumulation of the metal in the body.
12
Jens
Martensson
13
Toxic
Mechanisms
of Five Heavy
Metals:
Mercury,
Lead,
Chromium,
Cadmium,
and Arsenic
Jens
Martensson
• Excretion
• Excretion of heavy metals refers to the process by which the
body eliminates these metals from the body. The excretion of
heavy metals varies depending on the specific metal and can
occur through urine, feces, sweat, or hair.
• Urine: Heavy metals such as lead, cadmium, and mercury can
be excreted through urine. However, the efficiency of excretion
through urine can vary depending on the individual's health
status, genetics and nutritional status.
Toxicokinetic Of Heavy Metal
14
Jens
Martensson
• Feces: Some heavy metals such as lead and cadmium
can be excreted through feces.
• Sweat: Heavy metals such as cadmium and lead can be
excreted through sweat. However, the efficiency of
excretion through sweat is generally low compared to
urine and feces.
• Hair: Heavy metals can also be excreted through hair,
but it's not a common route of elimination, and hair
analysis is not a reliable indicator of exposure.
15
Jens
Martensson
MERCURY
LEAD
CADMIUM
ARSENIC
Health effects of
Heavy Metals
16
Jens
Martensson
Among lead's well-
known developmental
health effects
is stunting of skeletal
growth in children.
Moreover, lead is known
to delay fracture
healing and may
contribute to
osteoporosis.
Lead
17
Permissible Standards for lead
are
• The lead standards
establish a permissible
exposure limit (PEL) of 50
μg/m3 of lead over an
eight-hour time-weighted-
average for all employees
covered.
• The calculated IRLs are 2.2
micrograms (µg) per day
for children and 8.8 µg
per day for females of
childbearing age.
Jens
Martensson
18
Jens
Martensson
Mercury majorly cause Minamata
disease
It may
• Deteriorates nervous system
• Impairs hearing, speech, vision, and gait
• Cause involuntary muscles movements
• Corrodes skin and mucous membranes
• Cause chewing and swallowing to become difficult
Mercur
y
OSHA: The legal
airborne permissibl
e exposure
limit (PEL) is 0.1
mg/m3 averaged
over an 8-hour
work shift
Symptoms
include
• Tremors
• Insomnia
• memory loss
• neuromuscular
effects
• Headaches
• cognitive and
motor
Jens
Martensson
Cadmiu
m
20
Cadmium have many adverse effects
on different parts or organs of body
Respiratory system
• Pneumonia
• Destruction of mucous membrane
Kidney
• kidney stones
• Glomerular and tubular damage
Reproductive system
• Testicular necrosis
• Estrogen like effects
• Infection of steroid hormones
Skeletal system
• Loss of bones density
• Itai itai disease
Jens
Martensson
Permissible level of arsenic
• The permissible exposure limit for arsenic is no greater than 10 micrograms of
inorganic arsenic per cubic meter of air, averaged over any 8 hour period for a 40
hour workweek [OSHA 2001; NIOSH 2005].
• The current drinking water standard, or Maximum Contaminant Level (MCL), from the
U.S. Environmental Protection Agency (EPA) is 0.010 mg/L or parts per million
(ppm).
Arsenic
21
Jens
Martensson
22
Heavy metals
Jens
Martensson
The concentrations of heavy metals (Cr, Cd, Hg, Cu, Zn, Pb and As) in
sediment, and fish were investigated in the middle and lower reaches of
the Yangtze River, China. The samples were collected from the main
river and lakes in the Yangtze River basin at 17 sites in the middle reach
and from 10 sites in the lower reach. In total, 27 water and sediment
samples were collected.
HM concentration in sediments:
24
Jens
Martensson
The lakes had the highest mean concentrations of Hg, Pb, Cr, Cu, Zn,
and OM, while the lower reach of the main river had the highest mean
concentrations of Cd, As, TN, and TP. Mean concentrations of metals in
the middle reach were relatively lower. This may be due to the
downstream movement of water. The heavy metal concentrations in the
sediments were higher in the lakes than in the river. We suggest that this
was due to the higher flow disturbance in the river that led to re-
suspension and downstream movement of pollutants.
HM in sediments
25
Jens
Martensson
• The potential ecological risk index (RI) was introduced to assess the
degree of heavy metal pollution in sediments, according to the
toxicity of heavy metals and the response of the environment
• Hg posed a considerable ecological risk at five sites and a
moderate risk at two. Additionally, Cd and As also posed relatively
high ecological risks in these areas. The high ecological risks of
these three heavy metals in freshwater ecosystems are
consequences of their high toxic-response factors.
Ecological risk assessment
26
Jens
Martensson
• In terms of their spatial distribution, sites with moderate or
considerable potential ecological risk indices for Hg and Cd
were located near to large cities (Wuhan, Nanjing, and
Jiangyin), or ports (Chenglingji), or lakes with high human
activity (Dongting Lake and Donghu Lake).
• The highest potential ecological risk indices for As were found
in the lower reach, mainly downstream of Poyang Lake.
• For other metals (Pb, Cu, Cr, and Zn), the potential ecological
risk indexes were low. The potential ecological risk indices for
single regulators indicated that the severity of pollution of the
seven heavy metals decreased in the following sequence: Hg >
Cd > As > Cu > Pb > Cr > Zn
Ecological risk assessment
27
Jens
Martensson
• Two sites among twelve in the middle reach of the main river
exhibited moderate or considerable ecological risk. Most of the
lakes and sites in the lower reach of the main river posed
moderate or considerable ecological risk. The RI values were
clearly related to the degree of anthropogenic disturbance.
• For example, the Tian’ezhou wetland, which is a natural
conservation area in China, had the lowest heavy metal
concentrations and minimal potential ecological risk, while
sites near to big cities (such as Wuhan, Nanjing, and Jiangyin)
had relatively high ecological risks.
Ecological risk assessment
28
Jens
Martensson
According to the potential ecological risk index, Hg represented
a moderate risk at 7.4% of sites, and a considerable risk at 18.5%
of sites; Cd posed a moderate risk in 37% and As in 22% of the
regions. The ecological risk for all factors (RI) showed that 7.4%
of sample sites belonged in the category of considerable risk,
and 33% were of moderate risk.
In accordance with the high potential ecological risk of the
metals Hg, Cd, and As in sediments, the four metals Pb, Cd, Hg
and As, were the most important with respect to health risks
Conclusion
29
Jens
Martensson
Heavy metals in Landfill Leachate
Jens
Martensson
Introduction:
• Heavy metals contained in waste have for years been disposed of in dumps and
landfills.
• Organic matter in landfill leachate binds heavy metals strongly and colloidal matter has
a high affinity for heavy metals. The presence of organic complexes and colloidal-
bound heavy metals in leachate-polluted groundwater affects the total concentration
as well as the behavior of heavy metals in the aquifer.
• The purpose of this paper is to determine the distribution of heavy metals between
different species in leachate-polluted groundwater sampled down gradient of an
actual landfill.
• Organic bound species were determined by a speciation procedure involving an
anion-exchange column and the distribution of heavy metal species in the inorganic
part of the truly dissolved fraction was calculated using a geochemical speciation
model.
Jens
Martensson
Sampling Site:
• Two landfill-leachate polluted groundwater samples were collected down gradient at
two different depths of 7 m with area strongly anaerobic with a high content of organic
matter.
Sampling procedure:
