SlideShare uma empresa Scribd logo
1 de 26
Baixar para ler offline
Double Chooz
Matthew Worcester (University of Chicago)
for the Double Chooz Collaboration
Neutrinos and Dark Matter 2009
September 1, 2009
September 1, 2009 Worcester (Chicago) Double Chooz 2
Neutrino Mixing
 best fits:
 what is e component of 3?
1 2
1 2 3
1 2 3
12 12 13 13
12 12 23 23
13
3
13 23
cos sin 0 cos 0 sin 1 0 0
sin cos 0 0 1 0 0 cos sin
0 0 1 sin 0 cos
?
0 sin co
CP
CP
ee e
i
i
U U Big Big
U U U U Big Big Big
U U U
U
Big Big Big
e
mall
e
S
  
  


   
   
  

   
   
    
   
   
  
  
     
        23s
 
 
 
 
 
SK+K2K+MINOS
Solar+KamLand
September 1, 2009 Worcester (Chicago) Double Chooz 3
Motivation
 Value of 13 :
 Mass hierarchy and scale
 CP violation
 CHOOZ 1997 →
 Reactor experiment
provides clean
measurement of 13:
September 1, 2009 Worcester (Chicago) Double Chooz 4
Reactor Neutrinos
 Nuclear reactors are intense
sources with a well–measured flux
and spectrum
 3 GW → 6×1020 /sec
700 events /year/ton at 1500 m
 visible spectrum peak at ~ 3.7 MeV
 oscillation max. for Dm2=2.510-3 eV2
at L ~1500 m
Arbitrary
Observable  Spectrum
From Bemporad, Gratta and Vogel
0
5
10
15
20
25
30
35
1.50 2.50 3.50 4.50 5.50 6.50 7.50 8.50
E (MeV)
ObservedEvents
Dm
2
= 2.5 10
-3
eV
2
Full Mixing
No Osc.
1500 m
 Disappearance measurement:
 look for small deviation between near
(~200m) and far (~1500m) detectors:
 counting = number of events
 shape = energy spectra
September 1, 2009 Worcester (Chicago) Double Chooz 5
Detection
 Inverse –decay:

 155Gd,157Gd capture:

