SlideShare uma empresa Scribd logo
1 de 29
Baixar para ler offline
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
Coupling of IGA plates and 3D FEM domains by
a Discontinuous Galerkin Method	
  
V.P.	
  Nguyen1,	
  P.	
  Kerfriden1,	
  S.	
  Claus2,	
  	
  S.P.-­‐A.	
  Bordas1	
  
1School	
  of	
  Engineering,	
  Cardiff	
  University,	
  UK	
  
2Department	
  of	
  Mathema$cs,	
  University	
  College	
  London,	
  UK	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  Aim:	
  local/global	
  analysis	
  of	
  thin	
  panels	
  
http://www.supergen-wind.org.uk
Stress	
  analysis	
  with	
  
minimium	
  data	
  transfer	
  
from	
  CAD	
  model	
  
Hot-­‐spot	
  (stress	
  
concentra$ons,	
  damage)	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Mixed-­‐dimensional	
  analysis:	
  	
  
§  use	
  shell/beam	
  descrip$ons,	
  	
  
homogenisa$on	
  
§  Full	
  microscale	
  3D	
  in	
  “hot-­‐spots”	
  
•  Isogeometric	
  analysis:	
  minimum	
  	
  
CAD	
  to	
  analysis	
  data	
  processing	
  
•  Efficient	
  	
  coupling	
  of	
  	
  
heterogeneous	
  models	
  
/discre$sa$on	
  
•  (efficient	
  local/global	
  solver)	
  
•  (find	
  “hot-­‐spots”	
  with	
  	
  
goal-­‐oriented	
  model	
  adap$vity)	
  
Building	
  blocks	
  
Figure 30: Cantilever beam subjects to an end shear force: discretisation of the solid
Figure 31: Cantilever beam subjects to an end shear force: von Mises stress di
6.2.3. Non-conforming coupling of a square plate
We consider a square plate of dimension L ⇥ L ⇥ t (t denotes the thickness) in which there
dimension Ls ⇥ Ls ⇥ t as shown in Fig. 32. In the computations, material properties are taken
the geometry data are L = 400, t = 20 and Ls = 100. The loading is a gravity force p = 10
is fully clamped. The stabilisation parameter was chosen empirically to be 1 ⇥ 106
. We us
NURBS plate elements for the plate and NURBS solid elements for the solid. In order to m
[Nguyen	
  et	
  al.	
  2013]	
  
6.2.2. Cantilever plate: non-conforming coupling
A mesh of 32 ⇥ 4 ⇥ 5/ 32 ⇥ 2 cubic elements is utilized for the mixed dimensional model, cf. F
the continuum part in the continuum-plate model is 175 mm. The contour plot of the von Mises s
where void plate elements were removed in the visualisation.
Figure 30: Cantilever beam subjects to an end shear force: discretisation of the solid an
Figure 31: Cantilever beam subjects to an end shear force: von Mises stress distrib
6.2.3. Non-conforming coupling of a square plate
We consider a square plate of dimension L ⇥ L ⇥ t (t denotes the thickness) in which there is a
CAD	
  model	
  
Analysis	
  mesh	
  
IGA	
  /	
  plate	
  
Solid	
  FE	
  
???	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
Figure 8. Stress contours in 3D–2D mixed-dimensional cantilever model loaded by a terminal
shear force Fz. (2D contours illustrated relate to top surface of model). Abaqus C3D20R brick
elements and S8R shell elements.
Figure 9. Transverse shear stresses 13 ( xz) obtained by method of Reference [5].
Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:725–750
•  Reference	
  coupling	
  
§  displacement-­‐recovery,	
  	
  
Stress-­‐recovery	
  
§  Equality	
  of	
  work	
  provides	
  
coupling	
  on	
  dual	
  quan$ty	
  
•  Discrete	
  treatment	
  	
  
§  Mul$-­‐point	
  constraints	
  [Monaghan et al 1998,
McCune et al. 2000, Shim et al. 2002, Song et al. 2012]
§  Transi$on	
  elements	
  [Surana 1979, Cofer 1991,
Gmur et al, 1993, Dohrmann et al. 1999, Wagner et al. 2000,
Garusi et al. 2002, Chavan et al. 2004]
§  Mortar	
  methods	
  
-  Penalty	
  formula$ons	
  [Blanco et al. 2007]
-  Lagrange	
  mul$plier-­‐based	
  mortar	
  
[Rateau et al. 2003, Combescure et al. 2005]
-  Hybrid	
  itera$ve	
  method	
  [Guguin et al. 2013]
Some	
  coupling	
  methods	
  
in some situations.
3 Finite element formulation
Based on the above described kinematical assumptions the element is d
node in the transition cross–section is called ’reference node’. Furtherm
A2 and A3 define the orientation of the cross section. It is assumed th
couple (’coupling nodes’) lie in this plane. The vectors A2 and A3 are
section coordinates, see eq. (3). In the current configuration the base
the beam element together with the convective coordinates (0, ξ2, ξ3) a
define the coupling nodes.
The mechanical model of the cross section can be considered as a sum
allow only for axial deflections. The boundary conditions are clamped a
and jointed at the coupling node, see Fig. 3.
clamped bounded
rigid beam, axial free
hinged bounded
Transition elements
Fig. 3: Transition elements in a beam cross–section
The implementation of the constraint equation (7) in a transition elem
Penalty and the Augmented Lagrange Method. Furthermore a consi
derived for the element with respect to finite rotations. The transition is
Adapted	
  from	
  	
  
[Wagner	
  et	
  al.	
  2000]	
  
lumique, qui occupent respectivement l’adh´erence des ouverts conn
commodit´e, nous d´esignons par !coq la surface moyenne du premier
sous-domaine correspondant de !0
. En outre, comme au §5.1.2.1, n
voisinage de la condition d’encastrement est repr´esent´e par le mod`ele
ωcoq
ω3d
sc
Fig. 5.8 – Mod´elisation Arlequin
Les relations de comportement sont celles des paragraphes 5.1.1.3 et 5.
champs de d´eplacement cin´ematiquement admissibles du mod`ele trid
par (5.17), tandis que celui du mod`ele coque est donn´e par l’expressio
W coq =
n
vcoq = v0
+ ⇠3(v1
⌧1 + v2
⌧2) ; v0
2 H1
(!0
coq), v1
, v2
2 H1
(!
106
[Rateau	
  et	
  al.	
  2003]	
  
[McCune	
  et	
  al.	
  2000]	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Introduc$on	
  
•  Automa$c	
  coupling	
  
§  Problem	
  statement	
  
§  IGA	
  
§  Discrete	
  coupling	
  strategy	
  
•  Numerical	
  examples	
  
•  Conclusion	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
	
  	
  
§  Kinema$cs:	
  
§  Equilibrium:	
  
§  Cons$tu$ve	
  rela$on:	
  
§  Primal	
  vibra$onal	
  formula$on:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Problem	
  statement:	
  uncoupled	
  solid	
  
Figure 2: Coupling of a two dimensional solid and a beam.
as
(us
, us?
) :=
Z
⌦s
✏(u) : Cs
: ✏(us?
) d⌦ = ls
(us?
)
KA0	
  
Z
⌦s
s
: ✏s
(us?
) d⌦ =
Z
⌦s
b · us?
d⌦ +
Z
t
¯t · us?
d
s
= Cs
: ✏s
in ⌦s
✏s
=
1
2
(rus
+ rT
us
)
us
= ¯u on s
u
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
	
  	
  
§  Kinema$cs:	
  
	
  
	
  
§  Equilibrium:	
  
§  Cons$tu$ve	
  rela$on:	
  
§  Primal	
  VF:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Problem	
  statement:	
  uncoupled	
  beam	
  
Figure 2: Coupling of a two dimensional solid and a beam.
Z
⌦b
✓
N
M
◆
·
✓
v?
,¯x
w?
,¯x¯x
◆
dl =
Z
⌦b
0
@
¯p,¯x
¯p,¯y
¯m
1
A ·
0
@
v?
w?
w?
,¯x
1
A dl +
X
P 2Pntm
0
@
¯N
¯T
¯M
1
A
|P
·
0
@
v?
w?
w?
,¯x
1
A
|P
✓
N
M
◆
=
✓
ES 0
0 EI
◆ ✓
v,¯x
w,¯x¯x
◆
in ⌦b
v = ¯v on b
v
w = ¯w on b
w
w,¯x = ¯✓ on b
✓
ab
(⇥, ⇥b?
) :=
Z
⌦b
✓
v?
,¯x
w?
,¯x¯x
◆T ✓
ES 0
0 EI
◆
·
✓
v,¯x
w,¯x¯x
◆
dl = lb
(⇥b?
)
KA0	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Solid:	
  
•  EB-­‐Beam,	
  use	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  test	
  and	
  trial	
  in	
  2D	
  VF	
  
	
  
	
  
	
  
	
  
Primal	
  coupling	
  (strong/weak)	
  
as
(us
, us?
) = ls
(us?
) +
Z
?
us?
· ( s
(us
) · ns
) d
ab
(⇥b
, ⇥b?
) = lb
(⇥b?
) +
Z
?
ub
(⇥b?
) · ( b
(⇥b
) · nb
) d
ub
(⇥b
) =
✓
v w,¯x ¯y
w
◆
¯R
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Solid:	
  
•  EB-­‐Beam,	
  use	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  test	
  and	
  trial	
  in	
  2D	
  VF	
  
	
  
	
  
•  Primal	
  coupling	
  
§  Kinema$cs:	
  
	
  
- For	
  us:	
  
§  V.	
  Work	
  equality	
  for	
  any	
  KA	
  field:	
  
	
  
	
  
Primal	
  coupling	
  (strong/weak)	
  
as
(us
, us?
) = ls
(us?
) +
Z
?
us?
· ( s
(us
) · ns
) d
ab
(⇥b
, ⇥b?
) = lb
(⇥b?
) +
Z
?
ub
(⇥b?
) · ( b
(⇥b
) · nb
) d
Choice	
  for	
  space?	
  
