SlideShare uma empresa Scribd logo
1 de 33
Baixar para ler offline
Electrode/Electrolyte Interface
Studies in Lithium Batteries
Marine Cuisinier
University of Waterloo, Canada
Nicolas Dupré, Dominique Guyomard
Institut des Matériaux Jean Rouxel ‐ Université de Nantes, France
Kouta Suzuki, Masaaki Hirayama, Ryoji Kanno
Tokyo Institute of Technology, Japan

1/29
Li-ion & related challenges
Energy (Wh/kg, Wh/l)
Power (W/kg, W/l)

Power (W / kg)

HEV
1000

PHEV, power tools

Li-ion

Safety

Cost

EV

Toxicity

Ni-MH

100

Life

Reactivity at interfaces
Pb-acid

btw. electrodes & electrolyte

10
10

100

1000

Safety

Energy (Wh/kg)

Long term cyclability
Energy

Autonomy

Power

Rate, acceleration

2/33
Aging mechanisms of cathode
materials
gas evolution

electrolyte
decomposition

DMC
O
O

EC
dissolution

O
surface layer
formation

O
O

re-precipitation of
new phases
migration of
soluble species

F
Li F P F
F
F
F

ROCO2Li
OPF2(RO)nF

O

LixPOyFz
LiF

Adapted from J. Vetter et al., J. Power Sources 147 (2005) 269
3/33
Table of contents
1 CHARACTERIZATION METHODS



Review of interface characterization methods
MAS NMR applied to surface species analysis

2 EXEMPLES: LINI0.5MN0.5O2/ELECTROLYTE INTERPHASE




Aging upon storage in LiPF6 electrolyte
Aging upon cycling in LiPF6 and LiBOB modified electrolyte

3 CASE OF THE LIFEPO4/ELECTROLYTE INTERPHASE



Intrinsic interphasial behavior
Surface aging upon storage: characterization and control
towards improved electrochemical performance

4 GENERAL CONCLUSION & PERSPECTIVES

4/29
Classical interface characterization methods
A strategy for R&D of Li and Li-ion batteries.
Study of Electrodes Li, Li-C anodes and LixMOy cathodes.

NMR
Surface Chemistry
in situ & ex situ FTIR, XPS,
EDAX, EQCM

Interfacial properties
EIS, B.E.T. (surface area)

Morphology
in situ AFM (SEM)

Structural analysis
in situ & ex situ XRD (SEM)

Correlation

Performance
Fast tests for cycling efficiency
FTIR
(GCPL)

XPS
MAS NMR

50

40

30

Solution studies
Electrochemical windows, thermal
stability, redox processes:
CV, in situ FTIR, EQCM, EIS, DTA

Optimization of electrolyte
solutions

20

10

Published items each year

Electroanalytical behavior of Li
insertion compounds
PITT, EIS, SSCV

Testing in practical cells
(coin cells and AA cells)

19
9
19 4
9
19 5
9
19 6
9
19 7
9
19 8
9
20 9
0
20 0
0
20 1
0
20 2
0
20 3
0
20 4
0
20 5
0
20 6
0
20 7
0
20 8
0
20 9
1
20 0
1
20 1
1
20 2
13

0

Publication year

From Reuters, Web of Knowledge

5/33
Review of interface studies by NMR
< 20 studies in the literature on « passivation layer on LiB materials »



Suitable for: 1H, 7Li, 13C, 19F and
31P in the interphase… or 23Na !

6/33
7Li

NMR: Li-electron dipolar interaction

Coupling between nuclear spin and
electronic spin (paramagnetic ions)

Distance between Li and
paramagnetic center

0
1
H en 
µe .Dij . 3
4
r

Mn4+ t2g (unpaired electron spin)
O
Through space

q

B0

r
Li (nuclear spin)

7/33
Using 7Li MAS NMR to selectively DETECT the interphase
T2 para

Distance between Li and
paramagnetic center

B0

0
1
H en 
µe .Dij . 3
4
r

y

If r ↓ Hen ↑
x
Surface species = diamagnetic
(Li2CO3, LiF, LixOyPFz etc…)

π/2 pulse
Bulk

Li

Free Induction Decay
Surface

Time

Longer T2

Mn

then T2 ↓

t0
Li
Short T2

acquisition

T2para

DEAD TIME (5-50 s) before acquisition of data
REMOVE Li-bulk SIGNAL

8/33
Using 7Li MAS NMR to study electrode/interphase interactions
7Li,

500MHz, 14kHz

FWHM 

LiNi0.5Mn0.5O2 with surface Li2CO3

No dead time

If r ↓ Hen ↑ then T2 ↓
If µe ↑ Hen ↑ then T2 ↓

a

Bulk

Dipolar
interaction

Dipolar
interaction

0 ppm
b
Diamagnetic
surface species

Dead time

1
T2

2V
4.5 V

Surface
Li2CO3 c

Li2CO3 powder
3000

2000

1000

40

0

 (ppm)

-1000

-2000

20

0

-20

-40

7

 Li / ppmm

Ménétrier, M. et al. Electrochem. And Solid State Lett., 2004, 7(6), A140.
Dupré, N. et al. J. Mat. Chem., 2008, 18, 4266

DIPOLAR INTERACTION
THICKNESS / INTIMACY of the interphase with the bulk9/33
integrated intensity / NS / RG

integrated intensity / NS / RG (a. u.)

Using MAS NMR to QUANTIFY the interphase
7Li

NMR

50
40

LiFePO4

20

and 31P NMR spectra
calibration curves

LiMn1.5Ni0.5O4

30

7Li, 19F

Si
-1

y = 4.26 10 x
10

LiF / LiPF6 calibration

0
0

25

50

75

100

diamagnetic Li (µmol)
19F

5

NMR

4

LiMn1.5Ni0.5 O4

3

LiFePO4
Si

Works for interphases grown on
≠ electrode materials:
LiMn0.5Ni0.5O2 , LiFePO4 , Si

-2

y = 6.38 10 x
LiF calibration

2
-2

y = 2.80 10 x
1

From known amounts of
diamagnetic nuclei (LiF, LiPF6)

LiPF 6 calibration

Absolute quantification
of interphasial [Li], [F], [P]
in mmol.g-1 or mmol.m-²

0
0

25

50

75

100

diamagnetic F (µmol)
10/33
(Li-alkylcarbonates)

O

-1

diamagnetic Li or F (mmol.g )

Interpretation of quantitative NMR results
7Li, 19F

NMR

Total Li
Li

1.4

7

1.2

Li+ O

(7Li

1.4

O

O Li

(Li2CO3)

O

Li in organic
1.0
~ Total Li (7Li) – LiF (19F) ?

F / PF
19
F / LiF

1.0

R
Li

NMR)

19

O

1.2

0.8

0.8
0.6
Fluorophosphates (19F NMR)
0.4
POF3/PO2F2-/ PO3F2-

0.6
0.4
0.2

0.2

0.0

0.0

OX1

RED1

OX5

RED5 OX20 RED20

O

O
F P
R
O
F

or

F P
O Li
F

LiF (19F NMR)

Charge state
O
O

O

O
n

O
O

Non lithiated organic species remain
invisible to our NMR experiments
11/33
Need for COMPLEMENTARY analytical tools

0

n

Diamagnetic interphases

m

LiMn0.5Ni0.5O2
interphase
formation

Electrode active material

NMR

Electrode activ

XPS

Diamagnetic interphases
Electrode active material

LiPF6 electrolyte
decomposition

Electrode active material

Electrode active material

In situ EIS

TEM/EELS
Z’’/Ω

5

NMR

Rinterfacial

-50

Nyquist plot

-25

Rel
0
Brookhaven Nat. Lab.

25

50

Z’/Ω

75

100
12/33
Table of contents
1 CHARACTERIZATION METHODS



Review of interface characterization methods
MAS NMR applied to surface species analysis

2 EXAMPLES: LINI0.5MN0.5O2/ELECTROLYTE INTERPHASE




Aging upon storage in LiPF6 electrolyte
Aging upon cycling in LiPF6 and LiBOB modified electrolyte

3 CASE OF THE LIFEPO4/ELECTROLYTE INTERPHASE



Intrinsic interphasial behavior
Surface aging upon storage: characterization and control
towards improved electrochemical performance

4 GENERAL CONCLUSION & PERSPECTIVES

13/29
Example 1: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase
upon storage (SEM)
7Li

1 month

NMR

19F
0 ppm

NMR

-205 ppm
LiF

3 days

3 days
1 hour
5 min.
1 min.
30 sec.

