SlideShare uma empresa Scribd logo
1 de 89
Nanotechnology: Introduction &
Synthesis of Nanomaterials
Physical Methods
M.Sc. Biotechnology
Part II (Semester IV)
Paper I, Unit I
Mumbai University
By: Mayur D. Chauhan
1
• Nanotechnology is science, engineering, and
technology conducted at the Nanoscale,
which is about 1 to 100 nanometers (nm)
• The word itself comes from the Greek word
Nanos, meaning dwarf.
2
Physicist Richard Feynman is the father
of Nanotechnology.
3
Origin of Nanotech
• It all started with a talk entitled “There’s Plenty of
Room at the Bottom” by Physicist Richard
Feynman at an American Physical Society meeting
at the California Institute of Technology (CalTech)
on December 29, 1959, long before the term
nanotechnology was used.
• He described a process in which scientists would
be able to manipulate and control individual
atoms and molecules
4
• Over a decade later, in his explorations of
ultraprecision machining, Professor Norio
Taniguchi coined the term nanotechnology.
• It wasn't until 1981, with the development of
the Scanning Tunneling Microscope that could
"see" individual atoms, that modern
nanotechnology began.
5
• Everything on Earth is made up of atoms—the
food we eat, the clothes we wear, the
buildings and houses we live in, and our own
bodies too.
• One nanometer is one-billionth (10-9) of a
meter.
6
Basic Conversions
7
• A sheet of paper is about 100,000 nanometers
thick
• A strand of human DNA is 2.5 nanometers in
diameter
• A human hair is approximately 80,000-
100,000 nanometers wide.
• A single gold atom is about a third of a
nanometer in diameter.
• One nanometer is about as long as your
fingernail grows in one second.
8
9
Major Advantages
• When particle sizes of solid matter in the visible scale are
compared to what can be seen in a regular optical
microscope, there is little difference in the properties of the
particles.
• But when particles are created with dimensions of about 1–
100 nanometers (where the particles can be “seen” only
with powerful specialized microscopes), the materials’
properties change significantly from those at larger scales.
• Properties of materials are size-dependent in this scale
range. So in nanoscale, properties such as melting point,
fluorescence, electrical conductivity, magnetic
permeability, and chemical reactivity change as a function
of the size of the particle.
10
• For example, Nanoscale gold particles are not the
yellow color.
• Nanoscale gold can appear red or purple.
• At the nanoscale, the motion of the gold’s
electrons is confined. Because this movement is
restricted, gold nanoparticles react differently
with light compared to larger-scale gold particles.
• Their size and optical properties can be put to
practical use: Nanoscale gold particles selectively
accumulate in tumors, where they can enable
both precise imaging and targeted laser
destruction of the tumor by means that avoid
harming healthy cells.
11
• Tunability of Properties is another advantage
of nanotechnology.
• By changing the size of the nanoparticles, one
can synthesize and utilize a material of
interest.
• Many of the inner workings of cells naturally
occur at the nanoscale.
• For example, hemoglobin, the protein that
carries oxygen through the body, is 5.5
nanometers in diameter.
12
• Nanotechnology is not simply working at smaller
dimensions; rather, working at the nanoscale
enables scientists to utilize the unique physical,
chemical, mechanical, and optical properties of
materials that naturally occur at that scale.
• Nanoscale materials have far larger surface areas
than similar masses of larger-scale materials.
• As surface area per mass of a material increases,
a greater amount of the material can come into
contact with surrounding materials, thus affecting
reactivity.
13
14
States Of Matter
• Depending upon the temperature and
pressure, there are three states of matter.
15
Types Of Solids
16
• In what is known as a ‘single crystal’ there is almost
infinitely long arrangement of atoms or molecules with
certain symmetry characteristics of the material.
• In a polycrystalline solid, there are some ‘grain
boundaries’. Size of the grain can depend upon the
processing and typically can be few μm3.
• Each grain itself is a ‘single crystal’ but the orientations
of these different crystals are different or random. Each
grain also has a kind of ‘grain wall’ in which atoms may
be more or less randomly distributed.
• The thickness of such walls is often very crucial in
determining the various properties of materials such as
mechanical, optical or electrical.
17
• If each grain in the material becomes too
small, comparable to the distance between
the atoms or molecules, we get what is known
as ‘amorphous’ solid.
• In amorphous solids, the grain boundaries
disappear.
18
Arrangement Of Atoms
• Lattice: It is an arrangement of points
repeated in one, two or three directions
making it a one dimensional, two dimensional
or three dimensional lattice.
19
• Crystal: When an atom or a group of atoms
are attached to each lattice point, it forms a
crystal.
20
Synthesis Of Nanomaterials
21
Mechanical Methods
•Bulk Nanoparticles
in the form of
Powder.
High Energy
Ball Milling
•Form/Arrest
Nanoparticles in
Glass.
Melt Mixing
22
High Energy Ball Milling
• Some of the materials like Co, Cr, W, Ni, Ti, Al-
Fe and Ag-Fe are made nanocrystalline using
ball mill.
• Few milligrams to several kilograms of
nanoparticles can be synthesized in a short
time of a few minutes to a few hours.
• One of the simplest ways of making
nanoparticles of some metals and alloys in the
form of powder.
23
Types of Milling
Planetary Vibratory
Rod Tumbler
24
• Usually one or more containers are used at a
time to make large quantities of fine particles.
Size of container, of course, depends upon the
quantity of interest.
• Hardened steel or tungsten carbide balls are
put in containers along with powder or flakes
(<50 μm) of a material of interest.
25
• Usually 2:1 mass ratio
of balls to material is
advisable.
• If the container is more
than half filled, the
efficiency of milling is
reduced.
• Heavy milling balls
increase the impact
energy on collision.
26
• To avoid any impurities from balls, the container
may be filled with air or inert gas. However this
can be an additional source of impurity, if proper
precaution to use high purity gases is not taken.
• A temperature rise in the range of 100–1,100oC is
expected to take place during the collisions.
• Lower temperatures favour amorphous particle
formation.
• The gases like O2, N2 etc. can be the source of
impurities as constantly new, active surfaces are
generated.
• Cryo-cooling is used sometimes to dissipate the
heat generated.
27
• The containers are rotated at high speed (a
few hundreds of rpm) around their own axis.
Additionally they may rotate around some
central axis and are therefore called as
‘Planetary ball mill’.
• When the containers are rotating around the
central axis as well as their own axis, the
material is forced to the walls and is pressed
against the walls
28
By controlling the
speed of rotation of
the central axis and
container as well as
duration of milling it is
possible to ground the
material to fine
powder (few nm to
few tens of nm) whose
