SlideShare uma empresa Scribd logo
1 de 13
Baixar para ler offline
Analysis of performance and results of a
Steam Jet Ejector Chiller (Solar Cooling)
Master of Science Thesis Summary – MSc. Energy & Environment
Karlsruher Institut für Technologie – Instituto Tecnológico de Buenos Aires
In cooperation with Hochschule Karlsruhe für Technik und Wirtschaft
Author: Nicolás Carbonare (1797915)
Tutors:
 Dr. Ferdinand Schmidt (KIT)
 Dipl.-Ing Tunay Özcan (HSKA)
Examiners:
 Prof. Dr. Ing. Martin Gabi (KIT)
 Dra. Ing. Cecilia Smoglie (ITBA)
 Prof. Dr. Ing. Michael Kauffeld (HSKA)
Karlsruhe, May 2016
2
1. Introduction
A cooperation between the Hochschule Karlsruhe (HSKA) and private companies developed the
Prosolar DSKM Project, in order to test a potential solar heating and cooling system, based on a
steam jet ejector chiller and driven with 100% renewable energy (only auxiliary electricity). The
project was funded by the Bundesministerium für Bildung und Forschung and companies and
institutes GEA Wiegand, Ritter Solar und Fraunhofer-Institut für Umwelt-, Sicherheits- und
Energietechnik UMSICHT took also part in the project. The aim of this work is to study the
operational results of the facility during its first full summer of operation, on the year 2015. The
results and performance indicators are calculated and the operation is analyzed. A comparison
with similar facilities of different approaches is carried out to benchmark the current situation
of the HSKA Installation and to identify potential future improvement opportunities.
2. Steam Jet Ejector Facility
The system consists of a nominal 82 KW steam jet ejector chiller driven with 360 m2
vacuum tube
solar collectors, and assisted by a wet open cooling tower, in order to air-condition a 3130 m2
building. Hot and cold energy storages were developed in order to serve as an operational buffer.
Figure 1 – Scheme of the SJE facility
The solar heat from the collector is used to produce steam in a steam drum. This later enters the
SJE as the Motive Steam at a relative high pressure (3 bar) and temperature (133°C). Following
Pollerberg (2008) [1] description, “it pumps the vaporous refrigerant from the evaporator into
the condenser against a higher pressure and reduces the pressure in the evaporator (up to 10
mbar). The pressure reduction causes boiling of the remaining liquid water in the evaporator and
1 Pollerberg, Clemens; Ahmed Hamza H. Ali; Dötsch, Christian (2008) – “Solar driven steam jet ejector chiller” - Fraunhofer
Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, Germany and Department of Mechanical
Engineering, Faculty of Engineering, Assiut University, Egypt.
3
generates cold water (around 10°C), which is fed to the convective cooler”. The mixture (motive
and suction mass flows) flows at supersonic speed and enters the condenser (50 mbar, 33°C).
Condensed mixture is cooled at a cooling tower, and after that it flows back to the evaporator
and steam drum respectively. In addition, some of the advantages listed in several studies are
its good partial load behavior (moderate mean COP with solar power) and the possibility to use
water as a refrigerant (manipulated without risks).
3. Software Development
The first step of this study was to understand the measured values of the whole facility during
certain periods of interest. To make this possible, a database with all the measurements of
summer 2015 was created, programmed with Visual Basic (VBA) in Microsoft Excel 2013.
The SPS software of the facility creates .csv files on a daily basis, measuring 152 variables of
different kind. All the files were compiled and processed into a database, to perform several data
analysis and to allow the comparison
between the facilities. Then, the software
was programmed, allowing to perform
different types of analysis, in different
timeframes, with a good time of response.
If someone wants to analyze just one day
for twelve hours, it makes it faster to
firstly perform the timeframe filtering.
One day and twelve hours means 108.000
values of the 32.400.000 of the seasonal
data, lowering the average response time.
It combines fast calculations with
graphics, obtaining all the data necessary
to carry out a complete analysis.
The following Key Performance Indicators were defined to evaluate the seasonal performance.
𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟𝑠′
𝑌𝑖𝑒𝑙𝑑 =
𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐻𝑒𝑎𝑡 [𝑘𝑊ℎ]
𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟𝑠´𝐴𝑟𝑒𝑎 [𝑚2]. 𝑦𝑒𝑎𝑟
𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟𝑠′ 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐻𝑒𝑎𝑡 [𝑘𝑊ℎ]/1000
𝑆𝑜𝑙𝑎𝑟 𝑅𝑎𝑑 [
𝑊
𝑚2] ∗ 𝐶𝑜𝑙𝐴𝑟𝑒𝑎 [𝑚2] ∗ 𝐻𝑠[ℎ]
𝐶𝑂𝑃𝑒𝑙 =
𝑈𝑠𝑒𝑓𝑢𝑙 𝐶𝑜𝑙𝑑 [𝑘𝑊ℎ]
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 [𝑘𝑊ℎ]
𝐶𝑂𝑃𝑡ℎ =
𝑈𝑠𝑒𝑓𝑢𝑙 𝐶𝑜𝑙𝑑 [𝑘𝑊ℎ]
𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐻𝑒𝑎𝑡 [𝑘𝑊ℎ]
𝑃𝐸𝑅 =
𝑈𝑠𝑒𝑓𝑢𝑙 𝐶𝑜𝑙𝑑 [𝑘𝑊ℎ]
𝐸𝐸 [𝑘𝑊ℎ] ∗ 𝑃𝐸𝐹𝑒𝑙
𝑃𝐸𝑅 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 1 −
𝐸𝐸 [𝑘𝑊ℎ] ∗ 𝐶𝑂𝑃𝑅𝑒𝑓
𝑈𝑠𝑒𝑓𝑢𝑙 𝐶𝑜𝑙𝑑 [𝑘𝑊ℎ]
Figure 2 – Input screen
4
The PEFel and the COPref are defined according to the standards taken in the IEA Task 38a [2] as
2.7 and 2.8 respectively.
Furthermore, the software is programmed in order to filter all the measurement errors by
system failures that were encountered. Frequent errors are stuck values, extremely high
temperatures in certain sensors, negative volume flows and mismatch of variables. Temperature
sensor calibrations and calculations of errors’ propagation in measurements were also
performed, in order to minimize the impact of the failures already mentioned.
4. Analysis of results
After gathering the seasonal results from summer 2015 and taking some particular days as
examples, the analysis was carried out. As a highlight, the considered working days were those
in which the useful cold obtained was above 20 KWh and a registered working time of the
ejectors was at least one hour. The Figure-3 shows the daily registered values previously
mentioned.
Figure 3 – Summary of delivered cold on Summer 2015
After gathering the seasonal results from summer 2015 and taking some particular days as
examples, the analysis was carried out. It should be emphasized that there were only 25
registered working days, with a threshold of 350 KWh of useful cold and 5-hour ejector
operation. A random typical day was picked (31.07.2015) and then analyzed on its full extension.
The Figure-4 shows the cooling operation performance of the picked sample day.
2 Jähnig, Dagmar; Thuer, Alexander (et. Al. 2011) – “D-A3b: Monitoring Results. A technical report of subtask A (Pre-engineered
systems for residential and small commercial applications)”. Austrian Institute of Technology (AIT), Giefinggasse 2, A-1210
Vienna, Austria.
5
Figure 4 – Cooling operation
On this day, in which the ambient temperature overcame 30 °C, a partial load behavior can be
easily identified, taking into account that the power oscillations remain between 40 and 70 KW.
The achieved evaporator temperatures reach the desired value under 10 °C.
The monitoring of the 2015 cooling season showed that the steam jet ejector chiller worked
reliable in the days where ambient temperature was under 32°C, and the desired air-
conditioning of the building LB was given (around 25 °C). The average cooling capacity of the
system laid between 40 KW and 60 KW, which is below the nominal capacity of 82 KW of the SJE
chiller. This part-load operation caused by the low cooling capacity on the building side has a
negative impact on the thermal and electrical COP. It must be taken into account that in the
hottest days (above 32°C average) the cooling performance was poor and the desired building
temperature could not be delivered.
The Figure-5 shows a heat balance of the main components of the facility. As a key factor, the
motive heat is calculated through a heat balance including the cooling tower, the useful cold, the
heat storages and other factors.
Figure 5 – Heat balance
Despite the strong variations on the motive heat, it can be seen that the cooling power is not
strongly affected due to the performance of the heat storage. The latent heat storage is made
6
of 500 Kg of PE-8110, with a latent storage capacity of around 27 KWh. The presence of this
buffer plays an important role, as it assists the variations of the solar collectors’ field, providing
a balance for the motive heat supplied.
Figure-6 shows the relationship between the thermal performance, the condenser temperature
and the motive steam pressure.
Figure 6 – COPth and Motive Steam pressure vs. Condenser temperature
The registered values show that there is a positive slope for motive pressure against condenser
temperature. This shows that this temperature should be kept as low as possible in order to
reduce the steam pressure requirements. Whenever the condenser temperature rises, the
motive steam pressure should be higher in order to produce the cooling effect on the
evaporator. A higher motive heat has a negative impact on the thermal COP of the facility. This
is also reflected in this graphic, as the blue dots represent a slightly negative slope.
Moreover, figure-7 shows the seasonal results for the solar collectors.
Figure 7 – Seasonal collectors’ performance
There is an evident relationship (direct proportion) between the solar radiation and the
collectors’ yield. Utilization factor stayed between 30% and 40% most of the days. Collectors UF
remained between 30 and 40%, expectable as the vacuum tube collectors are the most efficient
available in the market.
7
Figure-8 shows the results for the average electrical energy consumption of the facility.
Figure 8 – Average electrical energy consumption
It can be seen that the main sources of consumption are related to the chiller operation and heat
rejection circuits. When combined, the fan of the cooling tower and the pump of this circuit
represent the main electricity consumption of the facility (38%). Along with condenser,
evaporator and cold water pumps, they represent the 89% of the total consumption.
In first place, taking a deeper look at the cooling circuit and its pumps, they represent together
about 50% of the total electrical consumption over the 2015 summer season. As it has been
already discussed, the control of this pumps results crucial for the electrical energy consumption.
As the speed of the pumps result as a key attribute, it is of utmost importance to provide an
efficient part-load control of the cooling operation, in order to optimize the consumption of the
facility and, therefore, a better result in the primary energy consumption of the facility.
Regarding the cooling circuit, Henning (2014) [3] stated in his work that, for the primary energy
analysis of a cooling facility, the COPel of the cooling tower results critical, as it is a big influence