  ~ 30 sec
(0.1% Gd concentration)
 Events selected by
coincidence
  energy spectrum given by
visible e+ energy:
 E = Evis + 1.8 MeV – 2me
6 meters
Shielding
n
e+
e
Liquid Scintillator
with Gadolinium
= Photomultiplier Tube
September 1, 2009 Worcester (Chicago) Double Chooz 6
13 Limits
 5.55 m3 doped target in single
detector @ 1050m
 ~3 months data-taking
 2% systematic on reactor flux
2
atmmD 2
solarmD
CHOOZ:
September 1, 2009 Worcester (Chicago) Double Chooz 7
Improve Limits
 Add identical near detector: need only relative acceptance
 remove systematics from reactor neutrino flux, energy
 New detector design
 low radioactivity PMTs protected by mineral oil
 addition of non-doped “gamma-catcher” defines target volume
 New Gd scintillator mixture: instability in CHOOZ scintillator attenuation
 Reduce cosmogenic backgrounds: add outer detectors
Chooz B nuclear power plant
on France/Belgium border
Meuse river
September 1, 2009 Worcester (Chicago) Double Chooz 8
Double Chooz
Features of Double Chooz site:
• 24.27 GWthermal reactors – 8.54 GW maximum power
• Far site hall reusable from original CHOOZ with 300 mwe
mountain overburden at 1050 m baseline
• Near site: ~40 m rock (115 mwe) overburden at 410 m baseline
Far detector only
22,800 νe in 1.5 years
0.7% stat. uncertaintyNear + far detectors
45,600 νe (far detector) in 3 years
0.5% stat. uncertainty
Collaboration
September 1, 2009 Worcester (Chicago) Double Chooz 9
Phase 1: Far detector only
September 1, 2009 Worcester (Chicago) Double Chooz 10
Systematic % Error
Reactor Power 1.9
Energy per fission 0.6
νe/fission 0.2
ν cross section 0.1
Systematic % Error
Detector volume 0.2
Scintillator
density
0.01
H/C composition < 0.5
Gd concentration 0.3
Deadtime 0
e+ energy cut 0.1
n loss (spill in/out) < 1.0
n energy cut 0.1
Time cut 0.4
Reactor
 2.0% total systematic
 based on CHOOZ analysis
 dominates Phase 1 errors
Detector and data selection
• < 1.3% total systematic (CHOOZ analysis: 1.5% total)
Phase 2: Near + Far Detectors
September 1, 2009 Worcester (Chicago) Double Chooz 11
Systematic errors on the relative normalization
 PMT radioactivity protected by oil buffer (CHOOZ: 60 Hz, DC: 1.5 Hz)
 cosmogenic neutron background reduced by improved vetos
 in situ calibrations improve energy scale for selection cuts
September 1, 2009 Worcester (Chicago) Double Chooz 12
Backgrounds
 Accidental
 random coincidences between two different events (e.g. radioactive decay
plus cosmogenic neutron) together fake IBD signal
 Correlated
 fast neutron – from muon showers near detector. A single neutron can
elastically scatter in the target and subsequently capture on Gd
 muon capture – on nuclei in dead material along muon track can produce
several high-energy neutrons
 9Li – production by muon spallation inside target. Production mechanism
not well-understood. About 50% of β decays produce a neutron. 178 ms
half life causes prohibitive deadtime if vetoed by muon track in target.
Expected Sensitivity
September 1, 2009 Worcester (Chicago) Double Chooz 13
sin22θ13 < 0.03 with
0.5% stat. uncertainty
requires systematic errors of:
 < 0.6% relative normalization
 < 1% total background
Far Site Hall
September 1, 2009 Worcester (Chicago) Double Chooz 14
September 1, 2009 Worcester (Chicago) Double Chooz 15
Inner Detectors
 Target
 10.3 m3 (8.8 tonnes) of 0.1%
Gd-doped LS
 Gamma-catcher
 ~50 cm (22.6 m3) of LS
 Buffer
 105 cm of nonscintillating
organic liquid (114.2 m3)
 390 10” Hamamatsu PMTs
 Inner Veto
 90 m3 LS with 78 8” PMTs
h = 2458mm
d = 2300mm
h = 3574mm
d = 3392mm
h = 5674mm
d = 5516mm
h = 6640mm
d = 6590mm
Detector Simulation
 Geant4-based Monte Carlo with ROOT output
 detailed detector geometry and pulse modeling
 νe events generated throughout central detectors
 two reconstructed events within 100 μsec window
September 1, 2009 Worcester (Chicago) Double Chooz 16
_
September 1, 2009 Worcester (Chicago) Double Chooz 17
Outer Veto
 two 7.0 x 7.2 meter panels ~1 m above the inner detectors
 overlapped vertically for continuous active coverage
 mounted to retractable steel shielding
 one 3.6 x 3.6 m upper panel above glove box
 protects neck and provides tracking
LAYOUT
Raw muon rates
Near 5.9 Hz/m2
Far 0.62 Hz/m2
September 1, 2009 Worcester (Chicago) Double Chooz 18
Veto Effect
 rate of neutrons (from “near-miss” muons) entering
the central detector as a function of OV width
 muons which deposit energy in the central detectors are
removed
 FLUKA generated muon sample
Near site, 100% efficient detectors
Background candidate neutron study
Far Detector Construction
September 1, 2009 Worcester (Chicago) Double Chooz 19
Original CHOOZ hall and pit refurbished and
new cleanliness standards achieved
Construction pictures
from CEA/CNRS/IRFU
Far Detector Progress
September 1, 2009 Worcester (Chicago) Double Chooz 20
Far Detector Progress
September 1, 2009 Worcester (Chicago) Double Chooz 21
Far Detector Progress
September 1, 2009 Worcester (Chicago) Double Chooz 22
Far Detector Current Status
September 1, 2009 Worcester (Chicago) Double Chooz 23
Now: acrylic vessels complete
and integration is ongoing.
Near Detector Status
September 1, 2009 Worcester (Chicago) Double Chooz 24
Preliminary
Schedule
 Geological survey completed for near lab February 2009
 Far detector
 Now installing acrylic vessels
 Outer veto module construction on schedule →
 Inner detector closed at the end of 2009
 Liquid scintillator filling through April 2010
 Begin data-taking with inner far detector in April
 Outer veto installed after filling (not required for inner detector
data taking)
 Near hall construction begins end of 2010
 Near detector data taking in 2011
September 1, 2009 Worcester (Chicago) Double Chooz 25
Conclusion
 Double Chooz will be the first new generation
detector reactor neutrino experiment to
measure θ13
 April 2010 begin far detector data taking
 achieve current limit of sin22θ13 < 0.15 at 90% CL
with approximately one month of data
 near detector data taking in 2011
 five years after start of data taking (3 yrs of
two detectors): sin22θ13 < 0.03 at 90% CL
September 1, 2009 Worcester (Chicago) Double Chooz 26

