SlideShare uma empresa Scribd logo
1 de 38
Baixar para ler offline
Accepted Manuscript
Development of decision support system for analysis and solutions of prolonged
standing at workplace
Isa Halim, PhD Hambali Arep, PhD Seri Rahayu kamat, PhD Rohana Abdullah, MSc
Abdul Rahman Omar, PhD Ahmad Rasdan Ismail, PhD
PII: S2093-7911(14)00026-2
DOI: 10.1016/j.shaw.2014.04.002
Reference: SHAW 41
To appear in: Safety and Health at Work
Received Date: 30 December 2013
Accepted Date: 15 April 2014
Please cite this article as: Halim I, Arep H, kamat SR, Abdullah R, Rahman Omar A, Ismail AR,
Development of decision support system for analysis and solutions of prolonged standing at workplace,
Safety and Health at Work (2014), doi: 10.1016/j.shaw.2014.04.002.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Development of decision support system for analysis and solutions of prolonged standing
1
at workplace
2
3
Isa HALIM, PhD1
, Hambali AREP, PhD1
, Seri Rahayu KAMAT, PhD1
, Rohana
4
ABDULLAH, MSc2
, Abdul Rahman OMAR, PhD3
, Ahmad Rasdan ISMAIL, PhD4
5
1
Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian
6
Tunggal, Hang Tuah Jaya, Melaka, Malaysia.
7
2
Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka, 76100 Durian
8
Tunggal, Hang Tuah Jaya, Melaka, Malaysia.
9
3
Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam,
10
Selangor, Malaysia.
11
4
Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang,
12
Malaysia.
13
14
15
Correspondence to:
16
Isa Halim
17
Faculty of Manufacturing Engineering
18
Universiti Teknikal Malaysia Melaka
19
76100 Durian Tunggal, Hang Tuah Jaya, Melaka, Malaysia.
20
Tel.: +606-3316501
21
Fax: +606-3316411
22
e-mail: isa@utem.edu.my
23
24
Running tittle: Decision support system for prolonged standing
25
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
TITLE: Development of decision support system for analysis and solutions of prolonged
1
standing at workplace
2
ABSTRACT
3
Background: Prolonged standing has been hypothesized as one of vital contributors to
4
discomfort and muscle fatigue to workers at workplace.
5
Objectives: The objective of this study is to develop a decision support system that can
6
provide systematic analysis and solutions in minimizing discomfort and muscle fatigue
7
associated with prolonged standing.
8
Methods: Integration of object oriented programming (OOP) and Model Oriented
9
Simultaneous Engineering System (MOSES) were deployed to design the architecture of
10
the decision support system.
11
Results: Validation of the decision support system was carried out in two manufacturing
12
companies. The validation process demonstrated that the decision support system has
13
generated reliable results.
14
Conclusion: Therefore, this study concluded that the decision support system is a reliable
15
advisory tool for analysis and solutions related to discomfort and muscle fatigue
16
associated with prolonged standing. The decision support system is suggested to undergo
17
further testing for commercialization purpose.
18
19
Keywords: Decision support system, Discomfort, Ergonomics, Fatigue, Prolonged
20
standing
21
22
23
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Introduction
24
In industrial workplaces, a lot of jobs require workers to perform in standing
25
position. One of the advantages of standing is that it can provide a large degree of
26
freedom to workers for manipulating materials and tools at the workstation. In addition,
27
standing position is practical and effective when the workers are operating large
28
machines and huge workpieces, reaching of materials and tools, and pushing and pulling
29
any excessive loads. For instance, a worker who works at a conventional surface grinding
30
machine requires large degree of freedom to push and pull the machine table when
31
performing grinding process on the workpiece’s surface. This kind of job nature is nearly
32
impossible to be performed in sitting position, so standing is the best option. Standing
33
working position also promotes the worker to be more productive and consequently
34
contributes to higher productivity for the organization. However, when workers spent a
35
long period of time in standing position throughout their working hours, they may
36
experience discomfort and muscle fatigue at the end of workday. In the long run, they
37
will potentially experience occupational injuries such as work-related musculoskeletal
38
disorders, chronic venous insufficiency, and carotid atherosclerosis [1]. A worker is
39
considered to be exposed to prolonged standing if he or she spent over fifty percent of the
40
total working hours during a full work shift in standing position [2]. Working in standing
41
position for an extended period of time has been recognized as a vital contributor to
42
decrease workers’ performance in industry. It includes occupational injuries, productivity
43
decrement, increased of treatment and medical costs, and lead to subjective discomfort to
44
the workers. When workers perform jobs in prolonged standing, static contraction
45
occurred particularly in their back and legs, thus resulted in discomfort and muscle
46
fatigue [3]. Besides, the employers will also be affected due to lost of revenue in the
47
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
forms of productivity, workers’ compensation and health treatment costs [4]. For
48
example, pain in the lower back due to prolonged standing can affect the ability of a
49
worker to perform job that involving flexion or extension postures. This may in turn
50
affect the productivity of the worker. In addition, workers who suffered from
51
occupational injuries must be referred to clinical experts for health treatment, which
52
definitely involve substantial amount of consultancy and medication costs.
