SlideShare uma empresa Scribd logo
1 de 8
Baixar para ler offline
Foundation Engineering 1
Example (1): For the steel pipe pile shown in the
figure, estimate the ultimate carrying capacity in
(tension and compression). The pile will filled
with concrete. O.D. = 45.72 cm, wall thickness =
0.792 cm, pipe weight = 0.861 kN/m. Use
Meyerhof’s method in estimating the point
bearing capacity and the API method in
estimating the adhesion factor.
Solution
( i ) Point bearing capacity
Qb = Ab . ̅. ́
̅ = (19 ‒ 9.8) × 10 + (19.6 ‒ 9.8) × 10 = 190 kPa
Ab = = 0.164 m2
From Fig. (8.7); For ϕ = 35ᵒ , R2 = = 10
R1 = = = 21.87 > R2
From Fig. (8.7); for ϕ ˃ 30ᵒ , and = 21.87  ́ 150
Qb = 0.164 × 190 × 150 = 4674 kN
Since, ˃ ; then
Qb Ab (50 tan ϕ ). ́
0.164 (50 tan 35) × 150 = 861.3 kN
Limiting value controls;
⸫ Qb = 861.3 kN
( ii ) Skin friction capacity;
 For the first soil layer (top);
Qs1 = As1 . fs1
fs1 = α1 . c1 + k1 . ̅ . tanδ1 ≤ 100 kPa
ϕ = 20 ᵒ
c = 25 kPa
γ = 19 kN/m3
10
m
ϕ = 35 ᵒ
γt = 19.6 kN/m3
W.T.
3
m
10
m
5
m
Clayey sand
Dense sand
Foundation Engineering 2
From Table (8.3); for steel pile and clayey sand soil; k1 = 0.5 and δ1 = 20
̅ = (19 ‒ 9.8) × 5 = 46 kPa
From Fig. (8.9); for c1 = 25 kPa ; α1 = 1.0
fs1 = 1.0 × 25 + 0.5 × 46 × tan 20 = 33.37 kPa < 100 kPA o.k.
As1 = π × 0.4572 × 10 = 14.363 m2
Qs1 = 14.363 × 33.37 = 479.3 kN
 For the second soil layer (bottom)
Qs2 = As2 . fs2
fs2 = α2 . c2 + k2 . ̅ . tanδ2 ≤ 100 kPa
For sand; α2 . c2 = 0
From table (8.3); For steel pile and dense sand, k2 = 1 , and δ2 = 20
̅ = (19 ‒ 9.8) × 10 + (19.6 ‒ 9.8) × 5 = 141 kPa
fs2 = 1 × 141 × tan 20 = 51.3 kPa < 100 kPa O.k.
As2 = π × 0.4572 × 10 = 14.363 m2
Qs2 = 14.363 × 51.3 = 736.8 kN
Qs = Qs1 + Qs2 = 479.3 + 736.8 = 1216.1 kN
Qu = Qb + Qs = 861.3 + 1216.1 = 2077.4 kN
Tu = W + Qs
W = Wsteel + Wconc.
Wsteel = 28 × 0.861 = 24.108 kN
I.D. = 0.4572 ‒ 2 × 0.00792 = 0.44136 m
Wconc. = [28 × × (0.44136)2
] × 24 = 102.812 kN
W = 24.108 + 102.812 = 126.92 kN
Tu = 126.92 + 1216.1 = 1343.02 kN
Foundation Engineering 3
Example (2): For the soil condition shown,
estimate the pile length required to carry an
ultimate load Qu = 5000 kN.
Solution
( i ) Point bearing capacity
Qb = Ab ( ̅. ́ ) ≤ Ab (11000) kN
Assume the limiting value controls;
Qb = Ab (11000) = (0.4)2
× 11000 = 1760 kN
( ii ) Skin friction capacity
 For the first layer;
Qs1 = As1 . fs1
fs1 = α1 . c1 + k1 . ̅ . tanδ1 ≤ 100 kPa
For sand; α1 . c1 = 0
̅ = 17.5 × 5 = 87.5 kPa
fs1 = 0.7 × 87.5 × tan (0.75 × 30) = 25.4 kPa < 100 kPa o.k.
Qs1 = (4 ×0.4 × 10) × 25.4 = 406.4 kN
 For the second soil layer
Qs2 = As2 . fs2
fs2 = k2 . ̅ . tanδ2 ≤ 100 kPa
̅ = 17.5 × 10 + × 19.5 = 175 + 9.75 L
fs2 = 1 × (175 + 9.75 L) × tan (0.75 × 35) = 86.3 + 4.8 L
Assume the limiting value controls for fs2 (fs2 = 100 kPa)
ϕ = 30 ᵒ
γ = 17.5 kN/m3
ks = 0.7
20
m
Concrete pile
(0.4 m × 0.4 m)
10
m
Sand
Sand
ϕ = 35 ᵒ
γ = 19.5 kN/m3
ks = 1.0
L
Qu
Foundation Engineering 4
Qs2 = (4 ×0.4 × L) × 100 = 160 L kN
But; Qu = Qb + Qs1 + Qs2 = 5000 kN
Or Qs2 = 5000  1760  406.4 = 2833.6 kN
2833.6 = 160 L  L = 17.71 m