size can be quite
uniform.
29
Melt Mixing
• It is a process to trap or arrest nanoparticles
inside a Glass.
• Glass is an amorphous solid which lacks large
range periodic arrangement as well as
symmetry arrangement of atoms/molecules.
• When a liquid is cooled below certain
temperature (Tm), it forms either a crystalline
or amorphous solid (Glass).
30
• Besides temperature, rate of cooling and
tendency to nucleate decide whether the melt
can be cooled as a glass or crystalline solid
with long range order.
• But what is Nucleation?
31
Nucleation
• Nucleation, the initial process that occurs in
the formation of a crystal from a solution (a
liquid or a vapour) in which a small number of
ions, atoms, or molecules become arranged in
a pattern characteristic of a crystalline solid,
forming a site upon which additional particles
are deposited as the crystal grows.
32
Types of Nucleation
Homogeneous
Melt
Super
Cooling
Heterogeneous
Surface
More
Common
33
• Metals usually form crystalline solids but if
cooled at very high rate they can form
amorphous solids. Such solids are known as
Metallic glasses.
• Even in such cases the atoms try to reorganize
themselves into crystalline solids.
• Addition of elements like B, P, Si etc. helps to
keep the metallic glasses in amorphous state.
34
Formation of Nano crystals within
Metallic Glasses
• Silicates (Germanates) have a central silicon
atom in a pyramidal structure with oxygen
atoms at the corners.
• Such silicate units, not sharing the edges, but
connected only through the corners are
randomly distributed in 3-D to form glassy
structure.
35
36
• A window glass has in addition to SiO2 (72 %),
oxides of sodium (14.5 %), calcium (8.5 %),
magnesium (3.5 %) and aluminum (1.5 %) as its
constituents.
• Laboratory glassware has silica (80 %), boron
oxide (10 %), sodium oxide (5 %), alumina (3 %),
magnesium oxide (1 %) and calcium oxide (1 %).
• Beautiful colors in glasses like red, yellow, blue,
orange, green and their shades are a result of
addition of some elements like gold, cobalt,
nickel, iron etc.
• These colors are attributed to the formation of
nanoparticles of these elements.
37
Methods Based on Evaporation
• These methods help synthesizing nanostructures
by evaporating the materials on some substrates.
• The nanostructured materials can be in the form
of thin films, multilayer films or nanoparticulate
thin films (thin films composed of nanoparticles).
• Material of interest is brought in the gaseous
phase (atoms or molecules) which can form
clusters and then deposit on appropriate
substrates.
38
• We can obtain very thin layers (even atomic
layers, known as monolayers) or multilayers
(multilayers are layers of two or more
materials stacked over each other) forming
nanomaterials of wide interest.
39
• Evaporation can be achieved by various
methods like resistive heating, electron beam
heating, laser heating, sputtering.
• All the synthesis processes need to be carried
out in a properly designed vacuum system so
as to avoid uncontrolled oxidation of source
materials and final product.
40
Materials to be evaporated are usually heated from some
suitable filament,
crucible, boat (collectively called as ‘evaporation source’ or
‘crucible’)
41
• Usually the sources are electrically heated so
that enough vapours of the material to be
deposited are generated.
• If the material to be deposited wets the
filament material without forming any alloy or
compound, the filament is considered to be
suitable.
42
• Melting the material in a basket has a
disadvantage that the crucible itself and
surrounding parts also get heated and become
the source of unwanted contamination or
impurities.
• Therefore evaporation by electron beam
heating method is desired.
43
Advantages of Electron Beam.
• Electron beam focuses on the material to be
deposited, kept in the crucible as it is
generated from a filament that is not in the
proximity of the evaporating material.
• It melts only some central portion of the
material in crucible avoiding any
contamination from crucible.
• Thus high purity vapours of materials can be
obtained.
44
Physical Vapour Deposition
• Source of evaporation
• An inert gas or reactive gas for collisions with
material vapour
• A cold finger on which clusters or
nanoparticles can condense
• A scraper to scrape the nanoparticles
• Piston-anvil (an arrangement in which
nanoparticle powder can be compacted)
45
46
• Usually metals or high vapour pressure metal oxides
are evaporated or sublimated from filaments or boats
of refractory metals like W, Ta and Mo in which the
materials to be evaporated are held.
• The density of the evaporated material close to the
source is quite high and particle size is small (<5 nm).
• Such particles would prefer to acquire a stable lower
surface energy state.
• Due to small particle or cluster-cluster interaction
bigger particles get formed. Therefore, they should be
removed away as fast as possible from the source. This
is done by forcing an inert gas near the source, which
removes the particles from the vicinity of the source.
47
• In general the rate of evaporation and the
pressure of gases inside the chamber determine
the particle size and their distribution.
• Distance of the source from the cold finger is also
important.
• Evaporated atoms and clusters tend to collide
with gas molecules and make bigger particles,
which condense on cold finger. While moving
away from the source to cold finger the clusters
grow.
• If clusters have been formed on inert gas
molecules or atoms, on reaching the cold finger,
gas atoms or molecules may leave the particles
there and then escape to the gas phase.
48
• If reactive gases like O2, H2 and NH3 are used
in the system, evaporated material can
interact with these gases forming oxide,
nitride or hydride particles.
• Alternatively one can first make metal
nanoparticles and later make appropriate
post-treatment to achieve desired metal
compound etc.
49
• The process of evaporation and condensation
can be repeated several times until enough
quantity of the material falls through a funnel
in which a piston-anvil arrangement has been
provided.
50
Ionized Cluster Beam Deposition
• Developed by Takagi and Yamada around 1985.
• Aids to obtain adherent and high quality single
crystalline thin films.
• The set up consists of a source of evaporation, a
nozzle through which material can expand into
the chamber, an electron beam to ionize the
clusters, an arrangement to accelerate the
clusters and a substrate on which nanoparticle
film can be deposited, all housed in a suitable
vacuum chamber.
51
52
• Small clusters from molten material are
expanded through the fine nozzle.
• On collision with electron beam, clusters get
ionized. Due to applied accelerating voltage,
the clusters are directed towards the
substrate.
• By controlling the accelerating voltage, it is
possible to control the energy with which the
clusters hit the substrate.
53
• Stable clusters of some materials would
require considerable energy to break their
bonds and would rather prefer to remain as
small clusters of particles.
• Thus it is possible to obtain the films of
nanocrystalline material using ionized cluster
beam.
54
Laser Vapourization (Ablation)