53
Many ergonomics simulation systems have been introduced to improve
54
productivity, comfort and safety of workers in manufacturing workplaces [5], [6]. In
55
industrial ergonomics, numerous assessment tools have been suggested for assessing and
56
analyzing risk factors associated with prolonged standing. For examples, the Rapid Entire
57
Body Assessment (REBA) and guidelines on standing at work can be applied to analyze
58
and minimize postural stress due to standing jobs [7], [8]. However, almost all existing
59
methods are available in the form of pen and paper-based and do not provide a
60
comprehensive assessment on prolonged standing. The methods are time consuming,
61
difficult to retrieve electronically, manual data processing, and causes human error when
62
performing calculations. In addition, the existing assessment methods are seen as
63
individual and isolated tools, hence it is difficult to perform multi assessments
64
concurrently [9]. Up till now, innovative best practices and the underlying measurement
65
science for assessing and analyzing the risk factors associated with prolonged standing,
66
and documenting the results of the computations do not exist. As a consequence, the
67
authorized institutions and industry practitioners who are concerned with occupational
68
safety and health do not have a reliable measurement technique to assess and analyze the
69
risk factors associated with prolonged standing jobs in the workplace. This includes
70
proposing solutions to minimize the risk level.
71
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
To counter the above limitations, this study was aimed at developing a decision
72
support system to assess, analyze, and propose solutions to minimize discomfort and
73
muscle fatigue associated with prolonged standing at industrial workplaces. Six risk
74
factors related to prolonged standing jobs such as working posture, muscle activity,
75
standing duration, holding time, whole-body vibration, and indoor air quality [10] were
76
considered as the basis to develop the knowledge of the decision support system. These
77
risk factors are related to human, machine, and environment at the workplace. All risk
78
factors were analyzed individually to obtain their risk levels. Then, the risk levels of each
79
risk factor were assigned with multipliers to represent their severity for discomfort and
80
fatigue. A strain index arises through multiplicative interactions between the assigned
81
multipliers. Then, the developed decision support system proposes alternative solutions to
82
minimize the risk levels corresponding to the strain index. In the developed decision
83
support system, Ergonomic Workstation model and Decision Support System for
84
Prolonged Standing (DSSfPS) model were designed to function as data capturing and
85
analysis respectively.
86
Materials and methods
87
There are three major stages involved to develop the decision support system.
88
Stage 1: Knowledge acquisition
89
The first stage in developing the decision support system is knowledge acquisition.
90
In a decision support system, knowledge can be considered as the ‘brain’ to process input
91
data and information that are supplied to the system. The knowledge can be obtained by
92
extracting, structuring, and organizing knowledge from one or more sources [11]. In this
93
study, the knowledge acquisition was performed to determine the risk factors that
94
contribute significantly to discomfort, and muscle fatigue associated with prolonged
95
standing jobs. In addition, the ergonomics evaluation tools to analyze the risk factors
96
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
were also obtained through this stage. This is carried out by obtaining information from
97
reliable sources such as published literatures, on-site observations in industries,
98
interviews with management staff and production workers, guidelines and standards from
99
the authorized organizations, and experts’ opinions.
100
Reviews on articles were performed through hard-bound publications such as
101
magazines, journals, and guidelines, as well as on-line databases. The main purposes of
102
literature review are to attain the risk factors that contribute significantly to discomfort
103
and muscle fatigue associated with prolonged standing jobs. Besides, literature review is
104
also useful to identify ergonomics evaluation tools and control measures that can be
105
applied to assess, analyze, and minimize the discomfort, and muscle fatigue. The
106
identified risk factors, methods, and control measures were compiled to be considered in
107
the decision support system.