Mais conteúdo relacionado

Mais procurados

Satellite Remote Sensing (Kasatochi eruption)
Satellite Remote Sensing (Kasatochi eruption)Satellite Remote Sensing (Kasatochi eruption)
Satellite Remote Sensing (Kasatochi eruption)Federico Karagulian
 
Detector Simulation for HEP
Detector Simulation for HEPDetector Simulation for HEP
Detector Simulation for HEPYuan CHAO
 
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...Sérgio Sacani
 
Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Ruo-Qian (Roger) Wang
 
Acoustic and seismic effects of the 2013 Chelyabinsk meteorite as measured by...
Acoustic and seismic effects of the 2013 Chelyabinsk meteorite as measured by...Acoustic and seismic effects of the 2013 Chelyabinsk meteorite as measured by...
Acoustic and seismic effects of the 2013 Chelyabinsk meteorite as measured by...Ivan Kitov
 
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...Sérgio Sacani
 
The Chelyabinsk meteor: joint interpretation of infrasound, acoustic, and sei...
The Chelyabinsk meteor: joint interpretation of infrasound, acoustic, and sei...The Chelyabinsk meteor: joint interpretation of infrasound, acoustic, and sei...
The Chelyabinsk meteor: joint interpretation of infrasound, acoustic, and sei...Ivan Kitov
 
A universal matter-wave interferometer with optical gratings in the time domain
A universal matter-wave interferometer with optical gratings in the time domainA universal matter-wave interferometer with optical gratings in the time domain
A universal matter-wave interferometer with optical gratings in the time domainPhysikUndMusik
 
UNF Undergrad Physics
UNF Undergrad PhysicsUNF Undergrad Physics
UNF Undergrad PhysicsNick Kypreos
 
Radon exhalation rate and Radionuclides in soil, phosphate, and building mate...
Radon exhalation rate and Radionuclides in soil, phosphate, and building mate...Radon exhalation rate and Radionuclides in soil, phosphate, and building mate...
Radon exhalation rate and Radionuclides in soil, phosphate, and building mate...iosrjce
 
Zero-Point Energy Harvesters
Zero-Point Energy HarvestersZero-Point Energy Harvesters
Zero-Point Energy HarvestersVapula
 
D041012731
D041012731D041012731
D041012731IOSR-JEN
 
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario MartínezICREA
 
Nanomaterials for Drug Delivery
Nanomaterials for Drug DeliveryNanomaterials for Drug Delivery
Nanomaterials for Drug DeliverySulalit Banerjee
 
Combinatorial Experimentation and Machine Learning for Materials Discovery
Combinatorial Experimentation and Machine Learning for Materials DiscoveryCombinatorial Experimentation and Machine Learning for Materials Discovery
Combinatorial Experimentation and Machine Learning for Materials Discoveryaimsnist
 

Mais procurados (20)

Neutron log-abdulsalam
Neutron log-abdulsalamNeutron log-abdulsalam
Neutron log-abdulsalam
 
PhD slides
PhD slidesPhD slides
PhD slides
 
Satellite Remote Sensing (Kasatochi eruption)
Satellite Remote Sensing (Kasatochi eruption)Satellite Remote Sensing (Kasatochi eruption)
Satellite Remote Sensing (Kasatochi eruption)
 
Detector Simulation for HEP
Detector Simulation for HEPDetector Simulation for HEP
Detector Simulation for HEP
 
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...
 
Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...
 
Acoustic and seismic effects of the 2013 Chelyabinsk meteorite as measured by...
Acoustic and seismic effects of the 2013 Chelyabinsk meteorite as measured by...Acoustic and seismic effects of the 2013 Chelyabinsk meteorite as measured by...
Acoustic and seismic effects of the 2013 Chelyabinsk meteorite as measured by...
 
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
 
The Chelyabinsk meteor: joint interpretation of infrasound, acoustic, and sei...
The Chelyabinsk meteor: joint interpretation of infrasound, acoustic, and sei...The Chelyabinsk meteor: joint interpretation of infrasound, acoustic, and sei...
The Chelyabinsk meteor: joint interpretation of infrasound, acoustic, and sei...
 
A universal matter-wave interferometer with optical gratings in the time domain
A universal matter-wave interferometer with optical gratings in the time domainA universal matter-wave interferometer with optical gratings in the time domain
A universal matter-wave interferometer with optical gratings in the time domain
 
UNF Undergrad Physics
UNF Undergrad PhysicsUNF Undergrad Physics
UNF Undergrad Physics
 
Radon exhalation rate and Radionuclides in soil, phosphate, and building mate...
Radon exhalation rate and Radionuclides in soil, phosphate, and building mate...Radon exhalation rate and Radionuclides in soil, phosphate, and building mate...
Radon exhalation rate and Radionuclides in soil, phosphate, and building mate...
 
Zero-Point Energy Harvesters
Zero-Point Energy HarvestersZero-Point Energy Harvesters
Zero-Point Energy Harvesters
 
D041012731
D041012731D041012731
D041012731
 
Prof Osamu Tajima
Prof Osamu TajimaProf Osamu Tajima
Prof Osamu Tajima
 
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
 
Nanomaterials for Drug Delivery
Nanomaterials for Drug DeliveryNanomaterials for Drug Delivery
Nanomaterials for Drug Delivery
 
Combinatorial Experimentation and Machine Learning for Materials Discovery
Combinatorial Experimentation and Machine Learning for Materials DiscoveryCombinatorial Experimentation and Machine Learning for Materials Discovery
Combinatorial Experimentation and Machine Learning for Materials Discovery
 
Plasma propulsionm2p2
Plasma propulsionm2p2Plasma propulsionm2p2
Plasma propulsionm2p2
 
1071 bickford[1]
1071 bickford[1]1071 bickford[1]
1071 bickford[1]
 

Destaque

La violencia, un producto de canasta básica
La violencia, un producto de canasta básicaLa violencia, un producto de canasta básica
La violencia, un producto de canasta básicaalberto cruz castillejos
 
Chapter 2 (1)
Chapter 2 (1)Chapter 2 (1)
Chapter 2 (1)Sports101
 
SamCV-General-Australia
SamCV-General-AustraliaSamCV-General-Australia
SamCV-General-AustraliaSam Kerry
 
eFolder webinar — Killer App Cage Match: Three Partners Share Their File Sync...
eFolder webinar — Killer App Cage Match: Three Partners Share Their File Sync...eFolder webinar — Killer App Cage Match: Three Partners Share Their File Sync...
eFolder webinar — Killer App Cage Match: Three Partners Share Their File Sync...eFolder
 
Makalah permasalan guru dan solusinya
Makalah permasalan guru dan solusinyaMakalah permasalan guru dan solusinya
Makalah permasalan guru dan solusinyaSeptian Muna Barakati
 
Simbolos de España
Simbolos de EspañaSimbolos de España
Simbolos de EspañaVirSanJose
 