• One leachate-polluted groundwater sample 2 m below the groundwater table with a
Teflon tube.
• Other with stainless steel tube 5 m below with low oxygen diffusion coefficient.
• Turbidity, pH, specific conductivity and temperature were monitored during the
pumping to ensure equilibrium before the samples were collected and no samples
were collected until all these indicator parameters had reached steady values.
Jens
Martensson
Methodology:
Size Fractionation:
• The spiked leachate-polluted groundwater samples were separated into size fractions
using the pore sizes 0.40,0.010 and 0.001 mm.
Chemical Analysis:
• Specific conductivity, pH and alkalinity were measured immediately after the filtration
in all size-fractions.
Calculation of heavy metal species:
• A geochemical model was used in order to estimate dissolved inorganic species in the
samples.
Anion Exchange Technique:
• Reference solutions were used to caught only organic species and determined by TOC
content.
Jens
Martensson
Heavy Metal Distribution:
• Four categories (inorganic colloidal metal species, , organic colloidal metal species,
organic dissolved metal species, inorganic dissolved metal species.
• For Cd, Cu and Pb the fractions of organic species dominated (>59%). The inorganic
colloidal species were 1-41% ,dissolved inorganic species only constituted a very small
part.
• Ni and Zn the dissolved inorganic species were 30% L1 of the metal content and for
about 70% in L2. In both groundwater samples 2-40% of the total content of Ni and Zn
was free metal ions, whereas the organic fractions contained 15-62% of the total
content of Ni and Zn.
Jens
Martensson
Conclusion:
• Colloidal matter was found in spiked leachate-polluted groundwater
samples, but the truly dissolved fraction (<0.001 mm) constituted 79-84% of
the total solids probably as inorganic salts and small organic molecules.
• Most of the colloids were small and consisted to a large extent of organic
matter. Fe, Ca, S and Cu were found in the colloidal fractions. This indicated
that both clay type particles, organic matter and precipitates were present
in sample.
• Speciation by an anion-exchange technique showed that the heavy metals
complexed strongly with the organic matter in leachate-polluted
groundwater, especially with respect to Cd, Cu and Pb. More than 60% of
Cd, Cu and Pb were found to be organic species.
• Results suggests except for Zn, heavy metals are strongly associated with
small-size colloidal matter, which is to a large extent organic matter. This
implies that the behavior of heavy metals in the environment may differ
from the behavior expected for truly dissolved heavy metal
36
Jens
Martensson
Assessment of heavy metals to determine ecological risk
through measurement of biotic response in plants can
provide information on the extent of bioavailability of
metals and their influence on the natural state of
aquatic ecosystem.
A significant aspect of this lagoon is a series of events
that might have occurred during the last four decade.
Assessment of ecological risk by determination of heavy
metals in benthic sediment and investigation of
physiological response against heavy metals in
Avicennia marina leaves is the main objective of this
study. A. marina is the only mangrove species found
throughout the Rabigh lagoon.
Jens
Martensson
38
 Materials and methods
1. Study area
2. Experimental design and sample collection
3. Preparation of samples
4. Determination of heavy metals in plants and sediments
5. Determination of heavy metals in plants and sediments
6. Determination of sediment pollution
7. Ecotoxicological risk
8. Bioaccumulation of metal in mangrove
9. Analysis of antioxidant enzymes in mangrove A. marina
10. Data analysis
Jens
Martensson
39
Conclusions:
1. A. marina was evaluated in this study in relation to possible stress caused by heavy
metals in eight stations investigated at the Rabigh lagoon, Red Sea.
2. There was a significant correlation between heavy metal concentrations in A. marina
leaves and mangrove ecosystem sediments, except for Cu and Cd. This is an indication of
fluctuation in the bio concentration factor of both plants and sediment.
3. In total, the results of our findings established deterioration of the sediment in a gradual
pattern which has a potential for negative impacts on the biogeochemical cycle, with
potentially lethal consequences for biodiversity survival. Consequently, there is a need for
periodic and regular monitoring of the pollution status in this ecosystem, through the use of
biochemical markers in the mangrove A. marina
Laws and regulations for
heavy metals
Jens
Martensson
• There are various laws and regulations in place to control the
release of heavy metals into the environment. These include;
• the Clean Air Act, the Clean Water Act, the Resource
Conservation and Recovery Act in the United States. The Clean
Air Act and Clean Water Act are two laws that specifically
regulate heavy metal emissions and discharges into the
environment
EPA sets limits on the amount of heavy metals that can be
present in drinking water, air, and soil.
Heavy metals
41
Jens
Martensson
Heavy metals EPA
As 0.01
Pb 0.015
Cd 0.005
Cr 0.05
Hg 0.002
Zn 5.0
Cu 1.3
Permissible limits(ppm) in drinking
water
42
Jens
Martensson
• The European Union also has regulations in place to control the
release of heavy metals, including the Heavy Metals in
Fertilizers Regulation and the REACH Regulation. These laws
and regulations are intended to protect human health and the
environment by limiting exposure to heavy metals, which can
have negative effects on both. The European Union has
regulations in place to limit the amount of heavy metals in
consumer products, including toys and jewelry, and sets limits
on heavy metal emissions from industrial sources.
Laws and regulations
43
Jens
Martensson
• The Executive Body adopted the Protocol on Heavy Metals in
Aarhus (Denmark) on 24 June 1998. It targets three particularly
harmful metals: cadmium, lead and mercury. The Protocol aims
to cut emissions from industrial sources, combustion processes
and waste incineration.
• In 2012, Parties to the Protocol on Heavy Metals adopted
decision 2012/5 to amend the Protocol to introduce flexibilities
to facilitate accession of new Parties, notably countries in
Eastern Europe, South-Eastern Europe, and Central Asia. In
addition, they adopted decision 2012/6 to update guidance on
best available technologies (BAT), as contained in annex III.
Amendments entered into force on 8 February 2022.
Laws and regulations
44
Jens
Martensson
• . In addition, they adopted decision 2012/6 to update guidance
on best available technologies (BAT), as contained in annex III.
Amendments entered into force on 8 February 2022.
• In 2013, the Minamata Convention on Mercury was adopted, a
treaty negotiated (UNEP). Building on the 1998 Protocol on
Heavy Metals, the Minamata Convention raised the profile of
mercury to the global level.
Laws and regulations
45
Jens
Martensson
• The permissible limits for heavy metals in food and water vary
depending on the specific metal and the country or
organization setting the standards. For example, in the United
States, the Environmental Protection Agency (EPA) sets
maximum contaminant levels (MCLs) for certain heavy metals,
such as lead and arsenic, in drinking water. The European Union
has established maximum levels for a number of heavy metals
in food, such as cadmium in cocoa and chocolate products. It's
best to check with the relevant authorities in your country or
region for specific information on permissible limits for heavy
metals.
Laws and regulations
46
Thank
You