108
Series of on-site observations were conducted with three metal stamping companies
109
in Malaysia. The main purpose of the on-site observations was to identify risk factors that
110
are present in the standing workstations. A video camcorder was used to record the risk
111
factors in the workstations. The video camcorder was set close to the workstation to
112
record postures, movements and job cycles while workers are performing their jobs. The
113
process of video recording took about 30 minutes to ensure all risk factors, working
114
practices, and job processes in the workstation are completely recorded. The advantage of
115
video recording is that recorded information is easy to replay, stop or pause so that
116
postures, movements and job cycles in the workstation can be monitored. In addition, the
117
risk factors captured by video recording can be considered as knowledge for the decision
118
support system.
119
In addition to the on-site observations, interview sessions with management staff
120
and production workers have been performed to acquire the personal background and job
121
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
activities of the workers, discomfort and fatigue experienced by the workers while
122
performing jobs in prolonged standing, history of pain and treatment taken, and
123
suggestions to improve standing workstations. The Prolonged Standing Questionnaire
124
[12] was applied during the interview sessions. Through the interview sessions, the
125
authors were able to acquire useful information that could not be obtained during the on-
126
site observations such as the solutions applied by the management staff and production
127
workers to minimize discomfort and muscle fatigue associated with prolonged standing.
128
Authorized organizations such as International Organization for Standardization
129
(ISO) and Department of Safety and Health of Malaysia (DOSH) are good sources to
130
acquire information on prolonged standing at workplace. These institutions have
131
published regulations and guidelines on standing at workplace. Guidelines on standing at
132
workplace [8], code of practice for indoor air quality [13], and standards of comfort
133
levels due to acceleration values of whole-body vibration [14] were referred to establish
134
the knowledge of decision support system.
135
Experts include ergonomic practitioners, medical doctors, physiotherapists, safety
136
and health engineers, and academicians are the significant contributors to develop the
137
knowledge of decision support system. Their opinions and advices were gathered through
138
discussions in seminars and conferences. One of the outcomes from the discussion was
139
the selection of ergonomics evaluation tools to be applied in the decision support system.
140
All risk factors related to discomfort and muscle fatigue associated with prolonged
141
standing which are compiled from the abovementioned sources have been categorized
142
into three domains namely human, machine and environment. Each risk factor from these
143
domains was equipped with ergonomics evaluation tools to analyze and quantify the risk
144
levels. For example, risk factor associated with awkward working posture has been
145
identified as a vital contributor to discomfort and fatigue. It is categorized under human
146
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
domain, and the Rapid Entire Body Assessment [7] was applied to analyze the working
147
posture when a worker performs jobs in prolonged standing. The process to integrate the
148
risk factors and ergonomics evaluation tools will be performed in second stage.
149
Stage 2: Knowledge integration
150
The second stage continues with integrating all the knowledge obtained through the
151
abovementioned sources. All risk factors that contribute significantly to discomfort and
152
muscle fatigue associated with prolonged standing are suited with ergonomics evaluation
153
tools to quantify the risk levels. Based on the risk factors, Prolonged Standing Strain
154
Index (PSSI) was developed. Details of the PSSI development can be found in the recent
155
publication [10].
156
Stage 3: Ergonomic workstation model and DSSfPS model
157
This study deployed the Model Oriented Simultaneous Engineering System
158
(MOSES) architecture [9], [15] to develop the decision support system. The decision
159
support system has two main models namely Ergonomic Workstation model and
160
Decision Support System for Prolonged Standing (DSSfPS) model. The Ergonomic
161
Workstation model captures data and information on workplace, worker, working
162
posture, muscles activity, standing duration, holding time, whole-body vibration, and
163
indoor air quality in the workplaces.
164
DSSfPS model on the other hand comprises knowledge and established ergonomics
165
evaluation tools to analyze data about risk factors that are captured by Ergonomic
166
Workstation model. The DSSfPS model is functioned to quantify risk levels of each risk
167
factor, and compute Prolonged Standing Strain Index (PSSI) value. The DSSfPS model
168
will suggest alternative solutions with respect to PSSI value to minimize discomfort and
169
fatigue while performing jobs in standing workstation. A working memory in DSSfPS
170
model is used to save all results from the analysis. Both Ergonomic Workstation model
171
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
and DSSfPS model are well fitted under Manufacturing Model of MOSES architecture
172
(Figure 1).
173
Insert FIGURE 1 here
174
The Ergonomic Workstation model is represented by a workstation, the place of a
175
worker to perform jobs. The data and information captured by the Ergonomic
176
Workstation model are then supplied to DSSfPS model for further analysis. The users
177
(e.g. ergonomics experts) can apply the outcomes of analysis to perform modification on
178
the design of workstation to minimize discomfort and muscle fatigue associated with
179
prolonged standing jobs. The communication between both models in the decision
180
support system is achieved when information and data captured by the Ergonomics
181
Workstation model are supplied to DSSfPS model through an integrated computer
182
environment.