Bandera de España
Bandera de EspañaBandera de España
Bandera de EspañaDraco703
 
Protocolo...Porquê? (Isabel Ardions)
Protocolo...Porquê? (Isabel Ardions)Protocolo...Porquê? (Isabel Ardions)
Protocolo...Porquê? (Isabel Ardions)Isabel Ardions
 

Destaque (14)

La violencia, un producto de canasta básica
La violencia, un producto de canasta básicaLa violencia, un producto de canasta básica
La violencia, un producto de canasta básica
 
The hope amid the chaos
The hope amid the chaosThe hope amid the chaos
The hope amid the chaos
 
El amor luis andres
El amor luis andresEl amor luis andres
El amor luis andres
 
Chapter 2 (1)
Chapter 2 (1)Chapter 2 (1)
Chapter 2 (1)
 
SamCV-General-Australia
SamCV-General-AustraliaSamCV-General-Australia
SamCV-General-Australia
 
eFolder webinar — Killer App Cage Match: Three Partners Share Their File Sync...
eFolder webinar — Killer App Cage Match: Three Partners Share Their File Sync...eFolder webinar — Killer App Cage Match: Three Partners Share Their File Sync...
eFolder webinar — Killer App Cage Match: Three Partners Share Their File Sync...
 
Resume
ResumeResume
Resume
 
Makalah permasalan guru dan solusinya
Makalah permasalan guru dan solusinyaMakalah permasalan guru dan solusinya
Makalah permasalan guru dan solusinya
 
Eluard
EluardEluard
Eluard
 
Simbolos de España
Simbolos de EspañaSimbolos de España
Simbolos de España
 
Países dos balcã
Países dos balcãPaíses dos balcã
Países dos balcã
 
Socialdemocracia
SocialdemocraciaSocialdemocracia
Socialdemocracia
 
Bandera de España
Bandera de EspañaBandera de España
Bandera de España
 
Protocolo...Porquê? (Isabel Ardions)
Protocolo...Porquê? (Isabel Ardions)Protocolo...Porquê? (Isabel Ardions)
Protocolo...Porquê? (Isabel Ardions)
 

Semelhante a DC_NDM2009

First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...Toshihiro FUJII
 
UHS Entrance Test MCAT Syllabus 2014
UHS Entrance Test MCAT Syllabus 2014UHS Entrance Test MCAT Syllabus 2014
UHS Entrance Test MCAT Syllabus 2014medicalkidunya
 
Low-power Portable Laser Spectroscopic Sensor for Atmospheric CO2 Monitoring
Low-power Portable Laser Spectroscopic Sensor for Atmospheric CO2 MonitoringLow-power Portable Laser Spectroscopic Sensor for Atmospheric CO2 Monitoring
Low-power Portable Laser Spectroscopic Sensor for Atmospheric CO2 MonitoringClinton Smith
 
Federico Capasso: Photonics as Design
Federico Capasso: Photonics as DesignFederico Capasso: Photonics as Design
Federico Capasso: Photonics as DesignShelby Roller
 
ProceedingForBloisConf_StefanoPerasso
ProceedingForBloisConf_StefanoPerassoProceedingForBloisConf_StefanoPerasso
ProceedingForBloisConf_StefanoPerassoStefano Perasso
 
Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Philippe Bouyer
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価Toshihiro FUJII
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画Toshihiro FUJII
 
0_PWSFAC1254172023105232.pptx
0_PWSFAC1254172023105232.pptx0_PWSFAC1254172023105232.pptx
0_PWSFAC1254172023105232.pptxShivangArora14
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopyBMRS Meeting
 
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...Chad Orzel
 
Electrical Capacitance Volume Tomography
Electrical Capacitance Volume Tomography Electrical Capacitance Volume Tomography
Electrical Capacitance Volume Tomography tech4imaging
 
Compiled presentations MOS
Compiled presentations MOSCompiled presentations MOS
Compiled presentations MOSRoman Hodson
 
Instrumentation of Mass Spectrometry
 Instrumentation of Mass Spectrometry Instrumentation of Mass Spectrometry
Instrumentation of Mass SpectrometrySowmya B U Jain
 
publicatie C14_2014-2263-1-PB
publicatie C14_2014-2263-1-PBpublicatie C14_2014-2263-1-PB
publicatie C14_2014-2263-1-PBWim Fokker
 