• Vapourization of the material is effected using
pulses of laser beam of high power.
• The set up is an Ultra High Vacuum (UHV) or
high vacuum system equipped with inert or
reactive gas introduction facility, laser beam,
solid target and cooled substrate.
55
56
• Usually laser operating in the UV range such
as excimer (excited monomers) laser is
necessary because other wavelengths like IR
or visible are often reflected by surfaces of
some metals.
57
58
Commonly used Excimer lasers
59
• A powerful beam of laser evaporates the
atoms from a solid source and atoms collide
with inert gas atoms (or reactive gases) and
cool on them forming clusters.
• They condense on the cooled substrate. The
method is often known as laser ablation.
• Gas pressure is very critical in determining the
particle size and distribution.
60
• Simultaneous evaporation of another material
and mixing the two evaporated materials in inert
gas leads to the formation of alloys or
compounds.
• This method can produce some novel phases of
the materials which are not normally formed.
• For example Single Wall Carbon Nanotubes
(SWNT) are mostly synthesized by this method.
61
Laser Pyrolysis
• Another method of thin films synthesis using
lasers is known as ‘laser pyrolysis’ or ‘laser-
assisted deposition’.
• Here a mixture of reactant gases is decomposed
using a powerful laser beam in presence of some
inert gas like helium or argon.
• Atoms or molecules of decomposed reactant
gases collide with inert gas atoms and interact
with each other, grow and are then deposited on
cooled substrate.
62
63
• Here too, gas pressure plays an important role
in deciding the particle sizes and their
distribution.
64
Sputter Deposition
• Sputter deposition is a widely used thin film
deposition technique, specially to obtain
stoichiometric thin films (i.e. without changing
the composition of the original material) from
target material.
• Target material may be some alloy, ceramic or
compound.
• Sputtering is also effective in producing non-
porous compact films.
65
• It is a very good technique to deposit
multilayer films for mirrors or magnetic films
for spintronics applications.
• In sputter deposition, some inert gas ions like
Ar+ are incident on a target at a high energy.
• Depending on the energy of ions, ratio of ion
mass to that of target atoms mass, the ion-
target interaction can be a complex
phenomenon
66
67
• The ions become neutral at the surface but
due to their energy, incident ions may get
implanted, get bounced back, create collision
cascades in target atoms, displace some of the
atoms in the target creating vacancies,
interstitials and other defects, desorb some
adsorbates, create photons while loosing
energy to target atoms or even sputter out
some target atoms/molecules, clusters, ions
and secondary electrons.
68
• Sputter yield for different elements with same
incident ion having same energy varies in general.
• This would lead one to think that from a target
consisting of two different elements or more, the
one having higher sputter yield should get
incorporated in larger quantity than the others.
• However high sputter yield elements get
depleted fast and other elements also make
contribution.
• Thus the stoichiometry is achieved in the
deposited film.
69
Methods of Sputtering
DC RF Magnetron
70
DC Sputtering
• This is a very straight forward technique of
deposition, in which sputter target is held at
high negative voltage and substrate may be at
positive, ground or floating potential.
• Substrates may be simultaneously heated or
cooled depending upon the material to be
deposited.
71
72
• Once the required base pressure is attained in
the vacuum system, usually argon gas is
introduced at a pressure <10 Pa.
• A visible glow is observed and current flows
between anode and cathode indicating the
deposition onset.
73
• When sufficiently high voltage is applied
between anode and cathode with a gas in it a
glow discharge is set up with different regions
as cathode glow, Crooke’s dark space, negative
glow, Faraday dark space, positive column,
anode dark space and anode glow
74
• These regions are the result of plasma, i.e. a
mixture of electrons, ions, neutral atoms and
photons released in various collisions.
• The density of various particles and the length
over which they are distributed depends upon
the gas pressure.
75
• Plasma is overall neutral but there can be
regions which are predominantly of positive or
negative charges.
• One can get plasma in different gases at
different pressures by using a vacuum tube
with two metal electrodes and applying high
DC or AC voltage.
76
Radio Frequency Sputtering
• If the target to be sputtered is insulating, it is
difficult to use DC sputtering.
• This is because it would mean the use of
exceptionally high voltage (>106 V) to sustain
discharge between the electrodes. (In DC
discharge sputtering 100–3,000 V is usual.)
• However if some high frequency voltage is
applied the cathode and anode alternatively keep
on changing the polarity and oscillating electrons
cause sufficient ionization.
77
• In principle, 5–30 MHz frequency can be used
and the electrodes can be insulating.
• However, 13.56 MHz frequency is commonly
used for deposition, as this frequency is
reserved worldwide for this purpose and
many others are available for communication.
78
79
Chemical Vapor Deposition (CVD)
• It is Hybrid method using chemicals in vapour
phase to obtain coatings of a variety of
inorganic or organic materials.
• Under certain deposition conditions nano
crystalline films or single crystalline films are
possible.
80
• Relatively simple instrumentation, ease of
processing, possibility of depositing different
types of materials and economical viability.
• There are many variants of CVD like Metallo
Organic CVD (MOCVD), Atomic Layer Epitaxy
(ALE), Vapour Phase Epitaxy (VPE), Plasma
Enhanced CVD (PECVD).
• They differ in source gas pressure, geometrical
layout and temperature.
81
• Basic CVD process can be considered as a
transport of reactant vapour or reactant gas
towards the substrate kept at some high
temperature where the reactant cracks into
different products which diffuse on the
surface, undergo some chemical reaction at
appropriate site, nucleate and grow to form
the desired material film.
82
• The by-products created on the substrate have
to be transported back to the gaseous phase
removing them from substrate.
• There are various processes such as reduction
of gas, chemical reaction between different
source gases, oxidation or some
disproportionate reaction by which CVD can
proceed.
83
84
• However it is preferable that the reaction
occurs at the substrate rather than in the gas
phase.
• Usually 300–1,200o C temperature is used at
the substrate.
• There are two ways viz. ‘hot wall’ and ‘cold
wall’ by which substrates are heated
85
86
• In hot wall set up the deposition can take
place even on reactor walls. This is avoided in
cold wall design.
• Besides this, the reactions can take place in
gas phase with hot wall design which is
suppressed in cold wall set up.
87
• Usually gas pressures in the range of 100–105
Pa are used.
• Growth rate and film quality depend upon the
gas pressure and the substrate temperature.
88
89