183
The programming architecture of Ergonomic Workstation model and DSSfPS
184
model was developed using Object Oriented Programming (OOP). In addition, Java
185
programming language and open source database db4o (Oracle Corporation, USA) was
186
used as programming language and database engine respectively. The OOP is a
187
programming paradigm uses interactions of class and attribute (sometimes called object)
188
to design the computer programs. The advantage of using OOP is that, any modifications
189
to the information architecture are required, can be done easily. For example, if a system
190
developer wishes to modify the information architecture for certain reasons, he or she can
191
manipulate respective class without interfering other classes.
192
193
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Development of ergonomic workstation model
194
The information model of Ergonomic Workstation was designed by considering
195
workers in their actual workplaces. Usually, a workplace is represented by the hierarchy
196
of company, department, and workstation. In the workstation, it consists of at least a
197
human (worker), machine, and working environment. When a worker is performing jobs
198
in standing position, his or her workstation is considered as a critical point where
199
ergonomics principles should be taken into account to minimize discomfort and muscle
200
fatigue.
201
In the Ergonomic Workstation information model, the relationship of each human-
202
machine-environment constituent in a workstation built their own classes represented by
203
the clouds as shown in the information structure (Figure 2). In the information structure,
204
the primary class of the Ergonomic Workstation is COMPANY. Then, DEPARTMENT
205
is assigned as a sub-class of COMPANY. Consecutively, WORKSTATION class is
206
created as sub-class of DEPARTMENT. To represent machine and environment
207
constituents, whole-body vibration (WBV) and indoor air quality (IAQ) classes are
208
created respectively. The WORKER class consists of five sub-classes to represent job
209
activity, working posture, muscle activity, standing duration, and holding time. Except
210
for job activity, all classes represent factors need to be assessed and analyzed when a
211
worker is performing jobs in prolonged standing. Even though there is no ergonomics
212
evaluation carried out for the job activity; however, its information is useful to decide
213
further analysis. For example, if a worker is exposed to activity of jobs associated with
214
‘standing with forward bending’, ergonomics evaluation associated with working posture
215
assessment will be carried out.
216
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
All information on workplace, worker’s profile, and data about risk factors will be
217
saved in Ergonomic Workstation model. The data and information will be manipulated
218
by the DSSfPS model for further analysis.
219
Insert FIGURE 2 here
220
Development of DSSfPS model
221
222
The DSSfPS model is used to analyze the risk factors, quantify standing risk level,
223
and obtain alternative solutions to improve the workstation design improvement. The
224
DSSfPS model plays an important role to provide alternative solutions to design an
225
ergonomic standing workstation; therefore its knowledge development should be given a
226
high priority to ensure the system can achieve desired performances.
227
As depicted in Figure 3, the DSSfPS model has three main mechanisms: a working
228
memory, a knowledge base, and an inference engine. In addition, Graphical User
229
Interfaces (GUIs) are provided in the system to facilitate communication between the
230
decision support system and the users. The relationship between working memory and
231
knowledge base in the DSSfPS model is clearly shown in Figure 4.
232
Insert FIGURE 3 here
233
Insert FIGURE 4 here
234
235
236
237
238
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Working memory of the DSSfPS model
239
The DSSfPS Model is equipped with eight working memories. Generally, the
240
working memories functioned as the media to temporarily store the data and results of
241
analysis. Table 1 summarizes the functions of each working memory.
242
Insert TABLE 1 here
243
244
Knowledge base of the DSSfPS model
245
The knowledge base of DSSfPS model serves as a shell to occupy rule sets for the
246
ergonomic evaluation tools such as Posture Rule, Muscle Rule, Holding Rule, Standing
247
Rule, WBV Rule, and IAQ Rule. In addition, PSSI Rule is also embedded in the
248
knowledge base. The rule sets consist of a list of if statements and a list of then conditions
249
to process any input data and provide set of alternative solutions to minimize discomfort
250
and muscle fatigue associated with prolonged standing. The development of rule sets
251
involved two stages. The first stage is assigning each ergonomics evaluation tool into a
252
class. Then, the formulation of rules to reach final results is performed in the second
253
stage.