Water Impurity Measurement System using Microwaves
Water Impurity Measurement System using MicrowavesWater Impurity Measurement System using Microwaves
Water Impurity Measurement System using MicrowavesSanket Yavalkar
 
High-accuracy laser spectrometers for wireless trace-gas sensor networks
High-accuracy laser spectrometers for wireless trace-gas sensor networksHigh-accuracy laser spectrometers for wireless trace-gas sensor networks
High-accuracy laser spectrometers for wireless trace-gas sensor networksClinton Smith
 

Semelhante a DC_NDM2009 (20)

First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...
 
UHS Entrance Test MCAT Syllabus 2014
UHS Entrance Test MCAT Syllabus 2014UHS Entrance Test MCAT Syllabus 2014
UHS Entrance Test MCAT Syllabus 2014
 
Low-power Portable Laser Spectroscopic Sensor for Atmospheric CO2 Monitoring
Low-power Portable Laser Spectroscopic Sensor for Atmospheric CO2 MonitoringLow-power Portable Laser Spectroscopic Sensor for Atmospheric CO2 Monitoring
Low-power Portable Laser Spectroscopic Sensor for Atmospheric CO2 Monitoring
 
Federico Capasso: Photonics as Design
Federico Capasso: Photonics as DesignFederico Capasso: Photonics as Design
Federico Capasso: Photonics as Design
 
ProceedingForBloisConf_StefanoPerasso
ProceedingForBloisConf_StefanoPerassoProceedingForBloisConf_StefanoPerasso
ProceedingForBloisConf_StefanoPerasso
 
Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
0_PWSFAC1254172023105232.pptx
0_PWSFAC1254172023105232.pptx0_PWSFAC1254172023105232.pptx
0_PWSFAC1254172023105232.pptx
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
 
Meph 569 final exam- 032
Meph 569 final exam- 032Meph 569 final exam- 032
Meph 569 final exam- 032
 
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
 
Electrical Capacitance Volume Tomography
Electrical Capacitance Volume Tomography Electrical Capacitance Volume Tomography
Electrical Capacitance Volume Tomography
 
Compiled presentations MOS
Compiled presentations MOSCompiled presentations MOS
Compiled presentations MOS
 
Instrumentation of Mass Spectrometry
 Instrumentation of Mass Spectrometry Instrumentation of Mass Spectrometry
Instrumentation of Mass Spectrometry
 
publicatie C14_2014-2263-1-PB
publicatie C14_2014-2263-1-PBpublicatie C14_2014-2263-1-PB
publicatie C14_2014-2263-1-PB
 
Water Impurity Measurement System using Microwaves
Water Impurity Measurement System using MicrowavesWater Impurity Measurement System using Microwaves
Water Impurity Measurement System using Microwaves
 
PARABLE POSTER
PARABLE POSTERPARABLE POSTER
PARABLE POSTER
 
High-accuracy laser spectrometers for wireless trace-gas sensor networks
High-accuracy laser spectrometers for wireless trace-gas sensor networksHigh-accuracy laser spectrometers for wireless trace-gas sensor networks
High-accuracy laser spectrometers for wireless trace-gas sensor networks
 