1 µm
(a)

Pristine

1000
(b)

500

0
7

 Li / ppm




1 µm

normalized / NS / RG /m

1 µm

normalized / NS / RG /m

2 weeks



-500

-1000

(c)

200

0

-200

-400

 19F / ppm

Soaking at RT in LiPF6 1M, EC:DMC (1:1)
Surface “film” observation by SEM
19F: LiF only
14/33
mmol (Li or F) / g LMN

Example 1: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase
upon storage (NMR vs XPS)
0.4
7Li, 19F

NMR

0.3

7

Li NMR
One month

0.2
19

0.1
0.0

Li in organic
= Total Li (7Li)
– LiF (19F)

0

10

20

30

F NMR

40

50

60

300 400 500 600 700

Contact time (min)

XPS F1s

XPS C1s

LiF

CC/CH

1 hour

LiF only
 XPS: LiF screening
26%
by Li-containing
16% organic species

5 min.

13%

CO

CO3 CO
2
1 month

LixPFy
LixPOyFz

1 month
1 hour
5 min.

Contact time (h)

26%
33%
37%

 19F:

15/33
Example 1: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase
upon storage (EELS)
EELS

100

%F

F-K

atomic %

O-K

8

8
7
6
5
4
3

Mn-L

Ni-L

2,3

500

2,3

600

700

800

900

Energy Loss (eV)

80
60
40
20

% Mn

%O

0
8

7

6

5

4

3

spot number

Interphase growth scenario:
LiPF6

O

PF5 + LiF

O

O
O

Li+ O

O

R

LMN½

5

Salt decomposition

Solvents decomposition
Contact time

16/33
200
180

LiPF6 1M Coulombic

160

220

)

220

-1

180

120
160
140

0

5

100
5

15

Cycle number20
10
15
100

st

1 ox

Z" / .mg

-2

25

th

5 ox 90

Q charge
20
Q discharge
15

80

Coulombic efficiency

th

10

60

5

50

0

10

5

10

Cycle number

15

20

15 / .mg-2 20
Z'

25

50

120

20
0

20 ox
70

0

140

Cycle number

30

60

160

100

Coulombic efficiency (%)
-2

0

10

180

30

30

25

20

15

10

5

0

Charge transfer resistance ()

120

70

200

Z" / .mg

Capacity (mA.h.g

200
140

Capacity (mA.h.g

)

Q charge
Q discharge

125

R 4.5 V

ct
st charge:

R 2V
100 1

parasitic
electrochemical process
Impedance ↑ : only Rct ↑
ct

80
75
efficiency LiPF 0.9M + LiBOB 0.1M

6

100

5

90

Q charge
Q discharge

Charge transfer resistance ()

)

100

-1

Capacity (mA.h.g

-1

220

Coulombic efficiency (%)

Example 2: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase
upon cycling (1)

0

5

10

Q charge
Q discharge

50
25

0

5

15

20

Cycle number

125

10

15

20

Cycle number

Rct 4.5 V
Rct 2 V
st

100

1 ox
th

5 ox

75

th

20 ox
50
25
5

0

10

15

20

5
Z' / .mg

-2

25

30

10

Cycle number

15

20
17/33
RED1

0.3

140
120

0.2

100
10

15
0

0.1
20
5

Cycle number
0.0
0.0
OX5 RED5 OX20 RED1 OX5
PRISTINEOX1 RED20

Charge state
Li+ O

O

R

O
F P
O Li
F

70

60

50

100 RED 1
Q charge
Q discharge
75
Coulombic efficiency

10

R902 V
ct
80
70

50

OX 1

60

25

Cycle number

200
15
0

0
2019
5

50

-200
10

125
100
75
50
25

 F / ppm
Cycle number

-400
0
15

0.0
RED5 OX20 RED20

Charge state
O

80

100
Rct 4.5 V

NMR

Charge transfer resistance ()

0.1
5

0

0.4
Coulombic efficiency
160

125

Coulombic efficiency (%)

100

0.2

)

-1

0.2

90

19F

normalized / NS / RG /m

120

0.5

Q charge
180
Q discharge

Charge transfer resistance ()

0.4

0.3

140

200

100

Coulombic efficiency (%)

0.6

0.4

160

0.6

T2(Li) (ms)

0.8

0.5

Capacity (mA.h.g

1.0

)

-1

1.2

F / LiF
19
200
F / PF
7
180
Li

220

0.6

T2(Li) (ms)

220
19

1.4

Capacity (mA.h.g

LiF
PF

diamagnetic Li/F (mmol/g)

Example 2: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase
upon cycling (2)




Appearance of fluorophosphates
Electrochemical formation of the
interphase?

Indirect electrochemical oxidation: oxygen transfer
from the oxide surface to the solvent molecules
S.-W. Song et al., JES, 151, A1162 (2004)
18/33
1.4
1.2
1.0

0.6

19

F / LiF
19
F / PF
7
Li

0.4

0.8
0.3
0.6
0.2

0.4
0.2

0.1

0.0

0.0
PRISTINEOX1

RED1

OX5

Li-poor interphase:
LiF + non-lithiated species
 T2(Li): No evolution of the
AM /interphase intimacy
 Stable (resistive)
LiF-based interphase
+ growing non-lithiated
(PEO type + phosphates)


0.5

T2(Li) (ms)

diamagnetic Li/F (mmol/g)

Example 2: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase
upon cycling (3)

Li-free organic

RED5 OX20 RED20

Charge state

Organic species
Fluorophosphates
LiF

O
O

O

O
n

O
O
O

LMN½

M. Cuisinier et al. Solid State Nucl. Magn. Reson. 42, 51 (2011)

LMN½

F P
R
O
F

19/33
Example 3: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase
upon cycling (effect of LiBOB additive)
Cathode protecting agent
Mn-containing insoluble
surface layer [*]

No LiBOB

LiBOB
30

19F / LiF
19F / PF
7Li

1.2

1.2

1.0

0.8

0.6

0.6

0.4

0.4

20
15
10

0.2

0.0

PRISTINE OX1

RED1

OX5

RED5

OX20

5

0.0

0.2

BOB-1ox
BOB-5ox
BOB-20ox

25

1.0

0.8

200
1.4

Z'' / (mmol/g)
diamagnetic LiOhm

1.4

Z'' / Ohm

diamagnetic Li (mmol/g)

1.4

0

RED20

Charge state

1.2

150

5

10

15

20

Z' / Ohm

25

30

19F / LiF
19F / PF
7Li

PF6-1ox
PF6-5ox
PF6-20ox

1.2

1.0

1.0

0.8

0.8

100
0.6

0.6

0.4

0.4

50
0.2

0.0

0

1.4

0.2

0
PRISTINE OX1 RED1
0
50

0.0

OX5

100

RED5

OX20 RED20

150

200

Z' / Ohm
Charge state

Composition of interphase is different:
Presence of Li in org. species / fluorophosphates
Less resistive interphase

« good » interphase
[*] Chen, Z. et al., Electrochim. Acta 51 (2006) 3322.

↑ electrochemical performance
20/33
Table of contents
1 CHARACTERIZATION METHODS



Review of interface characterization methods
MAS NMR applied to surface species analysis

2 EXEMPLES: LINI0.5MN0.5O2/ELECTROLYTE INTERPHASE




Aging upon storage in LiPF6 electrolyte
Aging upon cycling in LiPF6 and LiBOB modified electrolyte

3 CASE OF THE LIFEPO4/ELECTROLYTE INTERPHASE




Interphase dynamics upon voltage variations
Interphase modeling using ideal 2D films
Interphase evolution upon extended cycling

4 GENERAL CONCLUSION & PERSPECTIVES

21/29
-1

diamagnetic Li or F (mmol.g )

Evolution of the LiFePO4 interface with voltage
7

3.0

Li

3.0

19

F/PF

19

2.5

F/LiF

2.5

2.0

2.0

1.5

1.5

1.0

1.0

0.5

0.5

0.0

0.0

4.0 V
4V

4.5 V
4.5V

2.0 V
2V

2.7 V
2.7V

2.7 V
2.7V

Charge state
 7Li/19F:

clarify XPS
 stable inorganic interphase
+ fluctuating organic species

FePO4
F. Croce et aL., J. Power Sources, 43 (1993) 9

Oxidized state

4.5 V
4.5V

Interphase model:
Solid Polymer Layer
Li-organic species
Fluorophosphates
LiF
LiFePO4
Reduced state
22/33
Modeling the interphase architecture (1)
100