254
In the first stage, the ergonomics knowledge was assigned to several classes to
255
accommodate the following rule sets:
256
1. Posture Rule – containing rules for working posture analysis,
257
2. Muscle Rule – containing rules for muscles activity analysis,
258
3. Holding Rule – containing rules for holding duration analysis,
259
4. Standing Rule – containing rules for standing time analysis,
260
5. WBV Rule – containing rules for whole-body vibration exposure analysis, and
261
6. IAQ Rule – containing rules for indoor air quality analysis.
262
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
In the second stage, the rule set for PSSI Rule was developed. The PSSI Rule has
263
several rules that are used to perform PSSI calculation and obtain recommendation to
264
minimize discomfort and muscle fatigue, based on the PSSI value. The development of
265
PSSI Rule began with assigning the results of risk factors analysis (in terms of risk
266
levels) to multipliers to represent their severity for discomfort and fatigue. A PSSI value
267
arises through multiplicative interactions between these multipliers. Then, potential
268
solutions to minimize the risk levels were recommended corresponding to the PSSI value.
269
Table 2 summarizes the knowledge base of DSSfPS model which include risk factors or
270
knowledge, knowledge description, numbers of rules, questions, and alternative answers.
271
Insert TABLE 2 here
272
273
Inference engine of the DSSfPS model
274
In DSSfPS model, an inference engine is used to achieve results (risk levels, PSSI
275
value and recommendations) by matching rule sets in the knowledge base and data
276
available in the working memory. The method applied to design the inference mechanism
277
is forward chaining. Forward chaining works by processing the data first, and keep using
278
the rules in knowledge base to draw new conclusions given by those data [16], [17]. This
279
study applied forward chaining because it operates via top-down approach which takes
280
data available in the working memory then generate results based on satisfied conditions
281
of rules in the knowledge base. In DSSfPS model, the inference engine performs these
282
functions:
283
1. supply background information of worker such as workplace’s profile, personal
284
details, job activities, and data about risk factors that have been captured by
285
Ergonomic Workstation model to working memory in DSSfPS model,
286
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
2. search rule sets in knowledge base to be matched with data from the working
287
memory to obtain results (risk levels, PSSI value and recommendations), and
288
3. retrieve updated working memory database to display outcomes of the analysis.
289
The inference engine of DSSfPS model works in three stages: between GUIs and
290
working memory, between working memory and knowledge base, and at working
291
memory to display the analysis outcomes.
292
Graphical user interfaces (GUIs)
293
In the decision support system, the Graphical User Interfaces (GUIs) are used as
294
communication medium between the user, Ergonomic Workstation model, and DSSfPS
295
model. The GUIs were designed using facilities available in the NetBeans IDE 6.8
296
(Oracle Corporation, USA). The user provides information from the actual industrial
297
workstation such as workplace’s information, worker’s profile, and the data about risk
298
factors to the database in Ergonomic Workstation model through the GUIs. In the
299
decision support system, ten GUIs have been designed to perform various functions.
300
A main menu GUI was designed to enable a user to populate a database in the
301
Ergonomic Workstation model. When the program is executed, the main menu GUI will
302
appear. In the main menu GUI, there are several menus:
303
1. File menu – to exit from the decision support system,
304
2. Manage Database menu – to create databases,
305
3. Populate Database menu – to provide data and information about the risk factors to
306
be analyzed,
307
4. Display Information menu – to preview data and results of analysis, and
308
5. Help menu – to guide the user about the basic operation of the decision support
309
system.
310
311
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Integrating the ergonomic workstation model and DSSfPS model
312
Both Ergonomic Workstation model and DSSfPS model have to be integrated in a
313
decision support system to enable prospective users to analyze standing jobs in their
314
workplaces. To employ the decision support system, a user should create a database for
315
Ergonomic Workstation model and a working memory for DSSfPS model. Then, the user
316
should supply information on workplace, worker, and data of risk factors from the actual
317
workplaces and store them into the database in Ergonomic Workstation model. The
318
inference engine retrieves the data and information from the Ergonomic Workstation
319
database and sends to the database in working memory. Then, the inference engine
320
examines and matches rules embedded in the knowledge base of DSSfPS model with
321
data and information from working memory to generate results. The obtained results will
322
be saved in the working memory. The inference engine retrieves the saved results in the
323
working memory for display purpose.
324
Validation of the decision support system
325
A validation process was conducted to ensure the knowledge of developed decision
326
support system able to perform its functionality with an acceptable level of accuracy. To
327
achieve that, this study has performed the validation process through a technical
328
validation using two real case studies [18]. According to technical validation, the results
329
generated by decision support system should be consistent with the results of
330
conventional methods when assessing and analyzing a similar case study [19].