⸫ The total length = 27.71 m
Check for the assumptions;
( 1 ) Check ̅. ́ ;
From Fig. (8.5) ; = = 69.3 < 70
ϕ = 35 ᵒ  ́ = 45
̅. ́ = (10 × 17.5 + 17.71 ×19.5) × 45 = 23415.5 kPa ˃ 11000 kPa o.k.
( 2 ) Check fs2 ;
fs2 = 86.3 + 4.8 L = 86.3 + 4.8 × 17.71 = 171.3 kPa ˃ 100 kPa o.k.
Foundation Engineering 5
Example (3-H.W.): Find the Allowable
axial load for the driven pile shown taking
Fs = 2.0. The elevation of W.T. ranged
between the two levels (105-108) during
the year.
Pile diameter = 0.5 m
Pile length = 20 m
Solution
( i ) Point bearing capacity
Qb = Ab ( ̅. ́ ) ≤ Ab (11000) kN
̅ = 17 × 2 + (17 ‒ 9.8) × 6 + (20 ‒ 9.8) × 4 + (19 ‒ 9.8) × 8 = 191.6 kPa
̅. ́ = 191.6 × 23.18 = 4441.3 kPa < 11000 kPa o.k.
Qb = (0.5)2
× 4441.3 = 872.0 kN
( ii ) Skin friction capacity;
 For the first layer;
Qs1 = As1 . fs1
fs1 = α1 . c1 = 1 × 70 = 70.0 kPa ≤ 100 kPa
Qs1 = (π ×0.5 × 8) × 70 = 879.6 kN
 For the second layer;
Qs2 = As2 . fs2
fs2 = α2 . c2 = 0.45 × 180 = 81 kPa ≤ 100 kPa
Qs2 = (π ×0.5 × 4) × 81 = 508.9 kN
N.C.clay
cu = 70 kPa
γt = 17 kN/m3
α = 1
+ 110
+ 102
+ 98
O. C. clay.
cu = 180 kPa
Deep sandy layer
γt = 19 kN/m3
 = 32ᵒ
𝑁𝑞
́ = 23.18
ks = 1.5
tan δ = 0.5
γt = 20 kN/m3
α = 0.45
W.T. +108
Foundation Engineering 6
 For the third layer;
Qs3 = As3 . fs3
fs3 = k3 . ̅ . tanδ3 ≤ 100 kPa
̅ = 17 × 2 + (17 ‒ 9.8) × 6 + (20 ‒ 9.8) × 4 + (19 ‒ 9.8) × 4 = 154.8 kPa
fs3 = 1.5 × 154.8 × 0.5 = 116.1 kPa > 100 kPa
⸫ fs3 = 100 kPa
Qs3 = (π ×0.5 × 8) × 100 = 1256.6 kN
Qu = Qb + Qs1 + Qs2 + Qs3 = 872 + 879.6 + 508.9 + 1256.6 = 3517.1 kN
Qa = = = 1758.6 kN
Foundation Engineering 7
Example (4-HW): For the driven pile shown in the
figure, determine:
a- The length of pile for allowable net pullout
resistance (Ta)net = 160kN with a safety factor
Fs = 2.7 .
b- The allowable compressive load for the same
value of safety factor.
Solution
( a ) Tu = Wp + Qs
(Tu)net = Qs
(Ta)net = = = 160 kN
Qs = 2.7 × 160 = 432 kN
Qs = Qs1 + Qs2
 For the first layer (Soft clay)
Qs1 = As1 . fs1
α1 = 1 (soft clay)
fs1 = 1 × 20 = 20 kPa ≤ 100 kPa
Qs1 = (0.3 × 4 × 10) × 20 = 240 kN
⸫ Qs2 = Qs ‒ Qs1 = 432 ‒ 240 = 192 kN
 For the second layer (Stiff clay)
Qs2 = As2 . fs2
fs2 = α2 . c2
From Table (8.2, case 2), assume 8 < PR ≤ 20 ;
⸫ α2 = 0.4
fs2 = 0.4 × 80 = 32 kPa ≤ 100 kPa
Qs2 = (0.3 × 4 × L) × 32 = 192 kN  L = 5.0 m
Check for PR;
PR = = = 16.67 < 20 ok
Total pile length = 10 + 5 = 15m
10
m
0.3 m × 0.3 m
L
W.T.
Stiff clay
c = 80 kPa
𝛾 = 9.8 kN/m3
Soft clay
c = 20 kPa
𝛾 = 8.8 kN/m3
Foundation Engineering 8
( b ) Qu = Qb + Qs
Qb = Ab ( c ́ + ̅. ́ )
For clayey soils, Ø = 0, hence, ́ = 9 ( = 16.67 > 5 ok )
Qb = (0.3)2
× (80 × 9) = 64.8 kN
Qu = Qb + Qs = 64.8 + 432 = 496.8 kN
Qa = = = 184.0 kN
Example (5): Estimate the allowable carrying capacity of a concrete pile for the
following data;
L = 18 m , Wp = 3.5 kN/m , pile cap wt. = 7.6 kN
Double acting hammer; Wr = 60 kN , s = 0.5m/25 blows
Eh = 33.14 kN.m
Solution
S = = 20 mm/blow
Wp = 3.5 × 18 + 7.6 = 70.6 kN
a. ENR formula
Pu = = = 245 kN
b. BBC formula
= = 1.18 > 1.0 ok
Pu =
√
=
√
= 211.8 kN

