SlideShare uma empresa Scribd logo
1 de 49
Baixar para ler offline
Stochastic Gravity in Conformally Flat
Spacetimes
Hing-Tong Cho
Department of Physics, Tamkang University, Taiwan
(Collaboration with Bei-Lok Hu, University of Maryland, USA)
University of Witwatersrand - Feb 17, 2015
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
Outline
I. Introduction
II. Brownian motion paradigm
III. Stochastic gravity
IV. Conformal transformation and influence functional
V. Conformally flat spacetimes
VI. Noise kernels of Robertson-Walker spacetimes
VII. Discussions
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
I. Introduction
Scattering problems:
⟨0, out|0, in⟩J = eiW [J]
=
∫
Dϕ eiS[ϕ]+i
∫
Jϕ
where W [J] is the generating function for n-point functions.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
Time evolution problems or initial value problems in field theory:
Schwinger’s in-in formalism
⟨0, in|ϕ(x1)ϕ(x2) . . . ϕ(xn)|0, in⟩
In-in generating functional
J− ⟨0, in|0, in⟩J+ = eiW [J+,J−]
=
∑
α
J− ⟨0, in|α, out⟩⟨α, out|0, in⟩J+
where |α, out⟩ is a complete set of out-states on some spacelike
hypersurface Σ.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
Using the path integrals
eiW [J+,J−]
=
∫
dϕ′
∫
Dϕ+Dϕ− eiS[ϕ+]+i
∫
J+ϕ+−iS[ϕ−]−i
∫
J−ϕ−
=
∫
CTP
Dϕ+Dϕ− eiS[ϕ+]+i
∫
J+ϕ+−iS[ϕ−]−i
∫
J−ϕ−
where ϕ+ = ϕ− = ϕ′ on Σ.
CTP means Closed-Time-Path.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
II. Brownian motion paradigm
A particle (system) coupled linearly to a set of harmonic oscillators
(environment):
S[x] =
∫ t
0
ds
[
1
2
M ˙x2
− V (x)
]
Se[qn] =
∫ t
0
ds
∑
n
[
1
2
mn ˙q2
n −
1
2
mnω2
nq2
n
]
Sint[x, {qn}] =
∫ t
0
ds
∑
n
(−Cnx qn)
(Schwinger, Feynman-Vernon, Caldeira-Leggett, Hu-Paz-Zhang,
...)
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The dynamics of the particle is governed by the CTP effective
action
eiΓ[x+,x−]
= eiS[x+]−iS[x−]
×∫
CTP
∏
n
Dqn+Dqn−
(
eiSe [{qn+}]−iSe [{qn−}]
eiSint [x+,{qn+}]−iSint [x−,{qn−}]
)
= eiS[x+]−iS[x−]+iSIF [x+,x−]
where SIF is the influence action due to the quantum harmonic
oscillators.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The influence functional SIF can be expressed in terms of the
Schwinger-Keldysh propagators
SIF [x+, x−]
=
∑
n
1
2
∫
ds ds′
[
x+(s)Gn++(s, s′
)x+(s′
) − x+(s)Gn+−(s, s′
)x−(s′
)
−x−(s)Gn−+(s, s′
)x+(s′
) + x−(s)Gn−−(s, s′
)x−(s′
)
]
due to the corresponding boundary conditions.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The Schwinger-Keldysh propagators are
Gn++(s, s′
) = −ηn(s − s′
) sgn(s − s′
) + iνn(s − s′
)
Gn+−(s, s′
) = ηn(s − s′
) + iνn(s − s′
)
Gn−+(s, s′
) = −ηn(s − s′
) + iνn(s − s′
)
Gn−−(s, s′
) = ηn(s − s′
) sgn(s − s′
) + iνn(s − s′
)
where
ηn(s − s′
) = −
C2
n
2mnωn
sin ωn(s − s′
)
νn(s − s′
) =
C2
n
2mnωn
cos ωn(s − s′
)
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The influence action SIF can be written as
eiSIF
= e−i
∫ t
0 ds
∫ s
0 ds′[∆x(s)η(s−s′)Σx(s′)]
e−1
2
∫ t
0 ds
∫ t
0 ds′ [∆x(s)ν(s−s′)∆x(s′)]
where ∆x(s) = x+(s) − x−(s) and Σx(s) = x+(s) + x−(s), and
η(s − s′
) =
∑
n
ηn(s − s′
) = −
∑
n
C2
n
2mnωn
sin ωn(s − s′
)
ν(s − s′
) =
∑
n
νn(s − s′
) =
∑
n
C2
n
2mnωn
cos ωn(s − s′
)
SIF is basically separated into its real and imaginary parts.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
Rewriting the imaginary part of SIF as
e−1
2
∫
∆xν∆x
= N
∫
Dξe−1
2
∫
ξν−1ξ
e−1
2
∫
∆xν∆x
= N
∫
Dξe−1
2
∫
(ξ−iν∆x)ν−1(ξ−iν∆x)
e− 1
2
∫
∆xν∆x
= N
∫
DξP[ξ]ei
∫
ξ∆x
where P[ξ] = e− 1
2
∫
ξν−1ξ
is the Gaussian probability density of the
stochastic force ξ.
Due to this probability density one has the stochastic average
⟨ξ(s)ξ(s′)⟩s = ν(s − s′) which is called the noise kernel.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
After this procedure the effective action
Γ[x+, x−] = S[x+] − S[x−]
−
∫ t
0
ds
∫ s
0
ds′
∆x(s)η(s − s′
)Σx(s′
)
+
∫ t
0
ds∆x(s)ξ(s)
The equation of motion for the particle is then given by
δΓ[x+, x−]
δx+ x+=x−=x
= 0
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The equation of motion is a Langevin equation with the stochastic
force ξ(t),
M¨x + V ′
(x) +
∫ t
0
ds η(t − s)x(s) = ξ(t)
The integral term is related to dissipation as one can write
η(t) =
d
dt
γ(t) ⇒ γ(t) =
∑
n
C2
n
2mnω2
n
cosωnt
and we have
M¨x + V ′
(x) +
∫ t
0
ds γ(t − s) ˙x(s) = ξ(t)
η(s − s′) is called the dissipation kernel.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The dissipation kernel and the noise kernel are respectively the real
and the imaginary parts of the same Green’s function.
They are related by the fluctuation-dissipation relation (FDR)
ν(s) =
∫ ∞
−∞
ds′
K(s − s′
)γ(s′
)
where in this simple case
K(s) =
∫ ∞
0
dω
π
ω cos ωs
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
III. Stochastic gravity
(Hu and Verdaguer, Living Reviews in Relativity 2008)
In the stochastic gravity theory, gravity is regarded as the system
and quantum fields as the environment.
The corresponding CTP effective action is
eiΓ[g+,g−]
= eiSg [g+]−iSg [g−]
∫
CTP
Dϕ+Dϕ−eiSm[ϕ+,g+]−iSm[ϕ−,g−]
= eiSg [g+]−iSg [g−]+iSIF [g+,g−]
where Sg and Sm are the gravity and the quantum field actions,
respectively. SIF is the influence action due to the quantum field.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
To see the structure of SIF we write g± = g + h± and expand SIF
in powers of h±.
SIF
=
1
2
∫
d4
x
√
−g(x) ⟨Tµν
(x)⟩ ∆hµν(x)
−
1
8
∫
d4
x d4
y
√
−g(x)
√
−g(y) ∆hµν(x)
[
Kµναβ
(x, y) + Hµναβ
A (x, y) + Hµναβ
S (x, y)
]
Σhαβ(y)
+
i
8
∫
d4
x d4
y
√
−g(x)
√
−g(y) ∆hµν(x)Nµναβ
(x, y)∆hαβ(y)
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The first term involves the expectation value of the stress energy
tensor as in semiclassical gravity
Gµν = κ ⟨Tµν⟩
where
⟨Tµν(x)⟩ =
2
√
−g(x)
δSIF
δg+µν(x)
g+=g−
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
In the second term
Kµναβ
(x, y) =
−4
√
−g(x)
√
−g(y)
⟨
δ2Sm[ϕ, g]
δgµν(x)δgαβ(y)
⟩
Hµναβ
A (x, y) = −
i
2
⟨
[Tµν
(x), Tαβ
(y)]
⟩
Hµναβ
S (x, y) = Im
⟨
T
(
Tµν
(x)Tαβ
(y)
)⟩
are related to the dissipation kernel
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The last term, as compared to the Brownian motion model,
induces the stochastic force ξµν, with the correlation
⟨ξµν(x)ξαβ(y)⟩s = Nµναβ(x, y)
Nµναβ is the noise kernel
Nµναβ
(x, y) =
1
2
⟨{
tµν
(x), tαβ
(y)
}⟩
where tµν(x) = Tµν(x) − ⟨Tµν(x)⟩.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
Einstein equation:
Gµν[g] = κTµν[g]