For	
  us	
  
Z
?
ub?
· ( s
(us
) · ns b
(⇥b
) · ns
) d = 0
ub
(⇥b
) =
✓
v w,¯x ¯y
w
◆
¯R
Figure 2: Coupling of a two dimensional solid and a beam.
Z
?
us
ub
(⇥) · ?
d
us
= ub
(⇥)
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Introduc$on	
  
•  Automa$c	
  coupling	
  
§  Problem	
  statement	
  
§  IGA	
  
§  Discrete	
  coupling	
  strategy	
  
•  Numerical	
  examples	
  
•  Conclusion	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  B-­‐splines	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  Descrip$on	
  of	
  geometry	
  by	
  B-­‐splines	
  
00.10.20.
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
0.05
N3,3(ξ)
M3,3(η)
Figure 4: A bivariate cubic B-spline basis function with knots vectors Ξ = H = {0, 0, 0, 0, 0.25, 0.5
ξ
η
x
y
z
(ξ, η)
0, 0, 0
0,0,0
1, 1, 1
1,1,1
0.5
0.5
Figure 5: A bi-quadratic B-spline surface (left) and the corresponding parameter space (right).
Ξ = H = {0, 0, 0, 0.5, 1, 1, 1}. The 4 × 4 control points are denoted by red filled circles.
12
⌅ = {⇠1, ⇠2, . . . , ⇠n+p+1}
x(⇠) =
nX
i
Ni,p(⇠) Bi
x(⇠, ⌘) =
nX
i
mX
j
Ni,p(⇠)Mj,p(⌘) Bij
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  IsoGeometric	
  Analysis	
  (IGA)	
  
−0.5 0 0.5 1
−0.5
0
0.5
1
1.5
00.511.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.1
0.2
ariate cubic B-spline basis function with knots vectors Ξ = H = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}.
ξ
η
x
y
z
(ξ, η)
0, 0, 0
0,0,0
1, 1, 1
1,1,1
0.5
0.5
uadratic B-spline surface (left) and the corresponding parameter space (right). Knot vectors are
0.5, 1, 1, 1}. The 4 × 4 control points are denoted by red filled circles.
12
⌅1
= {0, 0, 0, 0.5, 1, 1, 1}
⌅2
={0,0,0,0.5,1,1,1}
N2,3(⇠)
u(x(⇠, ⌘)) =
X
i
X
j
Ni,p(⇠)Mj,p(⌫)Uij
1
1
1
1 ¯⇠
ˆ⌦1 ˆ⌦2
ˆ⌦3 ˆ⌦4
¯⌘
⌘
⇠
0 0.5 1
1
0.5
Parametric	
  
domain	
  
Physical	
  
domain	
  
Parent	
  domain	
  
(integra$on)	
  
x(⇠, ⌘) =
nX
i
mX
j
Ni,p(⇠)Mj,p(⌘) Bij M2,2(⌘)
(⇠, ⌘)|ˆ⌦i = ˜((¯⇠, ¯⌘))
References:	
  
[Kagan	
  et	
  al.	
  1998,	
  Cirak	
  et	
  al.	
  2000,	
  	
  
Hughes	
  et	
  al.	
  2005,	
  Cofrell	
  et	
  al.	
  2009]	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Introduc$on	
  
•  Automa$c	
  coupling	
  
§  Problem	
  statement	
  and	
  reference	
  
§  IGA	
  
§  Discrete	
  coupling	
  strategy	
  
•  Numerical	
  examples	
  
•  Conclusion	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Penalty	
  formula$on	
  
§  	
  	
  
Mortaring	
  non-­‐conforming	
  discrete	
  spaces	
  
JXK = Xs
Xb
us
= ub
(⇥)
In	
  discrete	
  space,	
  poten$ally	
  discon$nuous	
  
a ⌘ as
+ ab
u ⌘ (us
, ⇥b
)ap
(uh
, u?
) =: a(uh
, u?
) + ↵
Z
?
Juh
K · Ju?
K d = l(u?
)
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Penalty	
  formula$on	
  
§  	
  	
  
§  Lack	
  of	
  consistency:	
  
Mortaring	
  non-­‐conforming	
  discrete	
  spaces	
  
JXK = Xs
Xb
hXi = Xs
+ (1 )Xb
us
= ub
(⇥)
In	
  discrete	
  space,	
  poten$ally	
  discon$nuous	
  
J( · ns
) · u?
K = J · ns
K · hu?
i + Ju?
K h · ns
i
a ⌘ as
+ ab
u ⌘ (us
, ⇥b
)
=
1
2
ap
(uex
, u?
) l(u?
) =
Z
?
J (uex
) · ns
· u?
K 6= 0
ap
(uh
, u?
) =: a(uh
, u?
) + ↵
Z
?
Juh
K · Ju?
K d = l(u?
)
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Penalty	
  formula$on	
  
§  	
  	
  
§  Lack	
  of	
  consistency:	
  
§  Nitsche	
  method:	
  add	
  	
  	
  	
  	
  	
  	
  to	
  penalty	
  formula$on	
  and	
  symmetrise	
  
Mortaring	
  non-­‐conforming	
  discrete	
  spaces	
  
JXK = Xs
Xb
hXi = Xs
+ (1 )Xb
us
= ub
(⇥)
In	
  discrete	
  space,	
  poten$ally	
  discon$nuous	
  
an
(uh
, u?
) = a(uh
, u?
)
Z
?
Ju?
K
⌦
(uh
) · ns
↵
d
Z
?
Juh
K h (u?
) · ns
i d + ↵
Z
?
Juh
K · Ju?
K d = l(u?
)
J( · ns
) · u?
K = J · ns
K · hu?
i + Ju?
K h · ns
i```
a ⌘ as
+ ab
u ⌘ (us
, ⇥b
)
=
1
2
ap
(uex
, u?
) l(u?
) =
Z
?
J (uex
) · ns
· u?
K 6= 0
ap
(uh
, u?
) =: a(uh
, u?
) + ↵
Z
?
Juh
K · Ju?
K d = l(u?
)
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Penalty	
  formula$on	
  
§  	
  	
  
§  Lack	
  of	
  consistency:	
  
§  Nitsche	
  method:	
  add	
  	
  	
  	
  	
  	
  	
  to	
  penalty	
  formula$on	
  and	
  symmetrise	
  
Mortaring	
  non-­‐conforming	
  discrete	
  spaces	
  
JXK = Xs
Xb
hXi = Xs
+ (1 )Xb
us
= ub
(⇥)
In	
  discrete	
  space,	
  poten$ally	
  discon$nuous	
  