Mais conteúdo relacionado

Semelhante a Heavy metals toxicity assessment .pptx

Water pollution due to heavy metals, pesticides
Water pollution due to heavy metals, pesticidesWater pollution due to heavy metals, pesticides
Water pollution due to heavy metals, pesticidesJoy Jones
 
Heavy Metal Pollution
Heavy Metal PollutionHeavy Metal Pollution
Heavy Metal PollutionMANISHSAHU106
 
HEAVY METAL POLLUTION.pptx
HEAVY METAL POLLUTION.pptxHEAVY METAL POLLUTION.pptx
HEAVY METAL POLLUTION.pptxKANIKABHAKUNI1
 
Effects of heavy metals and radiation pollution on biological system.pptx
Effects of heavy metals and radiation pollution on biological system.pptxEffects of heavy metals and radiation pollution on biological system.pptx
Effects of heavy metals and radiation pollution on biological system.pptxLuckyJutt4
 
Heavy metals toxicity
Heavy metals toxicityHeavy metals toxicity
Heavy metals toxicityAmira Badr
 
Removal of Heavy Metals from Aqueous Solution Using Ion Exchange Resin MBHPE-TKP
Removal of Heavy Metals from Aqueous Solution Using Ion Exchange Resin MBHPE-TKPRemoval of Heavy Metals from Aqueous Solution Using Ion Exchange Resin MBHPE-TKP
Removal of Heavy Metals from Aqueous Solution Using Ion Exchange Resin MBHPE-TKPijsrd.com
 
Metal Pollution (1).pdf haha haha ahhahah
Metal Pollution  (1).pdf haha haha ahhahahMetal Pollution  (1).pdf haha haha ahhahah
Metal Pollution (1).pdf haha haha ahhahahAbdulAziz586865
 
Occupational poisonings and toxicity
Occupational poisonings and toxicityOccupational poisonings and toxicity
Occupational poisonings and toxicityNik Ronaidi
 
tchounwou2012.pdf
tchounwou2012.pdftchounwou2012.pdf
tchounwou2012.pdfcareyjohn
 
Pollution mercury and heavy metals
Pollution  mercury and heavy metals Pollution  mercury and heavy metals
Pollution mercury and heavy metals Ghassan Hadi
 
Heavy metal toxicity aman
Heavy metal toxicity amanHeavy metal toxicity aman
Heavy metal toxicity amanaman singh
 

Semelhante a Heavy metals toxicity assessment .pptx (20)

