SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
SCIENTIA
Series A: Mathematical Sciences, Vol. 19 (2010), 113–119
Universidad T´ecnica Federico Santa Mar´ıa
Valpara´ıso, Chile
ISSN 0716-8446
c Universidad T´ecnica Federico Santa Mar´ıa 2010
The integrals in Gradshteyn and Ryzhik.
Part 15: Frullani integrals
aMatthew Albano,bTewodros Amdeberhan,
bErin Beyerstedt and bVictor H. Moll
Abstract. The table of Gradshteyn and Ryzhik contains some integrals that can
be reduced to the Frullani type. We present a selection of them.
1. Introduction
The table of integrals [3] contains many evaluations of the form
(1.1)
∞
0
f(ax) − f(bx)
x
dx = [f(0) − f(∞)] ln
b
a
.
Expressions of this type are called Frullani integrals. Conditions that guarantee the
validity of this formula are given in [1] and [4]. In particular, the continuity of f′
and
the convergence of the integral are sufficient for (1.1) to hold.
2. A list of examples
Many of the entries in [3] are simply particular cases of (1.1).
Example 2.1. The evaluation of 3.434.2 in [3]:
(2.1)
∞
0
e−ax
− e−bx
x
dx = ln
b
a
corresponds to the function f(x) = e−x
.
Example 2.2. The change of variables t = e−x
in Example 2.1 yields
(2.2)
1
0
tb−1
− ta−1
ln t
dt = ln
a
b
.
This is 4.267.8 in [3].
2000 Mathematics Subject Classification. Primary 33.
Key words and phrases. Integrals, Frullani integrals.
113
114 M. ALBANO, T. AMDEBERHAN, E. BEYERSTEDT AND V. MOLL
Example 2.3. A generalization of the previous example appears as entry 3.476.1
in [3]:
(2.3)
∞
0
e−vxp
− e−uxp dx
x
=
1
p
ln
u
v
.
This comes from Frullani’s result with a simple additional scaling.
Example 2.4. The choice
(2.4) f(x) =
e−qx
− e−px
x
,
with p, q > 0 satisfies f(∞) = 0 and
(2.5) f(0) = lim
x→0
e−qx
− e−px
x
= p − q.
Then Frullani’s theorem yields
∞
0
e−aqx
− e−apx
ax
−
e−bqx
− e−bpx
bx
dx
x
= (p − q) ln
b
a
,
that can be written as
∞
0
e−aqx
− e−apx
a
−
e−bqx
− e−bpx
b
dx
x2
= (p − q) ln
b
a
.
This is entry 3.436 in [3].
Example 2.5. Now choose
(2.6) f(x) =
x
1 − e−x
exp(−cex
).
Then Frullani’s theorem yields entry 3.329 of [3], in view of f(0) = e−c
and f(∞) = 0:
∞
0
a exp(−ceax
)
1 − e−ax
−
b exp(−cebx
)
1 − e−bx
dx = e−c
ln
b
a
.
Example 2.6. The next example uses
(2.7) f(x) = (x + c)−µ
,
with c, µ > 0, to produce
(2.8)
∞
0
(ax + c)−µ
− (bx + c)−µ
x
dx = c−µ
ln
b
a
.
This is 3.232 in [3].
Example 2.7. Entry 4.536.2 in [3] is
(2.9)
∞
0
tan−1
(px) − tan−1
(qx)
x
dx =
π
2
ln
p
q
.
This follows directly from (1.1) by choosing f(x) = tan−1
x.
FRULLANI INTEGRALS 115
Example 2.8. The function f(x) = ln(a + be−x
) gives the evaluation of entry
4.319.3 of [3]:
(2.10)
∞
0
ln(a + be−px
) − ln(a + be−qx
)
x
dx = ln
a
a + b
ln
p
q
.
Example 2.9. The function f(x) = ab ln(1 + x)/x produces entry 4.297.7 of [3]:
(2.11)
∞
0
b ln(1 + ax) − a ln(1 + bx)
x2
dx = ab ln
b
a
.
Example 2.10. Entry 3.484 of [3]:
(2.12)
∞
0
1 +
a
qx
qx
− 1 +
a
px
px
dx
x
= (ea
− 1) ln
q
p
,
is obtained by choosing f(x) = (1 + a/x)x
in (1.1).
Example 2.11. The final example in this section corresponds to the function
(2.13) f(x) =
a + be−x
cex + g + he−x
that produces entry 3.412.1 of [3]:
(2.14)
∞
0
a + be−px
cepx + g + he−px
−
a + be−qx
ceqx + g + he−qx
dx
x
=
a + b
c + g + h
ln
q
p
.
3. A separate source of examples
The list presented in this section contains integrals of Frullani type that were
found in volume 1 of Ramanujan’s Notebooks [2].
Example 3.1.
∞
0
tan−1
ax − tan−1
bx
x
dx =
π
2
ln
a
b
Example 3.2.
∞
0
ln
p + qe−ax
p + qe−bx
dx
x
= ln 1 +
q
p
ln
b
a
Example 3.3.
∞
0
ax + p
ax + q
n
−
bx + p
bx + q
n
dx
x
= 1 −
pn
qn
ln
a
b
where a, b, p, q are all positive.
Example 3.4. ∞
0
cos ax − cos bx
x
dx = ln
b
a
Example 3.5.
∞
0
sin
(b − a)x
2
sin
(b + a)x
2
dx
x
=
∞
0
cos ax − cos bx
2x
dx =
1
2
ln
b
a
116 M. ALBANO, T. AMDEBERHAN, E. BEYERSTEDT AND V. MOLL
Example 3.6.
∞
0
sin px sin qx
dx
x
=
∞
0
cos[(p − q)x] − cos[(p + q)x]
2x
dx =
1
2
ln
p + q
p − q
Example 3.7. The evaluation of
∞
0
ln
1 + 2n cos ax + n2
1 + 2n cos bx + n2
dx
x
=
ln b
a ln(1 + n)2
n2
< 1
ln b
a ln 1 + 1
n
2
n2
> 1
is more delicate and is given in detail in the next section.
Example 3.8. The value
∞
0
e−ax
sin ax − e−bx
sin bx
x
dx = 0
follows directly from (1.1) since, in this case f(x) = e−x
sin x satisfies f(∞) = f(0) =
0.
Example 3.9.
∞
0
e−ax
cos ax − e−bx
cos bx
x
dx = ln
b
a
.
4. A more delicate example
Entry 4.324.2 of [3] states that
(4.1)
∞
0
ln(1 + 2a cos px + a2
) − ln(1 + 2a cos qx + a2
)
dx
x
=