an
(uh
, u?
) = a(uh
, u?
)
Z
?
Ju?
K
⌦
(uh
) · ns
↵
d
Z
?
Juh
K h (u?
) · ns
i d + ↵
Z
?
Juh
K · Ju?
K d = l(u?
)
J( · ns
) · u?
K = J · ns
K · hu?
i + Ju?
K h · ns
i
J( · ns
) · u?
K = J · ns
K · (I ⇧b
) hu?
i + Ju?
K h · ns
i
```
a ⌘ as
+ ab
u ⌘ (us
, ⇥b
)
=
1
2
ap
(uex
, u?
) l(u?
) =
Z
?
J (uex
) · ns
· u?
K 6= 0
ap
(uh
, u?
) =: a(uh
, u?
) + ↵
Z
?
Juh
K · Ju?
K d = l(u?
)
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Coercivity:	
  	
  
Stability	
  
an
(uh
, u?
) = a(uh
, u?
)
Z
?
Ju?
K
⌦
(uh
) · ns
↵
d
Z
?
Juh
K h (u?
) · ns
i d + ↵
Z
?
Juh
K · Ju?
K d = l(u?
)
˜t(u) := (us
) + (ub
) · ns
in	
  discrete	
  space,	
  poten$ally	
  discon$nuous	
  
Related work:
[Griebel et al. 2002,
Dolbow et al. 2009]
an
(u, u) = a(u, u) + ↵
Z
?
JuK · JuK d
Z
?
JuK · ˜t(u) d
an
(u, u) Cc
kuk2
X
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Coercivity:	
  
§  Parallelogram	
  ineq.	
  :	
  
§  ``Trace	
  inequality”	
  (assump$on)	
  
→  	
  	
  
Stability	
  
an
(uh
, u?
) = a(uh
, u?
)
Z
?
Ju?
K
⌦
(uh
) · ns
↵
d
Z
?
Juh
K h (u?
) · ns
i d + ↵
Z
?
Juh
K · Ju?
K d = l(u?
)
˜t(u) := (us
) + (ub
) · ns
k˜t(u)k2
?  C2
a(u, u)
an
(u, u)
✓
1
C2
✏
2
◆
a(u, u) +
✓
↵
1
2✏
◆
kJuKk2
?
in	
  discrete	
  space,	
  poten$ally	
  discon$nuous	
  
✏ =
1
C2
) ↵ >
C2
2
Related work:
[Griebel et al. 2002,
Dolbow et al. 2009]
an
(u, u) a(u, u) + ↵kJuKk2
?
✓
1
2✏
kJuKk2
? +
✏
2
k˜t(u)k2
?
◆
an
(u, u) = a(u, u) + ↵
Z
?
JuK · JuK d
Z
?
JuK · ˜t(u) d
an
(u, u) Cc
kuk2
X
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Solve	
  numerically	
  for	
  regularisa$on	
  parameter	
  s.	
  t.	
  
→  	
  	
  
→  	
  	
  	
  
Eigenvalue	
  problem	
  for	
  regularisa$on	
  parameter	
  
↵ >
1
2
Kuncoupled 1
H
a(u, u) = [u]T
Kuncoupled
[u]
k˜t(u)k2
? =
Z
?
( (us
) + (ub
)) · ns
· ( (us
) + (ub
)) · ns
d = [u]T
H [u]
1
largest	
  eigenvalue	
  of	
  
Related work:
[Griebel et al. 2002,
Dolbow et al. 2009]
k˜t(u)k2
? < 2↵ a(u, u)
References on embedded interfaces and implicit boundaries using Nitsche [Hansbo et al. 2002,
Dolbow et al. 2009, Sanders et al. 2011, Burman et al. 2012, Chouly et al. 2013]
1
2
[u]T
H [u]
[u]T Kuncoupled [u]
< ↵
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
•  Introduc$on	
  
•  Automa$c	
  coupling	
  
§  Problem	
  statement	
  and	
  reference	
  
§  IGA	
  
§  Discrete	
  coupling	
  strategy	
  
•  Numerical	
  examples	
  
•  Conclusion	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  Examples	
  
ux(x, y) =
Py
6EI

(6L 3x)x + (2 + ⌫)
✓
y2 D2
4
◆
uy(x, y) =
P
6EI

3⌫y2
(L x) + (4 + 5⌫)
D2
x
4
+ (3L x)x2
(88)
tresses are
xx(x, y) =
P(L x)y
I
; yy(x, y) = 0, xy(x, y) =
P
2I
✓
D2
4
y2
◆
(89)
tions, material properties are taken as E = 3.0 ⇥ 107
, ⌫ = 0.3 and the beam dimensions are D = 6 and
hear force is P = 1000. Units are deliberately left out here, given that they can be consistently chosen
In order to model the clamping condition, the displacement defined by Equation (88) is prescribed as
ary conditions at x = 0, D/2  y  D/2. This problem is solved with bilinear Lagrange elements (Q4
high order B-splines elements. The former helps to verify the implementation in addition to the ease of
Dirichlet boundary conditions (BCs). For the latter, care must be taken in enforcing the Dirichlet BCs
on (88) since the B-spline basis functions are not interpolatory.
Figure 13: Timoshenko beam: problem description.
continuum-beam model is given in Fig. 14. The end shear force applied to the right end point is F = P.
Figure 14: Timoshenko beam: mixed continuum-beam model.
ments In the first calculation we take lc = L/2 and a mesh of 40 ⇥ 10 Q4 elements (40 elements in the
n) was used for the continuum part and 29 two-noded elements for the beam part. The stabilisation
enforcement of Dirichlet boundary conditions (BCs). For the latter, care must be taken in enforcing the Dirich
given in Equation (88) since the B-spline basis functions are not interpolatory.
Figure 13: Timoshenko beam: problem description.
The mixed continuum-beam model is given in Fig. 14. The end shear force applied to the right end point is
Figure 14: Timoshenko beam: mixed continuum-beam model.
Lagrange elements In the first calculation we take lc = L/2 and a mesh of 40 ⇥ 10 Q4 elements (40 element
length direction) was used for the continuum part and 29 two-noded elements for the beam part. The stab
26
Analy$cal	
  solu$on	
  available	
  
?
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
parameter ↵ according to Equation (55) was 4.7128 ⇥ 107
. Fig. 15a plots the transverse displacement (taken as nodal
values) along the beam length at y = 0 together with the exact solution given in Equation (88). An excellent agreement
with the exact solution can be observed and this verified the implementation. The comparison of the numerical stress
field and the exact stress field is given in Fig. 15b with less satisfaction. While the bending stress xx is well estimated,
the shear stress xy is not well predicted in proximity to the coupling interface. This phenomenon was also observed
in the framework of Arlequin method [64] and in the context of MPC method [38]. Explanation of this phenomenon
will be given subsequently.
0 10 20 30 40 50
−0.07
−0.06
−0.05
−0.04
−0.03
−0.02
−0.01
0
x
w
exact
coupling
(a) transverse displacement
0 5 10 15 20 25
−400
−200
0
200
400
600
800
x
stressesalongy=0.3
sigmaxx−exact
sigmaxx−coupling
sigmaxy−exact
sigmaxy−coupling
(b) stresses
Figure 15: Mixed dimensional analysis of the Timoshenko beam: comparison of numerical solution and exact solution.
Q4	
  elements	
   2-­‐noded	
  cubic	
  elements	
  
Deflec$on	
  of	
  neutral	
  axis	
   Stress	
  profile	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
32x4	
  bi-­‐cubic	
  B-­‐spline	
  elements	
  
8	
  cubic	
  B-­‐spline	
  elements	
  	
  
(patch	
  extends	
  throughout	
  	
  
the	
  2D	
  domain)	
  
shenko beam: non-conforming coupling
ction, a non-conforming coupling is considered. The B-spline mesh is given in Fig. 21. Refined meshes are
m this one via the knot span subdivision technique. We use the mesh consisting of 32 ⇥ 4 cubic continuum
d 8 cubic beam elements. Fig. 22 gives the mesh and the displacement field in which lc = 29.97 so that
interface is very close to the beam element boundary. A good solution was obtained using the simple
scribed in Section 5.
Mixed dimensional analysis of the Timoshenko beam with non-conforming coupling. The continuum part
y 8 ⇥ 2 bi-cubic B-splines and the beam part is with 8 cubic elements.
−0.06
−0.05
−0.04
−0.03
−0.02
−0.01
0
0.01
w
exact
continuum
beam
orming coupling
g coupling is considered. The B-spline mesh is given in Fig. 21. Refined meshes are
span subdivision technique. We use the mesh consisting of 32 ⇥ 4 cubic continuum
ts. Fig. 22 gives the mesh and the displacement field in which lc = 29.97 so that
to the beam element boundary. A good solution was obtained using the simple
ysis of the Timoshenko beam with non-conforming coupling. The continuum part
es and the beam part is with 8 cubic elements.
0 10 20 30 40 50
−0.07
−0.06
−0.05
−0.04
−0.03
−0.02
−0.01
0
0.01
x
w
exact
continuum
beam
(b) displacement field
ysis of the Timoshenko beam with non-conforming coupling: (a) 32 ⇥ 4 Q4 elements
ts and (b) displacement field.
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
dofs. The total number of dofs of the continuum-beam model is only 5400. The stabilisation parameter is taken to be
↵ = 107
and used for both coupling interfaces. A comparison of xy contour plot obtained with (1) and (2) is given in
Fig. 25. A good agreement was obtained.
Figure 23: A plane frame analysis: problem description.
Remark 6.1. Although the processing time of the solid-beam model is much less than the one of the solid model, one
cannot simply conclude that the solid-beam model is more e cient. The pre-processing of the solid-beam model, if not
automatic, can be time consuming such that the gain in the processing step is lost. For non-linear analyses, where the
processing time is dominant, we believe that mixed dimensional analysis is very economics.
6.2. Continuum-plate coupling
6.2.1. Cantilever plate: conforming coupling
For verification of the continuum-plate coupling, we consider the 3D cantilever beam given in Fig. 26. The material
properties are E = 1000 N/mm2
, ⌫ = 0.3. The end shear traction is ¯t = 10 N/mm in case of continuum-plate model
and is ¯t = 10/20 N/mm2
in case of continuum model which is referred to as the reference model. We use B-splines