on the primary energy consumption. He proposes that this value should always be above 20. The
calculation of this COPel is analogous to the proposed in the equation above, but taking the
rejected heat [KWh] and the electrical energy consumption of this circuit [KWh]. The value
obtained for the summer 2015 was 35, showing a good overall electrical performance.
As a summary of the results, the following points can be made
 Partial load behavior - Evaporator temperatures below 10 °C obtained
 Few operative days (25/109) – long hours of operation not achieved (4.56 h average)
3
Henning, Hans-Martin; Morgenstern, Alexander; Wiemken, Edo (2014) – “Kolloquium Solare Kühlung im Rahmen des BMBF-
Verbundprojekts ProSolarDSKM“ - Fraunhofer ISE Freiburg and Hochschule Karlsruhe, ProSolarDSKM Project, Karlsruhe,
Germany.
8
 Condenser temperature key to achieve desired cooling - Days with average ambient temp
> 35 °C presented poor response
 4 MWh Useful Cold – 1.2 MWh Electrical Consumption
 Tested limits of operation:
The next table summarizes the main figures for the 2015 summer season.
Table 1 – Summary of Summer 2015 results
5. Comparison of facilities
5.1 Absorption facility in Arnstorf
In order to elaborate a standard of comparison for the obtained results in the SJE facility, an
absorption facility (ABS) developed by ZAE Bayern will be taken, as described by Riepl (2012) [4].
The Figure-9 illustrates the set-up of this facility.
4Riepl, Manuel (et. Al. 2012) – “Operational performance results of an innovative solar thermal cooling and heating plant” – ZAE
Bayern – Garching, Germany.
Summary summer 2015 (04.05.15-07.10.15)
Working days 25
Average operation [Hs] 4.56
Total useful cold [KWh] 3951.2
Average cooling power [KW] 34.66
Total motive heat [KWh] 11129.3
Average ambient temperature [°C] 30.8
Average building temperature [°C] 25.3
Total electrical consumption [KWh] 1226.7
Solar radiation [W/m2] 761.7
Total COPth [-] 0.36
Total COPel [-] 3.22
Total PER [-] 1.29
PER savings [%] 19.5
Total rejected heat [KWh] 14794.6
Collectors' yield [KWh/m2*day] 30.91
Collectors' utilization factor [%] 36%
9
Figure 6 – Absorption facility layout. Source: Riepl (2012) [4]
Firstly, it results interesting that it has a nominal cooling power of 90 KW, which is in the same
scale of the SJE facility. It can be driven either by solar power (single-effect) or a gas burner
(double-effect). The achieved solar fraction was as high as 60 %. When single/double effect are
at the same time under operation, it means both solar field and gas burner are used as heat
sources. Figure-10 shows a comparison of operation in two typical taken days (similar ambient
conditions).
Making specific focus just on the single-effect operational mode, it can be identified that the
achieved thermal COP is higher in the ABS facility. Both worked under partial load operations
(50-70 KW), achieving the ABS facility longer operational hours. Nevertheless, it should be
mentioned that, due to the fact of having a gas burner integrated, achieving the cooling
performance is easier. Long operating hours allow to raise considerably the electrical COP, as it
not only increases the fed-in cold, but also lowers the influence of stand-by operation.
Figure 7 – Comparison of typical days. Source: Riepl (2012) [4]
10
As it was seen on the publication of Helm (2013) [5], the solar collectors field of ABS shows a
poorer performance than the SJE. Yet it would be interest to analyze the potential solar
collectors’ efficiency of the SJE facility, when it worked more days than it actually did on the 2015
season.
A key point of comparison,where relies the primary energy consumption, is the electrical energy.
It was identified that the total consumption of pumps represented for ABS 59%, whereas in SJE
it took the 79%. The highest electrical consumption peaks in both cases for the chilled water and
cooling circuit pumps, both between 20 and 24% of the total. The chiller operation consumed
for ABS 44%, while it arouses around 51% for the SJE. The cooling tower fan consumed 18% for
ABS, while it occupied 14% for SJE. In total, the cooling circuit represents 37% for the ABS facility
and 38% for the SJE, with similar results. All in all, it can be seen that the operational mode of
both facilities was in partial load conditions. A good control of this is necessary to avoid excessive
electrical consumption, lowering the efficiencies and primary energy ratios of the solar cooling
facilities.
In addition, it results fundamental to highlight that only on three days under operation the daily
average temperature was above 25°C. For the SJE were registered instantaneous temperatures
of almost 45°C and daily averages above 30°C. The low ambient temperatures allow the ABS
facility to perform considerably well with a dry cooling tower. Besides, the necessity of a high
pressure motive steam for the SJE highlights the task of the cooling tower, as a lower condenser
temperature allows the machine to operate with less motive heat (pressure). In conclusion, the
cooling tower in the SJE facility needs to achieve maximum temperature differences of 20 K,
which are not considered in the ABS heat rejection circuit (as it operates with low temperature
heat sources). Although in the consulted papers there is no data about building temperature, it
is assumed that the desired temperature was achieved, as it is stated that the amount of
delivered cold was enough to claim a good performance. This is another difference with the SJE,
which could not achieve the desired values in the hottest days (above 35°C). Besides, the
absorption facility made possible the development of a very reliable system with a high solar
energy fraction (around 60%).
A summary of the obtained KPI for the ABS facility is then presented:
 Seasonal thermal COP higher in ABS (0.65)
 Excellent electrical COP in ABS (above 10)
 Higher PER (4.35) in ABS with only solar driven mode
5 Helm, Martin; Hagel, Kilian; Hiebler, Stefan; Pfeffer, Werner; Hiebler, Stefan; Schweigler, Christian (2013) - “Schlussbericht:
Solares Heizen- und Kühlen mit Absoprtionskältemaschine und Latentwärmespeicher.” - Bavarian Center for Applied Energy
Research (ZAE Bayern), Garching, Germany.
11
5.2 Other facilities
In this subsection, the results of the analysis for the SJE facility will be compared with figures
provided from the IEA Task 38a (2010) [6], in order to relate its performance to other similar
facilities. The following Figure-11 provides an indicator to standarize the installations considered.
Figure 8 – Collectors’ area and nominal cooling power. Source: IEA Task 38a [6]
Most of the facilities of the comparison are small scale (under 20 KW cooling power) and with
absorption chiller units, with back-up heaters. More details over the facilities can be found on
the mentioned report of IEA Task 38a [6]. The next figure shows the COPth. The red line is the
value achieved by the facility in the HSKA.
Figure 9 Thermal COP. Source: IEA Task 38a [6]
Only one of the twelve compared facilities achieved a lower COPth, showing that this value could
be improved. The next graphic shows the comparison of COPel. It is important to mention that
the COPel is calculated without stand-by operation consumption.
6 Jähnig, Dagmar; Thuer, Alexander (et. Al. 2011) – “D-A3b: Monitoring Results. A technical report of subtask A (Pre-engineered
systems for residential and small commercial applications)”. Austrian Institute of Technology (AIT), Giefinggasse 2, A-1210
Vienna, Austria.
12
Figure 10 - Electrical COP. Source: IEA Task 38a (2010) [6]
On the contrary, the COPel under operation shows fairly good results in comparison with other
facilities. As the electrical consumption in a 100% renewable energy installation is the only
source of primary energy consumption, this indicator results of key importance.
The Primary Energy Savings are obtained comparing the PE consumption of the studied facility
with a reference one. As a reference installation, a 2.8 COP compression chiller was selected,
and back-ups were provided with different facilities (IEA Task 38a [6], pages 50-53). It is
important to mention that the PE savings, as well as the COPel already seen, were calculated
only under operational mode (not considering stand-by consumption). What is more, the
facilities’ savings are calculated throughout a year, including the PE savings added by winter
operation (except Maclas and Zaragoza, which did not count with heating systems). The results
show that the position of the operational savings of the SJE facility is within the average of the
analyzed facilities, showing at least positive savings.
Figure 11 - Primary Energy Savings. Source: IEA Task 38a (2010) [6]
6. Conclusion
A steam jet ejector facility was developed, as a solar cooling prototype. The results of these
project were gathered through the development of a software. Daily and seasonal results were
obtained, and an analysis was performed.
Regarding the operational performance, the cold delivered during the operation days seemed
enough when the instantaneous ambient temperature stayed below very high temperatures
(below 35°C). For the days above 35°C, there was not enough cooling power.
Regarding the technical performance of the facility, the thermal COP showed lower values than
the initially obtained. As a main cause it could be identified that long operational hours could
not be achieved, and it is on these days that the best thermal efficiency was seen. Focusing on
the electrical consumption, the research goal of 10 for the COPel was obtained. About 50 % of
13
the electricity is consumed by the driving chiller pumps and almost additional 40% on the cooling
tower circuit. It was identified that most of the time the facility did not work under nominal
power. This part load control should be specifically optimized in order to avoid too high electrical
consumption on pumps.
Furthermore, taking a closer look at the collectors’ field, the first measure is the regulation of
the fed-in water volume flow, as the current value of seems too high. However, collectors’ yield
during operational days show a good performance, even in partly cloudy days.
Part of the low available cooling power on the hottest days was due to a high condenser
temperature. This means that the cooling tower power was not enough to provide the necessary
cooled water. A separate static analysis of the cooling tower could be recommended in order to
improve this performance.
The results of the operation of the Steam Jet Ejector (SJE) facility show some optimization
potential. However, consulting other similar experiments show that the reachable efficiencies
are low compared to other solar cooling developments, such as absorption and adsorption
facilities.