Mais conteúdo relacionado

Semelhante a Ch.8-Examples 2.pdf

Pile Foundationsvjhvjvgyujgvuyjgiugiug.pptx
Pile Foundationsvjhvjvgyujgvuyjgiugiug.pptxPile Foundationsvjhvjvgyujgvuyjgiugiug.pptx
Pile Foundationsvjhvjvgyujgvuyjgiugiug.pptx
TolazKoyi
 
IDP PROJECT column.pptxvjfhhfudyytststrrsrsr
IDP PROJECT column.pptxvjfhhfudyytststrrsrsrIDP PROJECT column.pptxvjfhhfudyytststrrsrsr
IDP PROJECT column.pptxvjfhhfudyytststrrsrsr
ct571999
 

Semelhante a Ch.8-Examples 2.pdf (20)

Examples on effective stress
Examples on effective stressExamples on effective stress
Examples on effective stress
 
Precast driven pile 450 x450
Precast driven pile 450 x450Precast driven pile 450 x450
Precast driven pile 450 x450
 
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
 
Pile Foundationsvjhvjvgyujgvuyjgiugiug.pptx
Pile Foundationsvjhvjvgyujgvuyjgiugiug.pptxPile Foundationsvjhvjvgyujgvuyjgiugiug.pptx
Pile Foundationsvjhvjvgyujgvuyjgiugiug.pptx
 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
 