elements to solve both the MDA and the reference model. The length of the continuum part in the continuum-plate
model is L/2 = 160 mm. A mesh of 64 ⇥ 4 ⇥ 5 tri-cubic elements is utilized for the reference model and a mesh of
32 ⇥ 4 ⇥ 5/ 16 ⇥ 2 cubic elements is utilized for the mixed dimensional model, cf. Fig. 27. The plate part of the
mixed dimensional model is discretised using the Reissner-Mindlin plate theory with three unknowns per node and the
Kirchho↵ plate theory with only one unknown per node. The stabilisation parameter was chosen empirically to be
5⇥103
. Note that the eigenvalue method described in Section 4.3 can be used to rigorously determine ↵. However since
it would be expensive for large problems, we are in favor of simpler but less rigorous rules to compute this parameter.
Fig. 28 shows a comparison of deformed shapes of the continuum model and the continuum-plate model and in Fig. 29,
the contour plot of the von Mises stress corresponding to various models is given.
31
Figure 24: A plane frame analysis: solid-beam model.
Figure 25: A plane frame analysis: comparison of xy contour plot obtained with solid model (left) a
model (right).
Figure 24: A plane frame analysis: solid-beam model.
xy(normalised)	
  
xy(normalised)	
  
Q4	
  elements	
  
Q4	
  elements	
  
Cubic	
  B-­‐spline	
  
elements	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
27: Cantilever beam subjects to an end shear force: typical B-spline discretisation.
r beam subjects to an end shear force: comparison of deformed shapes of the continuum model
•  3D/plate	
  coupling	
  (Kirchhoff)	
  
§	
  Figure 25: A plane frame analysis: comparison of xy contour plot obtained with solid mode
model (right).
Figure 26: Cantilever beam subjects to an end shear force: problem setup
32
27: Cantilever beam subjects to an end shear force: typical B-spline discretisation.
10.0 20.0 30.0 40.0 50.0
von Mises stress
0.429 51
(a) reference model
10.0 20.0 30.0 40.0
von Mises stress
5.17 48.6
(b) mixed dimensional model, Mindlin plate
10.0 20.0
von Mis
5.12
(c) mixed dimensional
10.0 20.0 30.0 40.0 50.0
von Mises stress
0.429 51
(a) reference model
10.0 20.0 30.0 40.0
von Mises stress
5.17 48.6
(b) mixed dimensional model, Mindlin plate
10.0 20.0 30.0 40.0
von Mises stress
5.12 48.6
(c) mixed dimensional model, Kirchho↵ plate
32x4x5	
  tri-­‐cubic	
  B-­‐spline	
  elements	
  
16x2	
  bi-­‐cubic	
  B-­‐spline	
  elements	
  
Full	
  3D	
  
MDA	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  ure 32: Square plate enriched by a solid. The highlighted elements are those plate elem
undaries. The plate is fully clamped ans subjected to a gravity force.
ments with some geometry entities is popular in XFEM, see e.g., [58]. Fig. 33 plots the de
the solid-plate model and the one obtained with a plate model. A good agreement can be o
w the flexibility of the non-conforming coupling, the solid part was moved slightly to the rig
figuration is given in Fig. 34. The same discretisation for the plate is used. This should ser
del adaptivity analyses to be presented in a forthcoming contribution.
ure 33: Square plate enriched by a solid: transverse displacement plot on deformed configur
ate enriched by a solid. The highlighted elements are those plate elements cut by the s
is fully clamped ans subjected to a gravity force.
eometry entities is popular in XFEM, see e.g., [58]. Fig. 33 plots the deformed configura
el and the one obtained with a plate model. A good agreement can be observed. In orde
the non-conforming coupling, the solid part was moved slightly to the right and the defor
in Fig. 34. The same discretisation for the plate is used. This should serve as a prototype
yses to be presented in a forthcoming contribution.
te enriched by a solid: transverse displacement plot on deformed configurations of plate m
Figure 32: Square plate enriched by a solid. The highlighted elements are those plate elements cut by the solid
boundaries. The plate is fully clamped ans subjected to a gravity force.
elements with some geometry entities is popular in XFEM, see e.g., [58]. Fig. 33 plots the deformed configuration
of the solid-plate model and the one obtained with a plate model. A good agreement can be observed. In order to
show the flexibility of the non-conforming coupling, the solid part was moved slightly to the right and the deformed
configuration is given in Fig. 34. The same discretisation for the plate is used. This should serve as a prototype for
model adaptivity analyses to be presented in a forthcoming contribution.
Load:	
  weight	
  
Fully	
  clamped	
  
Ins$tute	
  of	
  Mechanics	
  
&	
  Advanced	
  Materials	
  
	
  
•  Versa$le	
  coupling	
  for	
  mixed-­‐dimensional	
  analysis	
  with	
  non-­‐conforming	
  
discre$sa$ons	
  (IGA/FEM)	
  
•  Future	
  work	
  
§  Weighted	
  averages	
  in	
  the	
  Nitsche	
  Plate/3D	
  coupling	
  
§  Cheap	
  way	
  to	
  evaluate	
  the	
  lower	
  bound	
  on	
  the	
  regularisa$on	
  parameter	
  
§  Efficient	
  and	
  weakly	
  intrusive	
  local/global	
  solver	
  
§  Damage	
  in	
  solid	
  region	
  
Conclusion	
  

Mais conteúdo relacionado

Mais procurados

Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Mahdi Damghani
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresMahdi Damghani
 
Slip Line Field Method
Slip Line Field MethodSlip Line Field Method
Slip Line Field MethodSantosh Verma
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_methodMahdi Damghani
 
Curso de Analisis por elementos finitos
Curso de Analisis por elementos finitosCurso de Analisis por elementos finitos
Curso de Analisis por elementos finitosEnrique C.
 
Transient response of delaminated composite shell subjected to low velocity o...
Transient response of delaminated composite shell subjected to low velocity o...Transient response of delaminated composite shell subjected to low velocity o...
Transient response of delaminated composite shell subjected to low velocity o...University of Glasgow
 
Poster-CIVE-OTC-v1
Poster-CIVE-OTC-v1Poster-CIVE-OTC-v1
Poster-CIVE-OTC-v1ReZa Mousavi
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femOsama Mohammed Elmardi Suleiman
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)Sreekanth G
 
Serr calculation
Serr calculationSerr calculation
Serr calculationvlpham
 
Lec10 finite element_beam_structures 2
Lec10 finite element_beam_structures 2Lec10 finite element_beam_structures 2
Lec10 finite element_beam_structures 2Mahdi Damghani
 
Three dimensional static analysis of two dimensional functionally graded plates
Three dimensional static analysis of two dimensional functionally graded platesThree dimensional static analysis of two dimensional functionally graded plates
Three dimensional static analysis of two dimensional functionally graded platesrtme
 
Three dimensional static analysis of two dimensional functionally graded plates
Three dimensional static analysis of two dimensional functionally graded platesThree dimensional static analysis of two dimensional functionally graded plates
Three dimensional static analysis of two dimensional functionally graded platesijmech
 
Sd i-module2- rajesh sir
Sd i-module2- rajesh sirSd i-module2- rajesh sir
Sd i-module2- rajesh sirSHAMJITH KM
 
IRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
IRJET- 5th Order Shear Deformation Theory for Fixed Deep BeamIRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
IRJET- 5th Order Shear Deformation Theory for Fixed Deep BeamIRJET Journal
 

Mais procurados (20)

Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
 
Slip Line Field Method
Slip Line Field MethodSlip Line Field Method
Slip Line Field Method
 
Paper sanjay tiwari
Paper sanjay tiwariPaper sanjay tiwari
Paper sanjay tiwari
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_method
 
synopsis_divyesh
synopsis_divyeshsynopsis_divyesh
synopsis_divyesh
 
Curso de Analisis por elementos finitos
Curso de Analisis por elementos finitosCurso de Analisis por elementos finitos
Curso de Analisis por elementos finitos
 
Finite element analysis qb
Finite element analysis qbFinite element analysis qb
Finite element analysis qb
 
Transient response of delaminated composite shell subjected to low velocity o...
Transient response of delaminated composite shell subjected to low velocity o...Transient response of delaminated composite shell subjected to low velocity o...
Transient response of delaminated composite shell subjected to low velocity o...
 
Poster-CIVE-OTC-v1
Poster-CIVE-OTC-v1Poster-CIVE-OTC-v1
Poster-CIVE-OTC-v1
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using fem