Toxic metal and elements
Toxic metal and elementsToxic metal and elements
Toxic metal and elements
 
Water pollution due to heavy metals, pesticides
Water pollution due to heavy metals, pesticidesWater pollution due to heavy metals, pesticides
Water pollution due to heavy metals, pesticides
 
Heavy Metal Pollution
Heavy Metal PollutionHeavy Metal Pollution
Heavy Metal Pollution
 
HEAVY METAL POLLUTION.pptx
HEAVY METAL POLLUTION.pptxHEAVY METAL POLLUTION.pptx
HEAVY METAL POLLUTION.pptx
 
Effects of heavy metals and radiation pollution on biological system.pptx
Effects of heavy metals and radiation pollution on biological system.pptxEffects of heavy metals and radiation pollution on biological system.pptx
Effects of heavy metals and radiation pollution on biological system.pptx
 
Heavy metals toxicity
Heavy metals toxicityHeavy metals toxicity
Heavy metals toxicity
 
BIOSORPTION OF HEAVY METALS
BIOSORPTION OF HEAVY METALS BIOSORPTION OF HEAVY METALS
BIOSORPTION OF HEAVY METALS
 
Removal of Heavy Metals from Aqueous Solution Using Ion Exchange Resin MBHPE-TKP
Removal of Heavy Metals from Aqueous Solution Using Ion Exchange Resin MBHPE-TKPRemoval of Heavy Metals from Aqueous Solution Using Ion Exchange Resin MBHPE-TKP
Removal of Heavy Metals from Aqueous Solution Using Ion Exchange Resin MBHPE-TKP
 
Presentation 4 (2).pdf
Presentation 4 (2).pdfPresentation 4 (2).pdf
Presentation 4 (2).pdf
 
Mercury and heavy metal pollution
Mercury and heavy metal pollutionMercury and heavy metal pollution
Mercury and heavy metal pollution
 
Metal Pollution (1).pdf haha haha ahhahah
Metal Pollution  (1).pdf haha haha ahhahahMetal Pollution  (1).pdf haha haha ahhahah
Metal Pollution (1).pdf haha haha ahhahah
 
Paper
PaperPaper
Paper
 
Occupational poisonings and toxicity
Occupational poisonings and toxicityOccupational poisonings and toxicity
Occupational poisonings and toxicity
 
Heavy metals
Heavy metalsHeavy metals
Heavy metals
 
Toxic
ToxicToxic
Toxic
 
Esu4 ao s1 hm x heavy metals
Esu4 ao s1 hm x heavy metalsEsu4 ao s1 hm x heavy metals
Esu4 ao s1 hm x heavy metals
 
tchounwou2012.pdf
tchounwou2012.pdftchounwou2012.pdf
tchounwou2012.pdf
 
Z24172184
Z24172184Z24172184
Z24172184
 
Pollution mercury and heavy metals
Pollution  mercury and heavy metals Pollution  mercury and heavy metals
Pollution mercury and heavy metals
 
Heavy metal toxicity aman
Heavy metal toxicity amanHeavy metal toxicity aman
Heavy metal toxicity aman
 

Último

CSR_Tested activities in the classroom -EN
CSR_Tested activities in the classroom -ENCSR_Tested activities in the classroom -EN
CSR_Tested activities in the classroom -ENGeorgeDiamandis11
 
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Horizon Net Zero Dawn – keynote slides by Ben Abraham
Horizon Net Zero Dawn – keynote slides by Ben AbrahamHorizon Net Zero Dawn – keynote slides by Ben Abraham
Horizon Net Zero Dawn – keynote slides by Ben Abrahamssuserbb03ff
 
DENR EPR Law Compliance Updates April 2024
DENR EPR Law Compliance Updates April 2024DENR EPR Law Compliance Updates April 2024
DENR EPR Law Compliance Updates April 2024itadmin50
 
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts ServicesBOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Servicesdollysharma2066
 
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...Amil baba
 
Verified Trusted Kalyani Nagar Call Girls 8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...
Verified Trusted Kalyani Nagar Call Girls  8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...Verified Trusted Kalyani Nagar Call Girls  8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...
Verified Trusted Kalyani Nagar Call Girls 8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...tanu pandey
 
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur EscortsCall Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...Cluster TWEED
 
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Contact Number Call Girls Service In Goa 9316020077 Goa Call Girls Service
Contact Number Call Girls Service In Goa  9316020077 Goa  Call Girls ServiceContact Number Call Girls Service In Goa  9316020077 Goa  Call Girls Service
Contact Number Call Girls Service In Goa 9316020077 Goa Call Girls Servicesexy call girls service in goa
 
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...SUHANI PANDEY
 
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
(ZARA) Call Girls Talegaon Dabhade ( 7001035870 ) HI-Fi Pune Escorts Service
(ZARA) Call Girls Talegaon Dabhade ( 7001035870 ) HI-Fi Pune Escorts Service(ZARA) Call Girls Talegaon Dabhade ( 7001035870 ) HI-Fi Pune Escorts Service
(ZARA) Call Girls Talegaon Dabhade ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Freegle User Survey as visual display - BH
Freegle User Survey as visual display - BHFreegle User Survey as visual display - BH
Freegle User Survey as visual display - BHbill846304
 
Booking open Available Pune Call Girls Budhwar Peth 6297143586 Call Hot Indi...
Booking open Available Pune Call Girls Budhwar Peth  6297143586 Call Hot Indi...Booking open Available Pune Call Girls Budhwar Peth  6297143586 Call Hot Indi...
Booking open Available Pune Call Girls Budhwar Peth 6297143586 Call Hot Indi...Call Girls in Nagpur High Profile
 