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
 
기초공학 - 11-2 Pile Foundations.pdf
기초공학 - 11-2 Pile Foundations.pdf기초공학 - 11-2 Pile Foundations.pdf
기초공학 - 11-2 Pile Foundations.pdf
 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
 
IDP PROJECT column.pptxvjfhhfudyytststrrsrsr
IDP PROJECT column.pptxvjfhhfudyytststrrsrsrIDP PROJECT column.pptxvjfhhfudyytststrrsrsr
IDP PROJECT column.pptxvjfhhfudyytststrrsrsr
 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidation
 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
 
Fc025 w5 seminar_solutions_2
Fc025 w5 seminar_solutions_2Fc025 w5 seminar_solutions_2
Fc025 w5 seminar_solutions_2
 
Deber corte
Deber corteDeber corte
Deber corte
 
Kuzey soğutma kulesi̇ basinç kaybi
Kuzey soğutma kulesi̇ basinç kaybiKuzey soğutma kulesi̇ basinç kaybi
Kuzey soğutma kulesi̇ basinç kaybi
 
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
 
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
 
Lateral Earth pressure
Lateral Earth pressureLateral Earth pressure
Lateral Earth pressure
 
Thermo problem set no. 2
Thermo problem set no. 2Thermo problem set no. 2
Thermo problem set no. 2
 
Puentes
PuentesPuentes
Puentes
 

Último

"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 

Último (20)