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)
 
Serr calculation
Serr calculationSerr calculation
Serr calculation
 
Lec10 finite element_beam_structures 2
Lec10 finite element_beam_structures 2Lec10 finite element_beam_structures 2
Lec10 finite element_beam_structures 2
 
Matrix methods
Matrix methodsMatrix methods
Matrix methods
 
Three dimensional static analysis of two dimensional functionally graded plates
Three dimensional static analysis of two dimensional functionally graded platesThree dimensional static analysis of two dimensional functionally graded plates
Three dimensional static analysis of two dimensional functionally graded plates
 
Three dimensional static analysis of two dimensional functionally graded plates
Three dimensional static analysis of two dimensional functionally graded platesThree dimensional static analysis of two dimensional functionally graded plates
Three dimensional static analysis of two dimensional functionally graded plates
 
Sd i-module2- rajesh sir
Sd i-module2- rajesh sirSd i-module2- rajesh sir
Sd i-module2- rajesh sir
 
1 d analysis
1 d analysis1 d analysis
1 d analysis
 
IRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
IRJET- 5th Order Shear Deformation Theory for Fixed Deep BeamIRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
IRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
 

Destaque

Introduction to Fracture mechanics
Introduction to Fracture mechanicsIntroduction to Fracture mechanics
Introduction to Fracture mechanicsHarshal Patil
 
fracture mechanics presentation
fracture mechanics presentationfracture mechanics presentation
fracture mechanics presentationM Shahid Khan
 
Fracture mechanics of tree root breakage
Fracture mechanics of tree root breakageFracture mechanics of tree root breakage
Fracture mechanics of tree root breakageMauro Lanfranchi
 
Presentation For Fracture Mechanics
Presentation For Fracture MechanicsPresentation For Fracture Mechanics
Presentation For Fracture Mechanicsaswaghch
 
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinkaAdvances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinkaJulio Banks
 
engineering - fracture mechanics
engineering - fracture mechanicsengineering - fracture mechanics
engineering - fracture mechanicsAbbas Ameri
 
fracture and dislocation ppt . Almas khan. khorfakkhan hospital dubai
fracture and dislocation ppt . Almas khan. khorfakkhan hospital dubaifracture and dislocation ppt . Almas khan. khorfakkhan hospital dubai
fracture and dislocation ppt . Almas khan. khorfakkhan hospital dubaialmasmkm
 

Destaque (10)

Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
Introduction to Fracture mechanics
Introduction to Fracture mechanicsIntroduction to Fracture mechanics
Introduction to Fracture mechanics
 
fracture mechanics presentation
fracture mechanics presentationfracture mechanics presentation
fracture mechanics presentation
 
Fracture mechanics of tree root breakage
Fracture mechanics of tree root breakageFracture mechanics of tree root breakage
Fracture mechanics of tree root breakage
 
Master Report
Master ReportMaster Report
Master Report
 
Presentation For Fracture Mechanics
Presentation For Fracture MechanicsPresentation For Fracture Mechanics
Presentation For Fracture Mechanics
 
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinkaAdvances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
 
engineering - fracture mechanics
engineering - fracture mechanicsengineering - fracture mechanics
engineering - fracture mechanics
 
Dislocation
DislocationDislocation
Dislocation
 
fracture and dislocation ppt . Almas khan. khorfakkhan hospital dubai
fracture and dislocation ppt . Almas khan. khorfakkhan hospital dubaifracture and dislocation ppt . Almas khan. khorfakkhan hospital dubai
fracture and dislocation ppt . Almas khan. khorfakkhan hospital dubai
 

Semelhante a IGA Plates and 3D FEM Coupling via DG Method

Lecture 5.pdf
Lecture 5.pdfLecture 5.pdf
Lecture 5.pdfYesuf3
 
ACME2016-extendedAbstract
ACME2016-extendedAbstractACME2016-extendedAbstract
ACME2016-extendedAbstractZhaowei Liu
 
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALOmar Latifi
 
Composite_AirFrame_Structures_LeeCatherineRamsay_1103072R
Composite_AirFrame_Structures_LeeCatherineRamsay_1103072RComposite_AirFrame_Structures_LeeCatherineRamsay_1103072R
Composite_AirFrame_Structures_LeeCatherineRamsay_1103072RLee Ramsay
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Effect of lamination angle on maximum deflection of simply supported composit...
Effect of lamination angle on maximum deflection of simply supported composit...Effect of lamination angle on maximum deflection of simply supported composit...
Effect of lamination angle on maximum deflection of simply supported composit...RAVI KUMAR
 
Kunyang_Li_AAS2016
Kunyang_Li_AAS2016Kunyang_Li_AAS2016
Kunyang_Li_AAS2016KunYang Li
 
Finite Element Analysis of shear wall and pipe interestion problem
Finite Element Analysis of shear wall and pipe interestion problemFinite Element Analysis of shear wall and pipe interestion problem
Finite Element Analysis of shear wall and pipe interestion problemUniversity of Southern California
 
IRJET- Estimation of Boundary Shape using Inverse Method in a Functionally Gr...
IRJET- Estimation of Boundary Shape using Inverse Method in a Functionally Gr...IRJET- Estimation of Boundary Shape using Inverse Method in a Functionally Gr...
IRJET- Estimation of Boundary Shape using Inverse Method in a Functionally Gr...IRJET Journal
 
Comparative study of results obtained by analysis of structures using ANSYS, ...
Comparative study of results obtained by analysis of structures using ANSYS, ...Comparative study of results obtained by analysis of structures using ANSYS, ...
Comparative study of results obtained by analysis of structures using ANSYS, ...IOSR Journals
 
Presentation(11p)
Presentation(11p)Presentation(11p)
Presentation(11p)Shiqi Zhang
 
Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...Kingston Rivington
 
Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...Kingston Rivington
 
DRAFT MEng Final Report 14052571
DRAFT MEng Final Report 14052571DRAFT MEng Final Report 14052571
DRAFT MEng Final Report 14052571William Gaffney
 
2016 uhpc iowa_bi-lienar_v1
2016 uhpc iowa_bi-lienar_v12016 uhpc iowa_bi-lienar_v1
2016 uhpc iowa_bi-lienar_v1AsuSSEBENA
 
Transient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fanTransient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fanLahiru Dilshan
 

Semelhante a IGA Plates and 3D FEM Coupling via DG Method (20)

Lecture 5.pdf
Lecture 5.pdfLecture 5.pdf
Lecture 5.pdf
 
ACME2016-extendedAbstract
ACME2016-extendedAbstractACME2016-extendedAbstract
ACME2016-extendedAbstract
 
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
 
FEA Report
FEA ReportFEA Report
FEA Report
 
Composite_AirFrame_Structures_LeeCatherineRamsay_1103072R
Composite_AirFrame_Structures_LeeCatherineRamsay_1103072RComposite_AirFrame_Structures_LeeCatherineRamsay_1103072R
Composite_AirFrame_Structures_LeeCatherineRamsay_1103072R
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Microelectromechanical Assignment Help
Microelectromechanical Assignment HelpMicroelectromechanical Assignment Help
Microelectromechanical Assignment Help
 
Effect of lamination angle on maximum deflection of simply supported composit...
Effect of lamination angle on maximum deflection of simply supported composit...Effect of lamination angle on maximum deflection of simply supported composit...
Effect of lamination angle on maximum deflection of simply supported composit...
 
Kunyang_Li_AAS2016
Kunyang_Li_AAS2016Kunyang_Li_AAS2016
Kunyang_Li_AAS2016
 
Finite Element Analysis of shear wall and pipe interestion problem
Finite Element Analysis of shear wall and pipe interestion problemFinite Element Analysis of shear wall and pipe interestion problem
Finite Element Analysis of shear wall and pipe interestion problem
 
IRJET- Estimation of Boundary Shape using Inverse Method in a Functionally Gr...
IRJET- Estimation of Boundary Shape using Inverse Method in a Functionally Gr...IRJET- Estimation of Boundary Shape using Inverse Method in a Functionally Gr...
IRJET- Estimation of Boundary Shape using Inverse Method in a Functionally Gr...
 
Comparative study of results obtained by analysis of structures using ANSYS, ...
Comparative study of results obtained by analysis of structures using ANSYS, ...Comparative study of results obtained by analysis of structures using ANSYS, ...
