SlideShare uma empresa Scribd logo
1 de 19
Baixar para ler offline
CSC 367 2.0 Mathematical Computing

Assignment 3
Radial Basis Functions

AS2010377
M.K.H.Gunasekara

Special Part 1
Department of Computer Science
UNIVERSITY OF SRI JAYEWARDENEPURA
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

Table of Contents
-

Introduction ............................................................................................................................................ 2
Methodology........................................................................................................................................... 3
Implementation ...................................................................................................................................... 5
Results ..................................................................................................................................................... 6
Discussion.............................................................................................................................................. 10
Appendices............................................................................................................................................ 11

1|Page
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

Introduction
Neural Networks offer a powerful framework for representing nonlinear mappings from
several inputs to one or more outputs.
An important application of neural networks is regression. Instead of mapping the inputs
into a discrete class label, the neural network maps the input variables into continuous
values. A major class of neural networks is the radial basis function (RBF) neural network.
We will look at the architecture of RBF neural networks, followed by its applications in both
regression and classification.
In this report Radial Basis function is discussed for clustering as unsupervised learning
algorithm. Radial basis function is simulated to cluster three flowers in a given data set
which is available in http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data.

2|Page
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

Methodology
Radial Basis Function

Figure 01 : One hidden layer with Radial Basis Activation Functions
Radial basis function (RBF) networks typically have three layers
1. Input Layer
2. A hidden layer with a non-linear RBF activation function
3. Output Layer
Where N is the number of neurons in the hidden layer,
is the center vector for neuron i, and is
the weight of neuron i in the linear output neuron. Functions that depend only on the distance from
a center vector are radially symmetric about that vector, hence the name radial basis function. In the
basic form all inputs are connected to each hidden neuron. The norm is typically taken to be the
Euclidean distance and the radial basis function is commonly taken to be Gaussian Function
(

)

(

‖

‖

)

------ (1)

There are some other Radial Basis functions
Logistic Basis Function
( )

( )

Multi-quadratics
( )
√

3|Page
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

Input nodes connected by weights to a set of RBF neurons fire proportionately to the distance
between the input and the neuron in the weight space

The activation of these nodes is used as inputs to the second layer. The second layer (output layer) is
treated as a simple Perceptron network
Training the RBF Network
This can be done positioning the RBF nodes and using the activation of RBF nodes to train the linear
outputs.
Positioning RBF nodes can be done in two ways; First method is randomly picking some of the data
points to act as basis functions. And the second method is trying to position the nodes so that they
are representative of typical inputs, like using k-means clustering algorithm.
In Activation function there is standard deviation parameter.
One option is, giving all nodes the same size, and testing lots of different sizes using a validation set
to select one that works. Alternatively we can select the size of RBF nodes so that the whole space is
coved by the receptive fields. So the width of the Gaussian should be set according to the maximum
distance between the locations of the hidden nodes (d), and the number of hidden nodes (M)
------ (2)

√

We can use this normalized Gaussian function also.
(

‖

(

)
∑

(

‖

‖

)
‖

------ (3)
)

Outputs of the RBF Network:

(

‖

‖

)

Training the Perceptron Network
We can train Pereceptron Network by using supervised learning method. Therefore we train the
MLP Network according to targets.

4|Page
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

Implementation
Implementation was done using MATLAB 7.10 (2010). Implementation was done according to
following methods
1.
2.
3.
4.
5.

Locate RBF nodes into centers
Calculate for the Gaussian function
Calculate outputs of the RBF layer – Unsupervised Training
Make Perceptron Network for second layer –( I used MLP network without a hidden layer)
Train MLP Network according to targets and inputs (inputs are the output of RBF network) –
Supervised Training
6. Simulate the network

I have implement RBF Network with different strategies to compare the results






Using Randomly selected centers
Using K-Means Cluster centers
Using Non-normalized Gaussian function
Using Normalized Gaussian function
Using SVM for second layer

5|Page
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

Results
sepal length
5.1
4.9
4.7
4.6
5
5.4
4.6
5
4.4
4.9
5.4
4.8
4.8
4.3
5.8
5.7
5.4
5.1
5.7
5.1
5.4
5.1
4.6
5.1
4.8
5
5
5.2
5.2
4.7
4.8
5.4
5.2
5.5
4.9
5
5.5
4.9

6|Page

sepal width
3.5
3
3.2
3.1
3.6
3.9
3.4
3.4
2.9
3.1
3.7
3.4
3
3
4
4.4
3.9
3.5
3.8
3.8
3.4
3.7
3.6
3.3
3.4
3
3.4
3.5
3.4
3.2
3.1
3.4
4.1
4.2
3.1
3.2
3.5
3.1

petal length
1.4
1.4
1.3
1.5
1.4
1.7
1.4
1.5
1.4
1.5
1.5
1.6
1.4
1.1
1.2
1.5
1.3
1.4
1.7
1.5
1.7
1.5
1
1.7
1.9
1.6
1.6
1.5
1.4
1.6
1.6
1.5
1.5
1.4
1.5
1.2
1.3
1.5

petal width
0.2
0.2
0.2
0.2
0.2
0.4
0.3
0.2
0.2
0.1
0.2
0.2
0.1
0.1
0.2
0.4
0.4
0.3
0.3
0.3
0.2
0.4
0.2
0.5
0.2
0.2
0.4
0.2
0.2
0.2
0.2
0.4
0.1
0.2
0.1
0.2
0.2
0.1

Expected Target
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

Actual Output
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
M.K.H.Gunasekara - AS2010377
4.4
5.1
5
4.5
4.4
5
5.1
4.8
5.1
4.6
5.3
5
7
6.4
6.9
5.5
6.5
5.7
6.3
4.9
6.6
5.2
5
5.9
6
6.1
5.6
6.7
5.6
5.8
6.2
5.6
5.9
6.1
6.3
6.1
6.4
6.6
6.8
6.7
6
5.7
5.5

7|Page

3
3.4
3.5
2.3
3.2
3.5
3.8
3
3.8
3.2
3.7
3.3
3.2
3.2
3.1
2.3
2.8
2.8
3.3
2.4
2.9
2.7
2
3
2.2
2.9
2.9
3.1
3
2.7
2.2
2.5
3.2
2.8
2.5
2.8
2.9
3
2.8
3
2.9
2.6
2.4

1.3
1.5
1.3
1.3
1.3
1.6
1.9
1.4
1.6
1.4
1.5
1.4
4.7
4.5
4.9
4
4.6
4.5
4.7
3.3
4.6
3.9
3.5
4.2
4
4.7
3.6
4.4
4.5
4.1
4.5
3.9
4.8
4
4.9
4.7
4.3
4.4
4.8
5
4.5
3.5
3.8

CSC 367 2.0 Mathematical Computing
0.2
0.2
0.3
0.3
0.2
0.6
0.4
0.3
0.2
0.2
0.2
0.2
1.4
1.5
1.5
1.3
1.5
1.3
1.6
1
1.3
1.4
1
1.5
1
1.4
1.3
1.4
1.5
1
1.5
1.1
1.8
1.3
1.5
1.2
1.3
1.4
1.4
1.7
1.5
1
1.1

Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor

Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
FALSE
Iris-versicolor
FALSE
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
FALSE
Iris-versicolor
Iris-versicolor
Iris-versicolor
FALSE
FALSE
Iris-versicolor
Iris-versicolor
Iris-versicolor
M.K.H.Gunasekara - AS2010377
5.5
5.8
6
5.4
6
6.7
6.3
5.6
5.5
5.5
6.1
5.8
5
5.6
5.7
5.7
6.2
5.1
5.7
6.3
5.8
7.1
6.3
6.5
7.6
4.9
7.3
6.7
7.2
6.5
6.4
6.8
5.7
5.8
6.4
6.5
7.7
7.7
6
6.9
5.6
7.7
6.3

8|Page

2.4
2.7
2.7
3
3.4
3.1
2.3
3
2.5
2.6
3
2.6
2.3
2.7
3
2.9
2.9
2.5
2.8
3.3
2.7
3
2.9
3
3
2.5
2.9
2.5
3.6
3.2
2.7
3
2.5
2.8
3.2
3
3.8
2.6
2.2
3.2
2.8
2.8
2.7

3.7
3.9
5.1
4.5
4.5
4.7
4.4
4.1
4
4.4
4.6
4
3.3
4.2
4.2
4.2
4.3
3
4.1
6
5.1
5.9
5.6
5.8
6.6
4.5
6.3
5.8
6.1
5.1
5.3
5.5
5
5.1
5.3
5.5
6.7
6.9
5
5.7
4.9
6.7
4.9

CSC 367 2.0 Mathematical Computing
1
1.2
1.6
1.5
1.6
1.5
1.3
1.3
1.3
1.2
1.4
1.2
1
1.3
1.2
1.3
1.3
1.1
1.3
2.5
1.9
2.1
1.8
2.2
2.1
1.7
1.8
1.8
2.5
2
1.9
2.1
2
2.4
2.3
1.8
2.2
2.3
1.5
2.3
2
2
1.8

Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica

Iris-versicolor
Iris-versicolor
FALSE
Iris-versicolor
Iris-versicolor
FALSE
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-versicolor
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
FALSE
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
M.K.H.Gunasekara - AS2010377
6.7
7.2
6.2
6.1
6.4
7.2
7.4
7.9
6.4
6.3
6.1
7.7
6.3
6.4
6
6.9
6.7
6.9
5.8
6.8
6.7
6.7
6.3
6.5
6.2
5.9

3.3
3.2
2.8
3
2.8
3
2.8
3.8
2.8
2.8
2.6
3
3.4
3.1
3
3.1
3.1
3.1
2.7
3.2
3.3
3
2.5
3
3.4
3

CSC 367 2.0 Mathematical Computing

5.7
6
4.8
4.9
5.6
5.8
6.1
6.4
5.6
5.1
5.6
6.1
5.6
5.5
4.8
5.4
5.6
5.1
5.1
5.9
5.7
5.2
5
5.2
5.4
5.1

2.1
1.8
1.8
1.8
2.1
1.6
1.9
2
2.2
1.5
1.4
2.3
2.4
1.8
1.8
2.1
2.4
2.3
1.9
2.3
2.5
2.3
1.9
2
2.3
1.8

Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica

Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
FALSE
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica

I found best results using RBF Network with Non-Normalized Gaussian activation function with 9
mismatches. And I found best results using MLP Network with 4 mismatches.
MLP Network as Second Layer

Non-Normalized Gaussian
function
Normalized Gaussian function

Random Center
9

K Means Center
9

11

11

Support Vector Machine as Second Layer

Non-Normalized Gaussian
function
Normalized Gaussian function

9|Page

Random Center
14

K Means Center
10

14

17
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

Discussion
1. There are some drawbacks of unsupervised center selection in radial basis functions
2. We can use an SVM for the second layer instead of a perceptron but it is not efficient for more
than 2 classes classification

10 | P a g e
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

Appendices
MATLAB Sourcecode for RBF Network with MLP Network
clc
clear all
% M.K.H. Gunasekara
% AS2010377
% Machine Learning
% Radial Basis Function
[arr tx] = xlsread('data.xls');
Centers=zeros(3,4);

% I found centers as mean of the same cluster values
for i=1:50
Centers(1,1)=arr(i,1)+Centers(1,1);
Centers(1,2)=arr(i,2)+Centers(1,2);
Centers(1,3)=arr(i,3)+Centers(1,3);
Centers(1,4)=arr(i,4)+Centers(1,4);
end
for i=51:100
Centers(2,1)=arr(i,1)+Centers(2,1);
Centers(2,2)=arr(i,2)+Centers(2,2);
Centers(2,3)=arr(i,3)+Centers(2,3);
Centers(2,4)=arr(i,4)+Centers(2,4);
end
for i=101:150
Centers(3,1)=arr(i,1)+Centers(3,1);
Centers(3,2)=arr(i,2)+Centers(3,2);
Centers(3,3)=arr(i,3)+Centers(3,3);
Centers(3,4)=arr(i,4)+Centers(3,4);
end
for j= 1:3
Centers(j,1)=Centers(j,1)/50;
Centers(j,2)=Centers(j,2)/50;
Centers(j,3)=Centers(j,3)/50;
Centers(j,4)=Centers(j,4)/50;
end
Centers

% OR we can use k means algorithms calculate cluster centers
k=3; %number of clusters
[IDX,C]=kmeans(arr,k);
C %RBF centres
%Uncomment following line to use k means
%Centers=C;

11 | P a g e
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

% distance between hidden nodes
%distance between hidden node 1 & 2
dist1= sqrt((Centers(1,1)-Centers(2,1))^2 + (Centers(1,2)-Centers(2,2))^2 +
(Centers(1,3)-Centers(2,3))^2 + (Centers(1,4)-Centers(2,4))^2);
%distance between hidden node 1 & 3
dist2= sqrt((Centers(1,1)-Centers(3,1))^2 + (Centers(1,2)-Centers(3,2))^2 +
(Centers(1,3)-Centers(3,3))^2 + (Centers(1,4)-Centers(3,4))^2);
%distance between hidden node 3 & 2
dist3= sqrt((Centers(3,1)-Centers(2,1))^2 + (Centers(3,2)-Centers(2,2))^2 +
(Centers(3,3)-Centers(2,3))^2 + (Centers(3,4)-Centers(2,4))^2);

% finding maximum distance
maxdist=0;
if ( dist1>dist2) & (dist1>dist3)
maxdist=dist1;
end
if ( dist2>dist1) & (dist2>dist3)
maxdist=dist2;
end
if ( dist3>dist1) & (dist3>dist2)
maxdist=dist3;
end
% calculating width
sigma= maxdist/sqrt(2*3);

maxdist;
% Gaussian
%calculating outputs of RBF networks
RBFoutput=zeros(150,3);
d1=zeros(1,4);
Centers;
d=zeros(1,3);
%Unnormalized method
% calculate output for gaussian function
%Uncomment following lines (98-106) to use Non-Normalized Activation
%functions
%
for i=1:150
for j=1:3
d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 +
(arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2;
RBFoutput(i,j)= exp(-(d(1,j)/(2*(sigma^2))));
end
end

12 | P a g e
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

% %

%Normalized method
%Summation
%Uncomment following lines (114-130) to use Gaussian Normalized Activation
functions
% RBFNormSum=zeros(150,1);
% for i=1:150
%
for j=1:3
%
d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 +
(arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2;
%
RBFNormSum(i,1)= exp(-(d(1,j)/(2*(sigma^2))))+ RBFNormSum(i,1);
%
end
%
% d=[0 0 0];
% end
%
% % calculate output for gaussian function
% for i=1:150
%
for j=1:3
%
d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 +
(arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2;
%
%
RBFoutput(i,j)= exp(-(d(1,j)/(2*(sigma^2))))/RBFNormSum(i,1);
%
end
%
% d=[0 0 0];
% end