Mais conteúdo relacionado

Mais procurados

ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...
ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...
ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...ijiert bestjournal
 
IRJET- Thermoelectrical Generator for Waste heat Recovery- Review
IRJET-  	  Thermoelectrical Generator for Waste heat Recovery- ReviewIRJET-  	  Thermoelectrical Generator for Waste heat Recovery- Review
IRJET- Thermoelectrical Generator for Waste heat Recovery- ReviewIRJET Journal
 
Energy and Exergy Analysis of a Country Sectors - Advanced Thermodynamics
Energy and Exergy Analysis of a Country Sectors - Advanced ThermodynamicsEnergy and Exergy Analysis of a Country Sectors - Advanced Thermodynamics
Energy and Exergy Analysis of a Country Sectors - Advanced ThermodynamicsMostafa Ghadamyari
 
Analysis of Process Parameters to Improve Power Plant Efficiency
Analysis of Process Parameters to Improve Power Plant EfficiencyAnalysis of Process Parameters to Improve Power Plant Efficiency
Analysis of Process Parameters to Improve Power Plant EfficiencyIOSRJMCE
 
Steamturbine 140203094808-phpapp01
Steamturbine 140203094808-phpapp01Steamturbine 140203094808-phpapp01
Steamturbine 140203094808-phpapp01arvind singh rathore
 
Investigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power PlantInvestigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power PlantIJMERJOURNAL
 
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...IJMER
 
A study on the edm of al7075+3 wt%sic+3wt% b4c hybrid mmc
A study on the edm of al7075+3 wt%sic+3wt% b4c hybrid mmcA study on the edm of al7075+3 wt%sic+3wt% b4c hybrid mmc
A study on the edm of al7075+3 wt%sic+3wt% b4c hybrid mmceSAT Journals
 
Generating, Cataloging and Applying Energy Efficiency Performance Standards
Generating, Cataloging and Applying Energy  Efficiency Performance StandardsGenerating, Cataloging and Applying Energy  Efficiency Performance Standards
Generating, Cataloging and Applying Energy Efficiency Performance StandardsMark Miller, P.E.
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Depc A Abusoglu
Depc A AbusogluDepc A Abusoglu
Depc A AbusogluAbusoglu
 
A Study on Energy Audit of a Cold Storage
A Study on Energy Audit of a Cold StorageA Study on Energy Audit of a Cold Storage
A Study on Energy Audit of a Cold StorageIJERA Editor
 
Effect of Acoustic Attenuation on Performance of TEG
Effect of Acoustic Attenuation on Performance of TEGEffect of Acoustic Attenuation on Performance of TEG
Effect of Acoustic Attenuation on Performance of TEGkailas53muke
 
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...fsnexuss
 
Analytics Project - Combined Cycle Power Plant
Analytics Project  - Combined Cycle Power PlantAnalytics Project  - Combined Cycle Power Plant
Analytics Project - Combined Cycle Power PlantJyothi Lakshmi
 
A Review of Automotive Thermoelectric Generator
A Review of Automotive Thermoelectric GeneratorA Review of Automotive Thermoelectric Generator
A Review of Automotive Thermoelectric GeneratorIRJET Journal
 
Gas turbine exergy analysis
Gas turbine exergy analysisGas turbine exergy analysis
Gas turbine exergy analysisravi801
 

Mais procurados (20)

ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...
ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...
ENERGY SAVINGS IN DOMESTIC REFRIGERATOR USING TWO THERMOELECTRIC MODULES& WAT...
 