Comparative study of results obtained by analysis of structures using ANSYS, ...
 
Cumbia theoryand userguide
Cumbia theoryand userguideCumbia theoryand userguide
Cumbia theoryand userguide
 
Presentation(11p)
Presentation(11p)Presentation(11p)
Presentation(11p)
 
Tetragonal ba tio3_v8
Tetragonal ba tio3_v8Tetragonal ba tio3_v8
Tetragonal ba tio3_v8
 
Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...
 
Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...
 
DRAFT MEng Final Report 14052571
DRAFT MEng Final Report 14052571DRAFT MEng Final Report 14052571
DRAFT MEng Final Report 14052571
 
2016 uhpc iowa_bi-lienar_v1
2016 uhpc iowa_bi-lienar_v12016 uhpc iowa_bi-lienar_v1
2016 uhpc iowa_bi-lienar_v1
 
Transient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fanTransient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fan
 

IGA Plates and 3D FEM Coupling via DG Method

  • 1. Ins$tute  of  Mechanics   &  Advanced  Materials   Coupling of IGA plates and 3D FEM domains by a Discontinuous Galerkin Method   V.P.  Nguyen1,  P.  Kerfriden1,  S.  Claus2,    S.P.-­‐A.  Bordas1   1School  of  Engineering,  Cardiff  University,  UK   2Department  of  Mathema$cs,  University  College  London,  UK  
  • 2. Ins$tute  of  Mechanics   &  Advanced  Materials  Aim:  local/global  analysis  of  thin  panels   http://www.supergen-wind.org.uk Stress  analysis  with   minimium  data  transfer   from  CAD  model   Hot-­‐spot  (stress   concentra$ons,  damage)  
  • 3. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Mixed-­‐dimensional  analysis:     §  use  shell/beam  descrip$ons,     homogenisa$on   §  Full  microscale  3D  in  “hot-­‐spots”   •  Isogeometric  analysis:  minimum     CAD  to  analysis  data  processing   •  Efficient    coupling  of     heterogeneous  models   /discre$sa$on   •  (efficient  local/global  solver)   •  (find  “hot-­‐spots”  with     goal-­‐oriented  model  adap$vity)   Building  blocks   Figure 30: Cantilever beam subjects to an end shear force: discretisation of the solid Figure 31: Cantilever beam subjects to an end shear force: von Mises stress di 6.2.3. Non-conforming coupling of a square plate We consider a square plate of dimension L ⇥ L ⇥ t (t denotes the thickness) in which there dimension Ls ⇥ Ls ⇥ t as shown in Fig. 32. In the computations, material properties are taken the geometry data are L = 400, t = 20 and Ls = 100. The loading is a gravity force p = 10 is fully clamped. The stabilisation parameter was chosen empirically to be 1 ⇥ 106 . We us NURBS plate elements for the plate and NURBS solid elements for the solid. In order to m [Nguyen  et  al.  2013]   6.2.2. Cantilever plate: non-conforming coupling A mesh of 32 ⇥ 4 ⇥ 5/ 32 ⇥ 2 cubic elements is utilized for the mixed dimensional model, cf. F the continuum part in the continuum-plate model is 175 mm. The contour plot of the von Mises s where void plate elements were removed in the visualisation. Figure 30: Cantilever beam subjects to an end shear force: discretisation of the solid an Figure 31: Cantilever beam subjects to an end shear force: von Mises stress distrib 6.2.3. Non-conforming coupling of a square plate We consider a square plate of dimension L ⇥ L ⇥ t (t denotes the thickness) in which there is a CAD  model   Analysis  mesh   IGA  /  plate   Solid  FE   ???  
  • 4. Ins$tute  of  Mechanics   &  Advanced  Materials   Figure 8. Stress contours in 3D–2D mixed-dimensional cantilever model loaded by a terminal shear force Fz. (2D contours illustrated relate to top surface of model). Abaqus C3D20R brick elements and S8R shell elements. Figure 9. Transverse shear stresses 13 ( xz) obtained by method of Reference [5]. Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:725–750 •  Reference  coupling   §  displacement-­‐recovery,     Stress-­‐recovery   §  Equality  of  work  provides   coupling  on  dual  quan$ty   •  Discrete  treatment     §  Mul$-­‐point  constraints  [Monaghan et al 1998, McCune et al. 2000, Shim et al. 2002, Song et al. 2012] §  Transi$on  elements  [Surana 1979, Cofer 1991, Gmur et al, 1993, Dohrmann et al. 1999, Wagner et al. 2000, Garusi et al. 2002, Chavan et al. 2004] §  Mortar  methods   -  Penalty  formula$ons  [Blanco et al. 2007] -  Lagrange  mul$plier-­‐based  mortar   [Rateau et al. 2003, Combescure et al. 2005] -  Hybrid  itera$ve  method  [Guguin et al. 2013] Some  coupling  methods   in some situations. 3 Finite element formulation Based on the above described kinematical assumptions the element is d node in the transition cross–section is called ’reference node’. Furtherm A2 and A3 define the orientation of the cross section. It is assumed th couple (’coupling nodes’) lie in this plane. The vectors A2 and A3 are section coordinates, see eq. (3). In the current configuration the base the beam element together with the convective coordinates (0, ξ2, ξ3) a define the coupling nodes. The mechanical model of the cross section can be considered as a sum allow only for axial deflections. The boundary conditions are clamped a and jointed at the coupling node, see Fig. 3. clamped bounded rigid beam, axial free hinged bounded Transition elements Fig. 3: Transition elements in a beam cross–section The implementation of the constraint equation (7) in a transition elem Penalty and the Augmented Lagrange Method. Furthermore a consi derived for the element with respect to finite rotations. The transition is Adapted  from     [Wagner  et  al.  2000]   lumique, qui occupent respectivement l’adh´erence des ouverts conn commodit´e, nous d´esignons par !coq la surface moyenne du premier sous-domaine correspondant de !0 . En outre, comme au §5.1.2.1, n voisinage de la condition d’encastrement est repr´esent´e par le mod`ele ωcoq ω3d sc Fig. 5.8 – Mod´elisation Arlequin Les relations de comportement sont celles des paragraphes 5.1.1.3 et 5. champs de d´eplacement cin´ematiquement admissibles du mod`ele trid par (5.17), tandis que celui du mod`ele coque est donn´e par l’expressio W coq = n vcoq = v0 + ⇠3(v1 ⌧1 + v2 ⌧2) ; v0 2 H1 (!0 coq), v1 , v2 2 H1 (! 106 [Rateau  et  al.  2003]   [McCune  et  al.  2000]  
  • 5. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Introduc$on   •  Automa$c  coupling   §  Problem  statement   §  IGA   §  Discrete  coupling  strategy   •  Numerical  examples   •  Conclusion  
  • 6. Ins$tute  of  Mechanics   &  Advanced  Materials       §  Kinema$cs:   §  Equilibrium:   §  Cons$tu$ve  rela$on:   §  Primal  vibra$onal  formula$on:                     Problem  statement:  uncoupled  solid   Figure 2: Coupling of a two dimensional solid and a beam. as (us , us? ) := Z ⌦s ✏(u) : Cs : ✏(us? ) d⌦ = ls (us? ) KA0   Z ⌦s s : ✏s (us? ) d⌦ = Z ⌦s b · us? d⌦ + Z t ¯t · us? d s = Cs : ✏s in ⌦s ✏s = 1 2 (rus + rT us ) us = ¯u on s u
  • 7. Ins$tute  of  Mechanics   &  Advanced  Materials       §  Kinema$cs:       §  Equilibrium:   §  Cons$tu$ve  rela$on:   §  Primal  VF:                     Problem  statement:  uncoupled  beam   Figure 2: Coupling of a two dimensional solid and a beam. Z ⌦b ✓ N M ◆ · ✓ v? ,¯x w? ,¯x¯x ◆ dl = Z ⌦b 0 @ ¯p,¯x ¯p,¯y ¯m 1 A · 0 @ v? w? w? ,¯x 1 A dl + X P 2Pntm 0 @ ¯N ¯T ¯M 1 A |P · 0 @ v? w? w? ,¯x 1 A |P ✓ N M ◆ = ✓ ES 0 0 EI ◆ ✓ v,¯x w,¯x¯x ◆ in ⌦b v = ¯v on b v w = ¯w on b w w,¯x = ¯✓ on b ✓ ab (⇥, ⇥b? ) := Z ⌦b ✓ v? ,¯x w? ,¯x¯x ◆T ✓ ES 0 0 EI ◆ · ✓ v,¯x w,¯x¯x ◆ dl = lb (⇥b? ) KA0  
  • 8. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Solid:   •  EB-­‐Beam,  use                                                                              as  test  and  trial  in  2D  VF           Primal  coupling  (strong/weak)   as (us , us? ) = ls (us? ) + Z ? us? · ( s (us ) · ns ) d ab (⇥b , ⇥b? ) = lb (⇥b? ) + Z ? ub (⇥b? ) · ( b (⇥b ) · nb ) d ub (⇥b ) = ✓ v w,¯x ¯y w ◆ ¯R
  • 9. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Solid:   •  EB-­‐Beam,  use                                                                              as  test  and  trial  in  2D  VF       •  Primal  coupling   §  Kinema$cs:     - For  us:   §  V.  Work  equality  for  any  KA  field:       Primal  coupling  (strong/weak)   as (us , us? ) = ls (us? ) + Z ? us? · ( s (us ) · ns ) d ab (⇥b , ⇥b? ) = lb (⇥b? ) + Z ? ub (⇥b? ) · ( b (⇥b ) · nb ) d Choice  for  space?   For  us   Z ? ub? · ( s (us ) · ns b (⇥b ) · ns ) d = 0 ub (⇥b ) = ✓ v w,¯x ¯y w ◆ ¯R Figure 2: Coupling of a two dimensional solid and a beam. Z ? us ub (⇥) · ? d us = ub (⇥)
  • 10. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Introduc$on   •  Automa$c  coupling   §  Problem  statement   §  IGA   §  Discrete  coupling  strategy   •  Numerical  examples   •  Conclusion  
