THE NATURE AND SOURCE OF GEOGRAPHIC DATA

N
Nadia AzizEngineer at Remote Sensing Center
THE NATURE AND SOURCE
OF GEOGRAPHIC DATA
NADIA AHMED AZIZ
In This Chapter…..
1. Spatial Data Formats.
2. Choice Between Raster And Vector.
3. Data Capture.
4. Data Collection Workflow.
5. Primary Geographic Data Capture.
6. Secondary Geographic Data Capture.
7. Obtaining Data From External Sources (Data Transfer).
8. Geographic Data Formats.
9. Capturing Attribute Data.
10. Managing A Data Capture Project
11. Data Editing.
12. Data Conversion.
13. Geographic Data – Linkages And Matching.
Much of GIS analysis and description consists of investigating the
properties of geographic features and determining the relationships
between them.
The chosen way of representing phenomena in GIS not only defines
the apparent nature of geographic variation, but also the way in
which geographic variation may be analyzed.
Some objects, such as agricultural fields or digital terrain models, are
represented in their natural state. Others are transformed from one
spatial object class to another.
Spatial Data
Formats
Raster Data
Format
Vector Data
Format
Raster data represents a
graphic object as a
pattern of dots, whereas
vector data represents
the object as a set of
lines drawn between
specific points.
Raster Data Format:
Raster file represent the image by
subdividing the paper into a matrix of
small rectangles called cells. Each cell
is assigned a position in the data file
and given a value based on the attribute
at that position. Its row and column co-
ordinates may identify any individual
pixel.
Generic structure for a grid.
Raster file are most often used:
• For digital representations of aerial photographs, satellite images,
scanned paper maps, and other applications with very detailed images.
• When costs need to be kept down.
• When the map does not require analysis of individual map features.
• When ‘backdrop’ maps are required.
Raster Resolution
 The relationship between
cell size and the number
of cells is expressed as the
resolution of the raster.
 A finer resolution gives a
more accurate and better
quality image.
Vector Data Format:
A vector representation of the same
diagonal line would record the position
of the line by simply recording the
coordinates of its starting and ending
points.
The vector data model is based around the storage
of coordinate pairs.
Vector files are most often used:
• Highly precise applications.
• When file sizes are important.
•When individual map features
require analysis.
• When descriptive information must
be stored.
Comparison of raster and vector data formats
CHOICE BETWEEN RASTER AND VECTOR
Four issues to the discussions of
raster versus vector:
• coordinate precision.
• speed of analytical processing.
• mass storage requirements.
• characteristics of phenomena.
DATA CAPTURE
The functionality of GIS relies on the quality of data available. The true
value of GIS can only be realized if the proper tools to collect spatial data
and integrate them with attribute data are available.
GIS does not produce digital maps – it produces analogue maps from
digital map data. Nonetheless, the term digital map is now so widely used
that the distinction is well understood.
Possible encoding methods for different data sources.
GIS data stream.
DATA COLLECTION
WORKFLOW
Data collection projects involve a
series of sequential stages.
The workflow commences with
planning, followed by preparation,
digitizing (here taken to mean a
range of techniques such as table
digitizing, survey entry, scanning,
and photogrammetry) or transfer,
editing and improvement and,
finally, evaluation.
Spatial Data
Primary
data
Vector Data Raster Data
Secondary
Data
Vector Data Raster Data
GIS can contain a wide
variety of geographic data
types originating from many
diverse sources.
From the perspective of
creating geographic
databases, it is convenient to
classify raster and vector
geographic data as primary
and secondary
General classification of geographic data.
Primary data sources
are those collected specifically for use in GIS. Typical examples of primary
GIS sources include raster SPOT and IKONOS Earth satellite images, and
vector building survey measurements captured using a total survey station.
Secondary sources
are those that were originally captured for another purpose and need to be