Elemental percentage (%)

EELS

%O
%F
% Fe

80

60

40

20

-20

0

20

40

60

80

100

Distance from the surface (nm)
F-K

O-K

#12: 14 nm

#11: 19 nm

#10: 18 nm
Fe L2,3

500

550

600

650

700

#6: AM
750

800

Energy loss (eV)



EELS: Any multi-layered model is abusive !
(at least on powder samples)

23/33
a- oriented LiFePO4 thin films
d / g·cm-3

Model surface: a- oriented LiFePO4 thin films
Thickness
l / nm

20.36

-

Roughness
t / nm

glue
Pulsed Laser
(a)
(b)
Deposition: 20-80nm
thick LiFePO4 4epitaxial
LiFePO
film on SrTiO3 (010)

1.33

1.06

0.55

1.08
690

520 525 530 535 540 545 550 555

700

710

720

730

energy loss (eV)

energy loss (eV)

(d)Pristine film:Surface
LiFePO4
SrTiO3
(c)
structurally homogeneous
layer

O

740

 Possibility to monitor fine surface
Density
2.11
3.62
5.12
structure changes upon Li (de)intercalation
d / g·cm-3

Thickness
a- oriented LiFePO4 thin films
SrTiO substrate

1.33

20.36

Roughness
t / nm

1.06

0.55

l / nm

3

-

TEM-EELS
1.08
O-K

Fe-L2,3

energy loss (e
Pulsed
(d)Pristine film: structurally hom
(b)
Ideal 2D surface
Deposition: 20-80nm
= model interphase
 Possibility to monitor fine
thick LiFePO4 4epitaxial
LiFePO
structure changes upon
film on SrTiO3 (010) Subjected to storage in LiPF6 Li (d
Pulsed Laser
electrolyte and cycling
Pristine film: structurally homogeneous
Deposition: 320-80nm
SrTiO substrate
 Validate to monitor fine surface
 Possibility the interphase model?
thick LiFePO epitaxial

glue
Laser

520 525 530 535 540 54

520 525 530 535 540 545 550 555

energy loss (eV)

4

film on SrTiO3 (010)

690

700

710

720

730

740

energy loss (eV)

structure changes upon Li (de)intercalation

Hirayama et al., Electrochemistry (Tokyo), 5 (2010) 413

24/33
Modelingthe interphase architecture
Modeling the interphase architecture (2)
XPS

Electron
detector
Electron
detector

X-ray
X-ray

XPS
)
(θ
in )
. s (θ
n
3λ si
.
λ
3

)
(θ
s

o
.c
3λ

θ

Penetration depth = 3λ.cos(θ)
Penetration depth = 3λ.sin(θ)
with λ ~λ~27Å
with 22 Å

θ

θ varied from 0° to 60°
I(θ)= Iinf . exp(-d/λ.cosθ)

3λ
3λ

Bulk
Bulk

Surface
Surface

Interphase depth profile:

ln C(Fe 2p1/2)

1.6
1.4
1.2

0.8

surface
5
Average λ (inelastic mean free path) is inaccurate !
air contact
4.5V 1st charge
2.5V 1st discharge

0.6
0.4
0.2

1.0
0.8

-0.2

-d

0

0.6

LiF

PF

CO

CO2

Confirms NMR and EELS results:
1.0
1.2
1.4
1.6
1.8
2.0
Inner LiF, covered by fluorophosphates
1/cosq -1
and a dynamic Solid Polymer Layer (SPL)
0.4



d (nm)

4

Pristine

3
1

0.44

1st ox. 4.5 V

3.5

bulk
dried
PO
Fe
4.5 V
2.5 V

4.5V 1st charge
2.5V 1st discharge

4.5

LN(P-O)

LN(surface/bulk)


1

d, the interphase thickness

1.4

1st

1.2

1.4

1.6

1/cos(q)
red 2.5 V
0.25

1.8

% 26

pristine

4.5V

2.5V

0.8 nm

1.7 nm

1.2 nm

Voltage dependance of the interphase thickness

25/33
2

Modeling the interphase architecture (3)
XPS

LiF

F 1s

)
((θ)
θ
sn

i
.
cλos
.3
3λ

X-ray

k

1.0

θ

C.P.S

Electron
detector

1.2

θ

3λ

Bulk

q = 60°
q = 55°
q = 48°
q = 37°
q = 0°

0.8

LixPOyFz

0.6
0.4
0.2
0.0

Surface

-0.2

C %(60)
1.0
C %(0)
1.2

690

686

684

682

P

Binding energy (eV)

1st Ox
4.5 V

0.8

688

0.6

CH2CO2Li, ROCO2Li

0.4

1st Red
2.5 V

0.2
0.0

OPF2OMe, OPF2(OCH2CH2)nF
LiF
LiFePO4
FePO4

-0.2

PO Fe

LiF PF CO2 CO

--

Inner interphase: stable / inorganic
Outer interphase : dynamic / polymeric




26/33
100

180

100

1 ox 4.5 V
5 ox 4.5 V
20 ox 4.5 V

1 red 2V
5 red 2V
20 red 2V

Pristine - 4.5 V
80

Stable impedance,
60
no resistive film

140
120
100

Pristine - 2 V

80

60

-Z'' / 

160

-Z'' / 

Discharge capacity (mA.h.g

-1

)

Interphase data upon cycling for bare LFP

5

40

40

80
0

20

40

60

80

20

1

20

20

20

250 Hz

100

100 Hz

0

cycle number

0
0

20

40

60

80

100

0

Z' / 

-1

diamagnetic Li or F (mmol.g )

7Li, 19F
0.5

NMR

Accumulation of
0.5
interphase species

7

Li
F / PF
19
F / LiF
19

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0.0

0.0

1 ox 1 red 5 ox 5 red 20 ox 20 red
OX1

RED1

OX5

RED5

Charge state

1
5

5 kHz

Charge transfer
6 kHz

OX20

RED20

20

40

60

80

100

Z' / 

Stable performance vs Li
No resistive film
Lots of Li outside LiF,
in LixPOyFz (?),
in Li-organic (1H NMR, XPS)
O
F P
O Li
F

O
Li+ O

O

R
27/33
0.0
x 20 red

0.4
0.3

0.3

7

0.2
0.2
0.1

0.1



T2(Li) (ms)

-1

T2(Li) (ms)

0.4

0.0

0.4

0.5

0.3

NMR

0.2

7Li

0.1

Interphasial Li (mmol.g )

Interphase growth scenario for bare LFP

0.0
1 ox 1 red 5 ox 5 red 20 ox 20 red








Stable performance vs Li
No resistive film
Li-rich porous interphase

Interphase growth by
stacking

Li-organic species
Fluorophosphates
LiF
FePO4

M. Cuisinier et al. J. Power Sources, 224, 50 (2013)

T2(Li): decreasing intimacy
Signal integration:
accumulation of surface Li
Non blocking interphase,
But no passivation:

Oxidized state

Li+

Li+
LiFePO4
Reduced state
28/33
The case of LiFePO4: summary vs. LiMn1/2Ni1/2O2


Stable performance
require a Li-rich organic
interphase
 How to stop Li
consumption in it?