"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 

Ch.8-Examples 2.pdf

  • 1. Foundation Engineering 1 Example (1): For the steel pipe pile shown in the figure, estimate the ultimate carrying capacity in (tension and compression). The pile will filled with concrete. O.D. = 45.72 cm, wall thickness = 0.792 cm, pipe weight = 0.861 kN/m. Use Meyerhof’s method in estimating the point bearing capacity and the API method in estimating the adhesion factor. Solution ( i ) Point bearing capacity Qb = Ab . ̅. ́ ̅ = (19 ‒ 9.8) × 10 + (19.6 ‒ 9.8) × 10 = 190 kPa Ab = = 0.164 m2 From Fig. (8.7); For ϕ = 35ᵒ , R2 = = 10 R1 = = = 21.87 > R2 From Fig. (8.7); for ϕ ˃ 30ᵒ , and = 21.87  ́ 150 Qb = 0.164 × 190 × 150 = 4674 kN Since, ˃ ; then Qb Ab (50 tan ϕ ). ́ 0.164 (50 tan 35) × 150 = 861.3 kN Limiting value controls; ⸫ Qb = 861.3 kN ( ii ) Skin friction capacity;  For the first soil layer (top); Qs1 = As1 . fs1 fs1 = α1 . c1 + k1 . ̅ . tanδ1 ≤ 100 kPa ϕ = 20 ᵒ c = 25 kPa γ = 19 kN/m3 10 m ϕ = 35 ᵒ γt = 19.6 kN/m3 W.T. 3 m 10 m 5 m Clayey sand Dense sand
  • 2. Foundation Engineering 2 From Table (8.3); for steel pile and clayey sand soil; k1 = 0.5 and δ1 = 20 ̅ = (19 ‒ 9.8) × 5 = 46 kPa From Fig. (8.9); for c1 = 25 kPa ; α1 = 1.0 fs1 = 1.0 × 25 + 0.5 × 46 × tan 20 = 33.37 kPa < 100 kPA o.k. As1 = π × 0.4572 × 10 = 14.363 m2 Qs1 = 14.363 × 33.37 = 479.3 kN  For the second soil layer (bottom) Qs2 = As2 . fs2 fs2 = α2 . c2 + k2 . ̅ . tanδ2 ≤ 100 kPa For sand; α2 . c2 = 0 From table (8.3); For steel pile and dense sand, k2 = 1 , and δ2 = 20 ̅ = (19 ‒ 9.8) × 10 + (19.6 ‒ 9.8) × 5 = 141 kPa fs2 = 1 × 141 × tan 20 = 51.3 kPa < 100 kPa O.k. As2 = π × 0.4572 × 10 = 14.363 m2 Qs2 = 14.363 × 51.3 = 736.8 kN Qs = Qs1 + Qs2 = 479.3 + 736.8 = 1216.1 kN Qu = Qb + Qs = 861.3 + 1216.1 = 2077.4 kN Tu = W + Qs W = Wsteel + Wconc. Wsteel = 28 × 0.861 = 24.108 kN I.D. = 0.4572 ‒ 2 × 0.00792 = 0.44136 m Wconc. = [28 × × (0.44136)2 ] × 24 = 102.812 kN W = 24.108 + 102.812 = 126.92 kN Tu = 126.92 + 1216.1 = 1343.02 kN
  • 3. Foundation Engineering 3 Example (2): For the soil condition shown, estimate the pile length required to carry an ultimate load Qu = 5000 kN. Solution ( i ) Point bearing capacity Qb = Ab ( ̅. ́ ) ≤ Ab (11000) kN Assume the limiting value controls; Qb = Ab (11000) = (0.4)2 × 11000 = 1760 kN ( ii ) Skin friction capacity  For the first layer; Qs1 = As1 . fs1 fs1 = α1 . c1 + k1 . ̅ . tanδ1 ≤ 100 kPa For sand; α1 . c1 = 0 ̅ = 17.5 × 5 = 87.5 kPa fs1 = 0.7 × 87.5 × tan (0.75 × 30) = 25.4 kPa < 100 kPa o.k. Qs1 = (4 ×0.4 × 10) × 25.4 = 406.4 kN  For the second soil layer Qs2 = As2 . fs2 fs2 = k2 . ̅ . tanδ2 ≤ 100 kPa ̅ = 17.5 × 10 + × 19.5 = 175 + 9.75 L fs2 = 1 × (175 + 9.75 L) × tan (0.75 × 35) = 86.3 + 4.8 L Assume the limiting value controls for fs2 (fs2 = 100 kPa) ϕ = 30 ᵒ γ = 17.5 kN/m3 ks = 0.7 20 m Concrete pile (0.4 m × 0.4 m) 10 m Sand Sand ϕ = 35 ᵒ γ = 19.5 kN/m3 ks = 1.0 L Qu