RBFoutput
RBFo=RBFoutput.'
% making MLP network
% T=zeros(1,150);
T=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3]
S=[3 1]
;
R=[0 1;0 1;0 1]

% used feedforward neural network as MLP [3 1]
MLPnet=newff(RBFo,S);
MLPnet.trainParam.epochs = 500;
MLPnet.trainParam.lr = 0.1;
MLPnet.trainParam.mc = 0.9;
MLPnet.trainParam.show = 40;

13 | P a g e
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

MLPnet.trainParam.perf = 'mse';
MLPnet.trainParam.goal = 0.001;
MLPnet.trainParam.min_grad = 0.00001;
MLPnet.trainParam.max_fail=4;

MLPnet = train(MLPnet,RBFo,T);
%simulating neural network
y=sim(MLPnet,RBFo);
output=round(y.');
Target=T.';
compare= [T.' output]
count=0;
for i=1:150
if(output(i)~=Target(i))
count=count+1;
end
end
Unmatched=count

MATLAB Source code for RBF Network with SVM
clc
clear all
% M.K.H. Gunasekara
% AS2010377
% Machine Learning
% Radial Basis Function with Support Vector Machine
[arr tx] = xlsread('data.xls');
Centers=zeros(3,4);

% I found centers as mean of the same cluster values
for i=1:50
Centers(1,1)=arr(i,1)+Centers(1,1);
Centers(1,2)=arr(i,2)+Centers(1,2);
Centers(1,3)=arr(i,3)+Centers(1,3);
Centers(1,4)=arr(i,4)+Centers(1,4);
end
for i=51:100
Centers(2,1)=arr(i,1)+Centers(2,1);
Centers(2,2)=arr(i,2)+Centers(2,2);
Centers(2,3)=arr(i,3)+Centers(2,3);
Centers(2,4)=arr(i,4)+Centers(2,4);
end
for i=101:150
Centers(3,1)=arr(i,1)+Centers(3,1);
Centers(3,2)=arr(i,2)+Centers(3,2);
Centers(3,3)=arr(i,3)+Centers(3,3);

14 | P a g e
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

Centers(3,4)=arr(i,4)+Centers(3,4);
end
for j= 1:3
Centers(j,1)=Centers(j,1)/50;
Centers(j,2)=Centers(j,2)/50;
Centers(j,3)=Centers(j,3)/50;
Centers(j,4)=Centers(j,4)/50;
end
Centers

% OR we can use k means algorithms calculate cluster centers
k=3; %number of clusters
[IDX,C]=kmeans(arr,k);
C %RBF centres
%Uncomment following line to use k means
Centers=C;

% distance between hidden nodes
%distance between hidden node 1 & 2
dist1= sqrt((Centers(1,1)-Centers(2,1))^2 + (Centers(1,2)-Centers(2,2))^2 +
(Centers(1,3)-Centers(2,3))^2 + (Centers(1,4)-Centers(2,4))^2);
%distance between hidden node 1 & 3
dist2= sqrt((Centers(1,1)-Centers(3,1))^2 + (Centers(1,2)-Centers(3,2))^2 +
(Centers(1,3)-Centers(3,3))^2 + (Centers(1,4)-Centers(3,4))^2);
%distance between hidden node 3 & 2
dist3= sqrt((Centers(3,1)-Centers(2,1))^2 + (Centers(3,2)-Centers(2,2))^2 +
(Centers(3,3)-Centers(2,3))^2 + (Centers(3,4)-Centers(2,4))^2);

% finding maximum distance
maxdist=0;
if ( dist1>dist2) & (dist1>dist3)
maxdist=dist1;
end
if ( dist2>dist1) & (dist2>dist3)
maxdist=dist2;
end
if ( dist3>dist1) & (dist3>dist2)
maxdist=dist3;
end
% calculating width
sigma= maxdist/sqrt(2*3);

15 | P a g e
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

maxdist;
% Gaussian
%calculating outputs of RBF networks
RBFoutput=zeros(150,3);
d1=zeros(1,4);
Centers;
%Unnormalized method
% calculate output for gaussian function
%Uncomment following lines (98-106) to use Non-Normalized Activation
%functions
d=zeros(1,3);
for i=1:150
for j=1:3
d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 +
(arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2;
RBFoutput(i,j)= exp(-(d(1,j)/(2*(sigma^2))));
end
% d=[0 0 0];
end
%

%Normalized method
%Summation
%Uncomment following lines (114-130) to use Gaussian Normalized Activation
functions
% RBFNormSum=zeros(150,1);
% for i=1:150
%
for j=1:3
%
d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 +
(arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2;
%
RBFNormSum(i,1)= exp(-(d(1,j)/(2*(sigma^2))))+ RBFNormSum(i,1);
%
end
%
% d=[0 0 0];
% end
%
% % calculate output for gaussian function
% for i=1:150
%
for j=1:3
%
d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 +
(arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2;
%
%
RBFoutput(i,j)= exp(-(d(1,j)/(2*(sigma^2))))/RBFNormSum(i,1);
%
end
%
% d=[0 0 0];
% end

RBFoutput
RBFo=RBFoutput.'
% making SVM network

16 | P a g e
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

group=cell(3,1)
group{1,1}=zeros(150,1);
for n=1:150;
tclass(n,1)=tx(n,5);
end
group{1,1}=ismember(tclass,'Iris-setosa')
group{2,1}=ismember(tclass,'Iris-versicolor')
group{3,1}=ismember(tclass,'Iris-virginica')

[train, test] = crossvalind('holdOut',group{1,1});
cp = classperf(group{1,1});
for i=1:3
%svmStruct(i) =
svmtrain(RBFoutput(train,:),group{i,1}(train),'showplot',true);
svmStruct(i) = svmtrain(RBFoutput,group{i,1},'showplot',true);
end
for j=1:size(RBFoutput)
for k=1:3
if(svmclassify(svmStruct(k),RBFoutput(j,:)))
break;
end
end
result(j) = k;
end
T=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3]
compare=[T.' result.']
Target=T.'
output=result.'
count=0;
for i=1:150
if(output(i)~=Target(i))
count=count+1;
end
end
Unmatched=count

MATLAB Source Code MLP Network
clc
clear all
% M.K.H. Gunasekara
% AS2010377
% Machine Learning
% MLP Network
[arr tx] = xlsread('data.xls');

17 | P a g e
M.K.H.Gunasekara - AS2010377

CSC 367 2.0 Mathematical Computing

inputs=arr.';
T=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3]
%Multilayer network with hidden layer with 3 nodes
MLPnet=newff(inputs,[4 3 1]);
MLPnet.trainParam.epochs = 500;
MLPnet.trainParam.lr = 0.1;
MLPnet.trainParam.mc = 0.9;
MLPnet.trainParam.show = 40;
MLPnet.trainParam.perf = 'mse';
MLPnet.trainParam.goal = 0.001;
MLPnet.trainParam.min_grad = 0.00001;
MLPnet.trainParam.max_fail=4;