STABLE REVERSIBLE “BREATHING”

FP

LFP

STABLE PERFORMANCE


Poor performance of our LMN
material might be assigned to a
“bad” interphase: no Li mobility,
growing Li-free matrix on Organic species
LiF-rich inner interphase Fluorophosphates

Li-free organic
O
O

O

O
n

LiF

O
O
O

LMN½
M. Cuisinier et al. J. Power Sources, 224, 50 (2013)
M. Cuisinier et al. Solid State Nucl. Magn. Reson. 42, 51 (2011)

LMN½

F P
R
O
F

29/33
Table of contents
1 CHARACTERIZATION METHODS



Review of interface characterization methods
MAS NMR applied to surface species analysis

2 EXEMPLES: LINI0.5MN0.5O2/ELECTROLYTE INTERPHASE




Aging upon storage in LiPF6 electrolyte
Aging upon cycling in LiPF6 and LiBOB modified electrolyte

3 CASE OF THE LIFEPO4/ELECTROLYTE INTERPHASE



Intrinsic interphasial behavior
Surface aging upon storage: characterization and control
towards improved electrochemical performance

4 GENERAL CONCLUSION & PERSPECTIVES

30/29
GENERAL CONCLUSION & PERSPECTIVES

Battery performance is driven by surface chemistry
 Need for powerful analytical tools
 Validation of NMR for interphase studies (perspectives)

 Use for full cells and negatives: Si or intermetallics
 Use for the exploration of Na interphasial chemistry
(NaClO4  NaTFSI?) even more critical at the negative
 T1/T2(Li) mapping = principle of MRI !
 use to localize liquid/confined/solid state Li in the battery

31/33
GENERAL CONCLUSION & PERSPECTIVES

Battery performance is driven by surface chemistry
 Interphase evolves upon voltage variations, depending on the AM
 No general formation mechanism
 Complex architecture/composition  conducting properties

 Good interphase = SEI-like






Li-O-rich to be conducting
Dense to passivate the AM surface
Thin to limit Li consumption
Not straightforward  tailor with additives or new electrolytes
NMR for the diagnostic evaluation of detrimental phenomena

 Cross-talk between the negative and positive interphases

 Need for parallel studies on both electrodes
32/33
Acknowledgments
Nicolas Dupré, Dominique Guyomard but also L. Lajaunie, J.-F.
Martin, P. Moreau, Z.-L. Wang (co-workers)
R. Kanno, M. Hirayama, K. Suzuki, S. Taminato (Tokyo Tech collab.)
K. Edström (Uppsala), T. Épicier (INSA Lyon), L. Croguennec,
M. Ménétrier & A. Wattiaux (ICMCB), J.-M. Tarascon (LRCS),
J. Cabana (LBNL) for fruitful discussions and experimental
contributions

MESR, METSA (funding)

marine.cuisinier@gmail.com
nicolas.dupre@cnrs-imn.fr
33/33

Mais conteúdo relacionado

Mais procurados

AUGER & ESCA Spectroscopy( Mass Spectroscopy )
AUGER & ESCA Spectroscopy( Mass Spectroscopy )AUGER & ESCA Spectroscopy( Mass Spectroscopy )
AUGER & ESCA Spectroscopy( Mass Spectroscopy )Sachin Kale
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Zaahir Salam
 
Voltammetry and Polarography
Voltammetry and PolarographyVoltammetry and Polarography
Voltammetry and PolarographyMelakuMetto
 
Coherent Anti Stokes Raman Spectroscopy
Coherent Anti Stokes Raman Spectroscopy Coherent Anti Stokes Raman Spectroscopy
Coherent Anti Stokes Raman Spectroscopy SPCGC AJMER
 
Cyclic voltammetry
Cyclic voltammetryCyclic voltammetry
Cyclic voltammetrySharon Alex
 
Cyclic Voltametery
Cyclic VoltameteryCyclic Voltametery
Cyclic Voltameteryutsav dalal
 
Auger Electron Spectroscopy
Auger Electron SpectroscopyAuger Electron Spectroscopy
Auger Electron SpectroscopyMANISHSAHU106
 
Advanced Characterization Technique - SEM
Advanced Characterization Technique - SEMAdvanced Characterization Technique - SEM
Advanced Characterization Technique - SEMIlyas Hussain
 
Photoelectrochemical splitting of water for hydrogen generation: Basics & Fut...
Photoelectrochemical splitting of water for hydrogen generation: Basics & Fut...Photoelectrochemical splitting of water for hydrogen generation: Basics & Fut...
Photoelectrochemical splitting of water for hydrogen generation: Basics & Fut...RunjhunDutta
 
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)
	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)khushbakhat nida
 
Hyperfine splitting
Hyperfine splittingHyperfine splitting
Hyperfine splittingbatmeez
 
Stripping voltammetry
Stripping voltammetryStripping voltammetry
Stripping voltammetryRituHaldive
 
Basics of Electrochemical Impedance Spectroscopy
Basics of Electrochemical Impedance SpectroscopyBasics of Electrochemical Impedance Spectroscopy
Basics of Electrochemical Impedance SpectroscopyGamryInstruments
 
Photoelectrochemical Splitting of water for hydrogen generation: Detailed Des...
Photoelectrochemical Splitting of water for hydrogen generation: Detailed Des...Photoelectrochemical Splitting of water for hydrogen generation: Detailed Des...
Photoelectrochemical Splitting of water for hydrogen generation: Detailed Des...RunjhunDutta
 
Photoconductivity.pptx
Photoconductivity.pptxPhotoconductivity.pptx
Photoconductivity.pptxMAbrarMalik1
 

Mais procurados (20)

Chronopotentiometry
ChronopotentiometryChronopotentiometry
Chronopotentiometry
 
AUGER & ESCA Spectroscopy( Mass Spectroscopy )
AUGER & ESCA Spectroscopy( Mass Spectroscopy )AUGER & ESCA Spectroscopy( Mass Spectroscopy )
AUGER & ESCA Spectroscopy( Mass Spectroscopy )
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)
 
Voltammetry and Polarography
Voltammetry and PolarographyVoltammetry and Polarography
Voltammetry and Polarography
 
Coherent Anti Stokes Raman Spectroscopy
Coherent Anti Stokes Raman Spectroscopy Coherent Anti Stokes Raman Spectroscopy
Coherent Anti Stokes Raman Spectroscopy
 
Cyclic voltammetry
Cyclic voltammetryCyclic voltammetry
Cyclic voltammetry
 
TYPES OF POLAROGRAPHY.pptx
TYPES OF POLAROGRAPHY.pptxTYPES OF POLAROGRAPHY.pptx
TYPES OF POLAROGRAPHY.pptx
 
Cyclic Voltametery
Cyclic VoltameteryCyclic Voltametery
Cyclic Voltametery
 
Auger Electron Spectroscopy
Auger Electron SpectroscopyAuger Electron Spectroscopy
Auger Electron Spectroscopy
 
Advanced Characterization Technique - SEM
Advanced Characterization Technique - SEMAdvanced Characterization Technique - SEM
Advanced Characterization Technique - SEM
 
Photoelectrochemical splitting of water for hydrogen generation: Basics & Fut...
Photoelectrochemical splitting of water for hydrogen generation: Basics & Fut...Photoelectrochemical splitting of water for hydrogen generation: Basics & Fut...
Photoelectrochemical splitting of water for hydrogen generation: Basics & Fut...
 
Electronic spectra
Electronic spectraElectronic spectra
Electronic spectra
 
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)
	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)	ELECTRON ENERGY LOSE  SPECTROSCOPY (EELS)
ELECTRON ENERGY LOSE SPECTROSCOPY (EELS)
 
Hyperfine splitting
Hyperfine splittingHyperfine splitting
Hyperfine splitting
 
Mossbauer Spectroscopy
Mossbauer SpectroscopyMossbauer Spectroscopy
Mossbauer Spectroscopy
 
Stripping voltammetry
Stripping voltammetryStripping voltammetry
Stripping voltammetry
 
Nanocatalyst
NanocatalystNanocatalyst
Nanocatalyst
 
Basics of Electrochemical Impedance Spectroscopy
Basics of Electrochemical Impedance SpectroscopyBasics of Electrochemical Impedance Spectroscopy
Basics of Electrochemical Impedance Spectroscopy
 
Photoelectrochemical Splitting of water for hydrogen generation: Detailed Des...
Photoelectrochemical Splitting of water for hydrogen generation: Detailed Des...Photoelectrochemical Splitting of water for hydrogen generation: Detailed Des...
Photoelectrochemical Splitting of water for hydrogen generation: Detailed Des...
 