Mais conteúdo relacionado

Mais procurados

Sol-Gel Method
Sol-Gel MethodSol-Gel Method
Sol-Gel MethodLot Kubur
 
Nanomaterial and their application
Nanomaterial and their applicationNanomaterial and their application
Nanomaterial and their applicationPreeti Choudhary
 
nanomaterial and dimensional effect
nanomaterial and dimensional effect nanomaterial and dimensional effect
nanomaterial and dimensional effect sameerr98
 
TYPES OF NANOMATERIAL
TYPES OF NANOMATERIALTYPES OF NANOMATERIAL
TYPES OF NANOMATERIALNehaSingla51
 
Lithography and Nanolithography
Lithography and NanolithographyLithography and Nanolithography
Lithography and NanolithographySaheem Anwar
 
Properties of nanoparticles
Properties of nanoparticlesProperties of nanoparticles
Properties of nanoparticlesSANEESH KUMAR N
 
INERT GAS CONDENSATION.pptx
INERT GAS CONDENSATION.pptxINERT GAS CONDENSATION.pptx
INERT GAS CONDENSATION.pptxBhargavPanchal20
 
Introduction to Properties of nanomaterials
Introduction to Properties of nanomaterialsIntroduction to Properties of nanomaterials
Introduction to Properties of nanomaterialsMD AHAD ALI
 
Solvothermal method mithibai college msc part 1 pradeep jaiswal
Solvothermal method mithibai college msc part 1 pradeep jaiswalSolvothermal method mithibai college msc part 1 pradeep jaiswal
Solvothermal method mithibai college msc part 1 pradeep jaiswalPradeep Jaiswal
 
Hydrothermal &amp;solvothermal methods jeyakiruba
Hydrothermal &amp;solvothermal methods jeyakirubaHydrothermal &amp;solvothermal methods jeyakiruba
Hydrothermal &amp;solvothermal methods jeyakirubagracepaulraj
 
Synthesis and Characterization of nanoparticle
Synthesis and Characterization of nanoparticleSynthesis and Characterization of nanoparticle
Synthesis and Characterization of nanoparticleMohammad Azam
 
Biological methods for nanoparticle synthesis
Biological methods for nanoparticle synthesisBiological methods for nanoparticle synthesis
Biological methods for nanoparticle synthesisVaibhav Maurya
 
Nanofabrication techniques
Nanofabrication techniquesNanofabrication techniques
Nanofabrication techniquesMohshina Afrooz
 
Arc discharge method
Arc discharge methodArc discharge method
Arc discharge methodSudama04
 
Quantum Dots and its applications
Quantum Dots and its applicationsQuantum Dots and its applications
Quantum Dots and its applicationsArun Kumar
 
Nanomaterials
NanomaterialsNanomaterials
NanomaterialsMaya Bhat
 

Mais procurados (20)

Sol-Gel Method
Sol-Gel MethodSol-Gel Method
Sol-Gel Method
 
Nanomaterial and their application
Nanomaterial and their applicationNanomaterial and their application
Nanomaterial and their application
 
Nanotechnology
Nanotechnology Nanotechnology
Nanotechnology
 
nanomaterial and dimensional effect
nanomaterial and dimensional effect nanomaterial and dimensional effect
nanomaterial and dimensional effect
 
TYPES OF NANOMATERIAL
TYPES OF NANOMATERIALTYPES OF NANOMATERIAL
TYPES OF NANOMATERIAL
 
Lithography and Nanolithography
Lithography and NanolithographyLithography and Nanolithography
Lithography and Nanolithography
 
nano wire
nano wirenano wire
nano wire
 
Properties of nanoparticles
Properties of nanoparticlesProperties of nanoparticles
Properties of nanoparticles
 
Synthesis of nanomaterials
Synthesis of nanomaterialsSynthesis of nanomaterials
Synthesis of nanomaterials
 
INERT GAS CONDENSATION.pptx
INERT GAS CONDENSATION.pptxINERT GAS CONDENSATION.pptx
INERT GAS CONDENSATION.pptx
 
Carbon Nanotubes
Carbon NanotubesCarbon Nanotubes
Carbon Nanotubes
 
Introduction to Properties of nanomaterials
Introduction to Properties of nanomaterialsIntroduction to Properties of nanomaterials
Introduction to Properties of nanomaterials
 
Solvothermal method mithibai college msc part 1 pradeep jaiswal
Solvothermal method mithibai college msc part 1 pradeep jaiswalSolvothermal method mithibai college msc part 1 pradeep jaiswal
Solvothermal method mithibai college msc part 1 pradeep jaiswal
 
Hydrothermal &amp;solvothermal methods jeyakiruba
Hydrothermal &amp;solvothermal methods jeyakirubaHydrothermal &amp;solvothermal methods jeyakiruba
Hydrothermal &amp;solvothermal methods jeyakiruba
 
Synthesis and Characterization of nanoparticle
Synthesis and Characterization of nanoparticleSynthesis and Characterization of nanoparticle
Synthesis and Characterization of nanoparticle
 
Biological methods for nanoparticle synthesis
Biological methods for nanoparticle synthesisBiological methods for nanoparticle synthesis
Biological methods for nanoparticle synthesis
 
Nanofabrication techniques
Nanofabrication techniquesNanofabrication techniques
Nanofabrication techniques
 
Arc discharge method
Arc discharge methodArc discharge method
Arc discharge method
 
Quantum Dots and its applications
Quantum Dots and its applicationsQuantum Dots and its applications
Quantum Dots and its applications
 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
 

Semelhante a Synthesis Of Nanomaterials: Physical Methods

Nanotechnology In Bio Medical Applications
Nanotechnology In Bio Medical ApplicationsNanotechnology In Bio Medical Applications
Nanotechnology In Bio Medical Applicationslusik
 
NEW-NANOMATERIALS AND NANOTEHNOLOGY (1).pptx
NEW-NANOMATERIALS AND NANOTEHNOLOGY (1).pptxNEW-NANOMATERIALS AND NANOTEHNOLOGY (1).pptx
NEW-NANOMATERIALS AND NANOTEHNOLOGY (1).pptxvidya943894
 
Nanotechnology
NanotechnologyNanotechnology
NanotechnologyRosh Mani
 
Chemistry of Materials3_nano.pptx
Chemistry of Materials3_nano.pptxChemistry of Materials3_nano.pptx
Chemistry of Materials3_nano.pptxsant4chem1
 
nanomaterials and their applications in life
nanomaterials and their applications in lifenanomaterials and their applications in life
nanomaterials and their applications in lifePragyanandSingh4
 
GENERAL METHODS OF PREPARATION OF NANOO)
GENERAL METHODS OF PREPARATION OF NANOO)GENERAL METHODS OF PREPARATION OF NANOO)
GENERAL METHODS OF PREPARATION OF NANOO)srajece
 