  • 11. Ins$tute  of  Mechanics   &  Advanced  Materials  B-­‐splines  
  • 12. Ins$tute  of  Mechanics   &  Advanced  Materials  Descrip$on  of  geometry  by  B-­‐splines   00.10.20. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.05 N3,3(ξ) M3,3(η) Figure 4: A bivariate cubic B-spline basis function with knots vectors Ξ = H = {0, 0, 0, 0, 0.25, 0.5 ξ η x y z (ξ, η) 0, 0, 0 0,0,0 1, 1, 1 1,1,1 0.5 0.5 Figure 5: A bi-quadratic B-spline surface (left) and the corresponding parameter space (right). Ξ = H = {0, 0, 0, 0.5, 1, 1, 1}. The 4 × 4 control points are denoted by red filled circles. 12 ⌅ = {⇠1, ⇠2, . . . , ⇠n+p+1} x(⇠) = nX i Ni,p(⇠) Bi x(⇠, ⌘) = nX i mX j Ni,p(⇠)Mj,p(⌘) Bij
  • 13. Ins$tute  of  Mechanics   &  Advanced  Materials  IsoGeometric  Analysis  (IGA)   −0.5 0 0.5 1 −0.5 0 0.5 1 1.5 00.511.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 ariate cubic B-spline basis function with knots vectors Ξ = H = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}. ξ η x y z (ξ, η) 0, 0, 0 0,0,0 1, 1, 1 1,1,1 0.5 0.5 uadratic B-spline surface (left) and the corresponding parameter space (right). Knot vectors are 0.5, 1, 1, 1}. The 4 × 4 control points are denoted by red filled circles. 12 ⌅1 = {0, 0, 0, 0.5, 1, 1, 1} ⌅2 ={0,0,0,0.5,1,1,1} N2,3(⇠) u(x(⇠, ⌘)) = X i X j Ni,p(⇠)Mj,p(⌫)Uij 1 1 1 1 ¯⇠ ˆ⌦1 ˆ⌦2 ˆ⌦3 ˆ⌦4 ¯⌘ ⌘ ⇠ 0 0.5 1 1 0.5 Parametric   domain   Physical   domain   Parent  domain   (integra$on)   x(⇠, ⌘) = nX i mX j Ni,p(⇠)Mj,p(⌘) Bij M2,2(⌘) (⇠, ⌘)|ˆ⌦i = ˜((¯⇠, ¯⌘)) References:   [Kagan  et  al.  1998,  Cirak  et  al.  2000,     Hughes  et  al.  2005,  Cofrell  et  al.  2009]  
  • 14. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Introduc$on   •  Automa$c  coupling   §  Problem  statement  and  reference   §  IGA   §  Discrete  coupling  strategy   •  Numerical  examples   •  Conclusion  
  • 15. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Penalty  formula$on   §      Mortaring  non-­‐conforming  discrete  spaces   JXK = Xs Xb us = ub (⇥) In  discrete  space,  poten$ally  discon$nuous   a ⌘ as + ab u ⌘ (us , ⇥b )ap (uh , u? ) =: a(uh , u? ) + ↵ Z ? Juh K · Ju? K d = l(u? )
  • 16. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Penalty  formula$on   §      §  Lack  of  consistency:   Mortaring  non-­‐conforming  discrete  spaces   JXK = Xs Xb hXi = Xs + (1 )Xb us = ub (⇥) In  discrete  space,  poten$ally  discon$nuous   J( · ns ) · u? K = J · ns K · hu? i + Ju? K h · ns i a ⌘ as + ab u ⌘ (us , ⇥b ) = 1 2 ap (uex , u? ) l(u? ) = Z ? J (uex ) · ns · u? K 6= 0 ap (uh , u? ) =: a(uh , u? ) + ↵ Z ? Juh K · Ju? K d = l(u? )
  • 17. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Penalty  formula$on   §      §  Lack  of  consistency:   §  Nitsche  method:  add              to  penalty  formula$on  and  symmetrise   Mortaring  non-­‐conforming  discrete  spaces   JXK = Xs Xb hXi = Xs + (1 )Xb us = ub (⇥) In  discrete  space,  poten$ally  discon$nuous   an (uh , u? ) = a(uh , u? ) Z ? Ju? K ⌦ (uh ) · ns ↵ d Z ? Juh K h (u? ) · ns i d + ↵ Z ? Juh K · Ju? K d = l(u? ) J( · ns ) · u? K = J · ns K · hu? i + Ju? K h · ns i``` a ⌘ as + ab u ⌘ (us , ⇥b ) = 1 2 ap (uex , u? ) l(u? ) = Z ? J (uex ) · ns · u? K 6= 0 ap (uh , u? ) =: a(uh , u? ) + ↵ Z ? Juh K · Ju? K d = l(u? )
  • 18. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Penalty  formula$on   §      §  Lack  of  consistency:   §  Nitsche  method:  add              to  penalty  formula$on  and  symmetrise   Mortaring  non-­‐conforming  discrete  spaces   JXK = Xs Xb hXi = Xs + (1 )Xb us = ub (⇥) In  discrete  space,  poten$ally  discon$nuous   an (uh , u? ) = a(uh , u? ) Z ? Ju? K ⌦ (uh ) · ns ↵ d Z ? Juh K h (u? ) · ns i d + ↵ Z ? Juh K · Ju? K d = l(u? ) J( · ns ) · u? K = J · ns K · hu? i + Ju? K h · ns i J( · ns ) · u? K = J · ns K · (I ⇧b ) hu? i + Ju? K h · ns i ``` a ⌘ as + ab u ⌘ (us , ⇥b ) = 1 2 ap (uex , u? ) l(u? ) = Z ? J (uex ) · ns · u? K 6= 0 ap (uh , u? ) =: a(uh , u? ) + ↵ Z ? Juh K · Ju? K d = l(u? )
  • 19. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Coercivity:     Stability   an (uh , u? ) = a(uh , u? ) Z ? Ju? K ⌦ (uh ) · ns ↵ d Z ? Juh K h (u? ) · ns i d + ↵ Z ? Juh K · Ju? K d = l(u? ) ˜t(u) := (us ) + (ub ) · ns in  discrete  space,  poten$ally  discon$nuous   Related work: [Griebel et al. 2002, Dolbow et al. 2009] an (u, u) = a(u, u) + ↵ Z ? JuK · JuK d Z ? JuK · ˜t(u) d an (u, u) Cc kuk2 X
  • 20. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Coercivity:   §  Parallelogram  ineq.  :   §  ``Trace  inequality”  (assump$on)   →      Stability   an (uh , u? ) = a(uh , u? ) Z ? Ju? K ⌦ (uh ) · ns ↵ d Z ? Juh K h (u? ) · ns i d + ↵ Z ? Juh K · Ju? K d = l(u? ) ˜t(u) := (us ) + (ub ) · ns k˜t(u)k2 ?  C2 a(u, u) an (u, u) ✓ 1 C2 ✏ 2 ◆ a(u, u) + ✓ ↵ 1 2✏ ◆ kJuKk2 ? in  discrete  space,  poten$ally  discon$nuous   ✏ = 1 C2 ) ↵ > C2 2 Related work: [Griebel et al. 2002, Dolbow et al. 2009] an (u, u) a(u, u) + ↵kJuKk2 ? ✓ 1 2✏ kJuKk2 ? + ✏ 2 k˜t(u)k2 ? ◆ an (u, u) = a(u, u) + ↵ Z ? JuK · JuK d Z ? JuK · ˜t(u) d an (u, u) Cc kuk2 X
  • 21. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Solve  numerically  for  regularisa$on  parameter  s.  t.   →      →        Eigenvalue  problem  for  regularisa$on  parameter   ↵ > 1 2 Kuncoupled 1 H a(u, u) = [u]T Kuncoupled [u] k˜t(u)k2 ? = Z ? ( (us ) + (ub )) · ns · ( (us ) + (ub )) · ns d = [u]T H [u] 1 largest  eigenvalue  of   Related work: [Griebel et al. 2002, Dolbow et al. 2009] k˜t(u)k2 ? < 2↵ a(u, u) References on embedded interfaces and implicit boundaries using Nitsche [Hansbo et al. 2002, Dolbow et al. 2009, Sanders et al. 2011, Burman et al. 2012, Chouly et al. 2013] 1 2 [u]T H [u] [u]T Kuncoupled [u] < ↵
  • 22. Ins$tute  of  Mechanics   &  Advanced  Materials   •  Introduc$on   •  Automa$c  coupling   §  Problem  statement  and  reference   §  IGA   §  Discrete  coupling  strategy   •  Numerical  examples   •  Conclusion  
  • 23. Ins$tute  of  Mechanics   &  Advanced  Materials  Examples   ux(x, y) = Py 6EI  (6L 3x)x + (2 + ⌫) ✓ y2 D2 4 ◆ uy(x, y) = P 6EI  3⌫y2 (L x) + (4 + 5⌫) D2 x 4 + (3L x)x2 (88) tresses are xx(x, y) = P(L x)y I ; yy(x, y) = 0, xy(x, y) = P 2I ✓ D2 4 y2 ◆ (89) tions, material properties are taken as E = 3.0 ⇥ 107 , ⌫ = 0.3 and the beam dimensions are D = 6 and hear force is P = 1000. Units are deliberately left out here, given that they can be consistently chosen In order to model the clamping condition, the displacement defined by Equation (88) is prescribed as ary conditions at x = 0, D/2  y  D/2. This problem is solved with bilinear Lagrange elements (Q4 high order B-splines elements. The former helps to verify the implementation in addition to the ease of Dirichlet boundary conditions (BCs). For the latter, care must be taken in enforcing the Dirichlet BCs on (88) since the B-spline basis functions are not interpolatory. Figure 13: Timoshenko beam: problem description. continuum-beam model is given in Fig. 14. The end shear force applied to the right end point is F = P. Figure 14: Timoshenko beam: mixed continuum-beam model. ments In the first calculation we take lc = L/2 and a mesh of 40 ⇥ 10 Q4 elements (40 elements in the n) was used for the continuum part and 29 two-noded elements for the beam part. The stabilisation enforcement of Dirichlet boundary conditions (BCs). For the latter, care must be taken in enforcing the Dirich given in Equation (88) since the B-spline basis functions are not interpolatory. Figure 13: Timoshenko beam: problem description. The mixed continuum-beam model is given in Fig. 14. The end shear force applied to the right end point is Figure 14: Timoshenko beam: mixed continuum-beam model. Lagrange elements In the first calculation we take lc = L/2 and a mesh of 40 ⇥ 10 Q4 elements (40 element length direction) was used for the continuum part and 29 two-noded elements for the beam part. The stab 26 Analy$cal  solu$on  available   ?