Photoconductivity.pptx
Photoconductivity.pptxPhotoconductivity.pptx
Photoconductivity.pptx
 

Destaque

LLNC Presentaion Sham group
LLNC Presentaion Sham groupLLNC Presentaion Sham group
LLNC Presentaion Sham groupAaron Kirkey
 
Hsc physics revision for semiconductors and communication
Hsc physics revision for semiconductors and communicationHsc physics revision for semiconductors and communication
Hsc physics revision for semiconductors and communicationnitin oke
 
Failure is not an option, or, why you need to ask 'Why?" more often.
Failure is not an option, or, why you need to ask 'Why?" more often.Failure is not an option, or, why you need to ask 'Why?" more often.
Failure is not an option, or, why you need to ask 'Why?" more often.Alessandro Galetto
 
Film openning titles
Film openning titlesFilm openning titles
Film openning titlesHD393rt
 
Psb tutorial cancer_pathways
Psb tutorial cancer_pathwaysPsb tutorial cancer_pathways
Psb tutorial cancer_pathwaysJeff Kiefer
 
簡報:艾克托的幸福筆記
簡報:艾克托的幸福筆記簡報:艾克托的幸福筆記
簡報:艾克托的幸福筆記Absolutereading Yu
 
By Alwyn And Yu Kai
By Alwyn And Yu KaiBy Alwyn And Yu Kai
By Alwyn And Yu Kaiyapsmail
 
外賣通路方案規劃
外賣通路方案規劃外賣通路方案規劃
外賣通路方案規劃goodbean
 
Xvii. символи єднання народів
Xvii. символи єднання народівXvii. символи єднання народів
Xvii. символи єднання народівOlga Lesenko
 
Yvonne Williams - Higher Education Information - 3rd March 2014
Yvonne Williams - Higher Education Information - 3rd March 2014Yvonne Williams - Higher Education Information - 3rd March 2014
Yvonne Williams - Higher Education Information - 3rd March 2014rpalmerratcliffe
 

Destaque (16)

Solid state aircrafts
Solid state aircraftsSolid state aircrafts
Solid state aircrafts
 
LLNC Presentaion Sham group
LLNC Presentaion Sham groupLLNC Presentaion Sham group
LLNC Presentaion Sham group
 
Unit 2 semiconductors
Unit 2  semiconductors Unit 2  semiconductors
Unit 2 semiconductors
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
Hsc physics revision for semiconductors and communication
Hsc physics revision for semiconductors and communicationHsc physics revision for semiconductors and communication
Hsc physics revision for semiconductors and communication
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
super conductivity
super conductivitysuper conductivity
super conductivity
 
Failure is not an option, or, why you need to ask 'Why?" more often.
Failure is not an option, or, why you need to ask 'Why?" more often.Failure is not an option, or, why you need to ask 'Why?" more often.
Failure is not an option, or, why you need to ask 'Why?" more often.
 
Film openning titles
Film openning titlesFilm openning titles
Film openning titles
 
Propiedad intelectual y software
Propiedad intelectual y softwarePropiedad intelectual y software
Propiedad intelectual y software
 
Psb tutorial cancer_pathways
Psb tutorial cancer_pathwaysPsb tutorial cancer_pathways
Psb tutorial cancer_pathways
 
簡報:艾克托的幸福筆記
簡報:艾克托的幸福筆記簡報:艾克托的幸福筆記
簡報:艾克托的幸福筆記
 
By Alwyn And Yu Kai
By Alwyn And Yu KaiBy Alwyn And Yu Kai
By Alwyn And Yu Kai
 
外賣通路方案規劃
外賣通路方案規劃外賣通路方案規劃
外賣通路方案規劃
 
Xvii. символи єднання народів
Xvii. символи єднання народівXvii. символи єднання народів
Xvii. символи єднання народів
 
Yvonne Williams - Higher Education Information - 3rd March 2014
Yvonne Williams - Higher Education Information - 3rd March 2014Yvonne Williams - Higher Education Information - 3rd March 2014
Yvonne Williams - Higher Education Information - 3rd March 2014
 

Semelhante a Electrode - Electrolyte Interface Studies in Lithium Batteries

Understanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteriesUnderstanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteriesKhue Luu
 
Acs 2009 3 22 Final
Acs 2009 3 22 FinalAcs 2009 3 22 Final
Acs 2009 3 22 Finaljihuac
 
Time resolved infrared spectroscopy
Time resolved infrared spectroscopyTime resolved infrared spectroscopy
Time resolved infrared spectroscopyDaniel Morton
 
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...CrimsonPublishersRDMS
 
f block elements
  f block elements  f block elements
f block elementsRadha Mini
 
Jaya-National Science Day talk.pptx
Jaya-National Science Day talk.pptxJaya-National Science Day talk.pptx
Jaya-National Science Day talk.pptxRetheesh Raj
 
Li4Ti5O12 via electrospinning
Li4Ti5O12 via electrospinningLi4Ti5O12 via electrospinning
Li4Ti5O12 via electrospinningAntonio Susanna
 
Surface reactions and performance of non-aqueous electrolytes with lithium me...
Surface reactions and performance of non-aqueous electrolytes with lithium me...Surface reactions and performance of non-aqueous electrolytes with lithium me...
Surface reactions and performance of non-aqueous electrolytes with lithium me...chrisrobschu
 
Rechargeable Li-ion batteries based on Olivine-structured (LiFePO4) catho...
Rechargeable Li-ion batteries based on Olivine-structured     (LiFePO4) catho...Rechargeable Li-ion batteries based on Olivine-structured     (LiFePO4) catho...
Rechargeable Li-ion batteries based on Olivine-structured (LiFePO4) catho...Arun Kumar
 
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...Mario Alberto Gomez
 
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...inventionjournals
 
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...Trinity College Dublin
 
Li pon paper
Li pon paperLi pon paper
Li pon paperVo VanThe
 
Quantitative electron diffraction tomography for the structure solution of ca...
Quantitative electron diffraction tomography for the structure solution of ca...Quantitative electron diffraction tomography for the structure solution of ca...
Quantitative electron diffraction tomography for the structure solution of ca...Olesia Karakulina
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...LandimarMendesDuarte
 
Energy Resonance Study, France 2005
Energy Resonance Study, France 2005Energy Resonance Study, France 2005
Energy Resonance Study, France 2005Thina3
 

Semelhante a Electrode - Electrolyte Interface Studies in Lithium Batteries (20)

Understanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteriesUnderstanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteries
 
Acs 2009 3 22 Final
Acs 2009 3 22 FinalAcs 2009 3 22 Final
Acs 2009 3 22 Final
 
Time resolved infrared spectroscopy
Time resolved infrared spectroscopyTime resolved infrared spectroscopy
Time resolved infrared spectroscopy
 
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...
 
f block elements
  f block elements  f block elements
f block elements
 
Jaya-National Science Day talk.pptx
Jaya-National Science Day talk.pptxJaya-National Science Day talk.pptx
Jaya-National Science Day talk.pptx
 
Li4Ti5O12 via electrospinning
Li4Ti5O12 via electrospinningLi4Ti5O12 via electrospinning
Li4Ti5O12 via electrospinning
 
Surface reactions and performance of non-aqueous electrolytes with lithium me...
Surface reactions and performance of non-aqueous electrolytes with lithium me...Surface reactions and performance of non-aqueous electrolytes with lithium me...
Surface reactions and performance of non-aqueous electrolytes with lithium me...
 
Rechargeable Li-ion batteries based on Olivine-structured (LiFePO4) catho...
Rechargeable Li-ion batteries based on Olivine-structured     (LiFePO4) catho...Rechargeable Li-ion batteries based on Olivine-structured     (LiFePO4) catho...
Rechargeable Li-ion batteries based on Olivine-structured (LiFePO4) catho...
 
Rowena brugge imperial college
Rowena brugge   imperial collegeRowena brugge   imperial college
Rowena brugge imperial college
 
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
 
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...
Optimization of Coal Blending to Reduce Production Cost and Increase Energy E...
 
Cathode materials for rechargeable lithium ion batteries
Cathode materials for rechargeable lithium ion batteriesCathode materials for rechargeable lithium ion batteries
Cathode materials for rechargeable lithium ion batteries
 
poster PM
poster PMposter PM
poster PM
 
296 mahadik
296 mahadik296 mahadik
296 mahadik
 
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
 
Li pon paper
Li pon paperLi pon paper
Li pon paper
 
Quantitative electron diffraction tomography for the structure solution of ca...
Quantitative electron diffraction tomography for the structure solution of ca...Quantitative electron diffraction tomography for the structure solution of ca...
Quantitative electron diffraction tomography for the structure solution of ca...
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
 
Energy Resonance Study, France 2005
Energy Resonance Study, France 2005Energy Resonance Study, France 2005
Energy Resonance Study, France 2005
 

Último

2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 

Último (20)