IRJET- Thermoelectrical Generator for Waste heat Recovery- Review
IRJET-  	  Thermoelectrical Generator for Waste heat Recovery- ReviewIRJET-  	  Thermoelectrical Generator for Waste heat Recovery- Review
IRJET- Thermoelectrical Generator for Waste heat Recovery- Review
 
Energy and Exergy Analysis of a Country Sectors - Advanced Thermodynamics
Energy and Exergy Analysis of a Country Sectors - Advanced ThermodynamicsEnergy and Exergy Analysis of a Country Sectors - Advanced Thermodynamics
Energy and Exergy Analysis of a Country Sectors - Advanced Thermodynamics
 
Analysis of Process Parameters to Improve Power Plant Efficiency
Analysis of Process Parameters to Improve Power Plant EfficiencyAnalysis of Process Parameters to Improve Power Plant Efficiency
Analysis of Process Parameters to Improve Power Plant Efficiency
 
Steamturbine 140203094808-phpapp01
Steamturbine 140203094808-phpapp01Steamturbine 140203094808-phpapp01
Steamturbine 140203094808-phpapp01
 
Investigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power PlantInvestigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power Plant
 
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...
Scope of Improving Energy Utilization in Coal Based Co-Generation on Thermal ...
 
Power Cycle Components/Processes
Power Cycle Components/ProcessesPower Cycle Components/Processes
Power Cycle Components/Processes
 
A study on the edm of al7075+3 wt%sic+3wt% b4c hybrid mmc
A study on the edm of al7075+3 wt%sic+3wt% b4c hybrid mmcA study on the edm of al7075+3 wt%sic+3wt% b4c hybrid mmc
A study on the edm of al7075+3 wt%sic+3wt% b4c hybrid mmc
 
Generating, Cataloging and Applying Energy Efficiency Performance Standards
Generating, Cataloging and Applying Energy  Efficiency Performance StandardsGenerating, Cataloging and Applying Energy  Efficiency Performance Standards
Generating, Cataloging and Applying Energy Efficiency Performance Standards
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Depc A Abusoglu
Depc A AbusogluDepc A Abusoglu
Depc A Abusoglu
 
A Study on Energy Audit of a Cold Storage
A Study on Energy Audit of a Cold StorageA Study on Energy Audit of a Cold Storage
A Study on Energy Audit of a Cold Storage
 
Effect of Acoustic Attenuation on Performance of TEG
Effect of Acoustic Attenuation on Performance of TEGEffect of Acoustic Attenuation on Performance of TEG
Effect of Acoustic Attenuation on Performance of TEG
 
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
Energy and exergy analysis of reverse brayton refrigerator for gas turbine po...
 
1
11
1
 
Analytics Project - Combined Cycle Power Plant
Analytics Project  - Combined Cycle Power PlantAnalytics Project  - Combined Cycle Power Plant
Analytics Project - Combined Cycle Power Plant
 
A Review of Automotive Thermoelectric Generator
A Review of Automotive Thermoelectric GeneratorA Review of Automotive Thermoelectric Generator
A Review of Automotive Thermoelectric Generator
 
133 subhash presentation 1
133 subhash presentation 1133 subhash presentation 1
133 subhash presentation 1
 
Gas turbine exergy analysis
Gas turbine exergy analysisGas turbine exergy analysis
Gas turbine exergy analysis
 

Destaque

Business Services: Success In Value Creation
Business Services: Success In Value CreationBusiness Services: Success In Value Creation
Business Services: Success In Value CreationEd Martinez
 
Iran, l'Italia riparte da energia e infrastrutture
Iran, l'Italia riparte da energia e infrastruttureIran, l'Italia riparte da energia e infrastrutture
Iran, l'Italia riparte da energia e infrastruttureAlessandro Fichera
 
8th pre alg -l52
8th pre alg -l528th pre alg -l52
8th pre alg -l52jdurst65
 
Efecto antiguo jennifer unigarro
Efecto antiguo  jennifer unigarroEfecto antiguo  jennifer unigarro
Efecto antiguo jennifer unigarrojenniferunigarro
 
ಪ್ರತಿಯೊಂದು ವಸ್ತುವಿನ ಕುರಿತೂ ಅರಿವುಳ್ಳವನಾಗಿದ್ದಾನೆ
ಪ್ರತಿಯೊಂದು ವಸ್ತುವಿನ ಕುರಿತೂ ಅರಿವುಳ್ಳವನಾಗಿದ್ದಾನೆಪ್ರತಿಯೊಂದು ವಸ್ತುವಿನ ಕುರಿತೂ ಅರಿವುಳ್ಳವನಾಗಿದ್ದಾನೆ
ಪ್ರತಿಯೊಂದು ವಸ್ತುವಿನ ಕುರಿತೂ ಅರಿವುಳ್ಳವನಾಗಿದ್ದಾನೆFAHIM AKTHAR ULLAL
 
7th pre alg -l68
7th pre alg -l687th pre alg -l68
7th pre alg -l68jdurst65
 
Experiencias innovadoras de las tic en el aula
Experiencias innovadoras de las tic en el aulaExperiencias innovadoras de las tic en el aula
Experiencias innovadoras de las tic en el aulaSergio Galan
 
1.biyolojinin konusu ve biyolojik kavramlar
1.biyolojinin konusu ve biyolojik kavramlar1.biyolojinin konusu ve biyolojik kavramlar
1.biyolojinin konusu ve biyolojik kavramlarAli DAĞDELEN
 
Megatrends by HP: 2017 Update
Megatrends by HP: 2017 UpdateMegatrends by HP: 2017 Update
Megatrends by HP: 2017 UpdateAndrew Bolwell
 
Meet&Greet #1 - Product design
Meet&Greet #1 - Product design Meet&Greet #1 - Product design
Meet&Greet #1 - Product design Phạm Hải Anh
 

Destaque (15)

Business Services: Success In Value Creation
Business Services: Success In Value CreationBusiness Services: Success In Value Creation
Business Services: Success In Value Creation
 
Weird & Fun
Weird & FunWeird & Fun
Weird & Fun
 
Iran, l'Italia riparte da energia e infrastrutture
Iran, l'Italia riparte da energia e infrastruttureIran, l'Italia riparte da energia e infrastrutture
Iran, l'Italia riparte da energia e infrastrutture
 
8th pre alg -l52
8th pre alg -l528th pre alg -l52
8th pre alg -l52
 
Efecto antiguo jennifer unigarro
Efecto antiguo  jennifer unigarroEfecto antiguo  jennifer unigarro
Efecto antiguo jennifer unigarro
 
ಪ್ರತಿಯೊಂದು ವಸ್ತುವಿನ ಕುರಿತೂ ಅರಿವುಳ್ಳವನಾಗಿದ್ದಾನೆ
ಪ್ರತಿಯೊಂದು ವಸ್ತುವಿನ ಕುರಿತೂ ಅರಿವುಳ್ಳವನಾಗಿದ್ದಾನೆಪ್ರತಿಯೊಂದು ವಸ್ತುವಿನ ಕುರಿತೂ ಅರಿವುಳ್ಳವನಾಗಿದ್ದಾನೆ
ಪ್ರತಿಯೊಂದು ವಸ್ತುವಿನ ಕುರಿತೂ ಅರಿವುಳ್ಳವನಾಗಿದ್ದಾನೆ
 