  • 24. Ins$tute  of  Mechanics   &  Advanced  Materials   parameter ↵ according to Equation (55) was 4.7128 ⇥ 107 . Fig. 15a plots the transverse displacement (taken as nodal values) along the beam length at y = 0 together with the exact solution given in Equation (88). An excellent agreement with the exact solution can be observed and this verified the implementation. The comparison of the numerical stress field and the exact stress field is given in Fig. 15b with less satisfaction. While the bending stress xx is well estimated, the shear stress xy is not well predicted in proximity to the coupling interface. This phenomenon was also observed in the framework of Arlequin method [64] and in the context of MPC method [38]. Explanation of this phenomenon will be given subsequently. 0 10 20 30 40 50 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 x w exact coupling (a) transverse displacement 0 5 10 15 20 25 −400 −200 0 200 400 600 800 x stressesalongy=0.3 sigmaxx−exact sigmaxx−coupling sigmaxy−exact sigmaxy−coupling (b) stresses Figure 15: Mixed dimensional analysis of the Timoshenko beam: comparison of numerical solution and exact solution. Q4  elements   2-­‐noded  cubic  elements   Deflec$on  of  neutral  axis   Stress  profile  
  • 25. Ins$tute  of  Mechanics   &  Advanced  Materials   32x4  bi-­‐cubic  B-­‐spline  elements   8  cubic  B-­‐spline  elements     (patch  extends  throughout     the  2D  domain)   shenko beam: non-conforming coupling ction, a non-conforming coupling is considered. The B-spline mesh is given in Fig. 21. Refined meshes are m this one via the knot span subdivision technique. We use the mesh consisting of 32 ⇥ 4 cubic continuum d 8 cubic beam elements. Fig. 22 gives the mesh and the displacement field in which lc = 29.97 so that interface is very close to the beam element boundary. A good solution was obtained using the simple scribed in Section 5. Mixed dimensional analysis of the Timoshenko beam with non-conforming coupling. The continuum part y 8 ⇥ 2 bi-cubic B-splines and the beam part is with 8 cubic elements. −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 w exact continuum beam orming coupling g coupling is considered. The B-spline mesh is given in Fig. 21. Refined meshes are span subdivision technique. We use the mesh consisting of 32 ⇥ 4 cubic continuum ts. Fig. 22 gives the mesh and the displacement field in which lc = 29.97 so that to the beam element boundary. A good solution was obtained using the simple ysis of the Timoshenko beam with non-conforming coupling. The continuum part es and the beam part is with 8 cubic elements. 0 10 20 30 40 50 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 x w exact continuum beam (b) displacement field ysis of the Timoshenko beam with non-conforming coupling: (a) 32 ⇥ 4 Q4 elements ts and (b) displacement field.
  • 26. Ins$tute  of  Mechanics   &  Advanced  Materials   dofs. The total number of dofs of the continuum-beam model is only 5400. The stabilisation parameter is taken to be ↵ = 107 and used for both coupling interfaces. A comparison of xy contour plot obtained with (1) and (2) is given in Fig. 25. A good agreement was obtained. Figure 23: A plane frame analysis: problem description. Remark 6.1. Although the processing time of the solid-beam model is much less than the one of the solid model, one cannot simply conclude that the solid-beam model is more e cient. The pre-processing of the solid-beam model, if not automatic, can be time consuming such that the gain in the processing step is lost. For non-linear analyses, where the processing time is dominant, we believe that mixed dimensional analysis is very economics. 6.2. Continuum-plate coupling 6.2.1. Cantilever plate: conforming coupling For verification of the continuum-plate coupling, we consider the 3D cantilever beam given in Fig. 26. The material properties are E = 1000 N/mm2 , ⌫ = 0.3. The end shear traction is ¯t = 10 N/mm in case of continuum-plate model and is ¯t = 10/20 N/mm2 in case of continuum model which is referred to as the reference model. We use B-splines elements to solve both the MDA and the reference model. The length of the continuum part in the continuum-plate model is L/2 = 160 mm. A mesh of 64 ⇥ 4 ⇥ 5 tri-cubic elements is utilized for the reference model and a mesh of 32 ⇥ 4 ⇥ 5/ 16 ⇥ 2 cubic elements is utilized for the mixed dimensional model, cf. Fig. 27. The plate part of the mixed dimensional model is discretised using the Reissner-Mindlin plate theory with three unknowns per node and the Kirchho↵ plate theory with only one unknown per node. The stabilisation parameter was chosen empirically to be 5⇥103 . Note that the eigenvalue method described in Section 4.3 can be used to rigorously determine ↵. However since it would be expensive for large problems, we are in favor of simpler but less rigorous rules to compute this parameter. Fig. 28 shows a comparison of deformed shapes of the continuum model and the continuum-plate model and in Fig. 29, the contour plot of the von Mises stress corresponding to various models is given. 31 Figure 24: A plane frame analysis: solid-beam model. Figure 25: A plane frame analysis: comparison of xy contour plot obtained with solid model (left) a model (right). Figure 24: A plane frame analysis: solid-beam model. xy(normalised)   xy(normalised)   Q4  elements   Q4  elements   Cubic  B-­‐spline   elements  
  • 27. Ins$tute  of  Mechanics   &  Advanced  Materials   27: Cantilever beam subjects to an end shear force: typical B-spline discretisation. r beam subjects to an end shear force: comparison of deformed shapes of the continuum model •  3D/plate  coupling  (Kirchhoff)   §  Figure 25: A plane frame analysis: comparison of xy contour plot obtained with solid mode model (right). Figure 26: Cantilever beam subjects to an end shear force: problem setup 32 27: Cantilever beam subjects to an end shear force: typical B-spline discretisation. 10.0 20.0 30.0 40.0 50.0 von Mises stress 0.429 51 (a) reference model 10.0 20.0 30.0 40.0 von Mises stress 5.17 48.6 (b) mixed dimensional model, Mindlin plate 10.0 20.0 von Mis 5.12 (c) mixed dimensional 10.0 20.0 30.0 40.0 50.0 von Mises stress 0.429 51 (a) reference model 10.0 20.0 30.0 40.0 von Mises stress 5.17 48.6 (b) mixed dimensional model, Mindlin plate 10.0 20.0 30.0 40.0 von Mises stress 5.12 48.6 (c) mixed dimensional model, Kirchho↵ plate 32x4x5  tri-­‐cubic  B-­‐spline  elements   16x2  bi-­‐cubic  B-­‐spline  elements   Full  3D   MDA  
  • 28. Ins$tute  of  Mechanics   &  Advanced  Materials  ure 32: Square plate enriched by a solid. The highlighted elements are those plate elem undaries. The plate is fully clamped ans subjected to a gravity force. ments with some geometry entities is popular in XFEM, see e.g., [58]. Fig. 33 plots the de the solid-plate model and the one obtained with a plate model. A good agreement can be o w the flexibility of the non-conforming coupling, the solid part was moved slightly to the rig figuration is given in Fig. 34. The same discretisation for the plate is used. This should ser del adaptivity analyses to be presented in a forthcoming contribution. ure 33: Square plate enriched by a solid: transverse displacement plot on deformed configur ate enriched by a solid. The highlighted elements are those plate elements cut by the s is fully clamped ans subjected to a gravity force. eometry entities is popular in XFEM, see e.g., [58]. Fig. 33 plots the deformed configura el and the one obtained with a plate model. A good agreement can be observed. In orde the non-conforming coupling, the solid part was moved slightly to the right and the defor in Fig. 34. The same discretisation for the plate is used. This should serve as a prototype yses to be presented in a forthcoming contribution. te enriched by a solid: transverse displacement plot on deformed configurations of plate m Figure 32: Square plate enriched by a solid. The highlighted elements are those plate elements cut by the solid boundaries. The plate is fully clamped ans subjected to a gravity force. elements with some geometry entities is popular in XFEM, see e.g., [58]. Fig. 33 plots the deformed configuration of the solid-plate model and the one obtained with a plate model. A good agreement can be observed. In order to show the flexibility of the non-conforming coupling, the solid part was moved slightly to the right and the deformed configuration is given in Fig. 34. The same discretisation for the plate is used. This should serve as a prototype for model adaptivity analyses to be presented in a forthcoming contribution. Load:  weight   Fully  clamped  
  • 29. Ins$tute  of  Mechanics   &  Advanced  Materials     •  Versa$le  coupling  for  mixed-­‐dimensional  analysis  with  non-­‐conforming   discre$sa$ons  (IGA/FEM)   •  Future  work   §  Weighted  averages  in  the  Nitsche  Plate/3D  coupling   §  Cheap  way  to  evaluate  the  lower  bound  on  the  regularisa$on  parameter   §  Efficient  and  weakly  intrusive  local/global  solver   §  Damage  in  solid  region   Conclusion