2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 

Electrode - Electrolyte Interface Studies in Lithium Batteries

  • 1. Electrode/Electrolyte Interface Studies in Lithium Batteries Marine Cuisinier University of Waterloo, Canada Nicolas Dupré, Dominique Guyomard Institut des Matériaux Jean Rouxel ‐ Université de Nantes, France Kouta Suzuki, Masaaki Hirayama, Ryoji Kanno Tokyo Institute of Technology, Japan 1/29
  • 2. Li-ion & related challenges Energy (Wh/kg, Wh/l) Power (W/kg, W/l) Power (W / kg) HEV 1000 PHEV, power tools Li-ion Safety Cost EV Toxicity Ni-MH 100 Life Reactivity at interfaces Pb-acid btw. electrodes & electrolyte 10 10 100 1000 Safety Energy (Wh/kg) Long term cyclability Energy Autonomy Power Rate, acceleration 2/33
  • 3. Aging mechanisms of cathode materials gas evolution electrolyte decomposition DMC O O EC dissolution O surface layer formation O O re-precipitation of new phases migration of soluble species F Li F P F F F F ROCO2Li OPF2(RO)nF O LixPOyFz LiF Adapted from J. Vetter et al., J. Power Sources 147 (2005) 269 3/33
  • 4. Table of contents 1 CHARACTERIZATION METHODS   Review of interface characterization methods MAS NMR applied to surface species analysis 2 EXEMPLES: LINI0.5MN0.5O2/ELECTROLYTE INTERPHASE   Aging upon storage in LiPF6 electrolyte Aging upon cycling in LiPF6 and LiBOB modified electrolyte 3 CASE OF THE LIFEPO4/ELECTROLYTE INTERPHASE   Intrinsic interphasial behavior Surface aging upon storage: characterization and control towards improved electrochemical performance 4 GENERAL CONCLUSION & PERSPECTIVES 4/29
  • 5. Classical interface characterization methods A strategy for R&D of Li and Li-ion batteries. Study of Electrodes Li, Li-C anodes and LixMOy cathodes. NMR Surface Chemistry in situ & ex situ FTIR, XPS, EDAX, EQCM Interfacial properties EIS, B.E.T. (surface area) Morphology in situ AFM (SEM) Structural analysis in situ & ex situ XRD (SEM) Correlation Performance Fast tests for cycling efficiency FTIR (GCPL) XPS MAS NMR 50 40 30 Solution studies Electrochemical windows, thermal stability, redox processes: CV, in situ FTIR, EQCM, EIS, DTA Optimization of electrolyte solutions 20 10 Published items each year Electroanalytical behavior of Li insertion compounds PITT, EIS, SSCV Testing in practical cells (coin cells and AA cells) 19 9 19 4 9 19 5 9 19 6 9 19 7 9 19 8 9 20 9 0 20 0 0 20 1 0 20 2 0 20 3 0 20 4 0 20 5 0 20 6 0 20 7 0 20 8 0 20 9 1 20 0 1 20 1 1 20 2 13 0 Publication year From Reuters, Web of Knowledge 5/33
  • 6. Review of interface studies by NMR < 20 studies in the literature on « passivation layer on LiB materials »  Suitable for: 1H, 7Li, 13C, 19F and 31P in the interphase… or 23Na ! 6/33
  • 7. 7Li NMR: Li-electron dipolar interaction Coupling between nuclear spin and electronic spin (paramagnetic ions) Distance between Li and paramagnetic center 0 1 H en  µe .Dij . 3 4 r Mn4+ t2g (unpaired electron spin) O Through space q B0 r Li (nuclear spin) 7/33
  • 8. Using 7Li MAS NMR to selectively DETECT the interphase T2 para Distance between Li and paramagnetic center B0 0 1 H en  µe .Dij . 3 4 r y If r ↓ Hen ↑ x Surface species = diamagnetic (Li2CO3, LiF, LixOyPFz etc…) π/2 pulse Bulk Li Free Induction Decay Surface Time Longer T2 Mn then T2 ↓ t0 Li Short T2 acquisition T2para DEAD TIME (5-50 s) before acquisition of data REMOVE Li-bulk SIGNAL 8/33
  • 9. Using 7Li MAS NMR to study electrode/interphase interactions 7Li, 500MHz, 14kHz FWHM  LiNi0.5Mn0.5O2 with surface Li2CO3 No dead time If r ↓ Hen ↑ then T2 ↓ If µe ↑ Hen ↑ then T2 ↓ a Bulk Dipolar interaction Dipolar interaction 0 ppm b Diamagnetic surface species Dead time 1 T2 2V 4.5 V Surface Li2CO3 c Li2CO3 powder 3000 2000 1000 40 0  (ppm) -1000 -2000 20 0 -20 -40 7  Li / ppmm Ménétrier, M. et al. Electrochem. And Solid State Lett., 2004, 7(6), A140. Dupré, N. et al. J. Mat. Chem., 2008, 18, 4266 DIPOLAR INTERACTION THICKNESS / INTIMACY of the interphase with the bulk9/33
  • 10. integrated intensity / NS / RG integrated intensity / NS / RG (a. u.) Using MAS NMR to QUANTIFY the interphase 7Li NMR 50 40 LiFePO4 20 and 31P NMR spectra calibration curves LiMn1.5Ni0.5O4 30 7Li, 19F Si -1 y = 4.26 10 x 10 LiF / LiPF6 calibration 0 0 25 50 75 100 diamagnetic Li (µmol) 19F 5 NMR 4 LiMn1.5Ni0.5 O4 3 LiFePO4 Si Works for interphases grown on ≠ electrode materials: LiMn0.5Ni0.5O2 , LiFePO4 , Si -2 y = 6.38 10 x LiF calibration 2 -2 y = 2.80 10 x 1 From known amounts of diamagnetic nuclei (LiF, LiPF6) LiPF 6 calibration Absolute quantification of interphasial [Li], [F], [P] in mmol.g-1 or mmol.m-² 0 0 25 50 75 100 diamagnetic F (µmol) 10/33
  • 11. (Li-alkylcarbonates) O -1 diamagnetic Li or F (mmol.g ) Interpretation of quantitative NMR results 7Li, 19F NMR Total Li Li 1.4 7 1.2 Li+ O (7Li 1.4 O O Li (Li2CO3) O Li in organic 1.0 ~ Total Li (7Li) – LiF (19F) ? F / PF 19 F / LiF 1.0 R Li NMR) 19 O 1.2 0.8 0.8 0.6 Fluorophosphates (19F NMR) 0.4 POF3/PO2F2-/ PO3F2- 0.6 0.4 0.2 0.2 0.0 0.0 OX1 RED1 OX5 RED5 OX20 RED20 O O F P R O F or F P O Li F LiF (19F NMR) Charge state O O O O n O O Non lithiated organic species remain invisible to our NMR experiments 11/33
  • 12. Need for COMPLEMENTARY analytical tools 0 n Diamagnetic interphases m LiMn0.5Ni0.5O2 interphase formation Electrode active material NMR Electrode activ XPS Diamagnetic interphases Electrode active material LiPF6 electrolyte decomposition Electrode active material Electrode active material In situ EIS TEM/EELS Z’’/Ω 5 NMR Rinterfacial -50 Nyquist plot -25 Rel 0 Brookhaven Nat. Lab. 25 50 Z’/Ω 75 100 12/33
  • 13. Table of contents 1 CHARACTERIZATION METHODS   Review of interface characterization methods MAS NMR applied to surface species analysis 2 EXAMPLES: LINI0.5MN0.5O2/ELECTROLYTE INTERPHASE   Aging upon storage in LiPF6 electrolyte Aging upon cycling in LiPF6 and LiBOB modified electrolyte 3 CASE OF THE LIFEPO4/ELECTROLYTE INTERPHASE   Intrinsic interphasial behavior Surface aging upon storage: characterization and control towards improved electrochemical performance 4 GENERAL CONCLUSION & PERSPECTIVES 13/29
  • 14. Example 1: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase upon storage (SEM) 7Li 1 month NMR 19F 0 ppm NMR -205 ppm LiF 3 days 3 days 1 hour 5 min. 1 min. 30 sec. 1 µm (a) Pristine 1000 (b) 500 0 7  Li / ppm   1 µm normalized / NS / RG /m 1 µm normalized / NS / RG /m 2 weeks  -500 -1000 (c) 200 0 -200 -400  19F / ppm Soaking at RT in LiPF6 1M, EC:DMC (1:1) Surface “film” observation by SEM 19F: LiF only 14/33