2 ln q
p ln(1 + a) −1 < a 1
2 ln q
p ln(1 + 1/a) a < −1 or a 1.
This requires a different approach since the obvious candidate for a direct application
of Frullani’s theorem, namely f(x) = ln(1 + 2a cos x + a2
), does not have a limit at
infinity.
In order to evaluate this entry, start with
(4.2)
1
0
xy
dx =
1
y + 1
,
so
(4.3)
1
0
dy
1
0
xy
dx =
1
0
dx
1
0
xy
dy =
1
0
x − 1
ln x
dx =
1
0
dy
y + 1
= ln 2.
This is now generalized for arbitrary symbols α and β as
(4.4)
∞
0
eαt
− eβt
t
dt = ln
β
α
.
FRULLANI INTEGRALS 117
To prove (4.4), make the substitution u = e−t
that turns the integral into
1
0
u−1−β
− u−1−α
ln u
du =
1
0
du
−1−β
−1−α
uw
dw
=
−1−β
−1−α
dw
1
0
uw
du
=
−1−β
−1−α
dw
w + 1
= ln
β
α
.
Now observe that |2a cos(rx)
1+a2 | 1; therefore it is legitimate to expand the logarithmic
terms as infinite series using ln(1 + z) = k(−1)k−1 zk
k . The outcome reads
∞
0
dx
x
k 1
(−1)k−1
Ak
(cosk
px − cosk
qx)
k
=
k 1
(−1)k−1
Ak
2kk
∞
0
(eipx
+ e−ipx
)k
− (eiqx
+ e−iqx
)k
x
dx;
where A = 2a/(1+a2
). The inner integral is evaluated using some binomial expansions.
That is,
(4.5)
∞
0
(eipx
+ e−ipx
)k
− (eiqx
+ e−iqx
)k
x
dx =
k
r=0
k
r
∞
0
e(2r−k)ipx
− e(2r−k)iqx
x
dx.
It is time to employ equation (4.4). A closer look at (4.5) shows that care must be
exercised. The integrals are sensitive to the parity of k. More precisely, the quantity
2r − k vanishes if and only if k is even and r = k/2, in which case there is a zero
contribution to summation. Otherwise, the second integral in (4.5) is always equal to
ln(q/p). Therefore,
k
r=0
k
r
∞
0
e(2r−k)ipx
− e(2r−k)iqx dx
x
=