Último (20)

CSR_Tested activities in the classroom -EN
CSR_Tested activities in the classroom -ENCSR_Tested activities in the classroom -EN
CSR_Tested activities in the classroom -EN
 
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
 
Horizon Net Zero Dawn – keynote slides by Ben Abraham
Horizon Net Zero Dawn – keynote slides by Ben AbrahamHorizon Net Zero Dawn – keynote slides by Ben Abraham
Horizon Net Zero Dawn – keynote slides by Ben Abraham
 
DENR EPR Law Compliance Updates April 2024
DENR EPR Law Compliance Updates April 2024DENR EPR Law Compliance Updates April 2024
DENR EPR Law Compliance Updates April 2024
 
young Whatsapp Call Girls in Delhi Cantt🔝 9953056974 🔝 escort service
young Whatsapp Call Girls in Delhi Cantt🔝 9953056974 🔝 escort serviceyoung Whatsapp Call Girls in Delhi Cantt🔝 9953056974 🔝 escort service
young Whatsapp Call Girls in Delhi Cantt🔝 9953056974 🔝 escort service
 
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts ServicesBOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
 
9953056974 ,Low Rate Call Girls In Adarsh Nagar Delhi 24hrs Available
9953056974 ,Low Rate Call Girls In Adarsh Nagar  Delhi 24hrs Available9953056974 ,Low Rate Call Girls In Adarsh Nagar  Delhi 24hrs Available
9953056974 ,Low Rate Call Girls In Adarsh Nagar Delhi 24hrs Available
 
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
 
Verified Trusted Kalyani Nagar Call Girls 8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...
Verified Trusted Kalyani Nagar Call Girls  8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...Verified Trusted Kalyani Nagar Call Girls  8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...
Verified Trusted Kalyani Nagar Call Girls 8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...
 
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur EscortsCall Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
 
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
 
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
 
Contact Number Call Girls Service In Goa 9316020077 Goa Call Girls Service
Contact Number Call Girls Service In Goa  9316020077 Goa  Call Girls ServiceContact Number Call Girls Service In Goa  9316020077 Goa  Call Girls Service
Contact Number Call Girls Service In Goa 9316020077 Goa Call Girls Service
 
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
 
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCeCall Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
 
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service
 
(ZARA) Call Girls Talegaon Dabhade ( 7001035870 ) HI-Fi Pune Escorts Service
(ZARA) Call Girls Talegaon Dabhade ( 7001035870 ) HI-Fi Pune Escorts Service(ZARA) Call Girls Talegaon Dabhade ( 7001035870 ) HI-Fi Pune Escorts Service
(ZARA) Call Girls Talegaon Dabhade ( 7001035870 ) HI-Fi Pune Escorts Service
 
Call Girls In Pratap Nagar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Pratap Nagar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCeCall Girls In Pratap Nagar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Pratap Nagar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
 
Freegle User Survey as visual display - BH
Freegle User Survey as visual display - BHFreegle User Survey as visual display - BH
Freegle User Survey as visual display - BH
 
Booking open Available Pune Call Girls Budhwar Peth 6297143586 Call Hot Indi...
Booking open Available Pune Call Girls Budhwar Peth  6297143586 Call Hot Indi...Booking open Available Pune Call Girls Budhwar Peth  6297143586 Call Hot Indi...
Booking open Available Pune Call Girls Budhwar Peth 6297143586 Call Hot Indi...
 