converted into a form suitable for use in a GIS project. Typical secondary
sources include raster scanned colour aerial photographs of urban areas, and
USGS paper maps that can be scanned and vectorized.
Primary Geographic Data Capture
Primary geographic capture involves the direct measurement of objects. It can be in both raster and vector
data capture methods.
Raster data capture
The most popular form of primary raster data capture is remote sensing. Information is derived from
measurements of the amount of electromagnetic radiation reflected, emitted, or scattered from objects.
There are three basic aspects to resolution: spatial, spectral, and temporal.
All sensors need to trade off spatial, spectral, and temporal properties because of storage, processing, and
bandwidth considerations. From the GIS perspective, resolution is the key physical characteristic of remote
sensing systems.
Spatial resolution: refers to the size of object that can be resolved and the
most usual measure is the pixel size. Satellite remote sensing systems
typically provide data with pixel sizes in the range 1 meter – 1 km.
Spectral resolution: refers to the parts of the electromagnetic spectrum
that are measured.
Since different objects emit and reflect different types and amounts of
radiation, selecting which part of the electromagnetic spectrum to
measure is critical for each application area.
Temporal resolution: or repeat cycle, describes the frequency with which
images are collected for same area.
VECTOR DATA CAPTURE
Primary vector data capture is a major source of geographic
data. The two main branches of vector data capture are ground
surveying and GPS.
Surveying: Ground surveying is based on the
principle that the 3D location of any point can be
determined by measuring angles and distances from
other known points. Surveys begin from a benchmark
point. If the coordinate system of this point is known,
all subsequent points can be collected in this
coordinate system. If it is unknown then the survey
will use a local or relative coordinate system.
Vector Data
Capture
Surveying GPS
GPS: The Global Position System (GPS) is a
collection of 27 NAVSTAR satellites orbiting the
Earth at a height of 12,500 miles, five monitoring
stations, and individual receivers. The GPS was
originally funded by the US Department of
Defence, and for many years military users had
access to only the most accurately data. Fortunately
this selective availability was removed in May
2000, so that now civilian and military users can
fix the x, y, z location of objects relatively easily to
an accuracy of better than 10 m with standard
equipment. 21 satellites with three operational spares, 6 orbital planes,
55 degree inclinations, 20,200 kilometer, 12 hour orbit.
Secondary Geographic Data Capture
Geographic data capture from secondary sources is the process
of creating raster and vector files and databases from maps and
other hardcopy documents. Scanning is used to capture raster
data. Table digitizing, heads-up digitizing, stereo-
photogrammetry, and COGO data entry are used for vector
data.
Data input by a scanner
There are three different types of scanner generally used for data entry:
1. Flat-bed scanner – A common PC peripheral, it is small and inaccurate.
2. Rotating drum scanner – It is expensive and slow but accurate.
3. Large-format feed scanner – most suitable for capturing data in GIS. It is quicker, cheaper and accurate.
Precautions for map scanning in GIS:
• Output Quality: The output quality of map is very crucial in GIS, it needs to be sharp and clear.
• Resolution: This is the density of the raster image produced by the scanning process. The resolution of
scanners is usually measured in dots per inch (dpi) as a linear measurement along the scan line.
• Accuracy: The accuracy of the scanned image is important if the image needs to be used in GIS.
• Georeferencing: The output of a map from scanner needs to be correctly referenced according to the
coordinate system used in GIS.
Vectorization: The output from scanned maps are often used to generate vector data. This
involves, automatic or user controlled raster to vector conversion.
Raster data capture using scanners: A scanner is a device that converts hardcopy
analog media into digital images by scanning successive lines across a map or document