7th pre alg -l68
7th pre alg -l687th pre alg -l68
7th pre alg -l68
 
UI & UX Engineering
UI & UX EngineeringUI & UX Engineering
UI & UX Engineering
 
Experiencias innovadoras de las tic en el aula
Experiencias innovadoras de las tic en el aulaExperiencias innovadoras de las tic en el aula
Experiencias innovadoras de las tic en el aula
 
Meninges Y L
Meninges Y  LMeninges Y  L
Meninges Y L
 
1.biyolojinin konusu ve biyolojik kavramlar
1.biyolojinin konusu ve biyolojik kavramlar1.biyolojinin konusu ve biyolojik kavramlar
1.biyolojinin konusu ve biyolojik kavramlar
 
Neurocraneo
NeurocraneoNeurocraneo
Neurocraneo
 
Megatrends by HP: 2017 Update
Megatrends by HP: 2017 UpdateMegatrends by HP: 2017 Update
Megatrends by HP: 2017 Update
 
Act3
Act3Act3
Act3
 
Meet&Greet #1 - Product design
Meet&Greet #1 - Product design Meet&Greet #1 - Product design
Meet&Greet #1 - Product design
 

Semelhante a Carbonare Nicolas - Zusammenfassung MA

Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...
Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...
Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...IRJET Journal
 
Design and Performance Analysis of Solar Powered Absorption Cooling System fo...
Design and Performance Analysis of Solar Powered Absorption Cooling System fo...Design and Performance Analysis of Solar Powered Absorption Cooling System fo...
Design and Performance Analysis of Solar Powered Absorption Cooling System fo...IRJET Journal
 
IRJET- Experimental Model Design and Simulation of Air Conditioning System fo...
IRJET- Experimental Model Design and Simulation of Air Conditioning System fo...IRJET- Experimental Model Design and Simulation of Air Conditioning System fo...
IRJET- Experimental Model Design and Simulation of Air Conditioning System fo...IRJET Journal
 
ICEEE Poster_YoannGuinard
ICEEE Poster_YoannGuinardICEEE Poster_YoannGuinard
ICEEE Poster_YoannGuinardYoann Guinard
 
solar vapour absourtion system
solar vapour absourtion systemsolar vapour absourtion system
solar vapour absourtion systemankit singh
 
Efficiency Analysis For an Experimentally Set-up Double-Pass V-Corrugated Sol...
Efficiency Analysis For an Experimentally Set-up Double-Pass V-Corrugated Sol...Efficiency Analysis For an Experimentally Set-up Double-Pass V-Corrugated Sol...
Efficiency Analysis For an Experimentally Set-up Double-Pass V-Corrugated Sol...Aakanksha Dubey
 
Report_EBACProject_BBP
Report_EBACProject_BBPReport_EBACProject_BBP
Report_EBACProject_BBPArun Sankar
 
MECE4450U - Final Report (Final)
MECE4450U - Final Report (Final)MECE4450U - Final Report (Final)
MECE4450U - Final Report (Final)Tushar Karanwal
 
Solar photovoltaic/thermal air collector with mirrors for optimal tilts
Solar photovoltaic/thermal air collector with mirrors for  optimal tiltsSolar photovoltaic/thermal air collector with mirrors for  optimal tilts
Solar photovoltaic/thermal air collector with mirrors for optimal tiltsIJECEIAES
 
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink DesignThermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink DesignTELKOMNIKA JOURNAL
 
IJREI_A thermodynamic analysis of ejector type vapour refrigeration system us...
IJREI_A thermodynamic analysis of ejector type vapour refrigeration system us...IJREI_A thermodynamic analysis of ejector type vapour refrigeration system us...
IJREI_A thermodynamic analysis of ejector type vapour refrigeration system us...Husain Mehdi
 
grey box modeling of a low pressure electric boiler for domestic hot water s...
 grey box modeling of a low pressure electric boiler for domestic hot water s... grey box modeling of a low pressure electric boiler for domestic hot water s...
grey box modeling of a low pressure electric boiler for domestic hot water s...Fitsum Bekele Bekele
 
Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)shone john
 
IRJET- Design and Development of a Waste Heat Recovery Unit for Household Ref...
IRJET- Design and Development of a Waste Heat Recovery Unit for Household Ref...IRJET- Design and Development of a Waste Heat Recovery Unit for Household Ref...
IRJET- Design and Development of a Waste Heat Recovery Unit for Household Ref...IRJET Journal
 
Solar Collector [Autosaved].pptx
Solar Collector [Autosaved].pptxSolar Collector [Autosaved].pptx
Solar Collector [Autosaved].pptxBibhutiBhusanPani1
 
Thermal Characterization and Performance Evaluation of CPU Heat Sink Design
Thermal Characterization and Performance Evaluation of CPU Heat Sink DesignThermal Characterization and Performance Evaluation of CPU Heat Sink Design
Thermal Characterization and Performance Evaluation of CPU Heat Sink DesignIRJET Journal
 
Numerical Study of Entropy Generation in an Irreversible SolarPowered Absorpt...
Numerical Study of Entropy Generation in an Irreversible SolarPowered Absorpt...Numerical Study of Entropy Generation in an Irreversible SolarPowered Absorpt...
Numerical Study of Entropy Generation in an Irreversible SolarPowered Absorpt...inventionjournals
 
Cf32949954
Cf32949954Cf32949954
Cf32949954IJMER
 
THERMAL PERFORMANCE AND ECONOMICS ANALYSIS OF DOUBLE FLOW PACKED BED SOLAR AI...
THERMAL PERFORMANCE AND ECONOMICS ANALYSIS OF DOUBLE FLOW PACKED BED SOLAR AI...THERMAL PERFORMANCE AND ECONOMICS ANALYSIS OF DOUBLE FLOW PACKED BED SOLAR AI...
THERMAL PERFORMANCE AND ECONOMICS ANALYSIS OF DOUBLE FLOW PACKED BED SOLAR AI...IAEME Publication
 
EXPERIMENTAL AND NUMERICAL STUDY OF A MICRO-COGENERATION STIRLING ENGINE FOR ...
EXPERIMENTAL AND NUMERICAL STUDY OF A MICRO-COGENERATION STIRLING ENGINE FOR ...EXPERIMENTAL AND NUMERICAL STUDY OF A MICRO-COGENERATION STIRLING ENGINE FOR ...
EXPERIMENTAL AND NUMERICAL STUDY OF A MICRO-COGENERATION STIRLING ENGINE FOR ...Denny John
 

Semelhante a Carbonare Nicolas - Zusammenfassung MA (20)

Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...
Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...
Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...
 
Design and Performance Analysis of Solar Powered Absorption Cooling System fo...
Design and Performance Analysis of Solar Powered Absorption Cooling System fo...Design and Performance Analysis of Solar Powered Absorption Cooling System fo...
Design and Performance Analysis of Solar Powered Absorption Cooling System fo...
 
IRJET- Experimental Model Design and Simulation of Air Conditioning System fo...
IRJET- Experimental Model Design and Simulation of Air Conditioning System fo...IRJET- Experimental Model Design and Simulation of Air Conditioning System fo...
IRJET- Experimental Model Design and Simulation of Air Conditioning System fo...
 
ICEEE Poster_YoannGuinard
ICEEE Poster_YoannGuinardICEEE Poster_YoannGuinard
ICEEE Poster_YoannGuinard
 
solar vapour absourtion system
solar vapour absourtion systemsolar vapour absourtion system
solar vapour absourtion system
 
Efficiency Analysis For an Experimentally Set-up Double-Pass V-Corrugated Sol...
Efficiency Analysis For an Experimentally Set-up Double-Pass V-Corrugated Sol...Efficiency Analysis For an Experimentally Set-up Double-Pass V-Corrugated Sol...
Efficiency Analysis For an Experimentally Set-up Double-Pass V-Corrugated Sol...
 