Bordeauxwebtest
BordeauxwebtestBordeauxwebtest
Bordeauxwebtestufrchimie
 
crystal property
crystal property crystal property
crystal property thiru1mech
 
Nanotechnology: Origin, History and Principles
Nanotechnology: Origin, History and PrinciplesNanotechnology: Origin, History and Principles
Nanotechnology: Origin, History and PrinciplesHANAMANT SAVALAGI
 
NanoBiotechnology Lecture-1-3-2023.pdf
NanoBiotechnology Lecture-1-3-2023.pdfNanoBiotechnology Lecture-1-3-2023.pdf
NanoBiotechnology Lecture-1-3-2023.pdfSudeshnaChakraborty38
 
202004120808039474anupam_tripathi_engg_Nanotechnology.pdf
202004120808039474anupam_tripathi_engg_Nanotechnology.pdf202004120808039474anupam_tripathi_engg_Nanotechnology.pdf
202004120808039474anupam_tripathi_engg_Nanotechnology.pdfHarjotKaur788907
 
Introduction to Nano science and Nanotechnology Part 4
Introduction to Nano science and Nanotechnology Part 4Introduction to Nano science and Nanotechnology Part 4
Introduction to Nano science and Nanotechnology Part 4Usama Abdelhafeez
 

Semelhante a Synthesis Of Nanomaterials: Physical Methods (20)

Nanotechnology In Bio Medical Applications
Nanotechnology In Bio Medical ApplicationsNanotechnology In Bio Medical Applications
Nanotechnology In Bio Medical Applications
 
NEW-NANOMATERIALS AND NANOTEHNOLOGY (1).pptx
NEW-NANOMATERIALS AND NANOTEHNOLOGY (1).pptxNEW-NANOMATERIALS AND NANOTEHNOLOGY (1).pptx
NEW-NANOMATERIALS AND NANOTEHNOLOGY (1).pptx
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Composites
CompositesComposites
Composites
 
Chemistry of Materials3_nano.pptx
Chemistry of Materials3_nano.pptxChemistry of Materials3_nano.pptx
Chemistry of Materials3_nano.pptx
 
Chap1,part1
Chap1,part1Chap1,part1
Chap1,part1
 
nanomaterials and their applications in life
nanomaterials and their applications in lifenanomaterials and their applications in life
nanomaterials and their applications in life
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
GENERAL METHODS OF PREPARATION OF NANOO)
GENERAL METHODS OF PREPARATION OF NANOO)GENERAL METHODS OF PREPARATION OF NANOO)
GENERAL METHODS OF PREPARATION OF NANOO)
 
Nanotechology for BSc students
Nanotechology for BSc studentsNanotechology for BSc students
Nanotechology for BSc students
 
Bordeauxwebtest
BordeauxwebtestBordeauxwebtest
Bordeauxwebtest
 
Nanotechnology & its applications
Nanotechnology & its applicationsNanotechnology & its applications
Nanotechnology & its applications
 
crystal property
crystal property crystal property
crystal property
 
Nano technology
Nano technologyNano technology
Nano technology
 
Nanotechnology: Origin, History and Principles
Nanotechnology: Origin, History and PrinciplesNanotechnology: Origin, History and Principles
Nanotechnology: Origin, History and Principles
 
NanoBiotechnology Lecture-1-3-2023.pdf
NanoBiotechnology Lecture-1-3-2023.pdfNanoBiotechnology Lecture-1-3-2023.pdf
NanoBiotechnology Lecture-1-3-2023.pdf
 
Dr.CK_Unit- 1_Adv.Nano.pdf
Dr.CK_Unit- 1_Adv.Nano.pdfDr.CK_Unit- 1_Adv.Nano.pdf
Dr.CK_Unit- 1_Adv.Nano.pdf
 
202004120808039474anupam_tripathi_engg_Nanotechnology.pdf
202004120808039474anupam_tripathi_engg_Nanotechnology.pdf202004120808039474anupam_tripathi_engg_Nanotechnology.pdf
202004120808039474anupam_tripathi_engg_Nanotechnology.pdf
 
Introduction to Nano science and Nanotechnology Part 4
Introduction to Nano science and Nanotechnology Part 4Introduction to Nano science and Nanotechnology Part 4
Introduction to Nano science and Nanotechnology Part 4
 
Unit 8
Unit 8Unit 8
Unit 8
 

Mais de Mayur D. Chauhan

Mais de Mayur D. Chauhan (20)

Poster Presentation.pdf
Poster Presentation.pdfPoster Presentation.pdf
Poster Presentation.pdf
 
TY BSc P1.pdf
TY BSc P1.pdfTY BSc P1.pdf
TY BSc P1.pdf
 
M3-Medical Diagnostics
M3-Medical DiagnosticsM3-Medical Diagnostics
M3-Medical Diagnostics
 
M3-Identification of Specific Metabolite
M3-Identification of Specific MetaboliteM3-Identification of Specific Metabolite
M3-Identification of Specific Metabolite
 
M3-Plant Tissue Culture
M3-Plant Tissue CultureM3-Plant Tissue Culture
M3-Plant Tissue Culture
 
M3-Sterility Testing.pdf
M3-Sterility Testing.pdfM3-Sterility Testing.pdf
M3-Sterility Testing.pdf
 
M3-Alcohol Content
M3-Alcohol ContentM3-Alcohol Content
M3-Alcohol Content
 
M3-Germ Tube
M3-Germ TubeM3-Germ Tube
M3-Germ Tube
 
M3-Protein Content of Mushrooms
M3-Protein Content of MushroomsM3-Protein Content of Mushrooms
M3-Protein Content of Mushrooms
 
M3-Animal Tissue Culture
M3-Animal Tissue CultureM3-Animal Tissue Culture
M3-Animal Tissue Culture
 
M2-Advanced Analytical Technique
M2-Advanced Analytical TechniqueM2-Advanced Analytical Technique
M2-Advanced Analytical Technique
 
M2-Metabolomics
M2-MetabolomicsM2-Metabolomics
M2-Metabolomics
 
M2-Cinical Immunology
M2-Cinical ImmunologyM2-Cinical Immunology
M2-Cinical Immunology
 
M2-Genomics And Molecular Biology
M2-Genomics And Molecular BiologyM2-Genomics And Molecular Biology
M2-Genomics And Molecular Biology
 
M1-Immunochemistry
M1-ImmunochemistryM1-Immunochemistry
M1-Immunochemistry
 
M1-Genomes & Transcriptomes
M1-Genomes & TranscriptomesM1-Genomes & Transcriptomes
M1-Genomes & Transcriptomes
 