DC_NDM2009

  • 1. Double Chooz Matthew Worcester (University of Chicago) for the Double Chooz Collaboration Neutrinos and Dark Matter 2009 September 1, 2009
  • 2. September 1, 2009 Worcester (Chicago) Double Chooz 2 Neutrino Mixing  best fits:  what is e component of 3? 1 2 1 2 3 1 2 3 12 12 13 13 12 12 23 23 13 3 13 23 cos sin 0 cos 0 sin 1 0 0 sin cos 0 0 1 0 0 cos sin 0 0 1 sin 0 cos ? 0 sin co CP CP ee e i i U U Big Big U U U U Big Big Big U U U U Big Big Big e mall e S                                                              23s           SK+K2K+MINOS Solar+KamLand
  • 3. September 1, 2009 Worcester (Chicago) Double Chooz 3 Motivation  Value of 13 :  Mass hierarchy and scale  CP violation  CHOOZ 1997 →  Reactor experiment provides clean measurement of 13:
  • 4. September 1, 2009 Worcester (Chicago) Double Chooz 4 Reactor Neutrinos  Nuclear reactors are intense sources with a well–measured flux and spectrum  3 GW → 6×1020 /sec 700 events /year/ton at 1500 m  visible spectrum peak at ~ 3.7 MeV  oscillation max. for Dm2=2.510-3 eV2 at L ~1500 m Arbitrary Observable  Spectrum From Bemporad, Gratta and Vogel 0 5 10 15 20 25 30 35 1.50 2.50 3.50 4.50 5.50 6.50 7.50 8.50 E (MeV) ObservedEvents Dm 2 = 2.5 10 -3 eV 2 Full Mixing No Osc. 1500 m  Disappearance measurement:  look for small deviation between near (~200m) and far (~1500m) detectors:  counting = number of events  shape = energy spectra
  • 5. September 1, 2009 Worcester (Chicago) Double Chooz 5 Detection  Inverse –decay:   155Gd,157Gd capture:    ~ 30 sec (0.1% Gd concentration)  Events selected by coincidence   energy spectrum given by visible e+ energy:  E = Evis + 1.8 MeV – 2me 6 meters Shielding n e+ e Liquid Scintillator with Gadolinium = Photomultiplier Tube
  • 6. September 1, 2009 Worcester (Chicago) Double Chooz 6 13 Limits  5.55 m3 doped target in single detector @ 1050m  ~3 months data-taking  2% systematic on reactor flux 2 atmmD 2 solarmD CHOOZ:
  • 7. September 1, 2009 Worcester (Chicago) Double Chooz 7 Improve Limits  Add identical near detector: need only relative acceptance  remove systematics from reactor neutrino flux, energy  New detector design  low radioactivity PMTs protected by mineral oil  addition of non-doped “gamma-catcher” defines target volume  New Gd scintillator mixture: instability in CHOOZ scintillator attenuation  Reduce cosmogenic backgrounds: add outer detectors Chooz B nuclear power plant on France/Belgium border Meuse river
  • 8. September 1, 2009 Worcester (Chicago) Double Chooz 8 Double Chooz Features of Double Chooz site: • 24.27 GWthermal reactors – 8.54 GW maximum power • Far site hall reusable from original CHOOZ with 300 mwe mountain overburden at 1050 m baseline • Near site: ~40 m rock (115 mwe) overburden at 410 m baseline Far detector only 22,800 νe in 1.5 years 0.7% stat. uncertaintyNear + far detectors 45,600 νe (far detector) in 3 years 0.5% stat. uncertainty
  • 9. Collaboration September 1, 2009 Worcester (Chicago) Double Chooz 9
  • 10. Phase 1: Far detector only September 1, 2009 Worcester (Chicago) Double Chooz 10 Systematic % Error Reactor Power 1.9 Energy per fission 0.6 νe/fission 0.2 ν cross section 0.1 Systematic % Error Detector volume 0.2 Scintillator density 0.01 H/C composition < 0.5 Gd concentration 0.3 Deadtime 0 e+ energy cut 0.1 n loss (spill in/out) < 1.0 n energy cut 0.1 Time cut 0.4 Reactor  2.0% total systematic  based on CHOOZ analysis  dominates Phase 1 errors Detector and data selection • < 1.3% total systematic (CHOOZ analysis: 1.5% total)
  • 11. Phase 2: Near + Far Detectors September 1, 2009 Worcester (Chicago) Double Chooz 11 Systematic errors on the relative normalization  PMT radioactivity protected by oil buffer (CHOOZ: 60 Hz, DC: 1.5 Hz)  cosmogenic neutron background reduced by improved vetos  in situ calibrations improve energy scale for selection cuts