Semi-classical gravity (mean field):
Gµν[g] = κ
(
Tµν[g] +
⟨
Tq
µν[g]
⟩)
Stochastic gravity (including quantum fluctuations):
Gµν[g + h] = κ
(
Tµν[g + h] +
⟨
Tq
µν[g + h]
⟩
+ ξµν[g]
)
to linear order in h, where ξµν is the stochastic force induced by
the quantum field fluctuations.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
IV. Conformal transformation and influence functional
Under the conformal transformation
˜gµν = Ω2
gµν ; ˜ϕ = Ω−1
ϕ
due to the conformal anomaly, one has for a conformally invariant
scalar field (Brown and Ottewill 1985),
∫
D ˜ϕeiSm[˜ϕ,˜g]
=
∫
Dϕei(Sm[ϕ,g]+A[g,Ω]+B[g,Ω])
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
where
A[g, Ω] =
3
5760π2
∫
d4
x
√
−g
{(
RµναβRµναβ
− 2RµνRµν
+
R2
3
)
lnΩ
+
2R
3Ω
Ω −
2
Ω2
( Ω)2
}
B[g, Ω] =
1
5760π2
∫
d4
x
√
−g
{
−
(
RµναβRµναβ
− 4RµνRµν
+ R2
)
lnΩ
+4Rµν
(
Ω;µ
Ω;ν
Ω2
)
+
(
−R + 2
Ω
Ω
−
Ω;µΩ;µ
Ω2
) (
2
Ω;µΩ;µ
Ω2
)}
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
Hence, the transformation property of the influence action is
SIF [˜g+, ˜g−] = SIF [g+, g−] + A[g+, Ω+] + B[g+, Ω+]
−A[g−, Ω−] − B[g−, Ω−]
For the Robertson-Walker spacetimes ˜gµν, one only needs to
consider the influence action of Einstein universes,
δSIF [˜g+, ˜g−]
δ˜g+µν
= Ω−2 δ
δg+µν
(SIF [g+, g−] + A[g+, Ω+] + B[g+, Ω+])
to derive the Einstein-Langevin equation.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
V. Conformally flat spacetimes
(Candelas and Dowker 1979)
Einstein universe (R × S3) with the metric
ds2
E = −dt2
E + a2
(
dχ2
+ sin2
χ dθ2
+ sin2
χ sin2
θ dϕ2
)
.
Under a coordinate transformation,
t ± r = a tan
(
tE /a ± χ
2
)
the Einstein universe metric becomes
ds2
E = 4 cos2
(
tE /a + χ
2
)
cos2
(
tE /a − χ
2
)
ds2
M.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
This indicates that the Einstein universe is conformally related to
the Minkowski spacetime with the conformal factor
Ω(x) = 2 cos
(
tE /a + χ
2
)
cos
(
tE /a − χ
2
)
Indeed, the Wightman function G+
E (x, x′) = ⟨ϕ(x)ϕ(x′)⟩ of a
conformally coupled scalar in the Einstein universe is related to the
corresponding G+
M(x, x′) by
G+
E (x, x′
) = Ω−1
(x)G+
M(x, x′
)Ω−1
(x′
)
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
Using the Wightman function of a conformally coupled scalar field
in Minkowski spacetime
G+
M(x, x′
) =
1
4π2(−∆t2 + ∆⃗r 2)
one has
G+
E (x, x′
) =
1
8π2a2
[
cos
(
∆tE
a
)
− cos
(
∆s
a
)]−1
where ∆s is the geodesic distance between x and x′ on S3.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
For the open Einstein universe R1 × H3,
ds2
O = −dt2
O + a2
(
dχ2
+ sinh2
χ dθ2
+ sinh2
χ sin2
θ dϕ2
)
The corresponding Wightman function (Bunch 1978)
G+
O (x, x′
) =
∆s/a
4π2 sinh(∆s/a)(−∆t2
O + ∆s2)
Not
G+
E a→ia
= −
1
8π2a2
[
cosh
(
∆tE
a
)
− cosh
(
∆s
a
)]−1
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
Although both the closed and the open Einstein universes are
conformally flat, their conformal vacua are not the same. The
conformal vacuum of the Einstein universe is the Minkowski
vacuum, while that of the open Einstein universe is the Rindler
vacuum.
Like the Minkowski and the Rindler vacua, the vacua of the
Einstein and open Einstein universes are related by thermalization.
G+
O (x, x′
)thermal =
∞∑
n=−∞
∆s/a
4π2 sinh(∆s/a)[−(∆tO + inβ)2 + ∆s2]
= G+
E a→ia
with β = 1/T = 1/2πa.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
Conformally flat spacetimes with Minkowski conformal vacuum:
Spatially flat de Sitter, flat Robertson-Walker, Einstein universe,
global de Sitter, closed Robertson-Walker
Conformally flat spacetimes with Rindler conformal vacuum:
Open Einstein universe, Milne universe, open Robertson-Walker,
static de Sitter
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
VI. Noise kernels of Robertson-Walker spacetimes
(HTC and B.-L. Hu, CQG 32 (2015) 055006)
The new ingredient in stochastic gravity is the stochastic force ξµν
induced by the fluctuations of the quantum fields.
The correlation function of the stochastic force is the noise kernel,
Nµνα′β′ (x, x′
) =
⟨
ξµν(x)ξα′β′ (x′
)
⟩
s
The noise kernel is also the correlation function of the stress
energy tensor Tµν of the quantum field
Nµνα′β′ (x, x′
) =
⟨
{tµν(x), tα′β′ (x′
)}
⟩
q
where tµν = Tµν − ⟨Tµν⟩.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
Hence, the noise kernel can be obtained from the second derivative
on the imaginary part of the influence action
Nµνα′β′ (x, x′
) = g+µρ(x)g+νσ(x)g+α′ξ′ (x′
)g+β′ζ′ (x′
)
4
√
g+(x)g+(x′)
δ2ImSIF [g+, g−]
δg+ρσ(x)δg+ξ′ζ′ (x′) g+=g−=g
Between two conformally related spacetimes ˜gµν = Ω2gµν, one
therefore has
˜Nµνα′β′ (x, x′
) = Ω−2
(x)Nµνα′β′ (x, x′
)Ω−2
(x′
)
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
For a spatially homogeneous spacetime one can write
Nηηη′η′ (x, x′
) = C11
Nηηη′i′ (x, x′
) = C21si′
Nηηi′j′ (x, x′
) = C31si′ sj′ + C32gi′j′
Nηiηj′ (x, x′
) = C41si sj′ + C42gij′
Nηij′k′ (x, x′
) = C51si sj′ sk′ + C52si gj′k′ + C53(gij′ sk′ + gik′ sj′ )
Nijk′l′ (x, x′
) = C61si sj sk′ sl′ + C62(gij sk′ sl′ + si sj gk′l′ )
+C63(gik′ sj sl′ + gil′ sj sk′ + gjk′ si sl′ + gjl′ si sk′ )
+C64(gik′ gjl′ + gil′ gjk′ ) + C65gij gk′l′
where si = ∇i (∆s) and sj′ = ∇j′ (∆s) are the derivatives on the
spatial geodesic distance ∆s between x and x′. Also, gij′ is the
parallel transport bivector such that si = −gi
j′
sj′ .
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
From the traceless condition of the noise kernel is given by
C11 − C31 − 3C32 = 0
C21 + C51 + 3C52 − 2C53 = 0
C31 − C61 − 3C62 + 4C63 = 0
C32 − C62 − 2C64 − 3C65 = 0.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The conservation condition of the noise kernel is given by
∂C11
∂∆η
+
∂C21
∂∆s
+ 2AC21
∂C21
∂∆η
+
∂C31
∂∆s
+
∂C32
∂∆s
+ 2AC31 = 0
∂C21
∂∆η
−
∂C41
∂∆s
+
C42
∂∆s
− 2AC41 + 2(A + C)C42 = 0
∂C31
∂∆η
−
∂C51
∂∆s
+ 2
C53
∂∆s
− 2AC51 + 2(2A + 3C)C53 = 0
∂C32
∂∆η
−
C52
∂∆s
− 2AC52 − 2CC53 = 0
∂C41
∂∆η
+
∂C51
∂∆s
+
∂C52
∂∆s
−
∂C53
∂∆s
+ 2AC51 + CC52 − (A + 2C)C53 = 0
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
∂C42
∂∆η
+
∂C53
∂∆s
+ CC52 + 3AC53 = 0
∂C51
∂∆η
−
∂C61
∂∆s
−
∂C62
∂∆s
+ 2
∂C63
∂∆s
−2AC61 − 2CC62 + 2(A + 3C)C63 = 0
∂C52
∂∆η
−
∂C62
∂∆s
−
∂C65
∂∆s
− 2AC62 − 2CC63 + 2(A + C)C64 = 0
∂C53
∂∆η
−
∂C63
∂∆s
+
∂C64
∂∆s
− CC62 − 3AC63 + 3(A + C)C64 = 0
where A = 1/∆s and C = −1/∆s for R3, A = cot(∆s) and
C = − csc(∆s) for S3, and A = coth(∆s) and C = −csch(∆s) for
H3
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