and recording the amount of light reflected from a local data source.
Vector Data Capture
Secondary vector data capture involves digitizing vector objects from maps and other
geographic data sources. The most popular methods are:
1. manual digitizing.
2. heads-up digitizing and vectorization.
3. photogrammetry.
4. Coordinate Geometry data entry (COGO).
OBTAINING DATA FROM EXTERNAL SOURCES (DATA TRANSFER)
One major decision that needs to be faced at the start of a GIS project is whether
to build or buy a database. All the preceding discussion has been concerned with
techniques for building databases from primary and secondary sources. This
section focuses on how to import or transfer data captured by others. Some of
these data are freely available, but many of them are sold as a commodity from a
variety of outlets including, increasingly, Internet sites.
Some examples of geographic data formats
Geographic Data Formats
One of the biggest problems with data
obtained from external sources is that
they can be encoded in many different
formats.
Many GIS software systems are now able
to read directly Auto CAD DWG and
DXF, Microstation DGN, and Shapefile,
VPF, and many image formats.
Capturing Attribute Data
All geographic objects have attributes of one type or another. Although attributes can be collected
at the same time as vector geometry, it is usually more cost-effective to capture attributes
separately. Metadata are a special type of non-geometric data that are increasingly being
collected.
Some metadata are derived automatically by the GIS software system (for example, length and
area, extent of data layer, and count of features), but some must be explicitly collected (for
example, owner name, quality estimate, and original source). Explicitly collected metadata can be
entered in the same way as other attributes as described above.
Managing A Data Capture Project
The management of data capture projects is of critical importance because there are
several unique issues. That said, most of the general principles for any GIS project apply
to data capture: the need for a clearly articulated plan, adequate resources, appropriate
funding, and sufficient time. In any data capture project there is a fundamental trade-off
between quality, speed, and price. Capturing high quality data quickly is possible, but it is
very expensive. If price is a key consideration then lower quality data can be captured over
a longer period.
Data Editing
The process of data encoding is so complex that an error free data input is next to
impossible. Data may have errors derived from the original source data or may be during
encoding process.
The process is known as data editing or ‘cleaning’. Includes:
• detection and correction of errors.
• re-projection.
• transformation and generalization.
• edge matching and rubber sheeting.
Examples of spatial errors
Data Conversion
While manipulating and analyzing data, the same format should be used for
all data. When different layers are to be used simultaneously, they should all
be in vector or all in raster format. Usually the conversion is from vector to
raster, because the biggest part of the analysis is done in the raster domain.
vector data are transformed to raster data by overlaying a grid with a user-
defined cell size. Sometimes the data in the raster format are converted into
vector format. This is the case especially if one wants to achieve data
reduction because the data storage needed for raster data is much larger than
for vector data.
Geographic Data – Linkages And Matching
Linkages: A GIS typically links different sets.
Exact Matching: Exact matching means when we have information in one computer file about
many geographic features and additional information in another file about the same set of
features.
Hierarchical Matching: Some types of information, however, are collected in more detail and
less frequently than other types of information. For example, land use data covering a large
area are collected quite frequently.
Fuzzy Matching: On many occasions, the boundaries of the smaller areas do not match those
of the larger ones. This occurs often while dealing with environmental data.
A GIS can carry out all these operations because it uses geography, as a common key between
the data sets. Information is linked only if it relates to the same geographical area.
1 de 34