  • 15. mmol (Li or F) / g LMN Example 1: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase upon storage (NMR vs XPS) 0.4 7Li, 19F NMR 0.3 7 Li NMR One month 0.2 19 0.1 0.0 Li in organic = Total Li (7Li) – LiF (19F) 0 10 20 30 F NMR 40 50 60 300 400 500 600 700 Contact time (min) XPS F1s XPS C1s LiF CC/CH 1 hour LiF only  XPS: LiF screening 26% by Li-containing 16% organic species 5 min. 13% CO CO3 CO 2 1 month LixPFy LixPOyFz 1 month 1 hour 5 min. Contact time (h) 26% 33% 37%  19F: 15/33
  • 16. Example 1: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase upon storage (EELS) EELS 100 %F F-K atomic % O-K 8 8 7 6 5 4 3 Mn-L Ni-L 2,3 500 2,3 600 700 800 900 Energy Loss (eV) 80 60 40 20 % Mn %O 0 8 7 6 5 4 3 spot number Interphase growth scenario: LiPF6 O PF5 + LiF O O O Li+ O O R LMN½ 5 Salt decomposition Solvents decomposition Contact time 16/33
  • 17. 200 180 LiPF6 1M Coulombic 160 220 ) 220 -1 180 120 160 140 0 5 100 5 15 Cycle number20 10 15 100 st 1 ox Z" / .mg -2 25 th 5 ox 90 Q charge 20 Q discharge 15 80 Coulombic efficiency th 10 60 5 50 0 10 5 10 Cycle number 15 20 15 / .mg-2 20 Z' 25 50 120 20 0 20 ox 70 0 140 Cycle number 30 60 160 100 Coulombic efficiency (%) -2 0 10 180 30 30 25 20 15 10 5 0 Charge transfer resistance () 120 70 200 Z" / .mg Capacity (mA.h.g 200 140 Capacity (mA.h.g ) Q charge Q discharge 125 R 4.5 V ct st charge:  R 2V 100 1 parasitic electrochemical process Impedance ↑ : only Rct ↑ ct 80 75 efficiency LiPF 0.9M + LiBOB 0.1M  6 100 5 90 Q charge Q discharge Charge transfer resistance () ) 100 -1 Capacity (mA.h.g -1 220 Coulombic efficiency (%) Example 2: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase upon cycling (1) 0 5 10 Q charge Q discharge 50 25 0 5 15 20 Cycle number 125 10 15 20 Cycle number Rct 4.5 V Rct 2 V st 100 1 ox th 5 ox 75 th 20 ox 50 25 5 0 10 15 20 5 Z' / .mg -2 25 30 10 Cycle number 15 20 17/33
  • 18. RED1 0.3 140 120 0.2 100 10 15 0 0.1 20 5 Cycle number 0.0 0.0 OX5 RED5 OX20 RED1 OX5 PRISTINEOX1 RED20 Charge state Li+ O O R O F P O Li F 70 60 50 100 RED 1 Q charge Q discharge 75 Coulombic efficiency 10 R902 V ct 80 70 50 OX 1 60 25 Cycle number 200 15 0 0 2019 5 50 -200 10 125 100 75 50 25  F / ppm Cycle number -400 0 15 0.0 RED5 OX20 RED20 Charge state O 80 100 Rct 4.5 V NMR Charge transfer resistance () 0.1 5 0 0.4 Coulombic efficiency 160 125 Coulombic efficiency (%) 100 0.2 ) -1 0.2 90 19F normalized / NS / RG /m 120 0.5 Q charge 180 Q discharge Charge transfer resistance () 0.4 0.3 140 200 100 Coulombic efficiency (%) 0.6 0.4 160 0.6 T2(Li) (ms) 0.8 0.5 Capacity (mA.h.g 1.0 ) -1 1.2 F / LiF 19 200 F / PF 7 180 Li 220 0.6 T2(Li) (ms) 220 19 1.4 Capacity (mA.h.g LiF PF diamagnetic Li/F (mmol/g) Example 2: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase upon cycling (2)   Appearance of fluorophosphates Electrochemical formation of the interphase? Indirect electrochemical oxidation: oxygen transfer from the oxide surface to the solvent molecules S.-W. Song et al., JES, 151, A1162 (2004) 18/33
  • 19. 1.4 1.2 1.0 0.6 19 F / LiF 19 F / PF 7 Li 0.4 0.8 0.3 0.6 0.2 0.4 0.2 0.1 0.0 0.0 PRISTINEOX1 RED1 OX5 Li-poor interphase: LiF + non-lithiated species  T2(Li): No evolution of the AM /interphase intimacy  Stable (resistive) LiF-based interphase + growing non-lithiated (PEO type + phosphates)  0.5 T2(Li) (ms) diamagnetic Li/F (mmol/g) Example 2: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase upon cycling (3) Li-free organic RED5 OX20 RED20 Charge state Organic species Fluorophosphates LiF O O O O n O O O LMN½ M. Cuisinier et al. Solid State Nucl. Magn. Reson. 42, 51 (2011) LMN½ F P R O F 19/33
  • 20. Example 3: aging of the LiNi1/2Mn1/2O2 / LiPF6 interphase upon cycling (effect of LiBOB additive) Cathode protecting agent Mn-containing insoluble surface layer [*] No LiBOB LiBOB 30 19F / LiF 19F / PF 7Li 1.2 1.2 1.0 0.8 0.6 0.6 0.4 0.4 20 15 10 0.2 0.0 PRISTINE OX1 RED1 OX5 RED5 OX20 5 0.0 0.2 BOB-1ox BOB-5ox BOB-20ox 25 1.0 0.8 200 1.4 Z'' / (mmol/g) diamagnetic LiOhm 1.4 Z'' / Ohm diamagnetic Li (mmol/g) 1.4 0 RED20 Charge state 1.2 150 5 10 15 20 Z' / Ohm 25 30 19F / LiF 19F / PF 7Li PF6-1ox PF6-5ox PF6-20ox 1.2 1.0 1.0 0.8 0.8 100 0.6 0.6 0.4 0.4 50 0.2 0.0 0 1.4 0.2 0 PRISTINE OX1 RED1 0 50 0.0 OX5 100 RED5 OX20 RED20 150 200 Z' / Ohm Charge state Composition of interphase is different: Presence of Li in org. species / fluorophosphates Less resistive interphase « good » interphase [*] Chen, Z. et al., Electrochim. Acta 51 (2006) 3322. ↑ electrochemical performance 20/33
  • 21. Table of contents 1 CHARACTERIZATION METHODS   Review of interface characterization methods MAS NMR applied to surface species analysis 2 EXEMPLES: LINI0.5MN0.5O2/ELECTROLYTE INTERPHASE   Aging upon storage in LiPF6 electrolyte Aging upon cycling in LiPF6 and LiBOB modified electrolyte 3 CASE OF THE LIFEPO4/ELECTROLYTE INTERPHASE    Interphase dynamics upon voltage variations Interphase modeling using ideal 2D films Interphase evolution upon extended cycling 4 GENERAL CONCLUSION & PERSPECTIVES 21/29
  • 22. -1 diamagnetic Li or F (mmol.g ) Evolution of the LiFePO4 interface with voltage 7 3.0 Li 3.0 19 F/PF 19 2.5 F/LiF 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 4.0 V 4V 4.5 V 4.5V 2.0 V 2V 2.7 V 2.7V 2.7 V 2.7V Charge state  7Li/19F: clarify XPS  stable inorganic interphase + fluctuating organic species FePO4 F. Croce et aL., J. Power Sources, 43 (1993) 9 Oxidized state 4.5 V 4.5V Interphase model: Solid Polymer Layer Li-organic species Fluorophosphates LiF LiFePO4 Reduced state 22/33
  • 23. Modeling the interphase architecture (1) 100 Elemental percentage (%) EELS %O %F % Fe 80 60 40 20 -20 0 20 40 60 80 100 Distance from the surface (nm) F-K O-K #12: 14 nm #11: 19 nm #10: 18 nm Fe L2,3 500 550 600 650 700 #6: AM 750 800 Energy loss (eV)  EELS: Any multi-layered model is abusive ! (at least on powder samples) 23/33