From the Wightman function one can calculate the noise kernel
(Phillips and Hu 2001).
For the Minkowski spacetime we have
(C11)M =
3∆s4 + 10∆s2∆η2 + 3∆η4
12π4(−∆η2 + ∆s2)6
; (C21)M =
2∆s∆η(∆s2 + ∆η2)
3π4(−∆η2 + ∆s2)6
(C31)M =
4∆η2∆s2
3π4(−∆η2 + ∆s2)6
; (C32)M =
1
12π4(−∆η2 + ∆s2)4
(C41)M = −
∆s2(3∆η2 + ∆s2)
3π4(−∆η2 + ∆s2)6
; (C42)M = −
∆η2 + ∆s2
6π4(−∆η2 + ∆s2)5
(C51)M = −
4∆η ∆s3
3π4(−∆η2 + ∆s2)6
; (C52)M = 0 ; (C53)M = −
∆η∆s
3π4(−∆η2 + ∆s2)5
(C61)M =
4∆s4
3π4(−∆η2 + ∆s2)6
; (C62)M = 0 ; (C63)M =
∆s2
3π4(−∆η2 + ∆s2)5
(C64)M =
1
6π4(−∆η2 + ∆s2)4
; (C65)M = −
1
12π4(−∆η2 + ∆s2)4
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
For the flat Robertson-Walker spacetime,
ds2
= a2
(η)
(
−dη2
+ dr2
+ r2
dθ2
+ r2
sin2
θdϕ2
)
the corresponding coefficients for the noise kernel are given by
(Cij )fFRW = a−2
(η) (Cij )M a−2
(η′
)
For a(η) = −1/Hη one has the de Sitter in spatially flat
coordinates.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
For the closed Robertson-Walker spacetime,
ds2
= a2
(η)
(
−dη2
+ dχ2
+ sin2
χdθ2
+ sin2
χ sin2
θdϕ2
)
which is conformal to the Einstein universe.
In a similar manner, the coefficients of the noise kernels are
(Cij )cFRW = a−2
(η) (Cij )E a−2
(η′
)
For a(η) = α/ sin η one has the de Sitter spacetime in the global
coordinates.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The coefficients of the Einstein universe noise kernel are
(C11)E =
4 − cos2
∆η − 6 cos ∆η cos ∆s − cos2
∆s + 4 cos2
∆η cos2
∆s
192π4(cos ∆η − cos ∆s)6
(C21)E =
sin ∆η sin ∆s(1 − cos ∆η cos ∆s)
48π4(cos ∆η − cos ∆s)6
(C31)E =
sin2
∆η sin2
∆s
48π4(cos ∆η − cos ∆s)6
(C32)E =
1
192π4(cos ∆η − cos ∆s)4
(C41)E = −
(1 + cos ∆η)(1 − cos ∆s)(2 − cos ∆η + cos ∆s − 2 cos ∆η cos ∆s)
96π4(cos ∆η − cos ∆s)6
(C42)E = −
1 − cos ∆η cos ∆s
96π4(cos ∆η − cos ∆s)5
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
(C51)E = −
sin ∆η sin ∆s(1 + cos ∆η)(1 − cos ∆s)
48π4(cos ∆η − cos ∆s)6
; (C52)E = 0
(C53)E = −
sin ∆η sin ∆s
96π4(cos ∆η − cos ∆s)5
(C61)E =
(1 + cos ∆η)2
(1 − cos ∆s)2
48π4(cos ∆η − cos ∆s)6
; (C62)E = 0
(C63)E =
(1 + cos ∆η)(1 − cos ∆s)
96π4(cos ∆η − cos ∆s)5
(C64)E =
1
96π4(cos ∆η − cos ∆s)4
; (C65)E = −
1
192π4(cos ∆η − cos ∆s)4
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
For the open Robertson-Walker spacetime,
ds2
= a2
(η)
(
−dη2
+ dχ2
+ sinh2
χdθ2
+ sinh2
χ sin2
θdϕ2
)
which is conformal to the open Einstein universe.
Again the coefficients of the noise kernels are
(Cij )oFRW = a−2
(η) (Cij )O a−2
(η′
)
For a(η) = αeη one has the Milne universe.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The coefficients of the noise kernel in the open Einstein universe
are
(C11)O
=
[(−∆η2
+ ∆s2
)2
(∆η4
+ 8∆η2
∆s2
+ 3∆s4
) + 12a2
∆s2
(∆η2
+ 3∆s2
)(3∆η2
+ ∆s2
)]
144a4π4(−∆η2 + ∆s2)6
csch
2
(
∆s
a
)
−
∆s(∆η2
+ ∆s2
)
12a3π4(−∆η2 + ∆s2)4
coth
(
∆s
a
)
csch
2
(
∆s
a
)
+
[2∆s2
(−∆η2
+ ∆s2
)2
+ 3a2
(∆η4
+ 6∆η2
∆s2
+ ∆s4
)]
144a6π4(−∆η2 + ∆s2)4
csch
4
(
∆s
a
)
+
∆s(∆η2
+ ∆s2
)
24a5π4(−∆η2 + ∆s2)3
coth
(
∆s
a
)
csch
4
(
∆s
a
)
+
∆s2
48a6π4(−∆η2 + ∆s2)2
csch
6
(
∆s
a
)
etc
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
One can obtain the noise kernel for the static de Sitter case if first
a conformal transformation with
Ω(χ) =
1
α cosh χ
and a further coordinate transformation with
tanh χ = αr
are made on the open Einstein noise kernel.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
The coefficient functions (Cij )sdS of the noise kernel in static de
Sitter spacetime are given by
(Cij )sdS = (1 − r2
)−1
(Cij )O(1 − r′2
)−1
,
where the geodesic distance
∆s = cosh−1
{
(1 − r2
)−1/2
(1 − r′2
)−1/2
[
1 − rr′
(cos θ cos θ′
+ sin θ sin θ′
cos(ϕ − ϕ′
))
] }
.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
For the Rindler space
ds2
= −ξ2
dτ2
+ dξ2
+ dy2
+ dz2
one can obtain the noise kernel after the series of conformal and
coordinate transformations.
It is however easier to work directly with the Rindler Wightman
function
G+
R =
1
4π2
(
α
ξξ′ sinh α
) (
1
−(τ − τ′)2 + α2
)
,
where
cosh α =
ξ2 + ξ′2 + (y − y′)2 + (z − z′)2
2ξξ′
.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
For example,
Nτττ′τ′ =
G2
9α2ξ3ξ′3
{
ξ
3
ξ
′3
+ (1 − ξ
2
ξ
′2
)(ξ
2
+ ξ
′2
) coth αcschα
+ξξ
′
[
(1 + 5α
2
) + (2 − 3α
2
)ξ
2
ξ
′2
− 2α(4 − ξ
2
ξ
′2
) coth α
]
csch
2
α
+α(1 − ξ
2
ξ
′2
)(ξ
2
+ ξ
′2
)(1 − 2α coth α)csch
3
α
+α
2
ξξ
′
(7 − 4ξ
2
ξ
′2
)csch
4
}
−
8π2
G3
sinh α
9α3ξ2ξ′2
{
ξ
3
ξ
′3
[
(2 + 5α
2
) − 6α coth α
]
−α(ξ
2
+ ξ
′2
)(3 − ξ
2
ξ
′2
− 2α coth α)cschα
+2α
2
ξξ
′
[
4 + ξ
2
ξ
′2
− α(4 − ξ
2
ξ
′2
) coth α
]
csch
2
α
+α
3
(1 − ξ
2
ξ
′2
)(ξ
2
+ ξ
′2
)csch
3
α
}
+
64π4
G4
sinh2
α
9α2ξξ′
{
3ξξ
′
[
3 + (3 + α
2
)ξ
2
ξ
′2
− 2αξ
2
ξ
′2
coth α
]
−α(ξ
2
+ ξ
′2
)(5 − α coth α)cschα + 5α
2
ξξ
′
csch
2
}
−
1024π6
G5
sinh3
α
9α
{
6ξξ
′
(1 + 2ξ
2
ξ
′2
) − α(ξ
2
+ ξ
′2
)cschα
}
+
16384π8
G6
sinh4
α
9
{
ξ
2
ξ
′2
(1 + 3ξ
2
ξ
′2
)
}
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
VII. Discussions
1. The noise kernel is the two point correlation function of the
stress-energy tensor. It represents the backreaction of the
quantum fluctuations of the matter field onto the background
spacetime. Therefore, it is interesting to investigate the
behaviors of the noise kernel near horizons as well as initial
singularities of various FRW spacetimes.
2. Other than the noise kernel we need to consider the conformal
transformation of the Einstein-Langevin equation in detail. In
particular, we should also investigate the transformation of the
terms related to the dissipation kernel.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
3. Next we shall try to solve the Einstein-Langevin equation
Gµν[g + h] = κ (⟨Tµν[g + h]⟩ + ξµν[g])
Here gµν is the background Robertson-Walker spacetime with
the scaling factor a(η) being a solution to the semiclassical
Einstein equation. To avoid solutions that are not physical,
one might resort to consistent procedures like the order
reduction method of Parker and Simon.
4. Subsequently, one could solve for hµν using standard
perturbation methods around the Robertson-Walker
backgrounds. Here ξµν acts like an external force. The
correlator ⟨hµν(x)hα′β′ (x′)⟩s can therefore be evaluated with
the appropriate noise kernels.
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Quantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž ProsenQuantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž Prosen
 