2k
ln q
p if k is odd,
2k
− k
k/2 ln q
p if k is even.
118 M. ALBANO, T. AMDEBERHAN, E. BEYERSTEDT AND V. MOLL
Combining the results obtained thus far yields
(4.6)
I =
∞
0
ln(1 + 2a cos(px) + a2
) − ln(1 + 2a cos(qx) + a2
)
x
dx
=
∞
0
dx
x
k 1
(−1)k−1
Ak
(cosk
px − cosk
qx)
k
=
k 1
(−1)k−1
Ak
k2k
k
r=0
k
r
∞
0
e(2r−k)ipx
− e(2r−k)iqx
x
dx
= ln
q
p
k odd
(−1)k−1
Ak
k
+ ln
q
p
k even
(−1)k−1
Ak
k
1 −
1
2k
k
k/2
= ln
q
p
k 1
(−1)k−1
Ak
k
+ ln
q
p
k 1
1
2k
A
2
2k
2k
k
= ln
q
p
ln(1 + A) +
1
2
ln
q
p
k 1
2k
k
1
k
A2
22
k
.
The last step utilizes the Taylor series
(4.7)
k 1
2k
k
Qk
k
= −2 ln 1
2 1 + 1 − 4Q
This follows from the binomial series k 0
2k
k Rk
= 1/
√
1 − 4R after rearranging in
the manner
k 1
2k
k
Rk−1
=
1
R
√
1 − 4R
−
1
R
=
4
√
1 − 4R(1 +
√
1 − 4R)
,
and then integrating by parts (from 0 to Q)
k 1
2k
k
Qk
k
=
Q
0
4 · dR
√
1 − 4R(1 +
√
1 − 4R)
=
√
1−4Q
1
−2 · du
1 + u
= −2 ln 1
2 1 + 1 − 4Q .
Formula (4.7) applied to equation (4.6) leads to
I = ln
q
p
ln(1 + A) − ln
q
p
ln 1
2 1 + 1 − 4Q .
It remains to replace Q = A2
/22
= a2
/(1 + a2
)2
and use the identity
1 − 4Q =
(a2
− 1)2
(a2 + 1)2
.
Observe that the expression for
√
1 − 4Q depends on whether |a| > 1 or not. The
proof is complete.
FRULLANI INTEGRALS 119
Acknowledgments. Matthew Albano and Erin Beyerstedt were partially supported
as students by NSF-DMS 0713836. The work of the last author was also partially
supported by the same grant.
References
[1] J. Arias-de Reyna. On the theorem of Frullani. Proc. Amer. Math. Soc., 109:165–175, 1990.
[2] B. Berndt. Ramanujan’s Notebooks, Part I. Springer-Verlag, New York, 1985.
[3] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by A. Jeffrey
and D. Zwillinger. Academic Press, New York, 7th edition, 2007.
[4] A. M. Ostrowski. On Cauchy-Frullani integrals. Comment. Math. Helvetici, 51:57–91, 1976.
Received 20 04 2010 revised 18 07 2010
aDepartment of Mathematics,
New Jersey Institute of Technology,
Newark, NJ 07102
USA
E-mail address: rocky23cancook@gmail.com
bDepartment of Mathematics,
Tulane University,
New Orleans, LA 70118
USA
E-mail address: tamdeber@math.tulane.edu
E-mail address: ebeyerst@math.tulane.edu
E-mail address: vhm@math.tulane.edu

Mais conteúdo relacionado

Mais procurados

Appendex c
Appendex cAppendex c
Appendex cswavicky
 
Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Sunaina Rawat
 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...Bagalkot
 