MLPnet = train(MLPnet,inputs,T);
%simulating neural network
y=sim(MLPnet,inputs);
output=round(y.');
Target=T.';
compare= [T.' output]
count=0;
for i=1:150
if(output(i)~=Target(i))
count=count+1;
end
end
Unmatched=count

18 | P a g e

Mais conteúdo relacionado

Mais procurados

Artificial Neural Networks - ANN
Artificial Neural Networks - ANNArtificial Neural Networks - ANN
Artificial Neural Networks - ANNMohamed Talaat
 
Activation functions and Training Algorithms for Deep Neural network
Activation functions and Training Algorithms for Deep Neural networkActivation functions and Training Algorithms for Deep Neural network
Activation functions and Training Algorithms for Deep Neural networkGayatri Khanvilkar
 
Artificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
Artificial Neural Networks Lect5: Multi-Layer Perceptron & BackpropagationArtificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
Artificial Neural Networks Lect5: Multi-Layer Perceptron & BackpropagationMohammed Bennamoun
 
Neural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronNeural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronMostafa G. M. Mostafa
 
Neural Networks: Self-Organizing Maps (SOM)
Neural Networks:  Self-Organizing Maps (SOM)Neural Networks:  Self-Organizing Maps (SOM)
Neural Networks: Self-Organizing Maps (SOM)Mostafa G. M. Mostafa
 
Introduction Of Artificial neural network
Introduction Of Artificial neural networkIntroduction Of Artificial neural network
Introduction Of Artificial neural networkNagarajan
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep LearningOswald Campesato
 
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...Edureka!
 
Introduction to artificial neural network
Introduction to artificial neural networkIntroduction to artificial neural network
Introduction to artificial neural networkDr. C.V. Suresh Babu
 
Hyperparameter Tuning
Hyperparameter TuningHyperparameter Tuning
Hyperparameter TuningJon Lederman
 
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...Simplilearn
 
Support vector machines (svm)
Support vector machines (svm)Support vector machines (svm)
Support vector machines (svm)Sharayu Patil
 
Artificial neural network for machine learning
Artificial neural network for machine learningArtificial neural network for machine learning
Artificial neural network for machine learninggrinu
 
2.5 backpropagation
2.5 backpropagation2.5 backpropagation
2.5 backpropagationKrish_ver2
 
Artifical Neural Network and its applications
Artifical Neural Network and its applicationsArtifical Neural Network and its applications
Artifical Neural Network and its applicationsSangeeta Tiwari
 
Activation functions
Activation functionsActivation functions
Activation functionsPRATEEK SAHU
 

Mais procurados (20)

Artificial Neural Networks - ANN
Artificial Neural Networks - ANNArtificial Neural Networks - ANN
Artificial Neural Networks - ANN
 
Activation functions and Training Algorithms for Deep Neural network
Activation functions and Training Algorithms for Deep Neural networkActivation functions and Training Algorithms for Deep Neural network
Activation functions and Training Algorithms for Deep Neural network
 
Artificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
Artificial Neural Networks Lect5: Multi-Layer Perceptron & BackpropagationArtificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
Artificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
 
Neural networks
Neural networksNeural networks
Neural networks
 
Neural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronNeural Networks: Multilayer Perceptron
Neural Networks: Multilayer Perceptron
 
Neural Networks: Self-Organizing Maps (SOM)
Neural Networks:  Self-Organizing Maps (SOM)Neural Networks:  Self-Organizing Maps (SOM)
Neural Networks: Self-Organizing Maps (SOM)
 
Hopfield Networks
Hopfield NetworksHopfield Networks
Hopfield Networks
 
Introduction Of Artificial neural network
Introduction Of Artificial neural networkIntroduction Of Artificial neural network
Introduction Of Artificial neural network
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep Learning
 
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
 
supervised learning
supervised learningsupervised learning
supervised learning
 
Introduction to artificial neural network
Introduction to artificial neural networkIntroduction to artificial neural network
Introduction to artificial neural network
 
Hyperparameter Tuning
Hyperparameter TuningHyperparameter Tuning
Hyperparameter Tuning
 
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
 
Support vector machines (svm)
Support vector machines (svm)Support vector machines (svm)
Support vector machines (svm)
 
Python Scipy Numpy
Python Scipy NumpyPython Scipy Numpy
Python Scipy Numpy
 
Artificial neural network for machine learning
Artificial neural network for machine learningArtificial neural network for machine learning
Artificial neural network for machine learning
 
2.5 backpropagation
2.5 backpropagation2.5 backpropagation
2.5 backpropagation
 
Artifical Neural Network and its applications
Artifical Neural Network and its applicationsArtifical Neural Network and its applications
Artifical Neural Network and its applications
 
Activation functions
Activation functionsActivation functions
Activation functions
 

Semelhante a Radial Basis Function

Recognition of handwritten digits using rbf neural network
Recognition of handwritten digits using rbf neural networkRecognition of handwritten digits using rbf neural network
Recognition of handwritten digits using rbf neural networkeSAT Journals
 
Recognition of handwritten digits using rbf neural network
Recognition of handwritten digits using rbf neural networkRecognition of handwritten digits using rbf neural network
Recognition of handwritten digits using rbf neural networkeSAT Publishing House
 
Wireless Positioning using Ellipsoidal Constraints
Wireless Positioning using Ellipsoidal ConstraintsWireless Positioning using Ellipsoidal Constraints
Wireless Positioning using Ellipsoidal ConstraintsGiovanni Soldi
 
An efficient technique for color image classification based on lower feature ...
An efficient technique for color image classification based on lower feature ...An efficient technique for color image classification based on lower feature ...
An efficient technique for color image classification based on lower feature ...Alexander Decker
 
Ml srhwt-machine-learning-based-superlative-rapid-haar-wavelet-transformation...
Ml srhwt-machine-learning-based-superlative-rapid-haar-wavelet-transformation...Ml srhwt-machine-learning-based-superlative-rapid-haar-wavelet-transformation...
Ml srhwt-machine-learning-based-superlative-rapid-haar-wavelet-transformation...Jumlesha Shaik
 
IRJET- Clustering the Real Time Moving Object Adjacent Tracking
IRJET-  	  Clustering the Real Time Moving Object Adjacent TrackingIRJET-  	  Clustering the Real Time Moving Object Adjacent Tracking
IRJET- Clustering the Real Time Moving Object Adjacent TrackingIRJET Journal
 
Hybrid nearest neighbour and feed forward neural networks algorithm for indoo...
Hybrid nearest neighbour and feed forward neural networks algorithm for indoo...Hybrid nearest neighbour and feed forward neural networks algorithm for indoo...
Hybrid nearest neighbour and feed forward neural networks algorithm for indoo...Conference Papers
 
Support Vector Machine Optimal Kernel Selection
Support Vector Machine Optimal Kernel SelectionSupport Vector Machine Optimal Kernel Selection
Support Vector Machine Optimal Kernel SelectionIRJET Journal
 
Particle Swarm Optimization Based QoS Aware Routing for Wireless Sensor Networks
Particle Swarm Optimization Based QoS Aware Routing for Wireless Sensor NetworksParticle Swarm Optimization Based QoS Aware Routing for Wireless Sensor Networks
Particle Swarm Optimization Based QoS Aware Routing for Wireless Sensor Networksijsrd.com
 
PSO-based Training, Pruning, and Ensembling of Extreme Learning Machine RBF N...
PSO-based Training, Pruning, and Ensembling of Extreme Learning Machine RBF N...PSO-based Training, Pruning, and Ensembling of Extreme Learning Machine RBF N...
PSO-based Training, Pruning, and Ensembling of Extreme Learning Machine RBF N...ijceronline
 