  • 12. September 1, 2009 Worcester (Chicago) Double Chooz 12 Backgrounds  Accidental  random coincidences between two different events (e.g. radioactive decay plus cosmogenic neutron) together fake IBD signal  Correlated  fast neutron – from muon showers near detector. A single neutron can elastically scatter in the target and subsequently capture on Gd  muon capture – on nuclei in dead material along muon track can produce several high-energy neutrons  9Li – production by muon spallation inside target. Production mechanism not well-understood. About 50% of β decays produce a neutron. 178 ms half life causes prohibitive deadtime if vetoed by muon track in target.
  • 13. Expected Sensitivity September 1, 2009 Worcester (Chicago) Double Chooz 13 sin22θ13 < 0.03 with 0.5% stat. uncertainty requires systematic errors of:  < 0.6% relative normalization  < 1% total background
  • 14. Far Site Hall September 1, 2009 Worcester (Chicago) Double Chooz 14
  • 15. September 1, 2009 Worcester (Chicago) Double Chooz 15 Inner Detectors  Target  10.3 m3 (8.8 tonnes) of 0.1% Gd-doped LS  Gamma-catcher  ~50 cm (22.6 m3) of LS  Buffer  105 cm of nonscintillating organic liquid (114.2 m3)  390 10” Hamamatsu PMTs  Inner Veto  90 m3 LS with 78 8” PMTs h = 2458mm d = 2300mm h = 3574mm d = 3392mm h = 5674mm d = 5516mm h = 6640mm d = 6590mm
  • 16. Detector Simulation  Geant4-based Monte Carlo with ROOT output  detailed detector geometry and pulse modeling  νe events generated throughout central detectors  two reconstructed events within 100 μsec window September 1, 2009 Worcester (Chicago) Double Chooz 16 _
  • 17. September 1, 2009 Worcester (Chicago) Double Chooz 17 Outer Veto  two 7.0 x 7.2 meter panels ~1 m above the inner detectors  overlapped vertically for continuous active coverage  mounted to retractable steel shielding  one 3.6 x 3.6 m upper panel above glove box  protects neck and provides tracking LAYOUT Raw muon rates Near 5.9 Hz/m2 Far 0.62 Hz/m2
  • 18. September 1, 2009 Worcester (Chicago) Double Chooz 18 Veto Effect  rate of neutrons (from “near-miss” muons) entering the central detector as a function of OV width  muons which deposit energy in the central detectors are removed  FLUKA generated muon sample Near site, 100% efficient detectors Background candidate neutron study
  • 19. Far Detector Construction September 1, 2009 Worcester (Chicago) Double Chooz 19 Original CHOOZ hall and pit refurbished and new cleanliness standards achieved Construction pictures from CEA/CNRS/IRFU
  • 20. Far Detector Progress September 1, 2009 Worcester (Chicago) Double Chooz 20
  • 21. Far Detector Progress September 1, 2009 Worcester (Chicago) Double Chooz 21
  • 22. Far Detector Progress September 1, 2009 Worcester (Chicago) Double Chooz 22
  • 23. Far Detector Current Status September 1, 2009 Worcester (Chicago) Double Chooz 23 Now: acrylic vessels complete and integration is ongoing.
  • 24. Near Detector Status September 1, 2009 Worcester (Chicago) Double Chooz 24 Preliminary
  • 25. Schedule  Geological survey completed for near lab February 2009  Far detector  Now installing acrylic vessels  Outer veto module construction on schedule →  Inner detector closed at the end of 2009  Liquid scintillator filling through April 2010  Begin data-taking with inner far detector in April  Outer veto installed after filling (not required for inner detector data taking)  Near hall construction begins end of 2010  Near detector data taking in 2011 September 1, 2009 Worcester (Chicago) Double Chooz 25
  • 26. Conclusion  Double Chooz will be the first new generation detector reactor neutrino experiment to measure θ13  April 2010 begin far detector data taking  achieve current limit of sin22θ13 < 0.15 at 90% CL with approximately one month of data  near detector data taking in 2011  five years after start of data taking (3 yrs of two detectors): sin22θ13 < 0.03 at 90% CL September 1, 2009 Worcester (Chicago) Double Chooz 26