Heavy metals toxicity assessment .pptx

  • 1. Ecological Risk Assessme nt of Heavy Metals PRESENTED BY AFIFA (2) FAKIHA (12) H.ARSALNA (30) BISMAH (35) QURAT UL AIN (17) AFIFA GOHAR (48) TAYYAB (41E )
  • 2. Jens Martensson 2 Heavy metals Heavy metals are a group of metals and metalloids that have relatively high density and are toxic even at ppb levels Essential elements are often required in trace amounts in the level of 10–15 ppm and are known as micronutrients. EPA and the International Agency for Research on Cancer (IARC) have classified heavy metals as human carcinogen. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. Heavy metals are also considered as trace elements because of their presence in trace concentrations (ppb range to less than 10ppm) in various environmental matrices
  • 3. Jens Martensson 3 The HMs can be broadly classified into two categories: essential and nonessential heavy metals Essential HMs are those required by living organisms for carrying out the fundamental processes like growth, metabolism, and development of different organs. There are numerous essential heavy metals like Cu, Fe, Mn, Co, Zn, and Ni required by plants as they form cofactors that are structurally and functionally vital for enzymes and other proteins. Nonessential heavy metals like Cd, Pb, Hg, Cr, and Al are not required by plants, even in trace amounts, for any of the metabolic processes. Table 6.1 depicts the manifestation of toxicity induced by copper, zinc, cadmium, and lead to different plant species. There is a very narrow range of concentrations between beneficial and toxic effects
  • 4. Jens Martensson 4 Properties Unlike organic pollutants, heavy metals are nonbiodegradable and have tendency to accumulate in living beings. Heavy metals induce detrimental effects, including developmental toxicity, cell death, neurotoxicity, oxidative stress, and immunotoxicity. Owing to their bioaccumulative potential along the food chain, high toxicity, prevalence, and persistence in the environment, heavy metals have become a major public health concern. Heavy metals commonly accumulate in living organisms because of the non- biodegradable, toxic nature of heavy metals, and non-thermo degradable.
  • 5. Jens Martensson 5 Sources Although heavy metals are naturally occurring elements that are found throughout the earth’s crust, most environmental contamination and human exposure result from anthropogenic activities such as mining and smelting operations, industrial production and use, and domestic and agricultural use of metals and metal-containing compounds metals are released into the environment by both natural and anthropogenic sources such as industrial discharge, automobiles exhaust, and mining. Their multiple Industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Industrial sources include metal processing in refineries, coal burning in power plants, petroleum combustion, nuclear power stations and high tension lines, plastics, textiles, microelectronics, wood preservation and paper processing plants.
  • 7. Jens Martensson • effects of exposure to heavy metals can vary depending on the type of metal, the route of exposure, and the duration and level of exposure. • Some heavy metals, such as lead and mercury, can have serious health effects even at low levels of exposure. • Other heavy metals, such as copper and zinc, are essential to human health in small amounts but can be toxic at higher levels. Routes Of Exposure 7
  • 8. Jens Martensson 8 Toxicokinetics Toxicokinetics describes how the body handles a chemical, as a function of dose and time, in terms of the concept of ADME (absorption, distribution, metabolism and excretion): The rate of chemical absorption from the site of application into the blood stream.
  • 9. Jens Martensson ABSORPTION • Inhalation: Heavy metals can be inhaled as fumes, dust, or mist. This is a common route of exposure for workers in industries that involve metal processing, smelting, and welding. • Ingestion: Heavy metals can enter the body through the gastrointestinal tract, either by consuming contaminated food or water or by accidental ingestion. • Dermal Contact: Heavy metals can also enter the body through the skin, for example, through contact with contaminated soil or through the use of cosmetics or other personal care products that contain heavy metals. Toxicokinetic Of Heavy Metal 9
  • 10. Jens Martensson • DISTRIBUTION • Some heavy metals, such as lead and cadmium, have a high affinity for bone and can accumulate in bone tissue over time. Other heavy metals, such as mercury, tend to accumulate in the kidneys and brain. • Some heavy metals, such as iron, are essential for the body's normal function and are tightly regulated. Others, such as lead, cadmium, and mercury, have no known essential function in the body and can accumulate in the body over time with repeated exposure. Toxicokinetic Of Heavy Metal 10
  • 11. Jens Martensson • METABOLISM heavy metals, such as lead, cadmium, and mercury, have no known essential function in the body and can accumulate in the body over time with repeated exposure. These metals can disrupt normal cellular processes and can bind to various proteins, enzymes, and nucleic acids, altering their function. Toxicokinetic Of Heavy Metal 11
  • 12. Jens Martensson • Lead: Lead can bind to several enzymes and proteins in the body, causing them to malfunction. • Cadmium: Cadmium can bind to metallothionein, a protein that regulates the uptake and elimination of heavy metals, which can lead to the accumulation of cadmium in the body. • Mercury: Mercury can bind to and inactivate enzymes in the body, and can also form a complex with a specific protein called metallothionein, which can lead to the accumulation of the metal in the body. 12
  • 14. Jens Martensson • Excretion • Excretion of heavy metals refers to the process by which the body eliminates these metals from the body. The excretion of heavy metals varies depending on the specific metal and can occur through urine, feces, sweat, or hair. • Urine: Heavy metals such as lead, cadmium, and mercury can be excreted through urine. However, the efficiency of excretion through urine can vary depending on the individual's health status, genetics and nutritional status. Toxicokinetic Of Heavy Metal 14
  • 15. Jens Martensson • Feces: Some heavy metals such as lead and cadmium can be excreted through feces. • Sweat: Heavy metals such as cadmium and lead can be excreted through sweat. However, the efficiency of excretion through sweat is generally low compared to urine and feces. • Hair: Heavy metals can also be excreted through hair, but it's not a common route of elimination, and hair analysis is not a reliable indicator of exposure. 15
  • 17. Jens Martensson Among lead's well- known developmental health effects is stunting of skeletal growth in children. Moreover, lead is known to delay fracture healing and may contribute to osteoporosis. Lead 17 Permissible Standards for lead are • The lead standards establish a permissible exposure limit (PEL) of 50 μg/m3 of lead over an eight-hour time-weighted- average for all employees covered. • The calculated IRLs are 2.2 micrograms (µg) per day for children and 8.8 µg per day for females of childbearing age.