APPLIED MACHINE LEARNING
APPLIED MACHINE LEARNINGAPPLIED MACHINE LEARNING
APPLIED MACHINE LEARNINGRevanth Kumar
 
Robust Adaptive Threshold Algorithm based on Kernel Fuzzy Clustering on Image...
Robust Adaptive Threshold Algorithm based on Kernel Fuzzy Clustering on Image...Robust Adaptive Threshold Algorithm based on Kernel Fuzzy Clustering on Image...
Robust Adaptive Threshold Algorithm based on Kernel Fuzzy Clustering on Image...cscpconf
 
Localization for wireless sensor
Localization for wireless sensorLocalization for wireless sensor
Localization for wireless sensorIJCNCJournal
 
Poster_Reseau_Neurones_Journees_2013
Poster_Reseau_Neurones_Journees_2013Poster_Reseau_Neurones_Journees_2013
Poster_Reseau_Neurones_Journees_2013Pedro Lopes
 
CSC 347 – Computer Hardware and Maintenance
CSC 347 – Computer Hardware and MaintenanceCSC 347 – Computer Hardware and Maintenance
CSC 347 – Computer Hardware and MaintenanceSumaiya Ismail
 
Redundant Actor Based Multi-Hole Healing System for Mobile Sensor Networks
Redundant Actor Based Multi-Hole Healing System for Mobile Sensor NetworksRedundant Actor Based Multi-Hole Healing System for Mobile Sensor Networks
Redundant Actor Based Multi-Hole Healing System for Mobile Sensor NetworksEditor IJCATR
 
Localization based range map stitching in wireless sensor network under non l...
Localization based range map stitching in wireless sensor network under non l...Localization based range map stitching in wireless sensor network under non l...
Localization based range map stitching in wireless sensor network under non l...eSAT Publishing House
 
Single to multiple kernel learning with four popular svm kernels (survey)
Single to multiple kernel learning with four popular svm kernels (survey)Single to multiple kernel learning with four popular svm kernels (survey)
Single to multiple kernel learning with four popular svm kernels (survey)eSAT Journals
 

Semelhante a Radial Basis Function (20)

Recognition of handwritten digits using rbf neural network
Recognition of handwritten digits using rbf neural networkRecognition of handwritten digits using rbf neural network
Recognition of handwritten digits using rbf neural network
 
Recognition of handwritten digits using rbf neural network
Recognition of handwritten digits using rbf neural networkRecognition of handwritten digits using rbf neural network
Recognition of handwritten digits using rbf neural network
 
Wireless Positioning using Ellipsoidal Constraints
Wireless Positioning using Ellipsoidal ConstraintsWireless Positioning using Ellipsoidal Constraints
Wireless Positioning using Ellipsoidal Constraints
 
L14.pdf
L14.pdfL14.pdf
L14.pdf
 
An efficient technique for color image classification based on lower feature ...
An efficient technique for color image classification based on lower feature ...An efficient technique for color image classification based on lower feature ...
An efficient technique for color image classification based on lower feature ...
 
Ml srhwt-machine-learning-based-superlative-rapid-haar-wavelet-transformation...
Ml srhwt-machine-learning-based-superlative-rapid-haar-wavelet-transformation...Ml srhwt-machine-learning-based-superlative-rapid-haar-wavelet-transformation...
Ml srhwt-machine-learning-based-superlative-rapid-haar-wavelet-transformation...
 
IRJET- Clustering the Real Time Moving Object Adjacent Tracking
IRJET-  	  Clustering the Real Time Moving Object Adjacent TrackingIRJET-  	  Clustering the Real Time Moving Object Adjacent Tracking
IRJET- Clustering the Real Time Moving Object Adjacent Tracking
 
E035425030
E035425030E035425030
E035425030
 
Hybrid nearest neighbour and feed forward neural networks algorithm for indoo...
Hybrid nearest neighbour and feed forward neural networks algorithm for indoo...Hybrid nearest neighbour and feed forward neural networks algorithm for indoo...
Hybrid nearest neighbour and feed forward neural networks algorithm for indoo...
 
Support Vector Machine Optimal Kernel Selection
Support Vector Machine Optimal Kernel SelectionSupport Vector Machine Optimal Kernel Selection
Support Vector Machine Optimal Kernel Selection
 
Particle Swarm Optimization Based QoS Aware Routing for Wireless Sensor Networks
Particle Swarm Optimization Based QoS Aware Routing for Wireless Sensor NetworksParticle Swarm Optimization Based QoS Aware Routing for Wireless Sensor Networks
Particle Swarm Optimization Based QoS Aware Routing for Wireless Sensor Networks
 
PSO-based Training, Pruning, and Ensembling of Extreme Learning Machine RBF N...
PSO-based Training, Pruning, and Ensembling of Extreme Learning Machine RBF N...PSO-based Training, Pruning, and Ensembling of Extreme Learning Machine RBF N...
PSO-based Training, Pruning, and Ensembling of Extreme Learning Machine RBF N...
 
APPLIED MACHINE LEARNING
APPLIED MACHINE LEARNINGAPPLIED MACHINE LEARNING
APPLIED MACHINE LEARNING
 
Robust Adaptive Threshold Algorithm based on Kernel Fuzzy Clustering on Image...
Robust Adaptive Threshold Algorithm based on Kernel Fuzzy Clustering on Image...Robust Adaptive Threshold Algorithm based on Kernel Fuzzy Clustering on Image...
Robust Adaptive Threshold Algorithm based on Kernel Fuzzy Clustering on Image...
 
Localization for wireless sensor
Localization for wireless sensorLocalization for wireless sensor
Localization for wireless sensor
 
Poster_Reseau_Neurones_Journees_2013
Poster_Reseau_Neurones_Journees_2013Poster_Reseau_Neurones_Journees_2013
Poster_Reseau_Neurones_Journees_2013
 
CSC 347 – Computer Hardware and Maintenance
CSC 347 – Computer Hardware and MaintenanceCSC 347 – Computer Hardware and Maintenance
CSC 347 – Computer Hardware and Maintenance
 
Redundant Actor Based Multi-Hole Healing System for Mobile Sensor Networks
Redundant Actor Based Multi-Hole Healing System for Mobile Sensor NetworksRedundant Actor Based Multi-Hole Healing System for Mobile Sensor Networks
Redundant Actor Based Multi-Hole Healing System for Mobile Sensor Networks
 
Localization based range map stitching in wireless sensor network under non l...
Localization based range map stitching in wireless sensor network under non l...Localization based range map stitching in wireless sensor network under non l...
Localization based range map stitching in wireless sensor network under non l...
 