Class 12 Cbse Maths Sample Paper 2013-14
Class 12 Cbse Maths Sample Paper 2013-14Class 12 Cbse Maths Sample Paper 2013-14
Class 12 Cbse Maths Sample Paper 2013-14Sunaina Rawat
 
Real numbers ppt by jk
Real numbers ppt by jkReal numbers ppt by jk
Real numbers ppt by jkJyothikumar M
 
Chapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPMChapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPMyw t
 
2018 mtap for g10 with answers
2018 mtap for g10 with answers2018 mtap for g10 with answers
2018 mtap for g10 with answersJashey Dee
 
Math studies formula booklet
Math studies formula bookletMath studies formula booklet
Math studies formula booklettrozanov
 
cbse class 12 math question paper
cbse class 12 math question papercbse class 12 math question paper
cbse class 12 math question paperPady Srini
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
Diagram Venn Beserta Contoh Soal
Diagram Venn Beserta Contoh SoalDiagram Venn Beserta Contoh Soal
Diagram Venn Beserta Contoh SoalEman Mendrofa
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian IntegrationReza Rahimi
 
modul 5 add maths 07
modul 5 add maths 07modul 5 add maths 07
modul 5 add maths 07Sasi Villa
 
Practice questions( calculus ) xii
Practice questions( calculus ) xiiPractice questions( calculus ) xii
Practice questions( calculus ) xiiindu psthakur
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theoremWathna
 
modul 1 add maths 07
modul 1 add maths 07modul 1 add maths 07
modul 1 add maths 07Sasi Villa
 

Mais procurados (20)

Appendex c
Appendex cAppendex c
Appendex c
 
Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4
 
Improper integral
Improper integralImproper integral
Improper integral
 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
 
Class 12 Cbse Maths Sample Paper 2013-14
Class 12 Cbse Maths Sample Paper 2013-14Class 12 Cbse Maths Sample Paper 2013-14
Class 12 Cbse Maths Sample Paper 2013-14
 
Real numbers ppt by jk
Real numbers ppt by jkReal numbers ppt by jk
Real numbers ppt by jk
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Chapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPMChapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPM
 
Assignmen ts --x
Assignmen ts  --xAssignmen ts  --x
Assignmen ts --x
 
2018 mtap for g10 with answers
2018 mtap for g10 with answers2018 mtap for g10 with answers
2018 mtap for g10 with answers
 
Math studies formula booklet
Math studies formula bookletMath studies formula booklet
Math studies formula booklet
 
cbse class 12 math question paper
cbse class 12 math question papercbse class 12 math question paper
cbse class 12 math question paper
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Diagram Venn Beserta Contoh Soal
Diagram Venn Beserta Contoh SoalDiagram Venn Beserta Contoh Soal
Diagram Venn Beserta Contoh Soal
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
modul 5 add maths 07
modul 5 add maths 07modul 5 add maths 07
modul 5 add maths 07
 
Mathematics
MathematicsMathematics
Mathematics
 
Practice questions( calculus ) xii
Practice questions( calculus ) xiiPractice questions( calculus ) xii
Practice questions( calculus ) xii
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 
modul 1 add maths 07
modul 1 add maths 07modul 1 add maths 07
modul 1 add maths 07
 

Destaque

Gender Detection In Blogs [Information Retrival and Extraction]
Gender Detection In Blogs [Information Retrival and Extraction]Gender Detection In Blogs [Information Retrival and Extraction]
Gender Detection In Blogs [Information Retrival and Extraction]Ganesh Borle
 
Proyecto final ''Docentes Tecnologicos''
Proyecto final ''Docentes Tecnologicos''Proyecto final ''Docentes Tecnologicos''
Proyecto final ''Docentes Tecnologicos''Luz Maria Acosta
 
Computer As Discrete Tool of Teaching - The 'Great Revolution'
Computer As Discrete Tool of Teaching - The 'Great Revolution'Computer As Discrete Tool of Teaching - The 'Great Revolution'
Computer As Discrete Tool of Teaching - The 'Great Revolution'FatinAzman95
 
Sl 1 2
Sl 1 2Sl 1 2
Sl 1 2ken57
 
Successfull upload
Successfull uploadSuccessfull upload
Successfull uploadgarimapriya
 