M1-Biophysics
M1-BiophysicsM1-Biophysics
M1-Biophysics
 
M1 -Biochemistry
M1 -BiochemistryM1 -Biochemistry
M1 -Biochemistry
 
How to Read & Save A Run In Quant Studio 5
How to Read & Save A Run In Quant Studio 5How to Read & Save A Run In Quant Studio 5
How to Read & Save A Run In Quant Studio 5
 
How to Import Sample Id's in Quant Studio 5
How to Import Sample Id's in Quant Studio 5How to Import Sample Id's in Quant Studio 5
How to Import Sample Id's in Quant Studio 5
 

Último

psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxdhanalakshmis0310
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 

Último (20)

psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 

Synthesis Of Nanomaterials: Physical Methods

  • 1. Nanotechnology: Introduction & Synthesis of Nanomaterials Physical Methods M.Sc. Biotechnology Part II (Semester IV) Paper I, Unit I Mumbai University By: Mayur D. Chauhan 1
  • 2. • Nanotechnology is science, engineering, and technology conducted at the Nanoscale, which is about 1 to 100 nanometers (nm) • The word itself comes from the Greek word Nanos, meaning dwarf. 2
  • 3. Physicist Richard Feynman is the father of Nanotechnology. 3
  • 4. Origin of Nanotech • It all started with a talk entitled “There’s Plenty of Room at the Bottom” by Physicist Richard Feynman at an American Physical Society meeting at the California Institute of Technology (CalTech) on December 29, 1959, long before the term nanotechnology was used. • He described a process in which scientists would be able to manipulate and control individual atoms and molecules 4
  • 5. • Over a decade later, in his explorations of ultraprecision machining, Professor Norio Taniguchi coined the term nanotechnology. • It wasn't until 1981, with the development of the Scanning Tunneling Microscope that could "see" individual atoms, that modern nanotechnology began. 5
  • 6. • Everything on Earth is made up of atoms—the food we eat, the clothes we wear, the buildings and houses we live in, and our own bodies too. • One nanometer is one-billionth (10-9) of a meter. 6
  • 8. • A sheet of paper is about 100,000 nanometers thick • A strand of human DNA is 2.5 nanometers in diameter • A human hair is approximately 80,000- 100,000 nanometers wide. • A single gold atom is about a third of a nanometer in diameter. • One nanometer is about as long as your fingernail grows in one second. 8
  • 9. 9
  • 10. Major Advantages • When particle sizes of solid matter in the visible scale are compared to what can be seen in a regular optical microscope, there is little difference in the properties of the particles. • But when particles are created with dimensions of about 1– 100 nanometers (where the particles can be “seen” only with powerful specialized microscopes), the materials’ properties change significantly from those at larger scales. • Properties of materials are size-dependent in this scale range. So in nanoscale, properties such as melting point, fluorescence, electrical conductivity, magnetic permeability, and chemical reactivity change as a function of the size of the particle. 10
  • 11. • For example, Nanoscale gold particles are not the yellow color. • Nanoscale gold can appear red or purple. • At the nanoscale, the motion of the gold’s electrons is confined. Because this movement is restricted, gold nanoparticles react differently with light compared to larger-scale gold particles. • Their size and optical properties can be put to practical use: Nanoscale gold particles selectively accumulate in tumors, where they can enable both precise imaging and targeted laser destruction of the tumor by means that avoid harming healthy cells. 11
  • 12. • Tunability of Properties is another advantage of nanotechnology. • By changing the size of the nanoparticles, one can synthesize and utilize a material of interest. • Many of the inner workings of cells naturally occur at the nanoscale. • For example, hemoglobin, the protein that carries oxygen through the body, is 5.5 nanometers in diameter. 12
  • 13. • Nanotechnology is not simply working at smaller dimensions; rather, working at the nanoscale enables scientists to utilize the unique physical, chemical, mechanical, and optical properties of materials that naturally occur at that scale. • Nanoscale materials have far larger surface areas than similar masses of larger-scale materials. • As surface area per mass of a material increases, a greater amount of the material can come into contact with surrounding materials, thus affecting reactivity. 13
  • 14. 14
  • 15. States Of Matter • Depending upon the temperature and pressure, there are three states of matter. 15
  • 17. • In what is known as a ‘single crystal’ there is almost infinitely long arrangement of atoms or molecules with certain symmetry characteristics of the material. • In a polycrystalline solid, there are some ‘grain boundaries’. Size of the grain can depend upon the processing and typically can be few μm3. • Each grain itself is a ‘single crystal’ but the orientations of these different crystals are different or random. Each grain also has a kind of ‘grain wall’ in which atoms may be more or less randomly distributed. • The thickness of such walls is often very crucial in determining the various properties of materials such as mechanical, optical or electrical. 17
  • 18. • If each grain in the material becomes too small, comparable to the distance between the atoms or molecules, we get what is known as ‘amorphous’ solid. • In amorphous solids, the grain boundaries disappear. 18
  • 19. Arrangement Of Atoms • Lattice: It is an arrangement of points repeated in one, two or three directions making it a one dimensional, two dimensional or three dimensional lattice. 19
  • 20. • Crystal: When an atom or a group of atoms are attached to each lattice point, it forms a crystal. 20
  • 22. Mechanical Methods •Bulk Nanoparticles in the form of Powder. High Energy Ball Milling •Form/Arrest Nanoparticles in Glass. Melt Mixing 22
  • 23. High Energy Ball Milling • Some of the materials like Co, Cr, W, Ni, Ti, Al- Fe and Ag-Fe are made nanocrystalline using ball mill. • Few milligrams to several kilograms of nanoparticles can be synthesized in a short time of a few minutes to a few hours. • One of the simplest ways of making nanoparticles of some metals and alloys in the form of powder. 23
  • 24. Types of Milling Planetary Vibratory Rod Tumbler 24
  • 25. • Usually one or more containers are used at a time to make large quantities of fine particles. Size of container, of course, depends upon the quantity of interest. • Hardened steel or tungsten carbide balls are put in containers along with powder or flakes (<50 μm) of a material of interest. 25
  • 26. • Usually 2:1 mass ratio of balls to material is advisable. • If the container is more than half filled, the efficiency of milling is reduced. • Heavy milling balls increase the impact energy on collision. 26
  • 27. • To avoid any impurities from balls, the container may be filled with air or inert gas. However this can be an additional source of impurity, if proper precaution to use high purity gases is not taken. • A temperature rise in the range of 100–1,100oC is expected to take place during the collisions. • Lower temperatures favour amorphous particle formation. • The gases like O2, N2 etc. can be the source of impurities as constantly new, active surfaces are generated. • Cryo-cooling is used sometimes to dissipate the heat generated. 27