Single to multiple kernel learning with four popular svm kernels (survey)
Single to multiple kernel learning with four popular svm kernels (survey)Single to multiple kernel learning with four popular svm kernels (survey)
Single to multiple kernel learning with four popular svm kernels (survey)
 

Mais de Madhawa Gunasekara

Customer interface - Business Ontology Model
Customer interface - Business Ontology ModelCustomer interface - Business Ontology Model
Customer interface - Business Ontology ModelMadhawa Gunasekara
 
Research: Automatic Diabetic Retinopathy Detection
Research: Automatic Diabetic Retinopathy DetectionResearch: Automatic Diabetic Retinopathy Detection
Research: Automatic Diabetic Retinopathy DetectionMadhawa Gunasekara
 
How to prepare Title and Abstract for Research Articles
How to prepare Title and Abstract for Research ArticlesHow to prepare Title and Abstract for Research Articles
How to prepare Title and Abstract for Research ArticlesMadhawa Gunasekara
 
Low cost self driven car system
Low cost self driven car systemLow cost self driven car system
Low cost self driven car systemMadhawa Gunasekara
 

Mais de Madhawa Gunasekara (8)

Evolutionary Computing
Evolutionary ComputingEvolutionary Computing
Evolutionary Computing
 
Customer interface - Business Ontology Model
Customer interface - Business Ontology ModelCustomer interface - Business Ontology Model
Customer interface - Business Ontology Model
 
Semiotics final
Semiotics finalSemiotics final
Semiotics final
 
Research: Automatic Diabetic Retinopathy Detection
Research: Automatic Diabetic Retinopathy DetectionResearch: Automatic Diabetic Retinopathy Detection
Research: Automatic Diabetic Retinopathy Detection
 
How to prepare Title and Abstract for Research Articles
How to prepare Title and Abstract for Research ArticlesHow to prepare Title and Abstract for Research Articles
How to prepare Title and Abstract for Research Articles
 
Radix sorting
Radix sortingRadix sorting
Radix sorting
 
Low cost self driven car system
Low cost self driven car systemLow cost self driven car system
Low cost self driven car system
 
Audio compression
Audio compressionAudio compression
Audio compression
 

Último

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 

Último (20)