Problem for the gravitational field
 Problem for the gravitational field Problem for the gravitational field
Problem for the gravitational field
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproducts
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Fixed point theorem in fuzzy metric space with e.a property
Fixed point theorem in fuzzy metric space with e.a propertyFixed point theorem in fuzzy metric space with e.a property
Fixed point theorem in fuzzy metric space with e.a property
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliers
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
 
Norm-variation of bilinear averages
Norm-variation of bilinear averagesNorm-variation of bilinear averages
Norm-variation of bilinear averages
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
 
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
ProjectAndersSchreiber
ProjectAndersSchreiberProjectAndersSchreiber
ProjectAndersSchreiber
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 

Destaque

"Curved extra-dimensions" by Nicolas Deutschmann (Institut de Physique Nuclea...
"Curved extra-dimensions" by Nicolas Deutschmann (Institut de Physique Nuclea..."Curved extra-dimensions" by Nicolas Deutschmann (Institut de Physique Nuclea...
"Curved extra-dimensions" by Nicolas Deutschmann (Institut de Physique Nuclea...
Rene Kotze
 
NITheP WITS node seminar: Prof. V. Yu. Ponomarev (Technical University of Dar...
NITheP WITS node seminar: Prof. V. Yu. Ponomarev (Technical University of Dar...NITheP WITS node seminar: Prof. V. Yu. Ponomarev (Technical University of Dar...
NITheP WITS node seminar: Prof. V. Yu. Ponomarev (Technical University of Dar...
Rene Kotze
 
Hamburg female researcher position
Hamburg female researcher positionHamburg female researcher position
Hamburg female researcher position
Rene Kotze
 

Destaque (20)

2015 01 28 analabha roy
2015 01 28 analabha roy2015 01 28 analabha roy
2015 01 28 analabha roy
 
Inspire poster za
Inspire poster zaInspire poster za
Inspire poster za
 
Publication in Nature: by Dr Fabio Cinti
Publication in Nature: by Dr Fabio CintiPublication in Nature: by Dr Fabio Cinti
Publication in Nature: by Dr Fabio Cinti
 
Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...
Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...
Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...
 
Prof AV Gorokhov (Samara State University, Russia)
Prof AV Gorokhov (Samara State University, Russia)Prof AV Gorokhov (Samara State University, Russia)
Prof AV Gorokhov (Samara State University, Russia)
 
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
 
Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)
 
Gustafsson uct ass-aftalk 16 Feb UCT 16h30
Gustafsson uct ass-aftalk 16  Feb UCT  16h30Gustafsson uct ass-aftalk 16  Feb UCT  16h30
Gustafsson uct ass-aftalk 16 Feb UCT 16h30
 
"When the top is not single: a theory overview from monotop to multitops" to...
"When the top is not single: a theory overview from monotop to multitops"  to..."When the top is not single: a theory overview from monotop to multitops"  to...
"When the top is not single: a theory overview from monotop to multitops" to...
 
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
 
"Curved extra-dimensions" by Nicolas Deutschmann (Institut de Physique Nuclea...
"Curved extra-dimensions" by Nicolas Deutschmann (Institut de Physique Nuclea..."Curved extra-dimensions" by Nicolas Deutschmann (Institut de Physique Nuclea...
"Curved extra-dimensions" by Nicolas Deutschmann (Institut de Physique Nuclea...
 
"Planet Formation in Dense Star Clusters" presented by Dr. Henry Throop (Uni...
"Planet Formation in Dense Star Clusters"  presented by Dr. Henry Throop (Uni..."Planet Formation in Dense Star Clusters"  presented by Dr. Henry Throop (Uni...
"Planet Formation in Dense Star Clusters" presented by Dr. Henry Throop (Uni...
 
Dr. Pablo Diaz Benito (University of the Witwatersrand) TITLE: "Novel Charges...
Dr. Pablo Diaz Benito (University of the Witwatersrand) TITLE: "Novel Charges...Dr. Pablo Diaz Benito (University of the Witwatersrand) TITLE: "Novel Charges...
Dr. Pablo Diaz Benito (University of the Witwatersrand) TITLE: "Novel Charges...
 
Nrf saao advert2 saao 17 February 17h00
Nrf saao advert2 saao 17 February 17h00Nrf saao advert2 saao 17 February 17h00
Nrf saao advert2 saao 17 February 17h00
 
WITS (University of the Witwatersrand) Node Seminar: Dr Joey Medved (Rhodes U...
WITS (University of the Witwatersrand) Node Seminar: Dr Joey Medved (Rhodes U...WITS (University of the Witwatersrand) Node Seminar: Dr Joey Medved (Rhodes U...
WITS (University of the Witwatersrand) Node Seminar: Dr Joey Medved (Rhodes U...
 
NITheP WITS node seminar: Prof. V. Yu. Ponomarev (Technical University of Dar...
NITheP WITS node seminar: Prof. V. Yu. Ponomarev (Technical University of Dar...NITheP WITS node seminar: Prof. V. Yu. Ponomarev (Technical University of Dar...
NITheP WITS node seminar: Prof. V. Yu. Ponomarev (Technical University of Dar...
 
WITS Seminar: Prof Mark Tame (UKZN)
WITS Seminar: Prof Mark Tame (UKZN)WITS Seminar: Prof Mark Tame (UKZN)
WITS Seminar: Prof Mark Tame (UKZN)
 
Prof. Rob Leight (University of Illinois) TITLE: Born Reciprocity and the Nat...
Prof. Rob Leight (University of Illinois) TITLE: Born Reciprocity and the Nat...Prof. Rob Leight (University of Illinois) TITLE: Born Reciprocity and the Nat...
Prof. Rob Leight (University of Illinois) TITLE: Born Reciprocity and the Nat...
 