  • 28. • The containers are rotated at high speed (a few hundreds of rpm) around their own axis. Additionally they may rotate around some central axis and are therefore called as ‘Planetary ball mill’. • When the containers are rotating around the central axis as well as their own axis, the material is forced to the walls and is pressed against the walls 28
  • 29. By controlling the speed of rotation of the central axis and container as well as duration of milling it is possible to ground the material to fine powder (few nm to few tens of nm) whose size can be quite uniform. 29
  • 30. Melt Mixing • It is a process to trap or arrest nanoparticles inside a Glass. • Glass is an amorphous solid which lacks large range periodic arrangement as well as symmetry arrangement of atoms/molecules. • When a liquid is cooled below certain temperature (Tm), it forms either a crystalline or amorphous solid (Glass). 30
  • 31. • Besides temperature, rate of cooling and tendency to nucleate decide whether the melt can be cooled as a glass or crystalline solid with long range order. • But what is Nucleation? 31
  • 32. Nucleation • Nucleation, the initial process that occurs in the formation of a crystal from a solution (a liquid or a vapour) in which a small number of ions, atoms, or molecules become arranged in a pattern characteristic of a crystalline solid, forming a site upon which additional particles are deposited as the crystal grows. 32
  • 34. • Metals usually form crystalline solids but if cooled at very high rate they can form amorphous solids. Such solids are known as Metallic glasses. • Even in such cases the atoms try to reorganize themselves into crystalline solids. • Addition of elements like B, P, Si etc. helps to keep the metallic glasses in amorphous state. 34
  • 35. Formation of Nano crystals within Metallic Glasses • Silicates (Germanates) have a central silicon atom in a pyramidal structure with oxygen atoms at the corners. • Such silicate units, not sharing the edges, but connected only through the corners are randomly distributed in 3-D to form glassy structure. 35
  • 36. 36
  • 37. • A window glass has in addition to SiO2 (72 %), oxides of sodium (14.5 %), calcium (8.5 %), magnesium (3.5 %) and aluminum (1.5 %) as its constituents. • Laboratory glassware has silica (80 %), boron oxide (10 %), sodium oxide (5 %), alumina (3 %), magnesium oxide (1 %) and calcium oxide (1 %). • Beautiful colors in glasses like red, yellow, blue, orange, green and their shades are a result of addition of some elements like gold, cobalt, nickel, iron etc. • These colors are attributed to the formation of nanoparticles of these elements. 37
  • 38. Methods Based on Evaporation • These methods help synthesizing nanostructures by evaporating the materials on some substrates. • The nanostructured materials can be in the form of thin films, multilayer films or nanoparticulate thin films (thin films composed of nanoparticles). • Material of interest is brought in the gaseous phase (atoms or molecules) which can form clusters and then deposit on appropriate substrates. 38
  • 39. • We can obtain very thin layers (even atomic layers, known as monolayers) or multilayers (multilayers are layers of two or more materials stacked over each other) forming nanomaterials of wide interest. 39
  • 40. • Evaporation can be achieved by various methods like resistive heating, electron beam heating, laser heating, sputtering. • All the synthesis processes need to be carried out in a properly designed vacuum system so as to avoid uncontrolled oxidation of source materials and final product. 40
  • 41. Materials to be evaporated are usually heated from some suitable filament, crucible, boat (collectively called as ‘evaporation source’ or ‘crucible’) 41
  • 42. • Usually the sources are electrically heated so that enough vapours of the material to be deposited are generated. • If the material to be deposited wets the filament material without forming any alloy or compound, the filament is considered to be suitable. 42
  • 43. • Melting the material in a basket has a disadvantage that the crucible itself and surrounding parts also get heated and become the source of unwanted contamination or impurities. • Therefore evaporation by electron beam heating method is desired. 43
  • 44. Advantages of Electron Beam. • Electron beam focuses on the material to be deposited, kept in the crucible as it is generated from a filament that is not in the proximity of the evaporating material. • It melts only some central portion of the material in crucible avoiding any contamination from crucible. • Thus high purity vapours of materials can be obtained. 44
  • 45. Physical Vapour Deposition • Source of evaporation • An inert gas or reactive gas for collisions with material vapour • A cold finger on which clusters or nanoparticles can condense • A scraper to scrape the nanoparticles • Piston-anvil (an arrangement in which nanoparticle powder can be compacted) 45
  • 46. 46
  • 47. • Usually metals or high vapour pressure metal oxides are evaporated or sublimated from filaments or boats of refractory metals like W, Ta and Mo in which the materials to be evaporated are held. • The density of the evaporated material close to the source is quite high and particle size is small (<5 nm). • Such particles would prefer to acquire a stable lower surface energy state. • Due to small particle or cluster-cluster interaction bigger particles get formed. Therefore, they should be removed away as fast as possible from the source. This is done by forcing an inert gas near the source, which removes the particles from the vicinity of the source. 47
  • 48. • In general the rate of evaporation and the pressure of gases inside the chamber determine the particle size and their distribution. • Distance of the source from the cold finger is also important. • Evaporated atoms and clusters tend to collide with gas molecules and make bigger particles, which condense on cold finger. While moving away from the source to cold finger the clusters grow. • If clusters have been formed on inert gas molecules or atoms, on reaching the cold finger, gas atoms or molecules may leave the particles there and then escape to the gas phase. 48
  • 49. • If reactive gases like O2, H2 and NH3 are used in the system, evaporated material can interact with these gases forming oxide, nitride or hydride particles. • Alternatively one can first make metal nanoparticles and later make appropriate post-treatment to achieve desired metal compound etc. 49
  • 50. • The process of evaporation and condensation can be repeated several times until enough quantity of the material falls through a funnel in which a piston-anvil arrangement has been provided. 50
  • 51. Ionized Cluster Beam Deposition • Developed by Takagi and Yamada around 1985. • Aids to obtain adherent and high quality single crystalline thin films. • The set up consists of a source of evaporation, a nozzle through which material can expand into the chamber, an electron beam to ionize the clusters, an arrangement to accelerate the clusters and a substrate on which nanoparticle film can be deposited, all housed in a suitable vacuum chamber. 51
  • 52. 52
  • 53. • Small clusters from molten material are expanded through the fine nozzle. • On collision with electron beam, clusters get ionized. Due to applied accelerating voltage, the clusters are directed towards the substrate. • By controlling the accelerating voltage, it is possible to control the energy with which the clusters hit the substrate. 53
  • 54. • Stable clusters of some materials would require considerable energy to break their bonds and would rather prefer to remain as small clusters of particles. • Thus it is possible to obtain the films of nanocrystalline material using ionized cluster beam. 54