Recomendados

Seminar on gis analysis functionsSeminar on gis analysis functions
Seminar on gis analysis functionsPramoda Raj
9.7K visualizações44 slides
TIN IN GISTIN IN GIS
TIN IN GISRohit Kumar
7.3K visualizações13 slides
GIS Data TypesGIS Data Types
GIS Data TypesJohn Reiser
33K visualizações33 slides
georeferencegeoreference
georeferenceThana Chirapiwat
8.8K visualizações41 slides

Mais conteúdo relacionado

Mais procurados

Basics of Remote SensingBasics of Remote Sensing
Basics of Remote SensingAkash Tikhe
10.4K visualizações38 slides
Introduction and Application of GISIntroduction and Application of GIS
Introduction and Application of GISSatish Taji
10.4K visualizações41 slides
Data base management systemData base management system
Data base management systemPramoda Raj
13.4K visualizações14 slides
GeodatabasesGeodatabases
GeodatabasesJohn Reiser
4.3K visualizações29 slides
GIS - Topology GIS - Topology
GIS - Topology Malla Reddy University
5.2K visualizações30 slides

Mais procurados(20)

Digital Elevation Model (DEM)Digital Elevation Model (DEM)
Digital Elevation Model (DEM)
Malla Reddy University7.7K visualizações
Basics of Remote SensingBasics of Remote Sensing
Basics of Remote Sensing
Akash Tikhe10.4K visualizações
Introduction and Application of GISIntroduction and Application of GIS
Introduction and Application of GIS
Satish Taji10.4K visualizações
Data base management systemData base management system
Data base management system
Pramoda Raj13.4K visualizações
GeodatabasesGeodatabases
Geodatabases
John Reiser4.3K visualizações
GIS - Topology GIS - Topology
GIS - Topology
Malla Reddy University5.2K visualizações
gisgis
gis
yaesh5.6K visualizações
Raster data modelRaster data model
Raster data model
Pramoda Raj19.7K visualizações
Introduction to gisIntroduction to gis
Introduction to gis
Mohammad Adnan9.2K visualizações
Data models in geographical information system(GIS)Data models in geographical information system(GIS)
Data models in geographical information system(GIS)
Pramoda Raj54.3K visualizações
Applications of gisApplications of gis
Applications of gis
Pramoda Raj77K visualizações
functions of GISfunctions of GIS
functions of GIS
Shawana Khan49.6K visualizações
Geographic information systemGeographic information system
Geographic information system
Kamrul Islam Karim900 visualizações
Map projection Map projection
Map projection
Pramoda Raj59.7K visualizações
Three dimensional (3D) GISThree dimensional (3D) GIS
Three dimensional (3D) GIS
Wellington Gwavava4.5K visualizações
Gis functionsGis functions
Gis functions
Shah Naseer1.9K visualizações
Change detection using remote sensing and GISChange detection using remote sensing and GIS
Change detection using remote sensing and GIS
Tilok Chetri4K visualizações
Satellite Image Satellite Image
Satellite Image
Prajjwal Paudel8.9K visualizações
DATA in GIS and DATA QueryDATA in GIS and DATA Query
DATA in GIS and DATA Query
KU Leuven1.2K visualizações

Similar a THE NATURE AND SOURCE OF GEOGRAPHIC DATA

Geographic Information System   unit 1Geographic Information System   unit 1
Geographic Information System unit 1sridevi5983
229 visualizações113 slides
Intro to GIS and Remote SensingIntro to GIS and Remote Sensing
Intro to GIS and Remote SensingJohn Reiser
56.4K visualizações53 slides
Data collectionData collection
Data collectionMalla Reddy University
976 visualizações23 slides
Scattered gis handbookScattered gis handbook
Scattered gis handbookWaleed Liaqat
798 visualizações9 slides

Similar a THE NATURE AND SOURCE OF GEOGRAPHIC DATA(20)

Data  sources and input in GISData  sources and input in GIS
Data sources and input in GIS
Prof. A.Balasubramanian 52.6K visualizações
Geographic Information System   unit 1Geographic Information System   unit 1
Geographic Information System unit 1
sridevi5983229 visualizações
Intro to GIS and Remote SensingIntro to GIS and Remote Sensing
Intro to GIS and Remote Sensing
John Reiser56.4K visualizações
TYBSC IT PGIS Unit III Chapter II Data Entry and PreparationTYBSC IT PGIS Unit III Chapter II Data Entry and Preparation
TYBSC IT PGIS Unit III Chapter II Data Entry and Preparation
Arti Parab Academics 742 visualizações
Data collectionData collection
Data collection
Malla Reddy University976 visualizações
Scattered gis handbookScattered gis handbook
Scattered gis handbook
Waleed Liaqat798 visualizações
Basic of gis concept and theoriesBasic of gis concept and theories
Basic of gis concept and theories
Mohsin Siddique23.6K visualizações
What is Geography Information Systems (GIS)What is Geography Information Systems (GIS)
What is Geography Information Systems (GIS)
John Lanser2.9K visualizações
Geographical information systemsGeographical information systems
Geographical information systems
Gift Musanza167 visualizações
Introduction of GIS & Remote Sensing (RS)Introduction of GIS & Remote Sensing (RS)
Introduction of GIS & Remote Sensing (RS)
Subtain Hussain Syed2.1K visualizações
Producing Geographic Data with LIDARProducing Geographic Data with LIDAR
Producing Geographic Data with LIDAR
Kodi Volkmann406 visualizações
lecture03.pptlecture03.ppt
lecture03.ppt
ssusercc85b5120 visualizações
Overview of gis newOverview of gis new
Overview of gis new
Kanagiri S Prasad706 visualizações
GIS and Its Components.pptxGIS and Its Components.pptx
GIS and Its Components.pptx
Dr. B. Sarkar, Dinhata College223 visualizações
introduction to GIS introduction to GIS
introduction to GIS
niazali15CRP92554 visualizações
Getting started with GISGetting started with GIS
Getting started with GIS
Esri India2.9K visualizações
geographic information system pdfgeographic information system pdf
geographic information system pdf
Rolan Ben Lorono58 visualizações

Último(20)