331
The validation process was carried out through two on-site observations at a metal
332
stamping company in Shah Alam, Malaysia and a footwear manufacturer in Petaling
333
Jaya, Malaysia. To validate the knowledge of the developed decision support system,
334
twenty six workers (n=13 from each company) were selected as samples of study. Data
335
and information about workplace, workstation, worker, and risk factors were acquired
336
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
directly from the companies. Data on risk factors including working posture, muscles
337
activity, standing duration, and holding time were observed at three conditions: high,
338
medium, and low risk levels. Data on risk factors associated with whole-body vibration
339
(WBV) were measured using a vibration accelerometer (QUEST Technologies, USA) at
340
the standing workstation. Additionally, the quantities of carbon dioxide and carbon
341
monoxide surrounding the workstation were measured using Indoor Air Quality Probe
342
IQ-410 (Gray Wolf, USA) [20]. In the decision support system, all data and information
343
were supplied to Ergonomic Workstation Model, and DSSfPS Model analyzed them to
344
generate results. The data and information were analyzed based on individual basis. In
345
other words, all workers have their own data and information about workplace,
346
workstation, worker, and risk factors. Similarly, the data about risk factors were analyzed
347
through conventional method, for examples, data about working posture and muscles
348
activity were analyzed using Rapid Entire Body Assessment worksheet [7] and Rodgers
349
Muscle Fatigue Analysis worksheet [21] respectively.
350
Then, this study performed a comparison between the results generated by decision
351
support system and conventional method to determine the validity of knowledge in the
352
developed decision support system. Table 3 to Table 8 present the comparison results of
353
knowledge for the six risk factors (working posture, muscle activity, duration, holding
354
time, whole-body vibration, and indoor air quality). The result of validation for the PSSI
355
is shown in Table 9. Based on the comparison, it is clearly shown that the developed
356
decision support system able to generate results comparable to conventional methods. In
357
other words, results from both decision support system and conventional method showed
358
a good agreement for all analyzed risk factors.
359
Insert TABLE 3 to TABLE 9 here
360
361
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Discussion
362
Decision support system has been recognized as one of efficient decision making
363
tools in many applications. For example, in medical care, a decision support system that
364
provides explicit point of decision making to clinicians has achieved clinician compliance
365
rates of 90-95% [22]. This study has developed a decision support system that consists of
366
Ergonomic Workstation model and DSSfPS model. Both models were designed using
367
OOP. The authors found that OOP is versatile and flexible system especially when
368
designing the programming architecture because any modifications and improvement on
369
the models which are related to their classes and attributes can be done easily. In other
370
words, if the programming architecture has to be modified for certain reasons, the authors
371
can manipulate respective class without having to interfere with other classes. This
372
advantage enabled the authors to reorganize the programming architecture easily and
373
time saving. In addition, designing relationship of a work system and its components
374
using OOP is particularly useful for making the designed system easy to be understood
375
[23].
376
In terms of knowledge base development, this study established the information
377
about risk factors by surveying numerous published research works and performing
378
onsite-observations at industrial workplaces. The combination of literature review and
379
on-site observations has shown an effective way to establish a comprehensive and total
380
knowledge base. As a result, information about risk factors related to human-machine-
381
environment has been established. Corresponding to each risk factor, this study applied
382
reliable sources such as established ergonomics evaluation tools, guidelines, and standard
383
for data analysis and decision making. As compared to other decision support system for
384
ergonomics application, the acquisition of knowledge is solely referred to literature
385
review [24].
386
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
In the knowledge base, the current study developed the rule sets utilizing if-then
387
production rule to execute the knowledge. The if-then production rule is preferred
388
because the data and information to be analyzed by the developed decision support
389
system requires straight forward manipulations. In many rule sets development, fuzzy
390
rule is widely used [25], [26], [27], [28], [29] however, the fuzzy rule is not suitable in
391
the current study because its decision-making is not always a matter of black and white; it
392
often involves grey areas [30].