  • 55. Laser Vapourization (Ablation) • Vapourization of the material is effected using pulses of laser beam of high power. • The set up is an Ultra High Vacuum (UHV) or high vacuum system equipped with inert or reactive gas introduction facility, laser beam, solid target and cooled substrate. 55
  • 56. 56
  • 57. • Usually laser operating in the UV range such as excimer (excited monomers) laser is necessary because other wavelengths like IR or visible are often reflected by surfaces of some metals. 57
  • 58. 58
  • 60. • A powerful beam of laser evaporates the atoms from a solid source and atoms collide with inert gas atoms (or reactive gases) and cool on them forming clusters. • They condense on the cooled substrate. The method is often known as laser ablation. • Gas pressure is very critical in determining the particle size and distribution. 60
  • 61. • Simultaneous evaporation of another material and mixing the two evaporated materials in inert gas leads to the formation of alloys or compounds. • This method can produce some novel phases of the materials which are not normally formed. • For example Single Wall Carbon Nanotubes (SWNT) are mostly synthesized by this method. 61
  • 62. Laser Pyrolysis • Another method of thin films synthesis using lasers is known as ‘laser pyrolysis’ or ‘laser- assisted deposition’. • Here a mixture of reactant gases is decomposed using a powerful laser beam in presence of some inert gas like helium or argon. • Atoms or molecules of decomposed reactant gases collide with inert gas atoms and interact with each other, grow and are then deposited on cooled substrate. 62
  • 63. 63
  • 64. • Here too, gas pressure plays an important role in deciding the particle sizes and their distribution. 64
  • 65. Sputter Deposition • Sputter deposition is a widely used thin film deposition technique, specially to obtain stoichiometric thin films (i.e. without changing the composition of the original material) from target material. • Target material may be some alloy, ceramic or compound. • Sputtering is also effective in producing non- porous compact films. 65
  • 66. • It is a very good technique to deposit multilayer films for mirrors or magnetic films for spintronics applications. • In sputter deposition, some inert gas ions like Ar+ are incident on a target at a high energy. • Depending on the energy of ions, ratio of ion mass to that of target atoms mass, the ion- target interaction can be a complex phenomenon 66
  • 67. 67
  • 68. • The ions become neutral at the surface but due to their energy, incident ions may get implanted, get bounced back, create collision cascades in target atoms, displace some of the atoms in the target creating vacancies, interstitials and other defects, desorb some adsorbates, create photons while loosing energy to target atoms or even sputter out some target atoms/molecules, clusters, ions and secondary electrons. 68
  • 69. • Sputter yield for different elements with same incident ion having same energy varies in general. • This would lead one to think that from a target consisting of two different elements or more, the one having higher sputter yield should get incorporated in larger quantity than the others. • However high sputter yield elements get depleted fast and other elements also make contribution. • Thus the stoichiometry is achieved in the deposited film. 69
  • 70. Methods of Sputtering DC RF Magnetron 70
  • 71. DC Sputtering • This is a very straight forward technique of deposition, in which sputter target is held at high negative voltage and substrate may be at positive, ground or floating potential. • Substrates may be simultaneously heated or cooled depending upon the material to be deposited. 71
  • 72. 72
  • 73. • Once the required base pressure is attained in the vacuum system, usually argon gas is introduced at a pressure <10 Pa. • A visible glow is observed and current flows between anode and cathode indicating the deposition onset. 73
  • 74. • When sufficiently high voltage is applied between anode and cathode with a gas in it a glow discharge is set up with different regions as cathode glow, Crooke’s dark space, negative glow, Faraday dark space, positive column, anode dark space and anode glow 74
  • 75. • These regions are the result of plasma, i.e. a mixture of electrons, ions, neutral atoms and photons released in various collisions. • The density of various particles and the length over which they are distributed depends upon the gas pressure. 75
  • 76. • Plasma is overall neutral but there can be regions which are predominantly of positive or negative charges. • One can get plasma in different gases at different pressures by using a vacuum tube with two metal electrodes and applying high DC or AC voltage. 76
  • 77. Radio Frequency Sputtering • If the target to be sputtered is insulating, it is difficult to use DC sputtering. • This is because it would mean the use of exceptionally high voltage (>106 V) to sustain discharge between the electrodes. (In DC discharge sputtering 100–3,000 V is usual.) • However if some high frequency voltage is applied the cathode and anode alternatively keep on changing the polarity and oscillating electrons cause sufficient ionization. 77
  • 78. • In principle, 5–30 MHz frequency can be used and the electrodes can be insulating. • However, 13.56 MHz frequency is commonly used for deposition, as this frequency is reserved worldwide for this purpose and many others are available for communication. 78
  • 79. 79
  • 80. Chemical Vapor Deposition (CVD) • It is Hybrid method using chemicals in vapour phase to obtain coatings of a variety of inorganic or organic materials. • Under certain deposition conditions nano crystalline films or single crystalline films are possible. 80
  • 81. • Relatively simple instrumentation, ease of processing, possibility of depositing different types of materials and economical viability. • There are many variants of CVD like Metallo Organic CVD (MOCVD), Atomic Layer Epitaxy (ALE), Vapour Phase Epitaxy (VPE), Plasma Enhanced CVD (PECVD). • They differ in source gas pressure, geometrical layout and temperature. 81
  • 82. • Basic CVD process can be considered as a transport of reactant vapour or reactant gas towards the substrate kept at some high temperature where the reactant cracks into different products which diffuse on the surface, undergo some chemical reaction at appropriate site, nucleate and grow to form the desired material film. 82
  • 83. • The by-products created on the substrate have to be transported back to the gaseous phase removing them from substrate. • There are various processes such as reduction of gas, chemical reaction between different source gases, oxidation or some disproportionate reaction by which CVD can proceed. 83
  • 84. 84
  • 85. • However it is preferable that the reaction occurs at the substrate rather than in the gas phase. • Usually 300–1,200o C temperature is used at the substrate. • There are two ways viz. ‘hot wall’ and ‘cold wall’ by which substrates are heated 85
  • 86. 86
  • 87. • In hot wall set up the deposition can take place even on reactor walls. This is avoided in cold wall design. • Besides this, the reactions can take place in gas phase with hot wall design which is suppressed in cold wall set up. 87
  • 88. • Usually gas pressures in the range of 100–105 Pa are used. • Growth rate and film quality depend upon the gas pressure and the substrate temperature. 88
  • 89. 89