Report_EBACProject_BBP
Report_EBACProject_BBPReport_EBACProject_BBP
Report_EBACProject_BBP
 
MECE4450U - Final Report (Final)
MECE4450U - Final Report (Final)MECE4450U - Final Report (Final)
MECE4450U - Final Report (Final)
 
Solar photovoltaic/thermal air collector with mirrors for optimal tilts
Solar photovoltaic/thermal air collector with mirrors for  optimal tiltsSolar photovoltaic/thermal air collector with mirrors for  optimal tilts
Solar photovoltaic/thermal air collector with mirrors for optimal tilts
 
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink DesignThermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
 
IJREI_A thermodynamic analysis of ejector type vapour refrigeration system us...
IJREI_A thermodynamic analysis of ejector type vapour refrigeration system us...IJREI_A thermodynamic analysis of ejector type vapour refrigeration system us...
IJREI_A thermodynamic analysis of ejector type vapour refrigeration system us...
 
grey box modeling of a low pressure electric boiler for domestic hot water s...
 grey box modeling of a low pressure electric boiler for domestic hot water s... grey box modeling of a low pressure electric boiler for domestic hot water s...
grey box modeling of a low pressure electric boiler for domestic hot water s...
 
Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)
 
IRJET- Design and Development of a Waste Heat Recovery Unit for Household Ref...
IRJET- Design and Development of a Waste Heat Recovery Unit for Household Ref...IRJET- Design and Development of a Waste Heat Recovery Unit for Household Ref...
IRJET- Design and Development of a Waste Heat Recovery Unit for Household Ref...
 
Solar Collector [Autosaved].pptx
Solar Collector [Autosaved].pptxSolar Collector [Autosaved].pptx
Solar Collector [Autosaved].pptx
 
Thermal Characterization and Performance Evaluation of CPU Heat Sink Design
Thermal Characterization and Performance Evaluation of CPU Heat Sink DesignThermal Characterization and Performance Evaluation of CPU Heat Sink Design
Thermal Characterization and Performance Evaluation of CPU Heat Sink Design
 
Numerical Study of Entropy Generation in an Irreversible SolarPowered Absorpt...
Numerical Study of Entropy Generation in an Irreversible SolarPowered Absorpt...Numerical Study of Entropy Generation in an Irreversible SolarPowered Absorpt...
Numerical Study of Entropy Generation in an Irreversible SolarPowered Absorpt...
 
Cf32949954
Cf32949954Cf32949954
Cf32949954
 
THERMAL PERFORMANCE AND ECONOMICS ANALYSIS OF DOUBLE FLOW PACKED BED SOLAR AI...
THERMAL PERFORMANCE AND ECONOMICS ANALYSIS OF DOUBLE FLOW PACKED BED SOLAR AI...THERMAL PERFORMANCE AND ECONOMICS ANALYSIS OF DOUBLE FLOW PACKED BED SOLAR AI...
THERMAL PERFORMANCE AND ECONOMICS ANALYSIS OF DOUBLE FLOW PACKED BED SOLAR AI...
 
EXPERIMENTAL AND NUMERICAL STUDY OF A MICRO-COGENERATION STIRLING ENGINE FOR ...
EXPERIMENTAL AND NUMERICAL STUDY OF A MICRO-COGENERATION STIRLING ENGINE FOR ...EXPERIMENTAL AND NUMERICAL STUDY OF A MICRO-COGENERATION STIRLING ENGINE FOR ...
EXPERIMENTAL AND NUMERICAL STUDY OF A MICRO-COGENERATION STIRLING ENGINE FOR ...
 