Cover Letter of Admin Manager
Cover Letter of Admin ManagerCover Letter of Admin Manager
Cover Letter of Admin ManagerOishik Choudhury
 
Normalización
NormalizaciónNormalización
Normalizaciónanggie_ahr
 
Navy and Marine Corp Achievement Medal 1
Navy and Marine Corp Achievement Medal 1Navy and Marine Corp Achievement Medal 1
Navy and Marine Corp Achievement Medal 1Lamar Baker
 
Industry evolution and concentration
Industry evolution and concentrationIndustry evolution and concentration
Industry evolution and concentrationMeenakshi1994
 
Coupling_of_IGA_plates_and_3D_FEM_domain
Coupling_of_IGA_plates_and_3D_FEM_domainCoupling_of_IGA_plates_and_3D_FEM_domain
Coupling_of_IGA_plates_and_3D_FEM_domainNguyen Vinh Phu
 
Tropicalia: Music and Politics in Brazil
Tropicalia: Music and Politics in BrazilTropicalia: Music and Politics in Brazil
Tropicalia: Music and Politics in BrazilKathy Swart
 

Destaque (17)

Práctica pedagogía (1)
Práctica pedagogía (1)Práctica pedagogía (1)
Práctica pedagogía (1)
 
Gender Detection In Blogs [Information Retrival and Extraction]
Gender Detection In Blogs [Information Retrival and Extraction]Gender Detection In Blogs [Information Retrival and Extraction]
Gender Detection In Blogs [Information Retrival and Extraction]
 
Proyecto final ''Docentes Tecnologicos''
Proyecto final ''Docentes Tecnologicos''Proyecto final ''Docentes Tecnologicos''
Proyecto final ''Docentes Tecnologicos''
 
Computer As Discrete Tool of Teaching - The 'Great Revolution'
Computer As Discrete Tool of Teaching - The 'Great Revolution'Computer As Discrete Tool of Teaching - The 'Great Revolution'
Computer As Discrete Tool of Teaching - The 'Great Revolution'
 
Sl 1 2
Sl 1 2Sl 1 2
Sl 1 2
 
CV - (Oishik Choudhury)
CV - (Oishik Choudhury)CV - (Oishik Choudhury)
CV - (Oishik Choudhury)
 
Successfull upload
Successfull uploadSuccessfull upload
Successfull upload
 
roop
rooproop
roop
 
Cover Letter of Admin Manager
Cover Letter of Admin ManagerCover Letter of Admin Manager
Cover Letter of Admin Manager
 
CV - (Oishik Choudhury)
CV - (Oishik Choudhury)CV - (Oishik Choudhury)
CV - (Oishik Choudhury)
 
Practica 10 diseño
Practica 10 diseñoPractica 10 diseño
Practica 10 diseño
 
Normalización
NormalizaciónNormalización
Normalización
 
Navy and Marine Corp Achievement Medal 1
Navy and Marine Corp Achievement Medal 1Navy and Marine Corp Achievement Medal 1
Navy and Marine Corp Achievement Medal 1
 
Industry evolution and concentration
Industry evolution and concentrationIndustry evolution and concentration
Industry evolution and concentration
 
Coupling_of_IGA_plates_and_3D_FEM_domain
Coupling_of_IGA_plates_and_3D_FEM_domainCoupling_of_IGA_plates_and_3D_FEM_domain
Coupling_of_IGA_plates_and_3D_FEM_domain
 
Tropicalia: Music and Politics in Brazil
Tropicalia: Music and Politics in BrazilTropicalia: Music and Politics in Brazil
Tropicalia: Music and Politics in Brazil
 
RTI Act 2005
RTI Act   2005 RTI Act   2005
RTI Act 2005
 

Semelhante a final15

Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life OlooPundit
 
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...polanesgumiran
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline InterpolationVARUN KUMAR
 
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA Gautham Rajesh
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma ediciónSohar Carr
 
Proof of Fermat's Last Theorem (Using 6 Methods)
Proof of Fermat's Last Theorem (Using 6 Methods)Proof of Fermat's Last Theorem (Using 6 Methods)
Proof of Fermat's Last Theorem (Using 6 Methods)nikos mantzakouras
 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSaidatina Khadijah
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_correctedAndy Hone
 