  • 4. Foundation Engineering 4 Qs2 = (4 ×0.4 × L) × 100 = 160 L kN But; Qu = Qb + Qs1 + Qs2 = 5000 kN Or Qs2 = 5000  1760  406.4 = 2833.6 kN 2833.6 = 160 L  L = 17.71 m ⸫ The total length = 27.71 m Check for the assumptions; ( 1 ) Check ̅. ́ ; From Fig. (8.5) ; = = 69.3 < 70 ϕ = 35 ᵒ  ́ = 45 ̅. ́ = (10 × 17.5 + 17.71 ×19.5) × 45 = 23415.5 kPa ˃ 11000 kPa o.k. ( 2 ) Check fs2 ; fs2 = 86.3 + 4.8 L = 86.3 + 4.8 × 17.71 = 171.3 kPa ˃ 100 kPa o.k.
  • 5. Foundation Engineering 5 Example (3-H.W.): Find the Allowable axial load for the driven pile shown taking Fs = 2.0. The elevation of W.T. ranged between the two levels (105-108) during the year. Pile diameter = 0.5 m Pile length = 20 m Solution ( i ) Point bearing capacity Qb = Ab ( ̅. ́ ) ≤ Ab (11000) kN ̅ = 17 × 2 + (17 ‒ 9.8) × 6 + (20 ‒ 9.8) × 4 + (19 ‒ 9.8) × 8 = 191.6 kPa ̅. ́ = 191.6 × 23.18 = 4441.3 kPa < 11000 kPa o.k. Qb = (0.5)2 × 4441.3 = 872.0 kN ( ii ) Skin friction capacity;  For the first layer; Qs1 = As1 . fs1 fs1 = α1 . c1 = 1 × 70 = 70.0 kPa ≤ 100 kPa Qs1 = (π ×0.5 × 8) × 70 = 879.6 kN  For the second layer; Qs2 = As2 . fs2 fs2 = α2 . c2 = 0.45 × 180 = 81 kPa ≤ 100 kPa Qs2 = (π ×0.5 × 4) × 81 = 508.9 kN N.C.clay cu = 70 kPa γt = 17 kN/m3 α = 1 + 110 + 102 + 98 O. C. clay. cu = 180 kPa Deep sandy layer γt = 19 kN/m3  = 32ᵒ 𝑁𝑞 ́ = 23.18 ks = 1.5 tan δ = 0.5 γt = 20 kN/m3 α = 0.45 W.T. +108
  • 6. Foundation Engineering 6  For the third layer; Qs3 = As3 . fs3 fs3 = k3 . ̅ . tanδ3 ≤ 100 kPa ̅ = 17 × 2 + (17 ‒ 9.8) × 6 + (20 ‒ 9.8) × 4 + (19 ‒ 9.8) × 4 = 154.8 kPa fs3 = 1.5 × 154.8 × 0.5 = 116.1 kPa > 100 kPa ⸫ fs3 = 100 kPa Qs3 = (π ×0.5 × 8) × 100 = 1256.6 kN Qu = Qb + Qs1 + Qs2 + Qs3 = 872 + 879.6 + 508.9 + 1256.6 = 3517.1 kN Qa = = = 1758.6 kN
  • 7. Foundation Engineering 7 Example (4-HW): For the driven pile shown in the figure, determine: a- The length of pile for allowable net pullout resistance (Ta)net = 160kN with a safety factor Fs = 2.7 . b- The allowable compressive load for the same value of safety factor. Solution ( a ) Tu = Wp + Qs (Tu)net = Qs (Ta)net = = = 160 kN Qs = 2.7 × 160 = 432 kN Qs = Qs1 + Qs2  For the first layer (Soft clay) Qs1 = As1 . fs1 α1 = 1 (soft clay) fs1 = 1 × 20 = 20 kPa ≤ 100 kPa Qs1 = (0.3 × 4 × 10) × 20 = 240 kN ⸫ Qs2 = Qs ‒ Qs1 = 432 ‒ 240 = 192 kN  For the second layer (Stiff clay) Qs2 = As2 . fs2 fs2 = α2 . c2 From Table (8.2, case 2), assume 8 < PR ≤ 20 ; ⸫ α2 = 0.4 fs2 = 0.4 × 80 = 32 kPa ≤ 100 kPa Qs2 = (0.3 × 4 × L) × 32 = 192 kN  L = 5.0 m Check for PR; PR = = = 16.67 < 20 ok Total pile length = 10 + 5 = 15m 10 m 0.3 m × 0.3 m L W.T. Stiff clay c = 80 kPa 𝛾 = 9.8 kN/m3 Soft clay c = 20 kPa 𝛾 = 8.8 kN/m3
  • 8. Foundation Engineering 8 ( b ) Qu = Qb + Qs Qb = Ab ( c ́ + ̅. ́ ) For clayey soils, Ø = 0, hence, ́ = 9 ( = 16.67 > 5 ok ) Qb = (0.3)2 × (80 × 9) = 64.8 kN Qu = Qb + Qs = 64.8 + 432 = 496.8 kN Qa = = = 184.0 kN Example (5): Estimate the allowable carrying capacity of a concrete pile for the following data; L = 18 m , Wp = 3.5 kN/m , pile cap wt. = 7.6 kN Double acting hammer; Wr = 60 kN , s = 0.5m/25 blows Eh = 33.14 kN.m Solution S = = 20 mm/blow Wp = 3.5 × 18 + 7.6 = 70.6 kN a. ENR formula Pu = = = 245 kN b. BBC formula = = 1.18 > 1.0 ok Pu = √ = √ = 211.8 kN