MSA Website Slideshow (16).pdfMSA Website Slideshow (16).pdf
MSA Website Slideshow (16).pdf
msaucla21 visualizações
performance uploading.pptxperformance uploading.pptx
performance uploading.pptx
SanthiS107 visualizações
SWM L1-L14_drhasan (Part 1).pdfSWM L1-L14_drhasan (Part 1).pdf
SWM L1-L14_drhasan (Part 1).pdf
MahmudHasan74787038 visualizações
cloud computing-virtualization.pptxcloud computing-virtualization.pptx
cloud computing-virtualization.pptx
RajaulKarim2072 visualizações
String.pptxString.pptx
String.pptx
Ananthi Palanisamy45 visualizações
Deutsch CrimpingDeutsch Crimping
Deutsch Crimping
Iwiss Tools Co.,Ltd13 visualizações
Sanitary Landfill- SWM.pptxSanitary Landfill- SWM.pptx
Sanitary Landfill- SWM.pptx
Vinod Nejkar5 visualizações
Saikat Chakraborty Java Oracle Certificate.pdfSaikat Chakraborty Java Oracle Certificate.pdf
Saikat Chakraborty Java Oracle Certificate.pdf
SaikatChakraborty7871489 visualizações
Electronic Devices - Integrated Circuit.pdfElectronic Devices - Integrated Circuit.pdf
Electronic Devices - Integrated Circuit.pdf
booksarpita10 visualizações
CHI-SQUARE ( χ2) TESTS.pptxCHI-SQUARE ( χ2) TESTS.pptx
CHI-SQUARE ( χ2) TESTS.pptx
ssusera597c511 visualizações
IEC 61850 Technical Overview.pdfIEC 61850 Technical Overview.pdf
IEC 61850 Technical Overview.pdf
ssusereeea975 visualizações
What is Whirling Hygrometer.pdfWhat is Whirling Hygrometer.pdf
What is Whirling Hygrometer.pdf
IIT KHARAGPUR 10 visualizações
SEMI CONDUCTORSSEMI CONDUCTORS
SEMI CONDUCTORS
pavaniaalla200515 visualizações
Dynamics of Hard-Magnetic Soft MaterialsDynamics of Hard-Magnetic Soft Materials
Dynamics of Hard-Magnetic Soft Materials
Shivendra Nandan11 visualizações
STUDY OF SMART MATERIALS USED IN CONSTRUCTION-1.pptxSTUDY OF SMART MATERIALS USED IN CONSTRUCTION-1.pptx
STUDY OF SMART MATERIALS USED IN CONSTRUCTION-1.pptx
AnnieRachelJohn18 visualizações
Extensions of Time - Contract ManagementExtensions of Time - Contract Management
Extensions of Time - Contract Management
brainquisitive12 visualizações