Semelhante a final15 (20)

final19
final19final19
final19
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Sect5 4
Sect5 4Sect5 4
Sect5 4
 
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
 
Mathematics
MathematicsMathematics
Mathematics
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline Interpolation
 
maths convergence.pdf
maths convergence.pdfmaths convergence.pdf
maths convergence.pdf
 
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
05_AJMS_332_21.pdf
05_AJMS_332_21.pdf05_AJMS_332_21.pdf
05_AJMS_332_21.pdf
 
Calculo Diferencial
Calculo DiferencialCalculo Diferencial
Calculo Diferencial
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Numerical Methods and Analysis
Numerical Methods and AnalysisNumerical Methods and Analysis
Numerical Methods and Analysis
 
Shi20396 ch05
Shi20396 ch05Shi20396 ch05
Shi20396 ch05
 
Algebra
AlgebraAlgebra
Algebra
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
Proof of Fermat's Last Theorem (Using 6 Methods)
Proof of Fermat's Last Theorem (Using 6 Methods)Proof of Fermat's Last Theorem (Using 6 Methods)
Proof of Fermat's Last Theorem (Using 6 Methods)
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
 

final15

  • 1. SCIENTIA Series A: Mathematical Sciences, Vol. 19 (2010), 113–119 Universidad T´ecnica Federico Santa Mar´ıa Valpara´ıso, Chile ISSN 0716-8446 c Universidad T´ecnica Federico Santa Mar´ıa 2010 The integrals in Gradshteyn and Ryzhik. Part 15: Frullani integrals aMatthew Albano,bTewodros Amdeberhan, bErin Beyerstedt and bVictor H. Moll Abstract. The table of Gradshteyn and Ryzhik contains some integrals that can be reduced to the Frullani type. We present a selection of them. 1. Introduction The table of integrals [3] contains many evaluations of the form (1.1) ∞ 0 f(ax) − f(bx) x dx = [f(0) − f(∞)] ln b a . Expressions of this type are called Frullani integrals. Conditions that guarantee the validity of this formula are given in [1] and [4]. In particular, the continuity of f′ and the convergence of the integral are sufficient for (1.1) to hold. 2. A list of examples Many of the entries in [3] are simply particular cases of (1.1). Example 2.1. The evaluation of 3.434.2 in [3]: (2.1) ∞ 0 e−ax − e−bx x dx = ln b a corresponds to the function f(x) = e−x . Example 2.2. The change of variables t = e−x in Example 2.1 yields (2.2) 1 0 tb−1 − ta−1 ln t dt = ln a b . This is 4.267.8 in [3]. 2000 Mathematics Subject Classification. Primary 33. Key words and phrases. Integrals, Frullani integrals. 113
  • 2. 114 M. ALBANO, T. AMDEBERHAN, E. BEYERSTEDT AND V. MOLL Example 2.3. A generalization of the previous example appears as entry 3.476.1 in [3]: (2.3) ∞ 0 e−vxp − e−uxp dx x = 1 p ln u v . This comes from Frullani’s result with a simple additional scaling. Example 2.4. The choice (2.4) f(x) = e−qx − e−px x , with p, q > 0 satisfies f(∞) = 0 and (2.5) f(0) = lim x→0 e−qx − e−px x = p − q. Then Frullani’s theorem yields ∞ 0 e−aqx − e−apx ax − e−bqx − e−bpx bx dx x = (p − q) ln b a , that can be written as ∞ 0 e−aqx − e−apx a − e−bqx − e−bpx b dx x2 = (p − q) ln b a . This is entry 3.436 