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 

Radial Basis Function

  • 1. CSC 367 2.0 Mathematical Computing Assignment 3 Radial Basis Functions AS2010377 M.K.H.Gunasekara Special Part 1 Department of Computer Science UNIVERSITY OF SRI JAYEWARDENEPURA
  • 2. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing Table of Contents - Introduction ............................................................................................................................................ 2 Methodology........................................................................................................................................... 3 Implementation ...................................................................................................................................... 5 Results ..................................................................................................................................................... 6 Discussion.............................................................................................................................................. 10 Appendices............................................................................................................................................ 11 1|Page
  • 3. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing Introduction Neural Networks offer a powerful framework for representing nonlinear mappings from several inputs to one or more outputs. An important application of neural networks is regression. Instead of mapping the inputs into a discrete class label, the neural network maps the input variables into continuous values. A major class of neural networks is the radial basis function (RBF) neural network. We will look at the architecture of RBF neural networks, followed by its applications in both regression and classification. In this report Radial Basis function is discussed for clustering as unsupervised learning algorithm. Radial basis function is simulated to cluster three flowers in a given data set which is available in http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data. 2|Page
  • 4. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing Methodology Radial Basis Function Figure 01 : One hidden layer with Radial Basis Activation Functions Radial basis function (RBF) networks typically have three layers 1. Input Layer 2. A hidden layer with a non-linear RBF activation function 3. Output Layer Where N is the number of neurons in the hidden layer, is the center vector for neuron i, and is the weight of neuron i in the linear output neuron. Functions that depend only on the distance from a center vector are radially symmetric about that vector, hence the name radial basis function. In the basic form all inputs are connected to each hidden neuron. The norm is typically taken to be the Euclidean distance and the radial basis function is commonly taken to be Gaussian Function ( ) ( ‖ ‖ ) ------ (1) There are some other Radial Basis functions Logistic Basis Function ( ) ( ) Multi-quadratics ( ) √ 3|Page
  • 5. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing Input nodes connected by weights to a set of RBF neurons fire proportionately to the distance between the input and the neuron in the weight space The activation of these nodes is used as inputs to the second layer. The second layer (output layer) is treated as a simple Perceptron network Training the RBF Network This can be done positioning the RBF nodes and using the activation of RBF nodes to train the linear outputs. Positioning RBF nodes can be done in two ways; First method is randomly picking some of the data points to act as basis functions. And the second method is trying to position the nodes so that they are representative of typical inputs, like using k-means clustering algorithm. In Activation function there is standard deviation parameter. One option is, giving all nodes the same size, and testing lots of different sizes using a validation set to select one that works. Alternatively we can select the size of RBF nodes so that the whole space is coved by the receptive fields. So the width of the Gaussian should be set according to the maximum distance between the locations of the hidden nodes (d), and the number of hidden nodes (M) ------ (2) √ We can use this normalized Gaussian function also. ( ‖ ( ) ∑ ( ‖ ‖ ) ‖ ------ (3) ) Outputs of the RBF Network: ( ‖ ‖ ) Training the Perceptron Network We can train Pereceptron Network by using supervised learning method. Therefore we train the MLP Network according to targets. 4|Page
  • 6. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing Implementation Implementation was done using MATLAB 7.10 (2010). Implementation was done according to following methods 1. 2. 3. 4. 5. Locate RBF nodes into centers Calculate for the Gaussian function Calculate outputs of the RBF layer – Unsupervised Training Make Perceptron Network for second layer –( I used MLP network without a hidden layer) Train MLP Network according to targets and inputs (inputs are the output of RBF network) – Supervised Training 6. Simulate the network I have implement RBF Network with different strategies to compare the results      Using Randomly selected centers Using K-Means Cluster centers Using Non-normalized Gaussian function Using Normalized Gaussian function Using SVM for second layer 5|Page
  • 7. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing Results sepal length 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4 5.1 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5 5 5.2 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5 5.5 4.9 6|Page sepal width 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 3.7 3.4 3 3 4 4.4 3.9 3.5 3.8 3.8 3.4 3.7 3.6 3.3 3.4 3 3.4 3.5 3.4 3.2 3.1 3.4 4.1 4.2 3.1 3.2 3.5 3.1 petal length 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 1.5 1.6 1.4 1.1 1.2 1.5 1.3 1.4 1.7 1.5 1.7 1.5 1 1.7 1.9 1.6 1.6 1.5 1.4 1.6 1.6 1.5 1.5 1.4 1.5 1.2 1.3 1.5 petal width 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.2 0.4 0.4 0.3 0.3 0.3 0.2 0.4 0.2 0.5 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.4 0.1 0.2 0.1 0.2 0.2 0.1 Expected Target Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Actual Output Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa
  • 8. M.K.H.Gunasekara - AS2010377 4.4 5.1 5 4.5 4.4 5 5.1 4.8 5.1 4.6 5.3 5 7 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 5 5.9 6 6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1 6.3 6.1 6.4 6.6 6.8 6.7 6 5.7 5.5 7|Page 3 3.4 3.5 2.3 3.2 3.5 3.8 3 3.8 3.2 3.7 3.3 3.2 3.2 3.1 2.3 2.8 2.8 3.3 2.4 2.9 2.7 2 3 2.2 2.9 2.9 3.1 3 2.7 2.2 2.5 3.2 2.8 2.5 2.8 2.9 3 2.8 3 2.9 2.6 2.4 1.3 1.5 1.3 1.3 1.3 1.6 1.9 1.4 1.6 1.4 1.5 1.4 4.7 4.5 4.9 4 4.6 4.5 4.7 3.3 4.6 3.9 3.5 4.2 4 4.7 3.6 4.4 4.5 4.1 4.5 3.9 4.8 4 4.9 4.7 4.3 4.4 4.8 5 4.5 3.5 3.8 CSC 367 2.0 Mathematical Computing 0.2 0.2 0.3 0.3 0.2 0.6 0.4 0.3 0.2 0.2 0.2 0.2 1.4 1.5 1.5 1.3 1.5 1.3 1.6 1 1.3 1.4 1 1.5 1 1.4 1.3 1.4 1.5 1 1.5 1.1 1.8 1.3 1.5 1.2 1.3 1.4 1.4 1.7 1.5 1 1.1 Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa FALSE Iris-versicolor FALSE Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor FALSE Iris-versicolor Iris-versicolor Iris-versicolor FALSE FALSE Iris-versicolor Iris-versicolor Iris-versicolor
  • 9. M.K.H.Gunasekara - AS2010377 5.5 5.8 6 5.4 6 6.7 6.3 5.6 5.5 5.5 6.1 5.8 5 5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6 6.9 5.6 7.7 6.3 8|Page 2.4 2.7 2.7 3 3.4 3.1 2.3 3 2.5 2.6 3 2.6 2.3 2.7 3 2.9 2.9 2.5 2.8 3.3 2.7 3 2.9 3 3 2.5 2.9 2.5 3.6 3.2 2.7 3 2.5 2.8 3.2 3 3.8 2.6 2.2 3.2 2.8 2.8 2.7 3.7 3.9 5.1 4.5 4.5 4.7 4.4 4.1 4 4.4 4.6 4 3.3 4.2 4.2 4.2 4.3 3 4.1 6 5.1 5.9 5.6 5.8 6.6 4.5 6.3 5.8 6.1 5.1 5.3 5.5 5 5.1 5.3 5.5 6.7 6.9 5 5.7 4.9 6.7 4.9 CSC 367 2.0 Mathematical Computing 1 1.2 1.6 1.5 1.6 1.5 1.3 1.3 1.3 1.2 1.4 1.2 1 1.3 1.2 1.3 1.3 1.1 1.3 2.5 1.9 2.1 1.8 2.2 2.1 1.7 1.8 1.8 2.5 2 1.9 2.1 2 2.4 2.3 1.8 2.2 2.3 1.5 2.3 2 2 1.8 Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-versicolor Iris-versicolor FALSE Iris-versicolor Iris-versicolor FALSE Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica FALSE Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica
  • 10. M.K.H.Gunasekara - AS2010377 6.7 7.2 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4 6 6.9 6.7 6.9 5.8 6.8 6.7 6.7 6.3 6.5 6.2 5.9 3.3 3.2 2.8 3 2.8 3 2.8 3.8 2.8 2.8 2.6 3 3.4 3.1 3 3.1 3.1 3.1 2.7 3.2 3.3 3 2.5 3 3.4 3 CSC 367 2.0 Mathematical Computing 5.7 6 4.8 4.9 5.6 5.8 6.1 6.4 5.6 5.1 5.6 6.1 5.6 5.5 4.8 5.4 5.6 5.1 5.1 5.9 5.7 5.2 5 5.2 5.4 5.1 2.1 1.8 1.8 1.8 2.1 1.6 1.9 2 2.2 1.5 1.4 2.3 2.4 1.8 1.8 2.1 2.4 2.3 1.9 2.3 2.5 2.3 1.9 2 2.3 1.8 Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica FALSE Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica I found best results using RBF Network with Non-Normalized Gaussian activation function with 9 mismatches. And I found best results using MLP Network with 4 mismatches. MLP Network as Second Layer Non-Normalized Gaussian function Normalized Gaussian function Random Center 9 K Means Center 9 11 11 Support Vector Machine as Second Layer Non-Normalized Gaussian function Normalized Gaussian function 9|Page Random Center 14 K Means Center 10 14 17