THE NATURE AND SOURCE OF GEOGRAPHIC DATA

  • 1. THE NATURE AND SOURCE OF GEOGRAPHIC DATA NADIA AHMED AZIZ
  • 2. In This Chapter….. 1. Spatial Data Formats. 2. Choice Between Raster And Vector. 3. Data Capture. 4. Data Collection Workflow. 5. Primary Geographic Data Capture. 6. Secondary Geographic Data Capture. 7. Obtaining Data From External Sources (Data Transfer). 8. Geographic Data Formats. 9. Capturing Attribute Data. 10. Managing A Data Capture Project 11. Data Editing. 12. Data Conversion. 13. Geographic Data – Linkages And Matching.
  • 3. Much of GIS analysis and description consists of investigating the properties of geographic features and determining the relationships between them. The chosen way of representing phenomena in GIS not only defines the apparent nature of geographic variation, but also the way in which geographic variation may be analyzed. Some objects, such as agricultural fields or digital terrain models, are represented in their natural state. Others are transformed from one spatial object class to another.
  • 5. Raster data represents a graphic object as a pattern of dots, whereas vector data represents the object as a set of lines drawn between specific points. Raster Data Format:
  • 6. Raster file represent the image by subdividing the paper into a matrix of small rectangles called cells. Each cell is assigned a position in the data file and given a value based on the attribute at that position. Its row and column co- ordinates may identify any individual pixel. Generic structure for a grid.
  • 7. Raster file are most often used: • For digital representations of aerial photographs, satellite images, scanned paper maps, and other applications with very detailed images. • When costs need to be kept down. • When the map does not require analysis of individual map features. • When ‘backdrop’ maps are required.
  • 8. Raster Resolution  The relationship between cell size and the number of cells is expressed as the resolution of the raster.  A finer resolution gives a more accurate and better quality image.
  • 9. Vector Data Format: A vector representation of the same diagonal line would record the position of the line by simply recording the coordinates of its starting and ending points. The vector data model is based around the storage of coordinate pairs.
  • 10. Vector files are most often used: • Highly precise applications. • When file sizes are important. •When individual map features require analysis. • When descriptive information must be stored.
  • 11. Comparison of raster and vector data formats
  • 12. CHOICE BETWEEN RASTER AND VECTOR Four issues to the discussions of raster versus vector: • coordinate precision. • speed of analytical processing. • mass storage requirements. • characteristics of phenomena.
  • 13. DATA CAPTURE The functionality of GIS relies on the quality of data available. The true value of GIS can only be realized if the proper tools to collect spatial data and integrate them with attribute data are available. GIS does not produce digital maps – it produces analogue maps from digital map data. Nonetheless, the term digital map is now so widely used that the distinction is well understood.
  • 14. Possible encoding methods for different data sources.
  • 16. DATA COLLECTION WORKFLOW Data collection projects involve a series of sequential stages. The workflow commences with planning, followed by preparation, digitizing (here taken to mean a range of techniques such as table digitizing, survey entry, scanning, and photogrammetry) or transfer, editing and improvement and, finally, evaluation.
  • 17. Spatial Data Primary data Vector Data Raster Data Secondary Data Vector Data Raster Data GIS can contain a wide variety of geographic data types originating from many diverse sources. From the perspective of creating geographic databases, it is convenient to classify raster and vector geographic data as primary and secondary
  • 18. General classification of geographic data.
  • 19. Primary data sources are those collected specifically for use in GIS. Typical examples of primary GIS sources include raster SPOT and IKONOS Earth satellite images, and vector building survey measurements captured using a total survey station. Secondary sources are those that were originally captured for another purpose and need to be converted into a form suitable for use in a GIS project. Typical secondary sources include raster scanned colour aerial photographs of urban areas, and USGS paper maps that can be scanned and vectorized.
  • 20. Primary Geographic Data Capture Primary geographic capture involves the direct measurement of objects. It can be in both raster and vector data capture methods. Raster data capture The most popular form of primary raster data capture is remote sensing. Information is derived from measurements of the amount of electromagnetic radiation reflected, emitted, or scattered from objects. There are three basic aspects to resolution: spatial, spectral, and temporal. All sensors need to trade off spatial, spectral, and temporal properties because of storage, processing, and bandwidth considerations. From the GIS perspective, resolution is the key physical characteristic of remote sensing systems.
  • 21. Spatial resolution: refers to the size of object that can be resolved and the most usual measure is the pixel size. Satellite remote sensing systems typically provide data with pixel sizes in the range 1 meter – 1 km. Spectral resolution: refers to the parts of the electromagnetic spectrum that are measured. Since different objects emit and reflect different types and amounts of radiation, selecting which part of the electromagnetic spectrum to measure is critical for each application area. Temporal resolution: or repeat cycle, describes the frequency with which images are collected for same area.
  • 22. VECTOR DATA CAPTURE Primary vector data capture is a major source of geographic data. The two main branches of vector data capture are ground surveying and GPS. Surveying: Ground surveying is based on the principle that the 3D location of any point can be determined by measuring angles and distances from other known points. Surveys begin from a benchmark point. If the coordinate system of this point is known, all subsequent points can be collected in this coordinate system. If it is unknown then the survey will use a local or relative coordinate system. Vector Data Capture Surveying GPS