Hamburg female researcher position
Hamburg female researcher positionHamburg female researcher position
Hamburg female researcher position
 
Dr Rosemary Harris iThemba LABS public talk March 2015
Dr Rosemary Harris iThemba LABS public talk March 2015 Dr Rosemary Harris iThemba LABS public talk March 2015
Dr Rosemary Harris iThemba LABS public talk March 2015
 

Semelhante a Stochastic Gravity in Conformally-flat Spacetimes

Semelhante a Stochastic Gravity in Conformally-flat Spacetimes (20)

Kgeppt spvm 0_try1
Kgeppt spvm 0_try1Kgeppt spvm 0_try1
Kgeppt spvm 0_try1
 
Stochastic Schrödinger equations
Stochastic Schrödinger equationsStochastic Schrödinger equations
Stochastic Schrödinger equations
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
 
Rdnd2008
Rdnd2008Rdnd2008
Rdnd2008
 
Adc
AdcAdc
Adc
 
A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”
 
11.common fixed points of weakly reciprocally continuous maps using a gauge f...
11.common fixed points of weakly reciprocally continuous maps using a gauge f...11.common fixed points of weakly reciprocally continuous maps using a gauge f...
11.common fixed points of weakly reciprocally continuous maps using a gauge f...
 
Common fixed points of weakly reciprocally continuous maps using a gauge func...
Common fixed points of weakly reciprocally continuous maps using a gauge func...Common fixed points of weakly reciprocally continuous maps using a gauge func...
Common fixed points of weakly reciprocally continuous maps using a gauge func...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Gravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault DamourGravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault Damour
 
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
 
ENFPC 2010
ENFPC 2010ENFPC 2010
ENFPC 2010
 
CGI2018 keynote - fluids simulation
CGI2018 keynote - fluids simulationCGI2018 keynote - fluids simulation
CGI2018 keynote - fluids simulation
 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spaces
 
41-50
41-5041-50
41-50
 
Berans qm overview
Berans qm overviewBerans qm overview
Berans qm overview
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...
 
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
 
Hypocenter
HypocenterHypocenter
Hypocenter
 
Hsu etal-2009
Hsu etal-2009Hsu etal-2009
Hsu etal-2009
 

Mais de Rene Kotze

NITheP Computatonal \
NITheP Computatonal \NITheP Computatonal \
NITheP Computatonal \
Rene Kotze
 
Consultant job spec - Opportunity for The
Consultant job spec - Opportunity for TheConsultant job spec - Opportunity for The
Consultant job spec - Opportunity for The
Rene Kotze
 

Mais de Rene Kotze (20)

First paper with the NITheCS affiliation
First paper with the NITheCS affiliationFirst paper with the NITheCS affiliation
First paper with the NITheCS affiliation
 
Attention Bursary holders: Tutorial to complete a bi annual progress report 2...
Attention Bursary holders: Tutorial to complete a bi annual progress report 2...Attention Bursary holders: Tutorial to complete a bi annual progress report 2...
Attention Bursary holders: Tutorial to complete a bi annual progress report 2...
 
South African Radio Astronomy Observatory Postdoctoral Fellowships for 2022...
South  African Radio Astronomy Observatory  Postdoctoral Fellowships for 2022...South  African Radio Astronomy Observatory  Postdoctoral Fellowships for 2022...
South African Radio Astronomy Observatory Postdoctoral Fellowships for 2022...
 
Hands on instructions for NITheCS August mini - school
Hands on instructions for NITheCS August mini - school Hands on instructions for NITheCS August mini - school
Hands on instructions for NITheCS August mini - school
 
Postdoctoral associate ad university of minnesota fernandes birol
Postdoctoral associate ad university of minnesota fernandes birolPostdoctoral associate ad university of minnesota fernandes birol
Postdoctoral associate ad university of minnesota fernandes birol
 
Webinar2020 nithep talk 1-ppt.ppt
Webinar2020 nithep talk 1-ppt.pptWebinar2020 nithep talk 1-ppt.ppt
Webinar2020 nithep talk 1-ppt.ppt
 
NITheP presentation including video
NITheP presentation including videoNITheP presentation including video
NITheP presentation including video
 
What is Theoretical Physics?
What is Theoretical Physics?What is Theoretical Physics?
What is Theoretical Physics?
 
Invitation to guest lecture at Stellenbosch University: Provost and Professor...
Invitation to guest lecture at Stellenbosch University: Provost and Professor...Invitation to guest lecture at Stellenbosch University: Provost and Professor...
Invitation to guest lecture at Stellenbosch University: Provost and Professor...
 
NITheP Computatonal \
NITheP Computatonal \NITheP Computatonal \
NITheP Computatonal \
 
L'Oreal UNESCO applications for Women in Science 2015
L'Oreal UNESCO applications for Women in Science 2015L'Oreal UNESCO applications for Women in Science 2015
L'Oreal UNESCO applications for Women in Science 2015
 
Consultant job spec
Consultant job specConsultant job spec
Consultant job spec
 
Consultant job spec - Opportunity for The
Consultant job spec - Opportunity for TheConsultant job spec - Opportunity for The
Consultant job spec - Opportunity for The
 
2015 05 13 call for internships for 2015 intership period
2015 05 13 call for internships for 2015 intership period2015 05 13 call for internships for 2015 intership period
2015 05 13 call for internships for 2015 intership period
 
2015 05 13 information to students and teachers regarding NITheP internships
2015 05 13 information to students and teachers regarding  NITheP internships2015 05 13 information to students and teachers regarding  NITheP internships
2015 05 13 information to students and teachers regarding NITheP internships
 
HB Thom The Paper Circus
HB Thom The Paper CircusHB Thom The Paper Circus
HB Thom The Paper Circus
 
Hamburg Female Researcher position
Hamburg Female Researcher position Hamburg Female Researcher position
Hamburg Female Researcher position
 
Advert for sci stip postdocs 17 april 2015
Advert for sci stip postdocs 17 april 2015Advert for sci stip postdocs 17 april 2015
Advert for sci stip postdocs 17 april 2015
 
2016 sts
2016 sts2016 sts
2016 sts
 
SISSA: new Director elected
SISSA:	new	Director	electedSISSA:	new	Director	elected
SISSA: new Director elected
 

Último

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Último (20)