393
Working memory is a vital component in a decision support system as it is used to
394
store data and information supplied by the users. In developed decision support system,
395
data and information about workplaces, workers, and risk factors captured by the
396
Ergonomic Workstation model and results of analysis performed by DSSfPS model are
397
saved in a working memory. When the decision support system is used to perform many
398
assessments, the data in working memory become larger and there is a possibility of data
399
confliction. This may lead to data manipulation errors. To avoid this, the working
400
memory has to be cleaned. To clear the working memory, it should be initialized. This
401
study created a function to initialize working memory of DSSfPS model by deleting the
402
old data. Interestingly, the deletion process in the working memory of DSSfPS model is
403
not affecting the data and information about workplaces, workers, and risk factors that
404
are saved in the Ergonomic Workstation model. The program code deletes the results of
405
previous assessment in the working memory of DSSfPS model, however, the data and
406
information about workplaces, workers, and risk factors are still available in the
407
Ergonomic Workstation model. The advantage of this system is that data and information
408
stored in the Ergonomic Workstation model could be retrieved when further assessment
409
is required.
410
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
In this study, forward chaining method was used to develop the inference engine.
411
The study prefers this method because it works through top-down approach which takes
412
data available in the working memory then generates results based on satisfied conditions
413
of rules in the knowledge base. For instance, consider rule sets in the class Posture Rule:
414
Rule 1: if reba_score = 1 then posture_risk_level = “Negligible”
415
Rule 2: if posture_risk_level = “Negligible” then PostureMultiplier = 1
416
Rule 3: if PostureMultiplier = 1 then
417
PostureRecommendation = “"The posture should be maintained"
418
Based on forward chaining method, start with Rule 1 and go on downward (Rule 3) till a
419
rule that fires is found. In other words, the forward chaining method is data-driven
420
because the initial data are processed first (reba_score, posture_risk_level,
421
PostureMultiplier) and keep using the rules to achieve goal (PostureRecommendation).
422
Ten GUIs have been equipped in the decision support system for convenient data
423
input, analysis, and display. The GUIs are predominantly used to key in data and
424
information about workplaces, workers, risk factors including working posture, muscles
425
activity, standing duration, holding time, whole-body vibration, and indoor air quality.
426
Each data and information is equipped with individual GUI. The GUIs were text-based
427
design with several facilities such as informative message, pull-down menus, check
428
boxes, radio button, and OK and Cancel buttons. There is no image provided in the GUIs
429
because the constraint of GUIs area and difficult to obtain suitable image to represent
430
certain data and information. For example, it is difficult to attach vibration image at
431
certain frequency and acceleration in the whole-body vibration GUI because the
432
quantities are nearly impossible to be captured.
433
At the end, the developed decision support system has undergone validation process.
434
Through the validation process, this study found that results generated by the decision
435
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
support system are comparable to conventional method. The advantage of using the
436
decision support system is time saving and systematic data manipulation.
437
Conclusion
438
A decision support system that is specifically used to analyze risk factors, predict
439
risk levels due to standing work, and propose recommendations to minimize discomfort
440
and fatigue has been developed in this study. This study identified that working posture,
441
muscles activity, standing duration, holding time, whole-body vibration, and indoor air
442
quality were the risk factors for discomfort and muscles fatigue while workers are
443
performing jobs in standing position. Risk levels of the risk factors can be predicted
444
through the Prolonged Standing Stress Index (PSSI). The risk factors and the PSSI have
445
been modeled in a decision support system to provide a systematic analysis and solutions
446
for discomfort and muscle fatigue associated with prolonged standing. Based on the
447
results of validation process, this study concluded that the decision support system is
448
reliable for assessing, analyzing, and proposing solutions to minimize discomfort and
449
muscle fatigue associated with prolonged standing at industrial workplaces. This study
450
suggests further efforts such as extensive testing, attractive and user friendly GUI to
451
make the decision support system commercially available.
452
Acknowledgements
453
The authors would like to acknowledge the Ministry of Higher Education of
454
Malaysia, the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia
455
Melaka, the Ministry of Science, Technology and Innovation of Malaysia for funding this
456
research under e-Science Research Grant (project no.: 06-01-01-SF0258), the Faculty of
457
Mechanical Engineering of Universiti Teknologi MARA and Research Management
458
Institute of Universiti Teknologi MARA for providing facilities and assistance in
459
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
conducting this study. Special thank goes to Miyazu (M) Sdn. Bhd. and Kulitkraf Sdn.
460
Bhd. for facilitating the workplace surveys.
461
462
463
References
464
1. Isa H, Omar AR. A review on health effects associated with prolonged standing
465
in the industrial workplaces. International Journal of Research and Reviews in
466
Applied Sciences. 2011;8(1):14–21. Retrieved January 20, 2013, from:
467
www.arpapress.com/Volumes/Vol8Issue1/IJRRAS_8_1_03.pdf
468
2. Tomei F, Baccolo TP, Tomao E, Palmi S, Rosati MV. Chronic venous disorders
469
and occupation. Am J Ind Med.1999;36(6):653–65.