  • 11. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing Discussion 1. There are some drawbacks of unsupervised center selection in radial basis functions 2. We can use an SVM for the second layer instead of a perceptron but it is not efficient for more than 2 classes classification 10 | P a g e
  • 12. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing Appendices MATLAB Sourcecode for RBF Network with MLP Network clc clear all % M.K.H. Gunasekara % AS2010377 % Machine Learning % Radial Basis Function [arr tx] = xlsread('data.xls'); Centers=zeros(3,4); % I found centers as mean of the same cluster values for i=1:50 Centers(1,1)=arr(i,1)+Centers(1,1); Centers(1,2)=arr(i,2)+Centers(1,2); Centers(1,3)=arr(i,3)+Centers(1,3); Centers(1,4)=arr(i,4)+Centers(1,4); end for i=51:100 Centers(2,1)=arr(i,1)+Centers(2,1); Centers(2,2)=arr(i,2)+Centers(2,2); Centers(2,3)=arr(i,3)+Centers(2,3); Centers(2,4)=arr(i,4)+Centers(2,4); end for i=101:150 Centers(3,1)=arr(i,1)+Centers(3,1); Centers(3,2)=arr(i,2)+Centers(3,2); Centers(3,3)=arr(i,3)+Centers(3,3); Centers(3,4)=arr(i,4)+Centers(3,4); end for j= 1:3 Centers(j,1)=Centers(j,1)/50; Centers(j,2)=Centers(j,2)/50; Centers(j,3)=Centers(j,3)/50; Centers(j,4)=Centers(j,4)/50; end Centers % OR we can use k means algorithms calculate cluster centers k=3; %number of clusters [IDX,C]=kmeans(arr,k); C %RBF centres %Uncomment following line to use k means %Centers=C; 11 | P a g e
  • 13. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing % distance between hidden nodes %distance between hidden node 1 & 2 dist1= sqrt((Centers(1,1)-Centers(2,1))^2 + (Centers(1,2)-Centers(2,2))^2 + (Centers(1,3)-Centers(2,3))^2 + (Centers(1,4)-Centers(2,4))^2); %distance between hidden node 1 & 3 dist2= sqrt((Centers(1,1)-Centers(3,1))^2 + (Centers(1,2)-Centers(3,2))^2 + (Centers(1,3)-Centers(3,3))^2 + (Centers(1,4)-Centers(3,4))^2); %distance between hidden node 3 & 2 dist3= sqrt((Centers(3,1)-Centers(2,1))^2 + (Centers(3,2)-Centers(2,2))^2 + (Centers(3,3)-Centers(2,3))^2 + (Centers(3,4)-Centers(2,4))^2); % finding maximum distance maxdist=0; if ( dist1>dist2) & (dist1>dist3) maxdist=dist1; end if ( dist2>dist1) & (dist2>dist3) maxdist=dist2; end if ( dist3>dist1) & (dist3>dist2) maxdist=dist3; end % calculating width sigma= maxdist/sqrt(2*3); maxdist; % Gaussian %calculating outputs of RBF networks RBFoutput=zeros(150,3); d1=zeros(1,4); Centers; d=zeros(1,3); %Unnormalized method % calculate output for gaussian function %Uncomment following lines (98-106) to use Non-Normalized Activation %functions % for i=1:150 for j=1:3 d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 + (arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2; RBFoutput(i,j)= exp(-(d(1,j)/(2*(sigma^2)))); end end 12 | P a g e
  • 14. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing % % %Normalized method %Summation %Uncomment following lines (114-130) to use Gaussian Normalized Activation functions % RBFNormSum=zeros(150,1); % for i=1:150 % for j=1:3 % d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 + (arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2; % RBFNormSum(i,1)= exp(-(d(1,j)/(2*(sigma^2))))+ RBFNormSum(i,1); % end % % d=[0 0 0]; % end % % % calculate output for gaussian function % for i=1:150 % for j=1:3 % d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 + (arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2; % % RBFoutput(i,j)= exp(-(d(1,j)/(2*(sigma^2))))/RBFNormSum(i,1); % end % % d=[0 0 0]; % end RBFoutput RBFo=RBFoutput.' % making MLP network % T=zeros(1,150); T=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3] S=[3 1] ; R=[0 1;0 1;0 1] % used feedforward neural network as MLP [3 1] MLPnet=newff(RBFo,S); MLPnet.trainParam.epochs = 500; MLPnet.trainParam.lr = 0.1; MLPnet.trainParam.mc = 0.9; MLPnet.trainParam.show = 40; 13 | P a g e
  • 15. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing MLPnet.trainParam.perf = 'mse'; MLPnet.trainParam.goal = 0.001; MLPnet.trainParam.min_grad = 0.00001; MLPnet.trainParam.max_fail=4; MLPnet = train(MLPnet,RBFo,T); %simulating neural network y=sim(MLPnet,RBFo); output=round(y.'); Target=T.'; compare= [T.' output] count=0; for i=1:150 if(output(i)~=Target(i)) count=count+1; end end Unmatched=count MATLAB Source code for RBF Network with SVM clc clear all % M.K.H. Gunasekara % AS2010377 % Machine Learning % Radial Basis Function with Support Vector Machine [arr tx] = xlsread('data.xls'); Centers=zeros(3,4); % I found centers as mean of the same cluster values for i=1:50 Centers(1,1)=arr(i,1)+Centers(1,1); Centers(1,2)=arr(i,2)+Centers(1,2); Centers(1,3)=arr(i,3)+Centers(1,3); Centers(1,4)=arr(i,4)+Centers(1,4); end for i=51:100 Centers(2,1)=arr(i,1)+Centers(2,1); Centers(2,2)=arr(i,2)+Centers(2,2); Centers(2,3)=arr(i,3)+Centers(2,3); Centers(2,4)=arr(i,4)+Centers(2,4); end for i=101:150 Centers(3,1)=arr(i,1)+Centers(3,1); Centers(3,2)=arr(i,2)+Centers(3,2); Centers(3,3)=arr(i,3)+Centers(3,3); 14 | P a g e
  • 16. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing Centers(3,4)=arr(i,4)+Centers(3,4); end for j= 1:3 Centers(j,1)=Centers(j,1)/50; Centers(j,2)=Centers(j,2)/50; Centers(j,3)=Centers(j,3)/50; Centers(j,4)=Centers(j,4)/50; end Centers % OR we can use k means algorithms calculate cluster centers k=3; %number of clusters [IDX,C]=kmeans(arr,k); C %RBF centres %Uncomment following line to use k means Centers=C; % distance between hidden nodes %distance between hidden node 1 & 2 dist1= sqrt((Centers(1,1)-Centers(2,1))^2 + (Centers(1,2)-Centers(2,2))^2 + (Centers(1,3)-Centers(2,3))^2 + (Centers(1,4)-Centers(2,4))^2); %distance between hidden node 1 & 3 dist2= sqrt((Centers(1,1)-Centers(3,1))^2 + (Centers(1,2)-Centers(3,2))^2 + (Centers(1,3)-Centers(3,3))^2 + (Centers(1,4)-Centers(3,4))^2); %distance between hidden node 3 & 2 dist3= sqrt((Centers(3,1)-Centers(2,1))^2 + (Centers(3,2)-Centers(2,2))^2 + (Centers(3,3)-Centers(2,3))^2 + (Centers(3,4)-Centers(2,4))^2); % finding maximum distance maxdist=0; if ( dist1>dist2) & (dist1>dist3) maxdist=dist1; end if ( dist2>dist1) & (dist2>dist3) maxdist=dist2; end if ( dist3>dist1) & (dist3>dist2) maxdist=dist3; end % calculating width sigma= maxdist/sqrt(2*3); 15 | P a g e
  • 17. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing maxdist; % Gaussian %calculating outputs of RBF networks RBFoutput=zeros(150,3); d1=zeros(1,4); Centers; %Unnormalized method % calculate output for gaussian function %Uncomment following lines (98-106) to use Non-Normalized Activation %functions d=zeros(1,3); for i=1:150 for j=1:3 d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 + (arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2; RBFoutput(i,j)= exp(-(d(1,j)/(2*(sigma^2)))); end % d=[0 0 0]; end % %Normalized method %Summation %Uncomment following lines (114-130) to use Gaussian Normalized Activation functions % RBFNormSum=zeros(150,1); % for i=1:150 % for j=1:3 % d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 + (arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2; % RBFNormSum(i,1)= exp(-(d(1,j)/(2*(sigma^2))))+ RBFNormSum(i,1); % end % % d=[0 0 0]; % end % % % calculate output for gaussian function % for i=1:150 % for j=1:3 % d(1,j)= (arr(i,1)- Centers(j,1))^2 + (arr(i,2)- Centers(j,2))^2 + (arr(i,3)- Centers(j,3))^2 + (arr(i,4)- Centers(j,4))^2; % % RBFoutput(i,j)= exp(-(d(1,j)/(2*(sigma^2))))/RBFNormSum(i,1); % end % % d=[0 0 0]; % end RBFoutput RBFo=RBFoutput.' % making SVM network 16 | P a g e
  • 18. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing group=cell(3,1) group{1,1}=zeros(150,1); for n=1:150; tclass(n,1)=tx(n,5); end group{1,1}=ismember(tclass,'Iris-setosa') group{2,1}=ismember(tclass,'Iris-versicolor') group{3,1}=ismember(tclass,'Iris-virginica') [train, test] = crossvalind('holdOut',group{1,1}); cp = classperf(group{1,1}); for i=1:3 %svmStruct(i) = svmtrain(RBFoutput(train,:),group{i,1}(train),'showplot',true); svmStruct(i) = svmtrain(RBFoutput,group{i,1},'showplot',true); end for j=1:size(RBFoutput) for k=1:3 if(svmclassify(svmStruct(k),RBFoutput(j,:))) break; end end result(j) = k; end T=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3] compare=[T.' result.'] Target=T.' output=result.' count=0; for i=1:150 if(output(i)~=Target(i)) count=count+1; end end Unmatched=count MATLAB Source Code MLP Network clc clear all % M.K.H. Gunasekara % AS2010377 % Machine Learning % MLP Network [arr tx] = xlsread('data.xls'); 17 | P a g e
  • 19. M.K.H.Gunasekara - AS2010377 CSC 367 2.0 Mathematical Computing inputs=arr.'; T=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3] %Multilayer network with hidden layer with 3 nodes MLPnet=newff(inputs,[4 3 1]); MLPnet.trainParam.epochs = 500; MLPnet.trainParam.lr = 0.1; MLPnet.trainParam.mc = 0.9; MLPnet.trainParam.show = 40; MLPnet.trainParam.perf = 'mse'; MLPnet.trainParam.goal = 0.001; MLPnet.trainParam.min_grad = 0.00001; MLPnet.trainParam.max_fail=4; MLPnet = train(MLPnet,inputs,T); %simulating neural network y=sim(MLPnet,inputs); output=round(y.'); Target=T.'; compare= [T.' output] count=0; for i=1:150 if(output(i)~=Target(i)) count=count+1; end end Unmatched=count 18 | P a g e