  • 23. GPS: The Global Position System (GPS) is a collection of 27 NAVSTAR satellites orbiting the Earth at a height of 12,500 miles, five monitoring stations, and individual receivers. The GPS was originally funded by the US Department of Defence, and for many years military users had access to only the most accurately data. Fortunately this selective availability was removed in May 2000, so that now civilian and military users can fix the x, y, z location of objects relatively easily to an accuracy of better than 10 m with standard equipment. 21 satellites with three operational spares, 6 orbital planes, 55 degree inclinations, 20,200 kilometer, 12 hour orbit.
  • 24. Secondary Geographic Data Capture Geographic data capture from secondary sources is the process of creating raster and vector files and databases from maps and other hardcopy documents. Scanning is used to capture raster data. Table digitizing, heads-up digitizing, stereo- photogrammetry, and COGO data entry are used for vector data.
  • 25. Data input by a scanner There are three different types of scanner generally used for data entry: 1. Flat-bed scanner – A common PC peripheral, it is small and inaccurate. 2. Rotating drum scanner – It is expensive and slow but accurate. 3. Large-format feed scanner – most suitable for capturing data in GIS. It is quicker, cheaper and accurate. Precautions for map scanning in GIS: • Output Quality: The output quality of map is very crucial in GIS, it needs to be sharp and clear. • Resolution: This is the density of the raster image produced by the scanning process. The resolution of scanners is usually measured in dots per inch (dpi) as a linear measurement along the scan line. • Accuracy: The accuracy of the scanned image is important if the image needs to be used in GIS. • Georeferencing: The output of a map from scanner needs to be correctly referenced according to the coordinate system used in GIS. Vectorization: The output from scanned maps are often used to generate vector data. This involves, automatic or user controlled raster to vector conversion.
  • 26. Raster data capture using scanners: A scanner is a device that converts hardcopy analog media into digital images by scanning successive lines across a map or document and recording the amount of light reflected from a local data source. Vector Data Capture Secondary vector data capture involves digitizing vector objects from maps and other geographic data sources. The most popular methods are: 1. manual digitizing. 2. heads-up digitizing and vectorization. 3. photogrammetry. 4. Coordinate Geometry data entry (COGO).
  • 27. OBTAINING DATA FROM EXTERNAL SOURCES (DATA TRANSFER) One major decision that needs to be faced at the start of a GIS project is whether to build or buy a database. All the preceding discussion has been concerned with techniques for building databases from primary and secondary sources. This section focuses on how to import or transfer data captured by others. Some of these data are freely available, but many of them are sold as a commodity from a variety of outlets including, increasingly, Internet sites.
  • 28. Some examples of geographic data formats Geographic Data Formats One of the biggest problems with data obtained from external sources is that they can be encoded in many different formats. Many GIS software systems are now able to read directly Auto CAD DWG and DXF, Microstation DGN, and Shapefile, VPF, and many image formats.
  • 29. Capturing Attribute Data All geographic objects have attributes of one type or another. Although attributes can be collected at the same time as vector geometry, it is usually more cost-effective to capture attributes separately. Metadata are a special type of non-geometric data that are increasingly being collected. Some metadata are derived automatically by the GIS software system (for example, length and area, extent of data layer, and count of features), but some must be explicitly collected (for example, owner name, quality estimate, and original source). Explicitly collected metadata can be entered in the same way as other attributes as described above.
  • 30. Managing A Data Capture Project The management of data capture projects is of critical importance because there are several unique issues. That said, most of the general principles for any GIS project apply to data capture: the need for a clearly articulated plan, adequate resources, appropriate funding, and sufficient time. In any data capture project there is a fundamental trade-off between quality, speed, and price. Capturing high quality data quickly is possible, but it is very expensive. If price is a key consideration then lower quality data can be captured over a longer period.
  • 31. Data Editing The process of data encoding is so complex that an error free data input is next to impossible. Data may have errors derived from the original source data or may be during encoding process. The process is known as data editing or ‘cleaning’. Includes: • detection and correction of errors. • re-projection. • transformation and generalization. • edge matching and rubber sheeting.
  • 33. Data Conversion While manipulating and analyzing data, the same format should be used for all data. When different layers are to be used simultaneously, they should all be in vector or all in raster format. Usually the conversion is from vector to raster, because the biggest part of the analysis is done in the raster domain. vector data are transformed to raster data by overlaying a grid with a user- defined cell size. Sometimes the data in the raster format are converted into vector format. This is the case especially if one wants to achieve data reduction because the data storage needed for raster data is much larger than for vector data.
  • 34. Geographic Data – Linkages And Matching Linkages: A GIS typically links different sets. Exact Matching: Exact matching means when we have information in one computer file about many geographic features and additional information in another file about the same set of features. Hierarchical Matching: Some types of information, however, are collected in more detail and less frequently than other types of information. For example, land use data covering a large area are collected quite frequently. Fuzzy Matching: On many occasions, the boundaries of the smaller areas do not match those of the larger ones. This occurs often while dealing with environmental data. A GIS can carry out all these operations because it uses geography, as a common key between the data sets. Information is linked only if it relates to the same geographical area.