in [3]. Example 2.5. Now choose (2.6) f(x) = x 1 − e−x exp(−cex ). Then Frullani’s theorem yields entry 3.329 of [3], in view of f(0) = e−c and f(∞) = 0: ∞ 0 a exp(−ceax ) 1 − e−ax − b exp(−cebx ) 1 − e−bx dx = e−c ln b a . Example 2.6. The next example uses (2.7) f(x) = (x + c)−µ , with c, µ > 0, to produce (2.8) ∞ 0 (ax + c)−µ − (bx + c)−µ x dx = c−µ ln b a . This is 3.232 in [3]. Example 2.7. Entry 4.536.2 in [3] is (2.9) ∞ 0 tan−1 (px) − tan−1 (qx) x dx = π 2 ln p q . This follows directly from (1.1) by choosing f(x) = tan−1 x.
  • 3. FRULLANI INTEGRALS 115 Example 2.8. The function f(x) = ln(a + be−x ) gives the evaluation of entry 4.319.3 of [3]: (2.10) ∞ 0 ln(a + be−px ) − ln(a + be−qx ) x dx = ln a a + b ln p q . Example 2.9. The function f(x) = ab ln(1 + x)/x produces entry 4.297.7 of [3]: (2.11) ∞ 0 b ln(1 + ax) − a ln(1 + bx) x2 dx = ab ln b a . Example 2.10. Entry 3.484 of [3]: (2.12) ∞ 0 1 + a qx qx − 1 + a px px dx x = (ea − 1) ln q p , is obtained by choosing f(x) = (1 + a/x)x in (1.1). Example 2.11. The final example in this section corresponds to the function (2.13) f(x) = a + be−x cex + g + he−x that produces entry 3.412.1 of [3]: (2.14) ∞ 0 a + be−px cepx + g + he−px − a + be−qx ceqx + g + he−qx dx x = a + b c + g + h ln q p . 3. A separate source of examples The list presented in this section contains integrals of Frullani type that were found in volume 1 of Ramanujan’s Notebooks [2]. Example 3.1. ∞ 0 tan−1 ax − tan−1 bx x dx = π 2 ln a b Example 3.2. ∞ 0 ln p + qe−ax p + qe−bx dx x = ln 1 + q p ln b a Example 3.3. ∞ 0 ax + p ax + q n − bx + p bx + q n dx x = 1 − pn qn ln a b where a, b, p, q are all positive. Example 3.4. ∞ 0 cos ax − cos bx x dx = ln b a Example 3.5. ∞ 0 sin (b − a)x 2 sin (b + a)x 2 dx x = ∞ 0 cos ax − cos bx 2x dx = 1 2 ln b a
  • 4. 116 M. ALBANO, T. AMDEBERHAN, E. BEYERSTEDT AND V. MOLL Example 3.6. ∞ 0 sin px sin qx dx x = ∞ 0 cos[(p − q)x] − cos[(p + q)x] 2x dx = 1 2 ln p + q p − q Example 3.7. The evaluation of ∞ 0 ln 1 + 2n cos ax + n2 1 + 2n cos bx + n2 dx x = ln b a ln(1 + n)2 n2 < 1 ln b a ln 1 + 1 n 2 n2 > 1 is more delicate and is given in detail in the next section. Example 3.8. The value ∞ 0 e−ax sin ax − e−bx sin bx x dx = 0 follows directly from (1.1) since, in this case f(x) = e−x sin x satisfies f(∞) = f(0) = 0. Example 3.9. ∞ 0 e−ax cos ax − e−bx cos bx x dx = ln b a . 4. A more delicate example Entry 4.324.2 of [3] states that (4.1) ∞ 0 ln(1 + 2a cos px + a2 ) − ln(1 + 2a cos qx + a2 ) dx x =    2 ln q p ln(1 + a) −1 < a 1 2 ln q p ln(1 + 1/a) a < −1 or a 1. This requires a different approach since the obvious candidate for a direct application of Frullani’s theorem, namely f(x) = ln(1 + 2a cos x + a2 ), does not have a limit at infinity. In order to evaluate this entry, start with (4.2) 1 0 xy dx = 1 y + 1 , so (4.3) 1 0 dy 1 0 xy dx = 1 0 dx 1 0 xy dy = 1 0 x − 1 ln x dx = 1 0 dy y + 1 = ln 2. This is now generalized for arbitrary symbols α and β as (4.4) ∞ 0 eαt − eβt t dt = ln β α .