Carbonare Nicolas - Zusammenfassung MA

  • 1. Analysis of performance and results of a Steam Jet Ejector Chiller (Solar Cooling) Master of Science Thesis Summary – MSc. Energy & Environment Karlsruher Institut für Technologie – Instituto Tecnológico de Buenos Aires In cooperation with Hochschule Karlsruhe für Technik und Wirtschaft Author: Nicolás Carbonare (1797915) Tutors:  Dr. Ferdinand Schmidt (KIT)  Dipl.-Ing Tunay Özcan (HSKA) Examiners:  Prof. Dr. Ing. Martin Gabi (KIT)  Dra. Ing. Cecilia Smoglie (ITBA)  Prof. Dr. Ing. Michael Kauffeld (HSKA) Karlsruhe, May 2016
  • 2. 2 1. Introduction A cooperation between the Hochschule Karlsruhe (HSKA) and private companies developed the Prosolar DSKM Project, in order to test a potential solar heating and cooling system, based on a steam jet ejector chiller and driven with 100% renewable energy (only auxiliary electricity). The project was funded by the Bundesministerium für Bildung und Forschung and companies and institutes GEA Wiegand, Ritter Solar und Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT took also part in the project. The aim of this work is to study the operational results of the facility during its first full summer of operation, on the year 2015. The results and performance indicators are calculated and the operation is analyzed. A comparison with similar facilities of different approaches is carried out to benchmark the current situation of the HSKA Installation and to identify potential future improvement opportunities. 2. Steam Jet Ejector Facility The system consists of a nominal 82 KW steam jet ejector chiller driven with 360 m2 vacuum tube solar collectors, and assisted by a wet open cooling tower, in order to air-condition a 3130 m2 building. Hot and cold energy storages were developed in order to serve as an operational buffer. Figure 1 – Scheme of the SJE facility The solar heat from the collector is used to produce steam in a steam drum. This later enters the SJE as the Motive Steam at a relative high pressure (3 bar) and temperature (133°C). Following Pollerberg (2008) [1] description, “it pumps the vaporous refrigerant from the evaporator into the condenser against a higher pressure and reduces the pressure in the evaporator (up to 10 mbar). The pressure reduction causes boiling of the remaining liquid water in the evaporator and 1 Pollerberg, Clemens; Ahmed Hamza H. Ali; Dötsch, Christian (2008) – “Solar driven steam jet ejector chiller” - Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, Germany and Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Egypt.
  • 3. 3 generates cold water (around 10°C), which is fed to the convective cooler”. The mixture (motive and suction mass flows) flows at supersonic speed and enters the condenser (50 mbar, 33°C). Condensed mixture is cooled at a cooling tower, and after that it flows back to the evaporator and steam drum respectively. In addition, some of the advantages listed in several studies are its good partial load behavior (moderate mean COP with solar power) and the possibility to use water as a refrigerant (manipulated without risks). 3. Software Development The first step of this study was to understand the measured values of the whole facility during certain periods of interest. To make this possible, a database with all the measurements of summer 2015 was created, programmed with Visual Basic (VBA) in Microsoft Excel 2013. The SPS software of the facility creates .csv files on a daily basis, measuring 152 variables of different kind. All the files were compiled and processed into a database, to perform several data analysis and to allow the comparison between the facilities. Then, the software was programmed, allowing to perform different types of analysis, in different timeframes, with a good time of response. If someone wants to analyze just one day for twelve hours, it makes it faster to firstly perform the timeframe filtering. One day and twelve hours means 108.000 values of the 32.400.000 of the seasonal data, lowering the average response time. It combines fast calculations with graphics, obtaining all the data necessary to carry out a complete analysis. The following Key Performance Indicators were defined to evaluate the seasonal performance. 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟𝑠′ 𝑌𝑖𝑒𝑙𝑑 = 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐻𝑒𝑎𝑡 [𝑘𝑊ℎ] 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟𝑠´𝐴𝑟𝑒𝑎 [𝑚2]. 𝑦𝑒𝑎𝑟 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟𝑠′ 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐻𝑒𝑎𝑡 [𝑘𝑊ℎ]/1000 𝑆𝑜𝑙𝑎𝑟 𝑅𝑎𝑑 [ 𝑊 𝑚2] ∗ 𝐶𝑜𝑙𝐴𝑟𝑒𝑎 [𝑚2] ∗ 𝐻𝑠[ℎ] 𝐶𝑂𝑃𝑒𝑙 = 𝑈𝑠𝑒𝑓𝑢𝑙 𝐶𝑜𝑙𝑑 [𝑘𝑊ℎ] 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 [𝑘𝑊ℎ] 𝐶𝑂𝑃𝑡ℎ = 𝑈𝑠𝑒𝑓𝑢𝑙 𝐶𝑜𝑙𝑑 [𝑘𝑊ℎ] 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐻𝑒𝑎𝑡 [𝑘𝑊ℎ] 𝑃𝐸𝑅 = 𝑈𝑠𝑒𝑓𝑢𝑙 𝐶𝑜𝑙𝑑 [𝑘𝑊ℎ] 𝐸𝐸 [𝑘𝑊ℎ] ∗ 𝑃𝐸𝐹𝑒𝑙 𝑃𝐸𝑅 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 1 − 𝐸𝐸 [𝑘𝑊ℎ] ∗ 𝐶𝑂𝑃𝑅𝑒𝑓 𝑈𝑠𝑒𝑓𝑢𝑙 𝐶𝑜𝑙𝑑 [𝑘𝑊ℎ] Figure 2 – Input screen
  • 4. 4 The PEFel and the COPref are defined according to the standards taken in the IEA Task 38a [2] as 2.7 and 2.8 respectively. Furthermore, the software is programmed in order to filter all the measurement errors by system failures that were encountered. Frequent errors are stuck values, extremely high temperatures in certain sensors, negative volume flows and mismatch of variables. Temperature sensor calibrations and calculations of errors’ propagation in measurements were also performed, in order to minimize the impact of the failures already mentioned. 4. Analysis of results After gathering the seasonal results from summer 2015 and taking some particular days as examples, the analysis was carried out. As a highlight, the considered working days were those in which the useful cold obtained was above 20 KWh and a registered working time of the ejectors was at least one hour. The Figure-3 shows the daily registered values previously mentioned. Figure 3 – Summary of delivered cold on Summer 2015 After gathering the seasonal results from summer 2015 and taking some particular days as examples, the analysis was carried out. It should be emphasized that there were only 25 registered working days, with a threshold of 350 KWh of useful cold and 5-hour ejector operation. A random typical day was picked (31.07.2015) and then analyzed on its full extension. The Figure-4 shows the cooling operation performance of the picked sample day. 2 Jähnig, Dagmar; Thuer, Alexander (et. Al. 2011) – “D-A3b: Monitoring Results. A technical report of subtask A (Pre-engineered systems for residential and small commercial applications)”. Austrian Institute of Technology (AIT), Giefinggasse 2, A-1210 Vienna, Austria.
  • 5. 5 Figure 4 – Cooling operation On this day, in which the ambient temperature overcame 30 °C, a partial load behavior can be easily identified, taking into account that the power oscillations remain between 40 and 70 KW. The achieved evaporator temperatures reach the desired value under 10 °C. The monitoring of the 2015 cooling season showed that the steam jet ejector chiller worked reliable in the days where ambient temperature was under 32°C, and the desired air- conditioning of the building LB was given (around 25 °C). The average cooling capacity of the system laid between 40 KW and 60 KW, which is below the nominal capacity of 82 KW of the SJE chiller. This part-load operation caused by the low cooling capacity on the building side has a negative impact on the thermal and electrical COP. It must be taken into account that in the hottest days (above 32°C average) the cooling performance was poor and the desired building temperature could not be delivered. The Figure-5 shows a heat balance of the main components of the facility. As a key factor, the motive heat is calculated through a heat balance including the cooling tower, the useful cold, the heat storages and other factors. Figure 5 – Heat balance Despite the strong variations on the motive heat, it can be seen that the cooling power is not strongly affected due to the performance of the heat storage. The latent heat storage is made
  • 6. 6 of 500 Kg of PE-8110, with a latent storage capacity of around 27 KWh. The presence of this buffer plays an important role, as it assists the variations of the solar collectors’ field, providing a balance for the motive heat supplied. Figure-6 shows the relationship between the thermal performance, the condenser temperature and the motive steam pressure. Figure 6 – COPth and Motive Steam pressure vs. Condenser temperature The registered values show that there is a positive slope for motive pressure against condenser temperature. This shows that this temperature should be kept as low as possible in order to reduce the steam pressure requirements. Whenever the condenser temperature rises, the motive steam pressure should be higher in order to produce the cooling effect on the evaporator. A higher motive heat has a negative impact on the thermal COP of the facility. This is also reflected in this graphic, as the blue dots represent a slightly negative slope. Moreover, figure-7 shows the seasonal results for the solar collectors. Figure 7 – Seasonal collectors’ performance There is an evident relationship (direct proportion) between the solar radiation and the collectors’ yield. Utilization factor stayed between 30% and 40% most of the days. Collectors UF remained between 30 and 40%, expectable as the vacuum tube collectors are the most efficient available in the market.
  • 7. 7 Figure-8 shows the results for the average electrical energy consumption of the facility. Figure 8 – Average electrical energy consumption It can be seen that the main sources of consumption are related to the chiller operation and heat rejection circuits. When combined, the fan of the cooling tower and the pump of this circuit represent the main electricity consumption of the facility (38%). Along with condenser, evaporator and cold water pumps, they represent the 89% of the total consumption. In first place, taking a deeper look at the cooling circuit and its pumps, they represent together about 50% of the total electrical consumption over the 2015 summer season. As it has been already discussed, the control of this pumps results crucial for the electrical energy consumption. As the speed of the pumps result as a key attribute, it is of utmost importance to provide an efficient part-load control of the cooling operation, in order to optimize the consumption of the facility and, therefore, a better result in the primary energy consumption of the facility. Regarding the cooling circuit, Henning (2014) [3] stated in his work that, for the primary energy analysis of a cooling facility, the COPel of the cooling tower results critical, as it is a big influence on the primary energy consumption. He proposes that this value should always be above 20. The calculation of this COPel is analogous to the proposed in the equation above, but taking the rejected heat [KWh] and the electrical energy consumption of this circuit [KWh]. The value obtained for the summer 2015 was 35, showing a good overall electrical performance. As a summary of the results, the following points can be made  Partial load behavior - Evaporator temperatures below 10 °C obtained  Few operative days (25/109) – long hours of operation not achieved (4.56 h average) 3 Henning, Hans-Martin; Morgenstern, Alexander; Wiemken, Edo (2014) – “Kolloquium Solare Kühlung im Rahmen des BMBF- Verbundprojekts ProSolarDSKM“ - Fraunhofer ISE Freiburg and Hochschule Karlsruhe, ProSolarDSKM Project, Karlsruhe, Germany.