  • 24. a- oriented LiFePO4 thin films d / g·cm-3 Model surface: a- oriented LiFePO4 thin films Thickness l / nm 20.36 - Roughness t / nm glue Pulsed Laser (a) (b) Deposition: 20-80nm thick LiFePO4 4epitaxial LiFePO film on SrTiO3 (010) 1.33 1.06 0.55 1.08 690 520 525 530 535 540 545 550 555 700 710 720 730 energy loss (eV) energy loss (eV) (d)Pristine film:Surface LiFePO4 SrTiO3 (c) structurally homogeneous layer O 740  Possibility to monitor fine surface Density 2.11 3.62 5.12 structure changes upon Li (de)intercalation d / g·cm-3 Thickness a- oriented LiFePO4 thin films SrTiO substrate 1.33 20.36 Roughness t / nm 1.06 0.55 l / nm 3 - TEM-EELS 1.08 O-K Fe-L2,3 energy loss (e Pulsed (d)Pristine film: structurally hom (b) Ideal 2D surface Deposition: 20-80nm = model interphase  Possibility to monitor fine thick LiFePO4 4epitaxial LiFePO structure changes upon film on SrTiO3 (010) Subjected to storage in LiPF6 Li (d Pulsed Laser electrolyte and cycling Pristine film: structurally homogeneous Deposition: 320-80nm SrTiO substrate  Validate to monitor fine surface  Possibility the interphase model? thick LiFePO epitaxial glue Laser 520 525 530 535 540 54 520 525 530 535 540 545 550 555 energy loss (eV) 4 film on SrTiO3 (010) 690 700 710 720 730 740 energy loss (eV) structure changes upon Li (de)intercalation Hirayama et al., Electrochemistry (Tokyo), 5 (2010) 413 24/33
  • 25. Modelingthe interphase architecture Modeling the interphase architecture (2) XPS Electron detector Electron detector X-ray X-ray XPS ) (θ in ) . s (θ n 3λ si . λ 3 ) (θ s o .c 3λ θ Penetration depth = 3λ.cos(θ) Penetration depth = 3λ.sin(θ) with λ ~λ~27Å with 22 Å θ θ varied from 0° to 60° I(θ)= Iinf . exp(-d/λ.cosθ) 3λ 3λ Bulk Bulk Surface Surface Interphase depth profile: ln C(Fe 2p1/2) 1.6 1.4 1.2 0.8 surface 5 Average λ (inelastic mean free path) is inaccurate ! air contact 4.5V 1st charge 2.5V 1st discharge 0.6 0.4 0.2 1.0 0.8 -0.2 -d 0 0.6 LiF PF CO CO2 Confirms NMR and EELS results: 1.0 1.2 1.4 1.6 1.8 2.0 Inner LiF, covered by fluorophosphates 1/cosq -1 and a dynamic Solid Polymer Layer (SPL) 0.4  d (nm) 4 Pristine 3 1 0.44 1st ox. 4.5 V 3.5 bulk dried PO Fe 4.5 V 2.5 V 4.5V 1st charge 2.5V 1st discharge 4.5 LN(P-O) LN(surface/bulk)  1 d, the interphase thickness 1.4 1st 1.2 1.4 1.6 1/cos(q) red 2.5 V 0.25 1.8 % 26 pristine 4.5V 2.5V 0.8 nm 1.7 nm 1.2 nm Voltage dependance of the interphase thickness 25/33
  • 26. 2 Modeling the interphase architecture (3) XPS LiF F 1s ) ((θ) θ sn i . cλos .3 3λ X-ray k 1.0 θ C.P.S Electron detector 1.2 θ 3λ Bulk q = 60° q = 55° q = 48° q = 37° q = 0° 0.8 LixPOyFz 0.6 0.4 0.2 0.0 Surface -0.2 C %(60) 1.0 C %(0) 1.2 690 686 684 682 P Binding energy (eV) 1st Ox 4.5 V 0.8 688 0.6 CH2CO2Li, ROCO2Li 0.4 1st Red 2.5 V 0.2 0.0 OPF2OMe, OPF2(OCH2CH2)nF LiF LiFePO4 FePO4 -0.2 PO Fe LiF PF CO2 CO -- Inner interphase: stable / inorganic Outer interphase : dynamic / polymeric   26/33
  • 27. 100 180 100 1 ox 4.5 V 5 ox 4.5 V 20 ox 4.5 V 1 red 2V 5 red 2V 20 red 2V Pristine - 4.5 V 80 Stable impedance, 60 no resistive film 140 120 100 Pristine - 2 V 80 60 -Z'' /  160 -Z'' /  Discharge capacity (mA.h.g -1 ) Interphase data upon cycling for bare LFP 5 40 40 80 0 20 40 60 80 20 1 20 20 20 250 Hz 100 100 Hz 0 cycle number 0 0 20 40 60 80 100 0 Z' /  -1 diamagnetic Li or F (mmol.g ) 7Li, 19F 0.5 NMR Accumulation of 0.5 interphase species 7 Li F / PF 19 F / LiF 19 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 1 ox 1 red 5 ox 5 red 20 ox 20 red OX1 RED1 OX5 RED5 Charge state 1 5 5 kHz Charge transfer 6 kHz OX20 RED20 20 40 60 80 100 Z' /  Stable performance vs Li No resistive film Lots of Li outside LiF, in LixPOyFz (?), in Li-organic (1H NMR, XPS) O F P O Li F O Li+ O O R 27/33
  • 28. 0.0 x 20 red 0.4 0.3 0.3 7 0.2 0.2 0.1 0.1  T2(Li) (ms) -1 T2(Li) (ms) 0.4 0.0 0.4 0.5 0.3 NMR 0.2 7Li 0.1 Interphasial Li (mmol.g ) Interphase growth scenario for bare LFP 0.0 1 ox 1 red 5 ox 5 red 20 ox 20 red     Stable performance vs Li No resistive film Li-rich porous interphase Interphase growth by stacking Li-organic species Fluorophosphates LiF FePO4 M. Cuisinier et al. J. Power Sources, 224, 50 (2013) T2(Li): decreasing intimacy Signal integration: accumulation of surface Li Non blocking interphase, But no passivation: Oxidized state Li+ Li+ LiFePO4 Reduced state 28/33
  • 29. The case of LiFePO4: summary vs. LiMn1/2Ni1/2O2  Stable performance require a Li-rich organic interphase  How to stop Li consumption in it? STABLE REVERSIBLE “BREATHING” FP LFP STABLE PERFORMANCE  Poor performance of our LMN material might be assigned to a “bad” interphase: no Li mobility, growing Li-free matrix on Organic species LiF-rich inner interphase Fluorophosphates Li-free organic O O O O n LiF O O O LMN½ M. Cuisinier et al. J. Power Sources, 224, 50 (2013) M. Cuisinier et al. Solid State Nucl. Magn. Reson. 42, 51 (2011) LMN½ F P R O F 29/33
  • 30. Table of contents 1 CHARACTERIZATION METHODS   Review of interface characterization methods MAS NMR applied to surface species analysis 2 EXEMPLES: LINI0.5MN0.5O2/ELECTROLYTE INTERPHASE   Aging upon storage in LiPF6 electrolyte Aging upon cycling in LiPF6 and LiBOB modified electrolyte 3 CASE OF THE LIFEPO4/ELECTROLYTE INTERPHASE   Intrinsic interphasial behavior Surface aging upon storage: characterization and control towards improved electrochemical performance 4 GENERAL CONCLUSION & PERSPECTIVES 30/29
  • 31. GENERAL CONCLUSION & PERSPECTIVES Battery performance is driven by surface chemistry  Need for powerful analytical tools  Validation of NMR for interphase studies (perspectives)  Use for full cells and negatives: Si or intermetallics  Use for the exploration of Na interphasial chemistry (NaClO4  NaTFSI?) even more critical at the negative  T1/T2(Li) mapping = principle of MRI !  use to localize liquid/confined/solid state Li in the battery 31/33
  • 32. GENERAL CONCLUSION & PERSPECTIVES Battery performance is driven by surface chemistry  Interphase evolves upon voltage variations, depending on the AM  No general formation mechanism  Complex architecture/composition  conducting properties  Good interphase = SEI-like      Li-O-rich to be conducting Dense to passivate the AM surface Thin to limit Li consumption Not straightforward  tailor with additives or new electrolytes NMR for the diagnostic evaluation of detrimental phenomena  Cross-talk between the negative and positive interphases  Need for parallel studies on both electrodes 32/33
  • 33. Acknowledgments Nicolas Dupré, Dominique Guyomard but also L. Lajaunie, J.-F. Martin, P. Moreau, Z.-L. Wang (co-workers) R. Kanno, M. Hirayama, K. Suzuki, S. Taminato (Tokyo Tech collab.) K. Edström (Uppsala), T. Épicier (INSA Lyon), L. Croguennec, M. Ménétrier & A. Wattiaux (ICMCB), J.-M. Tarascon (LRCS), J. Cabana (LBNL) for fruitful discussions and experimental contributions MESR, METSA (funding) marine.cuisinier@gmail.com nicolas.dupre@cnrs-imn.fr 33/33