  • 5. FRULLANI INTEGRALS 117 To prove (4.4), make the substitution u = e−t that turns the integral into 1 0 u−1−β − u−1−α ln u du = 1 0 du −1−β −1−α uw dw = −1−β −1−α dw 1 0 uw du = −1−β −1−α dw w + 1 = ln β α . Now observe that |2a cos(rx) 1+a2 | 1; therefore it is legitimate to expand the logarithmic terms as infinite series using ln(1 + z) = k(−1)k−1 zk k . The outcome reads ∞ 0 dx x k 1 (−1)k−1 Ak (cosk px − cosk qx) k = k 1 (−1)k−1 Ak 2kk ∞ 0 (eipx + e−ipx )k − (eiqx + e−iqx )k x dx; where A = 2a/(1+a2 ). The inner integral is evaluated using some binomial expansions. That is, (4.5) ∞ 0 (eipx + e−ipx )k − (eiqx + e−iqx )k x dx = k r=0 k r ∞ 0 e(2r−k)ipx − e(2r−k)iqx x dx. It is time to employ equation (4.4). A closer look at (4.5) shows that care must be exercised. The integrals are sensitive to the parity of k. More precisely, the quantity 2r − k vanishes if and only if k is even and r = k/2, in which case there is a zero contribution to summation. Otherwise, the second integral in (4.5) is always equal to ln(q/p). Therefore, k r=0 k r ∞ 0 e(2r−k)ipx − e(2r−k)iqx dx x =    2k ln q p if k is odd, 2k − k k/2 ln q p if k is even.
  • 6. 118 M. ALBANO, T. AMDEBERHAN, E. BEYERSTEDT AND V. MOLL Combining the results obtained thus far yields (4.6) I = ∞ 0 ln(1 + 2a cos(px) + a2 ) − ln(1 + 2a cos(qx) + a2 ) x dx = ∞ 0 dx x k 1 (−1)k−1 Ak (cosk px − cosk qx) k = k 1 (−1)k−1 Ak k2k k r=0 k r ∞ 0 e(2r−k)ipx − e(2r−k)iqx x dx = ln q p k odd (−1)k−1 Ak k + ln q p k even (−1)k−1 Ak k 1 − 1 2k k k/2 = ln q p k 1 (−1)k−1 Ak k + ln q p k 1 1 2k A 2 2k 2k k = ln q p ln(1 + A) + 1 2 ln q p k 1 2k k 1 k A2 22 k . The last step utilizes the Taylor series (4.7) k 1 2k k Qk k = −2 ln 1 2 1 + 1 − 4Q This follows from the binomial series k 0 2k k Rk = 1/ √ 1 − 4R after rearranging in the manner k 1 2k k Rk−1 = 1 R √ 1 − 4R − 1 R = 4 √ 1 − 4R(1 + √ 1 − 4R) , and then integrating by parts (from 0 to Q) k 1 2k k Qk k = Q 0 4 · dR √ 1 − 4R(1 + √ 1 − 4R) = √ 1−4Q 1 −2 · du 1 + u = −2 ln 1 2 1 + 1 − 4Q . Formula (4.7) applied to equation (4.6) leads to I = ln q p ln(1 + A) − ln q p ln 1 2 1 + 1 − 4Q . It remains to replace Q = A2 /22 = a2 /(1 + a2 )2 and use the identity 1 − 4Q = (a2 − 1)2 (a2 + 1)2 . Observe that the expression for √ 1 − 4Q depends on whether |a| > 1 or not. The proof is complete.
  • 7. FRULLANI INTEGRALS 119 Acknowledgments. Matthew Albano and Erin Beyerstedt were partially supported as students by NSF-DMS 0713836. The work of the last author was also partially supported by the same grant. References [1] J. Arias-de Reyna. On the theorem of Frullani. Proc. Amer. Math. Soc., 109:165–175, 1990. [2] B. Berndt. Ramanujan’s Notebooks, Part I. Springer-Verlag, New York, 1985. [3] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007. [4] A. M. Ostrowski. On Cauchy-Frullani integrals. Comment. Math. Helvetici, 51:57–91, 1976. Received 20 04 2010 revised 18 07 2010 aDepartment of Mathematics, New Jersey Institute of Technology, Newark, NJ 07102 USA E-mail address: rocky23cancook@gmail.com bDepartment of Mathematics, Tulane University, New Orleans, LA 70118 USA E-mail address: tamdeber@math.tulane.edu E-mail address: ebeyerst@math.tulane.edu E-mail address: vhm@math.tulane.edu