This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 

Stochastic Gravity in Conformally-flat Spacetimes

  • 1. Stochastic Gravity in Conformally Flat Spacetimes Hing-Tong Cho Department of Physics, Tamkang University, Taiwan (Collaboration with Bei-Lok Hu, University of Maryland, USA) University of Witwatersrand - Feb 17, 2015 Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 2. Outline I. Introduction II. Brownian motion paradigm III. Stochastic gravity IV. Conformal transformation and influence functional V. Conformally flat spacetimes VI. Noise kernels of Robertson-Walker spacetimes VII. Discussions Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 3. I. Introduction Scattering problems: ⟨0, out|0, in⟩J = eiW [J] = ∫ Dϕ eiS[ϕ]+i ∫ Jϕ where W [J] is the generating function for n-point functions. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 4. Time evolution problems or initial value problems in field theory: Schwinger’s in-in formalism ⟨0, in|ϕ(x1)ϕ(x2) . . . ϕ(xn)|0, in⟩ In-in generating functional J− ⟨0, in|0, in⟩J+ = eiW [J+,J−] = ∑ α J− ⟨0, in|α, out⟩⟨α, out|0, in⟩J+ where |α, out⟩ is a complete set of out-states on some spacelike hypersurface Σ. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 5. Using the path integrals eiW [J+,J−] = ∫ dϕ′ ∫ Dϕ+Dϕ− eiS[ϕ+]+i ∫ J+ϕ+−iS[ϕ−]−i ∫ J−ϕ− = ∫ CTP Dϕ+Dϕ− eiS[ϕ+]+i ∫ J+ϕ+−iS[ϕ−]−i ∫ J−ϕ− where ϕ+ = ϕ− = ϕ′ on Σ. CTP means Closed-Time-Path. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 6. II. Brownian motion paradigm A particle (system) coupled linearly to a set of harmonic oscillators (environment): S[x] = ∫ t 0 ds [ 1 2 M ˙x2 − V (x) ] Se[qn] = ∫ t 0 ds ∑ n [ 1 2 mn ˙q2 n − 1 2 mnω2 nq2 n ] Sint[x, {qn}] = ∫ t 0 ds ∑ n (−Cnx qn) (Schwinger, Feynman-Vernon, Caldeira-Leggett, Hu-Paz-Zhang, ...) Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 7. The dynamics of the particle is governed by the CTP effective action eiΓ[x+,x−] = eiS[x+]−iS[x−] ×∫ CTP ∏ n Dqn+Dqn− ( eiSe [{qn+}]−iSe [{qn−}] eiSint [x+,{qn+}]−iSint [x−,{qn−}] ) = eiS[x+]−iS[x−]+iSIF [x+,x−] where SIF is the influence action due to the quantum harmonic oscillators. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 8. The influence functional SIF can be expressed in terms of the Schwinger-Keldysh propagators SIF [x+, x−] = ∑ n 1 2 ∫ ds ds′ [ x+(s)Gn++(s, s′ )x+(s′ ) − x+(s)Gn+−(s, s′ )x−(s′ ) −x−(s)Gn−+(s, s′ )x+(s′ ) + x−(s)Gn−−(s, s′ )x−(s′ ) ] due to the corresponding boundary conditions. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 9. The Schwinger-Keldysh propagators are Gn++(s, s′ ) = −ηn(s − s′ ) sgn(s − s′ ) + iνn(s − s′ ) Gn+−(s, s′ ) = ηn(s − s′ ) + iνn(s − s′ ) Gn−+(s, s′ ) = −ηn(s − s′ ) + iνn(s − s′ ) Gn−−(s, s′ ) = ηn(s − s′ ) sgn(s − s′ ) + iνn(s − s′ ) where ηn(s − s′ ) = − C2 n 2mnωn sin ωn(s − s′ ) νn(s − s′ ) = C2 n 2mnωn cos ωn(s − s′ ) Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 10. The influence action SIF can be written as eiSIF = e−i ∫ t 0 ds ∫ s 0 ds′[∆x(s)η(s−s′)Σx(s′)] e−1 2 ∫ t 0 ds ∫ t 0 ds′ [∆x(s)ν(s−s′)∆x(s′)] where ∆x(s) = x+(s) − x−(s) and Σx(s) = x+(s) + x−(s), and η(s − s′ ) = ∑ n ηn(s − s′ ) = − ∑ n C2 n 2mnωn sin ωn(s − s′ ) ν(s − s′ ) = ∑ n νn(s − s′ ) = ∑ n C2 n 2mnωn cos ωn(s − s′ ) SIF is basically separated into its real and imaginary parts. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 11. Rewriting the imaginary part of SIF as e−1 2 ∫ ∆xν∆x = N ∫ Dξe−1 2 ∫ ξν−1ξ e−1 2 ∫ ∆xν∆x = N ∫ Dξe−1 2 ∫ (ξ−iν∆x)ν−1(ξ−iν∆x) e− 1 2 ∫ ∆xν∆x = N ∫ DξP[ξ]ei ∫ ξ∆x where P[ξ] = e− 1 2 ∫ ξν−1ξ is the Gaussian probability density of the stochastic force ξ. Due to this probability density one has the stochastic average ⟨ξ(s)ξ(s′)⟩s = ν(s − s′) which is called the noise kernel. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 12. After this procedure the effective action Γ[x+, x−] = S[x+] − S[x−] − ∫ t 0 ds ∫ s 0 ds′ ∆x(s)η(s − s′ )Σx(s′ ) + ∫ t 0 ds∆x(s)ξ(s) The equation of motion for the particle is then given by δΓ[x+, x−] δx+ x+=x−=x = 0 Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 13. The equation of motion is a Langevin equation with the stochastic force ξ(t), M¨x + V ′ (x) + ∫ t 0 ds η(t − s)x(s) = ξ(t) The integral term is related to dissipation as one can write η(t) = d dt γ(t) ⇒ γ(t) = ∑ n C2 n 2mnω2 n cosωnt and we have M¨x + V ′ (x) + ∫ t 0 ds γ(t − s) ˙x(s) = ξ(t) η(s − s′) is called the dissipation kernel. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 14. The dissipation kernel and the noise kernel are respectively the real and the imaginary parts of the same Green’s function. They are related by the fluctuation-dissipation relation (FDR) ν(s) = ∫ ∞ −∞ ds′ K(s − s′ )γ(s′ ) where in this simple case K(s) = ∫ ∞ 0 dω π ω cos ωs Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 15. III. Stochastic gravity (Hu and Verdaguer, Living Reviews in Relativity 2008) In the stochastic gravity theory, gravity is regarded as the system and quantum fields as the environment. The corresponding CTP effective action is eiΓ[g+,g−] = eiSg [g+]−iSg [g−] ∫ CTP Dϕ+Dϕ−eiSm[ϕ+,g+]−iSm[ϕ−,g−] = eiSg [g+]−iSg [g−]+iSIF [g+,g−] where Sg and Sm are the gravity and the quantum field actions, respectively. SIF is the influence action due to the quantum field. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 16. To see the structure of SIF we write g± = g + h± and expand SIF in powers of h±. SIF = 1 2 ∫ d4 x √ −g(x) ⟨Tµν (x)⟩ ∆hµν(x) − 1 8 ∫ d4 x d4 y √ −g(x) √ −g(y) ∆hµν(x) [ Kµναβ (x, y) + Hµναβ A (x, y) + Hµναβ S (x, y) ] Σhαβ(y) + i 8 ∫ d4 x d4 y √ −g(x) √ −g(y) ∆hµν(x)Nµναβ (x, y)∆hαβ(y) Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 17. The first term involves the expectation value of the stress energy tensor as in semiclassical gravity Gµν = κ ⟨Tµν⟩ where ⟨Tµν(x)⟩ = 2 √ −g(x) δSIF δg+µν(x) g+=g− Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 18. In the second term Kµναβ (x, y) = −4 √ −g(x) √ −g(y) ⟨ δ2Sm[ϕ, g] δgµν(x)δgαβ(y) ⟩ Hµναβ A (x, y) = − i 2 ⟨ [Tµν (x), Tαβ (y)] ⟩ Hµναβ S (x, y) = Im ⟨ T ( Tµν (x)Tαβ (y) )⟩ are related to the dissipation kernel Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 19. The last term, as compared to the Brownian motion model, induces the stochastic force ξµν, with the correlation ⟨ξµν(x)ξαβ(y)⟩s = Nµναβ(x, y) Nµναβ is the noise kernel Nµναβ (x, y) = 1 2 ⟨{ tµν (x), tαβ (y) }⟩ where tµν(x) = Tµν(x) − ⟨Tµν(x)⟩. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 20. Einstein equation: Gµν[g] = κTµν[g] Semi-classical gravity (mean field): Gµν[g] = κ ( Tµν[g] + ⟨ Tq µν[g] ⟩) Stochastic gravity (including quantum fluctuations): Gµν[g + h] = κ ( Tµν[g + h] + ⟨ Tq µν[g + h] ⟩ + ξµν[g] ) to linear order in h, where ξµν is the stochastic force induced by the quantum field fluctuations. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 21. IV. Conformal transformation and influence functional Under the conformal transformation ˜gµν = Ω2 gµν ; ˜ϕ = Ω−1 ϕ due to the conformal anomaly, one has for a conformally invariant scalar field (Brown and Ottewill 1985), ∫ D ˜ϕeiSm[˜ϕ,˜g] = ∫ Dϕei(Sm[ϕ,g]+A[g,Ω]+B[g,Ω]) Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 22. where A[g, Ω] = 3 5760π2 ∫ d4 x √ −g {( RµναβRµναβ − 2RµνRµν + R2 3 ) lnΩ + 2R 3Ω Ω − 2 Ω2 ( Ω)2 } B[g, Ω] = 1 5760π2 ∫ d4 x √ −g { − ( RµναβRµναβ − 4RµνRµν + R2 ) lnΩ +4Rµν ( Ω;µ Ω;ν Ω2 ) + ( −R + 2 Ω Ω − Ω;µΩ;µ Ω2 ) ( 2 Ω;µΩ;µ Ω2 )} Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 23. Hence, the transformation property of the influence action is SIF [˜g+, ˜g−] = SIF [g+, g−] + A[g+, Ω+] + B[g+, Ω+] −A[g−, Ω−] − B[g−, Ω−] For the Robertson-Walker spacetimes ˜gµν, one only needs to consider the influence action of Einstein universes, δSIF [˜g+, ˜g−] δ˜g+µν = Ω−2 δ δg+µν (SIF [g+, g−] + A[g+, Ω+] + B[g+, Ω+]) to derive the Einstein-Langevin equation. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 24. V. Conformally flat spacetimes (Candelas and Dowker 1979) Einstein universe (R × S3) with the metric ds2 E = −dt2 E + a2 ( dχ2 + sin2 χ dθ2 + sin2 χ sin2 θ dϕ2 ) . Under a coordinate transformation, t ± r = a tan ( tE /a ± χ 2 ) the Einstein universe metric becomes ds2 E = 4 cos2 ( tE /a + χ 2 ) cos2 ( tE /a − χ 2 ) ds2 M. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 25. This indicates that the Einstein universe is conformally related to the Minkowski spacetime with the conformal factor Ω(x) = 2 cos ( tE /a + χ 2 ) cos ( tE /a − χ 2 ) Indeed, the Wightman function G+ E (x, x′) = ⟨ϕ(x)ϕ(x′)⟩ of a conformally coupled scalar in the Einstein universe is related to the corresponding G+ M(x, x′) by G+ E (x, x′ ) = Ω−1 (x)G+ M(x, x′ )Ω−1 (x′ ) Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 26. Using the Wightman function of a conformally coupled scalar field in Minkowski spacetime G+ M(x, x′ ) = 1 4π2(−∆t2 + ∆⃗r 2) one has G+ E (x, x′ ) = 1 8π2a2 [ cos ( ∆tE a ) − cos ( ∆s a )]−1 where ∆s is the geodesic distance between x and x′ on S3. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 27. For the open Einstein universe R1 × H3, ds2 O = −dt2 O + a2 ( dχ2 + sinh2 χ dθ2 + sinh2 χ sin2 θ dϕ2 ) The corresponding Wightman function (Bunch 1978) G+ O (x, x′ ) = ∆s/a 4π2 sinh(∆s/a)(−∆t2 O + ∆s2) Not G+ E a→ia = − 1 8π2a2 [ cosh ( ∆tE a ) − cosh ( ∆s a )]−1 Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 28. Although both the closed and the open Einstein universes are conformally flat, their conformal vacua are not the same. The conformal vacuum of the Einstein universe is the Minkowski vacuum, while that of the open Einstein universe is the Rindler vacuum. Like the Minkowski and the Rindler vacua, the vacua of the Einstein and open Einstein universes are related by thermalization. G+ O (x, x′ )thermal = ∞∑ n=−∞ ∆s/a 4π2 sinh(∆s/a)[−(∆tO + inβ)2 + ∆s2] = G+ E a→ia with β = 1/T = 1/2πa. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 29. Conformally flat spacetimes with Minkowski conformal vacuum: Spatially flat de Sitter, flat Robertson-Walker, Einstein universe, global de Sitter, closed Robertson-Walker Conformally flat spacetimes with Rindler conformal vacuum: Open Einstein universe, Milne universe, open Robertson-Walker, static de Sitter Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 30. VI. Noise kernels of Robertson-Walker spacetimes (HTC and B.-L. Hu, CQG 32 (2015) 055006) The new ingredient in stochastic gravity is the stochastic force ξµν induced by the fluctuations of the quantum fields. The correlation function of the stochastic force is the noise kernel, Nµνα′β′ (x, x′ ) = ⟨ ξµν(x)ξα′β′ (x′ ) ⟩ s The noise kernel is also the correlation function of the stress energy tensor Tµν of the quantum field Nµνα′β′ (x, x′ ) = ⟨ {tµν(x), tα′β′ (x′ )} ⟩ q where tµν = Tµν − ⟨Tµν⟩. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 31. Hence, the noise kernel can be obtained from the second derivative on the imaginary part of the influence action Nµνα′β′ (x, x′ ) = g+µρ(x)g+νσ(x)g+α′ξ′ (x′ )g+β′ζ′ (x′ ) 4 √ g+(x)g+(x′) δ2ImSIF [g+, g−] δg+ρσ(x)δg+ξ′ζ′ (x′) g+=g−=g Between two conformally related spacetimes ˜gµν = Ω2gµν, one therefore has ˜Nµνα′β′ (x, x′ ) = Ω−2 (x)Nµνα′β′ (x, x′ )Ω−2 (x′ ) Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 32. For a spatially homogeneous spacetime one can write Nηηη′η′ (x, x′ ) = C11 Nηηη′i′ (x, x′ ) = C21si′ Nηηi′j′ (x, x′ ) = C31si′ sj′ + C32gi′j′ Nηiηj′ (x, x′ ) = C41si sj′ + C42gij′ Nηij′k′ (x, x′ ) = C51si sj′ sk′ + C52si gj′k′ + C53(gij′ sk′ + gik′ sj′ ) Nijk′l′ (x, x′ ) = C61si sj sk′ sl′ + C62(gij sk′ sl′ + si sj gk′l′ ) +C63(gik′ sj sl′ + gil′ sj sk′ + gjk′ si sl′ + gjl′ si sk′ ) +C64(gik′ gjl′ + gil′ gjk′ ) + C65gij gk′l′ where si = ∇i (∆s) and sj′ = ∇j′ (∆s) are the derivatives on the spatial geodesic distance ∆s between x and x′. Also, gij′ is the parallel transport bivector such that si = −gi j′ sj′ . Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 33. From the traceless condition of the noise kernel is given by C11 − C31 − 3C32 = 0 C21 + C51 + 3C52 − 2C53 = 0 C31 − C61 − 3C62 + 4C63 = 0 C32 − C62 − 2C64 − 3C65 = 0. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 34. The conservation condition of the noise kernel is given by ∂C11 ∂∆η + ∂C21 ∂∆s + 2AC21 ∂C21 ∂∆η + ∂C31 ∂∆s + ∂C32 ∂∆s + 2AC31 = 0 ∂C21 ∂∆η − ∂C41 ∂∆s + C42 ∂∆s − 2AC41 + 2(A + C)C42 = 0 ∂C31 ∂∆η − ∂C51 ∂∆s + 2 C53 ∂∆s − 2AC51 + 2(2A + 3C)C53 = 0 ∂C32 ∂∆η − C52 ∂∆s − 2AC52 − 2CC53 = 0 ∂C41 ∂∆η + ∂C51 ∂∆s + ∂C52 ∂∆s − ∂C53 ∂∆s + 2AC51 + CC52 − (A + 2C)C53 = 0 Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 35. ∂C42 ∂∆η + ∂C53 ∂∆s + CC52 + 3AC53 = 0 ∂C51 ∂∆η − ∂C61 ∂∆s − ∂C62 ∂∆s + 2 ∂C63 ∂∆s −2AC61 − 2CC62 + 2(A + 3C)C63 = 0 ∂C52 ∂∆η − ∂C62 ∂∆s − ∂C65 ∂∆s − 2AC62 − 2CC63 + 2(A + C)C64 = 0 ∂C53 ∂∆η − ∂C63 ∂∆s + ∂C64 ∂∆s − CC62 − 3AC63 + 3(A + C)C64 = 0 where A = 1/∆s and C = −1/∆s for R3, A = cot(∆s) and C = − csc(∆s) for S3, and A = coth(∆s) and C = −csch(∆s) for H3 Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 36. From the Wightman function one can calculate the noise kernel (Phillips and Hu 2001). For the Minkowski spacetime we have (C11)M = 3∆s4 + 10∆s2∆η2 + 3∆η4 12π4(−∆η2 + ∆s2)6 ; (C21)M = 2∆s∆η(∆s2 + ∆η2) 3π4(−∆η2 + ∆s2)6 (C31)M = 4∆η2∆s2 3π4(−∆η2 + ∆s2)6 ; (C32)M = 1 12π4(−∆η2 + ∆s2)4 (C41)M = − ∆s2(3∆η2 + ∆s2) 3π4(−∆η2 + ∆s2)6 ; (C42)M = − ∆η2 + ∆s2 6π4(−∆η2 + ∆s2)5 (C51)M = − 4∆η ∆s3 3π4(−∆η2 + ∆s2)6 ; (C52)M = 0 ; (C53)M = − ∆η∆s 3π4(−∆η2 + ∆s2)5 (C61)M = 4∆s4 3π4(−∆η2 + ∆s2)6 ; (C62)M = 0 ; (C63)M = ∆s2 3π4(−∆η2 + ∆s2)5 (C64)M = 1 6π4(−∆η2 + ∆s2)4 ; (C65)M = − 1 12π4(−∆η2 + ∆s2)4 Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 37. For the flat Robertson-Walker spacetime, ds2 = a2 (η) ( −dη2 + dr2 + r2 dθ2 + r2 sin2 θdϕ2 ) the corresponding coefficients for the noise kernel are given by (Cij )fFRW = a−2 (η) (Cij )M a−2 (η′ ) For a(η) = −1/Hη one has the de Sitter in spatially flat coordinates. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 38. For the closed Robertson-Walker spacetime, ds2 = a2 (η) ( −dη2 + dχ2 + sin2 χdθ2 + sin2 χ sin2 θdϕ2 ) which is conformal to the Einstein universe. In a similar manner, the coefficients of the noise kernels are (Cij )cFRW = a−2 (η) (Cij )E a−2 (η′ ) For a(η) = α/ sin η one has the de Sitter spacetime in the global coordinates. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 39. The coefficients of the Einstein universe noise kernel are (C11)E = 4 − cos2 ∆η − 6 cos ∆η cos ∆s − cos2 ∆s + 4 cos2 ∆η cos2 ∆s 192π4(cos ∆η − cos ∆s)6 (C21)E = sin ∆η sin ∆s(1 − cos ∆η cos ∆s) 48π4(cos ∆η − cos ∆s)6 (C31)E = sin2 ∆η sin2 ∆s 48π4(cos ∆η − cos ∆s)6 (C32)E = 1 192π4(cos ∆η − cos ∆s)4 (C41)E = − (1 + cos ∆η)(1 − cos ∆s)(2 − cos ∆η + cos ∆s − 2 cos ∆η cos ∆s) 96π4(cos ∆η − cos ∆s)6 (C42)E = − 1 − cos ∆η cos ∆s 96π4(cos ∆η − cos ∆s)5 Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 40. (C51)E = − sin ∆η sin ∆s(1 + cos ∆η)(1 − cos ∆s) 48π4(cos ∆η − cos ∆s)6 ; (C52)E = 0 (C53)E = − sin ∆η sin ∆s 96π4(cos ∆η − cos ∆s)5 (C61)E = (1 + cos ∆η)2 (1 − cos ∆s)2 48π4(cos ∆η − cos ∆s)6 ; (C62)E = 0 (C63)E = (1 + cos ∆η)(1 − cos ∆s) 96π4(cos ∆η − cos ∆s)5 (C64)E = 1 96π4(cos ∆η − cos ∆s)4 ; (C65)E = − 1 192π4(cos ∆η − cos ∆s)4 Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 41. For the open Robertson-Walker spacetime, ds2 = a2 (η) ( −dη2 + dχ2 + sinh2 χdθ2 + sinh2 χ sin2 θdϕ2 ) which is conformal to the open Einstein universe. Again the coefficients of the noise kernels are (Cij )oFRW = a−2 (η) (Cij )O a−2 (η′ ) For a(η) = αeη one has the Milne universe. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 42. The coefficients of the noise kernel in the open Einstein universe are (C11)O = [(−∆η2 + ∆s2 )2 (∆η4 + 8∆η2 ∆s2 + 3∆s4 ) + 12a2 ∆s2 (∆η2 + 3∆s2 )(3∆η2 + ∆s2 )] 144a4π4(−∆η2 + ∆s2)6 csch 2 ( ∆s a ) − ∆s(∆η2 + ∆s2 ) 12a3π4(−∆η2 + ∆s2)4 coth ( ∆s a ) csch 2 ( ∆s a ) + [2∆s2 (−∆η2 + ∆s2 )2 + 3a2 (∆η4 + 6∆η2 ∆s2 + ∆s4 )] 144a6π4(−∆η2 + ∆s2)4 csch 4 ( ∆s a ) + ∆s(∆η2 + ∆s2 ) 24a5π4(−∆η2 + ∆s2)3 coth ( ∆s a ) csch 4 ( ∆s a ) + ∆s2 48a6π4(−∆η2 + ∆s2)2 csch 6 ( ∆s a ) etc Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 43. One can obtain the noise kernel for the static de Sitter case if first a conformal transformation with Ω(χ) = 1 α cosh χ and a further coordinate transformation with tanh χ = αr are made on the open Einstein noise kernel. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 44. The coefficient functions (Cij )sdS of the noise kernel in static de Sitter spacetime are given by (Cij )sdS = (1 − r2 )−1 (Cij )O(1 − r′2 )−1 , where the geodesic distance ∆s = cosh−1 { (1 − r2 )−1/2 (1 − r′2 )−1/2 [ 1 − rr′ (cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′ )) ] } . Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 45. For the Rindler space ds2 = −ξ2 dτ2 + dξ2 + dy2 + dz2 one can obtain the noise kernel after the series of conformal and coordinate transformations. It is however easier to work directly with the Rindler Wightman function G+ R = 1 4π2 ( α ξξ′ sinh α ) ( 1 −(τ − τ′)2 + α2 ) , where cosh α = ξ2 + ξ′2 + (y − y′)2 + (z − z′)2 2ξξ′ . Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 46. For example, Nτττ′τ′ = G2 9α2ξ3ξ′3 { ξ 3 ξ ′3 + (1 − ξ 2 ξ ′2 )(ξ 2 + ξ ′2 ) coth αcschα +ξξ ′ [ (1 + 5α 2 ) + (2 − 3α 2 )ξ 2 ξ ′2 − 2α(4 − ξ 2 ξ ′2 ) coth α ] csch 2 α +α(1 − ξ 2 ξ ′2 )(ξ 2 + ξ ′2 )(1 − 2α coth α)csch 3 α +α 2 ξξ ′ (7 − 4ξ 2 ξ ′2 )csch 4 } − 8π2 G3 sinh α 9α3ξ2ξ′2 { ξ 3 ξ ′3 [ (2 + 5α 2 ) − 6α coth α ] −α(ξ 2 + ξ ′2 )(3 − ξ 2 ξ ′2 − 2α coth α)cschα +2α 2 ξξ ′ [ 4 + ξ 2 ξ ′2 − α(4 − ξ 2 ξ ′2 ) coth α ] csch 2 α +α 3 (1 − ξ 2 ξ ′2 )(ξ 2 + ξ ′2 )csch 3 α } + 64π4 G4 sinh2 α 9α2ξξ′ { 3ξξ ′ [ 3 + (3 + α 2 )ξ 2 ξ ′2 − 2αξ 2 ξ ′2 coth α ] −α(ξ 2 + ξ ′2 )(5 − α coth α)cschα + 5α 2 ξξ ′ csch 2 } − 1024π6 G5 sinh3 α 9α { 6ξξ ′ (1 + 2ξ 2 ξ ′2 ) − α(ξ 2 + ξ ′2 )cschα } + 16384π8 G6 sinh4 α 9 { ξ 2 ξ ′2 (1 + 3ξ 2 ξ ′2 ) } Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 47. VII. Discussions 1. The noise kernel is the two point correlation function of the stress-energy tensor. It represents the backreaction of the quantum fluctuations of the matter field onto the background spacetime. Therefore, it is interesting to investigate the behaviors of the noise kernel near horizons as well as initial singularities of various FRW spacetimes. 2. Other than the noise kernel we need to consider the conformal transformation of the Einstein-Langevin equation in detail. In particular, we should also investigate the transformation of the terms related to the dissipation kernel. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 48. 3. Next we shall try to solve the Einstein-Langevin equation Gµν[g + h] = κ (⟨Tµν[g + h]⟩ + ξµν[g]) Here gµν is the background Robertson-Walker spacetime with the scaling factor a(η) being a solution to the semiclassical Einstein equation. To avoid solutions that are not physical, one might resort to consistent procedures like the order reduction method of Parker and Simon. 4. Subsequently, one could solve for hµν using standard perturbation methods around the Robertson-Walker backgrounds. Here ξµν acts like an external force. The correlator ⟨hµν(x)hα′β′ (x′)⟩s can therefore be evaluated with the appropriate noise kernels. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes
  • 49. Hing-Tong Cho Stochastic Gravity in Conformally Flat Spacetimes