  • 8. 8  Condenser temperature key to achieve desired cooling - Days with average ambient temp > 35 °C presented poor response  4 MWh Useful Cold – 1.2 MWh Electrical Consumption  Tested limits of operation: The next table summarizes the main figures for the 2015 summer season. Table 1 – Summary of Summer 2015 results 5. Comparison of facilities 5.1 Absorption facility in Arnstorf In order to elaborate a standard of comparison for the obtained results in the SJE facility, an absorption facility (ABS) developed by ZAE Bayern will be taken, as described by Riepl (2012) [4]. The Figure-9 illustrates the set-up of this facility. 4Riepl, Manuel (et. Al. 2012) – “Operational performance results of an innovative solar thermal cooling and heating plant” – ZAE Bayern – Garching, Germany. Summary summer 2015 (04.05.15-07.10.15) Working days 25 Average operation [Hs] 4.56 Total useful cold [KWh] 3951.2 Average cooling power [KW] 34.66 Total motive heat [KWh] 11129.3 Average ambient temperature [°C] 30.8 Average building temperature [°C] 25.3 Total electrical consumption [KWh] 1226.7 Solar radiation [W/m2] 761.7 Total COPth [-] 0.36 Total COPel [-] 3.22 Total PER [-] 1.29 PER savings [%] 19.5 Total rejected heat [KWh] 14794.6 Collectors' yield [KWh/m2*day] 30.91 Collectors' utilization factor [%] 36%
  • 9. 9 Figure 6 – Absorption facility layout. Source: Riepl (2012) [4] Firstly, it results interesting that it has a nominal cooling power of 90 KW, which is in the same scale of the SJE facility. It can be driven either by solar power (single-effect) or a gas burner (double-effect). The achieved solar fraction was as high as 60 %. When single/double effect are at the same time under operation, it means both solar field and gas burner are used as heat sources. Figure-10 shows a comparison of operation in two typical taken days (similar ambient conditions). Making specific focus just on the single-effect operational mode, it can be identified that the achieved thermal COP is higher in the ABS facility. Both worked under partial load operations (50-70 KW), achieving the ABS facility longer operational hours. Nevertheless, it should be mentioned that, due to the fact of having a gas burner integrated, achieving the cooling performance is easier. Long operating hours allow to raise considerably the electrical COP, as it not only increases the fed-in cold, but also lowers the influence of stand-by operation. Figure 7 – Comparison of typical days. Source: Riepl (2012) [4]
  • 10. 10 As it was seen on the publication of Helm (2013) [5], the solar collectors field of ABS shows a poorer performance than the SJE. Yet it would be interest to analyze the potential solar collectors’ efficiency of the SJE facility, when it worked more days than it actually did on the 2015 season. A key point of comparison,where relies the primary energy consumption, is the electrical energy. It was identified that the total consumption of pumps represented for ABS 59%, whereas in SJE it took the 79%. The highest electrical consumption peaks in both cases for the chilled water and cooling circuit pumps, both between 20 and 24% of the total. The chiller operation consumed for ABS 44%, while it arouses around 51% for the SJE. The cooling tower fan consumed 18% for ABS, while it occupied 14% for SJE. In total, the cooling circuit represents 37% for the ABS facility and 38% for the SJE, with similar results. All in all, it can be seen that the operational mode of both facilities was in partial load conditions. A good control of this is necessary to avoid excessive electrical consumption, lowering the efficiencies and primary energy ratios of the solar cooling facilities. In addition, it results fundamental to highlight that only on three days under operation the daily average temperature was above 25°C. For the SJE were registered instantaneous temperatures of almost 45°C and daily averages above 30°C. The low ambient temperatures allow the ABS facility to perform considerably well with a dry cooling tower. Besides, the necessity of a high pressure motive steam for the SJE highlights the task of the cooling tower, as a lower condenser temperature allows the machine to operate with less motive heat (pressure). In conclusion, the cooling tower in the SJE facility needs to achieve maximum temperature differences of 20 K, which are not considered in the ABS heat rejection circuit (as it operates with low temperature heat sources). Although in the consulted papers there is no data about building temperature, it is assumed that the desired temperature was achieved, as it is stated that the amount of delivered cold was enough to claim a good performance. This is another difference with the SJE, which could not achieve the desired values in the hottest days (above 35°C). Besides, the absorption facility made possible the development of a very reliable system with a high solar energy fraction (around 60%). A summary of the obtained KPI for the ABS facility is then presented:  Seasonal thermal COP higher in ABS (0.65)  Excellent electrical COP in ABS (above 10)  Higher PER (4.35) in ABS with only solar driven mode 5 Helm, Martin; Hagel, Kilian; Hiebler, Stefan; Pfeffer, Werner; Hiebler, Stefan; Schweigler, Christian (2013) - “Schlussbericht: Solares Heizen- und Kühlen mit Absoprtionskältemaschine und Latentwärmespeicher.” - Bavarian Center for Applied Energy Research (ZAE Bayern), Garching, Germany.
  • 11. 11 5.2 Other facilities In this subsection, the results of the analysis for the SJE facility will be compared with figures provided from the IEA Task 38a (2010) [6], in order to relate its performance to other similar facilities. The following Figure-11 provides an indicator to standarize the installations considered. Figure 8 – Collectors’ area and nominal cooling power. Source: IEA Task 38a [6] Most of the facilities of the comparison are small scale (under 20 KW cooling power) and with absorption chiller units, with back-up heaters. More details over the facilities can be found on the mentioned report of IEA Task 38a [6]. The next figure shows the COPth. The red line is the value achieved by the facility in the HSKA. Figure 9 Thermal COP. Source: IEA Task 38a [6] Only one of the twelve compared facilities achieved a lower COPth, showing that this value could be improved. The next graphic shows the comparison of COPel. It is important to mention that the COPel is calculated without stand-by operation consumption. 6 Jähnig, Dagmar; Thuer, Alexander (et. Al. 2011) – “D-A3b: Monitoring Results. A technical report of subtask A (Pre-engineered systems for residential and small commercial applications)”. Austrian Institute of Technology (AIT), Giefinggasse 2, A-1210 Vienna, Austria.
  • 12. 12 Figure 10 - Electrical COP. Source: IEA Task 38a (2010) [6] On the contrary, the COPel under operation shows fairly good results in comparison with other facilities. As the electrical consumption in a 100% renewable energy installation is the only source of primary energy consumption, this indicator results of key importance. The Primary Energy Savings are obtained comparing the PE consumption of the studied facility with a reference one. As a reference installation, a 2.8 COP compression chiller was selected, and back-ups were provided with different facilities (IEA Task 38a [6], pages 50-53). It is important to mention that the PE savings, as well as the COPel already seen, were calculated only under operational mode (not considering stand-by consumption). What is more, the facilities’ savings are calculated throughout a year, including the PE savings added by winter operation (except Maclas and Zaragoza, which did not count with heating systems). The results show that the position of the operational savings of the SJE facility is within the average of the analyzed facilities, showing at least positive savings. Figure 11 - Primary Energy Savings. Source: IEA Task 38a (2010) [6] 6. Conclusion A steam jet ejector facility was developed, as a solar cooling prototype. The results of these project were gathered through the development of a software. Daily and seasonal results were obtained, and an analysis was performed. Regarding the operational performance, the cold delivered during the operation days seemed enough when the instantaneous ambient temperature stayed below very high temperatures (below 35°C). For the days above 35°C, there was not enough cooling power. Regarding the technical performance of the facility, the thermal COP showed lower values than the initially obtained. As a main cause it could be identified that long operational hours could not be achieved, and it is on these days that the best thermal efficiency was seen. Focusing on the electrical consumption, the research goal of 10 for the COPel was obtained. About 50 % of
  • 13. 13 the electricity is consumed by the driving chiller pumps and almost additional 40% on the cooling tower circuit. It was identified that most of the time the facility did not work under nominal power. This part load control should be specifically optimized in order to avoid too high electrical consumption on pumps. Furthermore, taking a closer look at the collectors’ field, the first measure is the regulation of the fed-in water volume flow, as the current value of seems too high. However, collectors’ yield during operational days show a good performance, even in partly cloudy days. Part of the low available cooling power on the hottest days was due to a high condenser temperature. This means that the cooling tower power was not enough to provide the necessary cooled water. A separate static analysis of the cooling tower could be recommended in order to improve this performance. The results of the operation of the Steam Jet Ejector (SJE) facility show some optimization potential. However, consulting other similar experiments show that the reachable efficiencies are low compared to other solar cooling developments, such as absorption and adsorption facilities.