  • 19. Jens Martensson Mercury majorly cause Minamata disease It may • Deteriorates nervous system • Impairs hearing, speech, vision, and gait • Cause involuntary muscles movements • Corrodes skin and mucous membranes • Cause chewing and swallowing to become difficult Mercur y OSHA: The legal airborne permissibl e exposure limit (PEL) is 0.1 mg/m3 averaged over an 8-hour work shift Symptoms include • Tremors • Insomnia • memory loss • neuromuscular effects • Headaches • cognitive and motor
  • 20. Jens Martensson Cadmiu m 20 Cadmium have many adverse effects on different parts or organs of body Respiratory system • Pneumonia • Destruction of mucous membrane Kidney • kidney stones • Glomerular and tubular damage Reproductive system • Testicular necrosis • Estrogen like effects • Infection of steroid hormones Skeletal system • Loss of bones density • Itai itai disease
  • 21. Jens Martensson Permissible level of arsenic • The permissible exposure limit for arsenic is no greater than 10 micrograms of inorganic arsenic per cubic meter of air, averaged over any 8 hour period for a 40 hour workweek [OSHA 2001; NIOSH 2005]. • The current drinking water standard, or Maximum Contaminant Level (MCL), from the U.S. Environmental Protection Agency (EPA) is 0.010 mg/L or parts per million (ppm). Arsenic 21
  • 24. Jens Martensson The concentrations of heavy metals (Cr, Cd, Hg, Cu, Zn, Pb and As) in sediment, and fish were investigated in the middle and lower reaches of the Yangtze River, China. The samples were collected from the main river and lakes in the Yangtze River basin at 17 sites in the middle reach and from 10 sites in the lower reach. In total, 27 water and sediment samples were collected. HM concentration in sediments: 24
  • 25. Jens Martensson The lakes had the highest mean concentrations of Hg, Pb, Cr, Cu, Zn, and OM, while the lower reach of the main river had the highest mean concentrations of Cd, As, TN, and TP. Mean concentrations of metals in the middle reach were relatively lower. This may be due to the downstream movement of water. The heavy metal concentrations in the sediments were higher in the lakes than in the river. We suggest that this was due to the higher flow disturbance in the river that led to re- suspension and downstream movement of pollutants. HM in sediments 25
  • 26. Jens Martensson • The potential ecological risk index (RI) was introduced to assess the degree of heavy metal pollution in sediments, according to the toxicity of heavy metals and the response of the environment • Hg posed a considerable ecological risk at five sites and a moderate risk at two. Additionally, Cd and As also posed relatively high ecological risks in these areas. The high ecological risks of these three heavy metals in freshwater ecosystems are consequences of their high toxic-response factors. Ecological risk assessment 26
  • 27. Jens Martensson • In terms of their spatial distribution, sites with moderate or considerable potential ecological risk indices for Hg and Cd were located near to large cities (Wuhan, Nanjing, and Jiangyin), or ports (Chenglingji), or lakes with high human activity (Dongting Lake and Donghu Lake). • The highest potential ecological risk indices for As were found in the lower reach, mainly downstream of Poyang Lake. • For other metals (Pb, Cu, Cr, and Zn), the potential ecological risk indexes were low. The potential ecological risk indices for single regulators indicated that the severity of pollution of the seven heavy metals decreased in the following sequence: Hg > Cd > As > Cu > Pb > Cr > Zn Ecological risk assessment 27
  • 28. Jens Martensson • Two sites among twelve in the middle reach of the main river exhibited moderate or considerable ecological risk. Most of the lakes and sites in the lower reach of the main river posed moderate or considerable ecological risk. The RI values were clearly related to the degree of anthropogenic disturbance. • For example, the Tian’ezhou wetland, which is a natural conservation area in China, had the lowest heavy metal concentrations and minimal potential ecological risk, while sites near to big cities (such as Wuhan, Nanjing, and Jiangyin) had relatively high ecological risks. Ecological risk assessment 28
  • 29. Jens Martensson According to the potential ecological risk index, Hg represented a moderate risk at 7.4% of sites, and a considerable risk at 18.5% of sites; Cd posed a moderate risk in 37% and As in 22% of the regions. The ecological risk for all factors (RI) showed that 7.4% of sample sites belonged in the category of considerable risk, and 33% were of moderate risk. In accordance with the high potential ecological risk of the metals Hg, Cd, and As in sediments, the four metals Pb, Cd, Hg and As, were the most important with respect to health risks Conclusion 29
  • 30. Jens Martensson Heavy metals in Landfill Leachate
  • 31. Jens Martensson Introduction: • Heavy metals contained in waste have for years been disposed of in dumps and landfills. • Organic matter in landfill leachate binds heavy metals strongly and colloidal matter has a high affinity for heavy metals. The presence of organic complexes and colloidal- bound heavy metals in leachate-polluted groundwater affects the total concentration as well as the behavior of heavy metals in the aquifer. • The purpose of this paper is to determine the distribution of heavy metals between different species in leachate-polluted groundwater sampled down gradient of an actual landfill. • Organic bound species were determined by a speciation procedure involving an anion-exchange column and the distribution of heavy metal species in the inorganic part of the truly dissolved fraction was calculated using a geochemical speciation model.
  • 32. Jens Martensson Sampling Site: • Two landfill-leachate polluted groundwater samples were collected down gradient at two different depths of 7 m with area strongly anaerobic with a high content of organic matter. Sampling procedure: • One leachate-polluted groundwater sample 2 m below the groundwater table with a Teflon tube. • Other with stainless steel tube 5 m below with low oxygen diffusion coefficient. • Turbidity, pH, specific conductivity and temperature were monitored during the pumping to ensure equilibrium before the samples were collected and no samples were collected until all these indicator parameters had reached steady values.
  • 33. Jens Martensson Methodology: Size Fractionation: • The spiked leachate-polluted groundwater samples were separated into size fractions using the pore sizes 0.40,0.010 and 0.001 mm. Chemical Analysis: • Specific conductivity, pH and alkalinity were measured immediately after the filtration in all size-fractions. Calculation of heavy metal species: • A geochemical model was used in order to estimate dissolved inorganic species in the samples. Anion Exchange Technique: • Reference solutions were used to caught only organic species and determined by TOC content.
  • 34. Jens Martensson Heavy Metal Distribution: • Four categories (inorganic colloidal metal species, , organic colloidal metal species, organic dissolved metal species, inorganic dissolved metal species. • For Cd, Cu and Pb the fractions of organic species dominated (>59%). The inorganic colloidal species were 1-41% ,dissolved inorganic species only constituted a very small part. • Ni and Zn the dissolved inorganic species were 30% L1 of the metal content and for about 70% in L2. In both groundwater samples 2-40% of the total content of Ni and Zn was free metal ions, whereas the organic fractions contained 15-62% of the total content of Ni and Zn.
  • 35. Jens Martensson Conclusion: • Colloidal matter was found in spiked leachate-polluted groundwater samples, but the truly dissolved fraction (<0.001 mm) constituted 79-84% of the total solids probably as inorganic salts and small organic molecules. • Most of the colloids were small and consisted to a large extent of organic matter. Fe, Ca, S and Cu were found in the colloidal fractions. This indicated that both clay type particles, organic matter and precipitates were present in sample. • Speciation by an anion-exchange technique showed that the heavy metals complexed strongly with the organic matter in leachate-polluted groundwater, especially with respect to Cd, Cu and Pb. More than 60% of Cd, Cu and Pb were found to be organic species. • Results suggests except for Zn, heavy metals are strongly associated with small-size colloidal matter, which is to a large extent organic matter. This implies that the behavior of heavy metals in the environment may differ from the behavior expected for truly dissolved heavy metal
  • 36. 36
  • 37. Jens Martensson Assessment of heavy metals to determine ecological risk through measurement of biotic response in plants can provide information on the extent of bioavailability of metals and their influence on the natural state of aquatic ecosystem. A significant aspect of this lagoon is a series of events that might have occurred during the last four decade. Assessment of ecological risk by determination of heavy metals in benthic sediment and investigation of physiological response against heavy metals in Avicennia marina leaves is the main objective of this study. A. marina is the only mangrove species found throughout the Rabigh lagoon.
  • 38. Jens Martensson 38  Materials and methods 1. Study area 2. Experimental design and sample collection 3. Preparation of samples 4. Determination of heavy metals in plants and sediments 5. Determination of heavy metals in plants and sediments 6. Determination of sediment pollution 7. Ecotoxicological risk 8. Bioaccumulation of metal in mangrove 9. Analysis of antioxidant enzymes in mangrove A. marina 10. Data analysis
  • 39. Jens Martensson 39 Conclusions: 1. A. marina was evaluated in this study in relation to possible stress caused by heavy metals in eight stations investigated at the Rabigh lagoon, Red Sea. 2. There was a significant correlation between heavy metal concentrations in A. marina leaves and mangrove ecosystem sediments, except for Cu and Cd. This is an indication of fluctuation in the bio concentration factor of both plants and sediment. 3. In total, the results of our findings established deterioration of the sediment in a gradual pattern which has a potential for negative impacts on the biogeochemical cycle, with potentially lethal consequences for biodiversity survival. Consequently, there is a need for periodic and regular monitoring of the pollution status in this ecosystem, through the use of biochemical markers in the mangrove A. marina
  • 40. Laws and regulations for heavy metals
  • 41. Jens Martensson • There are various laws and regulations in place to control the release of heavy metals into the environment. These include; • the Clean Air Act, the Clean Water Act, the Resource Conservation and Recovery Act in the United States. The Clean Air Act and Clean Water Act are two laws that specifically regulate heavy metal emissions and discharges into the environment EPA sets limits on the amount of heavy metals that can be present in drinking water, air, and soil. Heavy metals 41
  • 42. Jens Martensson Heavy metals EPA As 0.01 Pb 0.015 Cd 0.005 Cr 0.05 Hg 0.002 Zn 5.0 Cu 1.3 Permissible limits(ppm) in drinking water 42
  • 43. Jens Martensson • The European Union also has regulations in place to control the release of heavy metals, including the Heavy Metals in Fertilizers Regulation and the REACH Regulation. These laws and regulations are intended to protect human health and the environment by limiting exposure to heavy metals, which can have negative effects on both. The European Union has regulations in place to limit the amount of heavy metals in consumer products, including toys and jewelry, and sets limits on heavy metal emissions from industrial sources. Laws and regulations 43
  • 44. Jens Martensson • The Executive Body adopted the Protocol on Heavy Metals in Aarhus (Denmark) on 24 June 1998. It targets three particularly harmful metals: cadmium, lead and mercury. The Protocol aims to cut emissions from industrial sources, combustion processes and waste incineration. • In 2012, Parties to the Protocol on Heavy Metals adopted decision 2012/5 to amend the Protocol to introduce flexibilities to facilitate accession of new Parties, notably countries in Eastern Europe, South-Eastern Europe, and Central Asia. In addition, they adopted decision 2012/6 to update guidance on best available technologies (BAT), as contained in annex III. Amendments entered into force on 8 February 2022. Laws and regulations 44
  • 45. Jens Martensson • . In addition, they adopted decision 2012/6 to update guidance on best available technologies (BAT), as contained in annex III. Amendments entered into force on 8 February 2022. • In 2013, the Minamata Convention on Mercury was adopted, a treaty negotiated (UNEP). Building on the 1998 Protocol on Heavy Metals, the Minamata Convention raised the profile of mercury to the global level. Laws and regulations 45
  • 46. Jens Martensson • The permissible limits for heavy metals in food and water vary depending on the specific metal and the country or organization setting the standards. For example, in the United States, the Environmental Protection Agency (EPA) sets maximum contaminant levels (MCLs) for certain heavy metals, such as lead and arsenic, in drinking water. The European Union has established maximum levels for a number of heavy metals in food, such as cadmium in cocoa and chocolate products. It's best to check with the relevant authorities in your country or region for specific information on permissible limits for heavy metals. Laws and regulations 46

Notas do Editor

  1. It's important to note that the metabolism of heavy metals in the body can vary depending on the individual's health status, genetics and nutritional status, so it's not possible to give a general metabolism of heavy metals. However, in general, the body has limited capacity to metabolize heavy metals and that's why accumulation in the body can lead to a range of health effects, so it's important to limit exposure to these substances as much as possible.
  2. Change in shape of molecule . Oxidative stress :The attack of heavy metals on a cell and the balance between ROS production and the subsequent defense presented by antioxidants