470
3. Krijnen RMA, de Boer EM, Ader HJ, Bruynzeel DP. Diurnal volume changes of
471
the lower legs in healthy males with a profession that requires standing. Skin Res
472
Technol. 1998;4(1):18–23.
473
4. Zander JE, King PM, Ezenwa BN. Influence of flooring conditions on lower leg
474
volume following prolonged standing. Int J Ind Ergon. 2004;34(4):279–88
475
(dx.doi.org/doi:10.1016/j.ergon.2004.04.014).
476
5. Chaffin, D.B. Human simulation for vehicle and workplace design. Hum Factors
477
Ergon Manuf. 2007;17:475-84.
478
6. Kazmierczak, K., Neumann, W.P., & Winkel, J. A case study of serial-flow car
479
disassembly: ergonomics, productivity and potential system performance. Hum
480
Factors Ergon Manuf. 2007; 17:331-51.
481
7. Hignett S, McAtamney L. Rapid entire body assessment (REBA). Appl Ergon.
482
2000;31(2):201–5 (dx.doi.org/doi:10.1016/S0003-6870(99)00039-3).
483
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
8. Department of Safety and Health, Ministry of Human Resources, Malaysia.
484
Guidelines on occupational safety and health for standing at work. 2002.
485
Retrieved February 21, 2013, from: http://www.dosh.
486
gov.my/doshv2/phocadownload/guidelines/ garispanduan15.pdf
487
9. Abdul, R.O., & Isa, H. (2010). Modeling of and integrated workstation
488
environment for occupational safety and health application. In Halimahtun
489
Khalid, Alan Hedge & Tareq Z. Ahram (Eds.), Advances in ergonomics modeling
490
and usability evaluation. Boca Raton, FL, USA: CRC Press; 2010. p. 503-12.
491
10. Isa, H., & Abdul, R. O. Development of Prolonged Standing Strain Index to
492
quantify risk levels of standing jobs. Int J Occup Saf Ergon. 2012;18:85-96.
493
11. Turban, E. Decision support and expert systems. Management support systems
494
(Second ed.). New York: Macmillan,1990.
495
12. Halim I, Omar AR, Saman AM, Othman I, Ali MA. Development of a
496
questionnaire for prolonged standing jobs at manufacturing industry. In:
497
Karwowski W, Salvendy G, editors. Advances in human factors, ergonomics, and
498
safety in manufacturing and service industries. Boca Raton, FL, USA: CRC Press;
499
2010. p. 253–61.
500
13. Department of Safety and Health, Ministry of Human Resources, Malaysia. Code
501
of practice on indoor air quality. 2005. Retrieved January 18, 2012, from:
502
http://www.dosh.gov.my/doshv2/phocadownload/CodeOfPractice/codeofpractice
503
onindoorairquality.pdf
504
14. International Organization for Standardization (ISO). Mechanical vibration and
505
shock—evaluation of human exposure to whole-body vibration—part 1: general
506
requirements (Standard No. ISO 2631-1:1997). Geneva, Switzerland: ISO;1997.
507
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
15. Harding, J. A., Omar, A. R., & Popplewell, K. Applications of QFD within a
508
concurrent engineering environment. International Journal of Agile Management
509
Systems.1999;1:88-98. Retrieved February 22, 2013, from:
510
http://www.emeraldinsight.com/journals.htm?articleid=852393
511
16. Abraham, A. Rule-based expert systems. In Peter H. Sydenham & Richard Thorn
512
(Eds.), Handbook of Measuring System Design (pp. 909-919): John Wiley &
513
Sons, 2005.
514
17. Lee, T.-Z., Wu, C.-H, & Wei, H.-H. (). KBSLUA: A knowledge-based system
515
applied in river land use assessment. Expert Syst Appl. 2008;34:889-99.
516
18. Imriyas, K. An expert system for strategic control of accidents and insurers’ risks
517
in building construction project. Expert Syst Appl. 2009;36:4021-34.
518
19. Jimenez, M.L, Santamaria, J.M., Barchino, R., Laita, L., Laita, L.M., Gonzalez,
519
L.A., & Asenjo, A. Knowledge representation for diagnosis of care problems
520
through an expert system: Model of the auto-care deficit situations. Expert Syst
521
Appl. 2008;34:2847-57.
522
20. Leman AM, Omar AR, Yusof MZM. Monitoring of welding work environment in
523
small and medium industries (SMIs). International Journal of Research and
524
Reviews in Applied Sciences. 2010;5(1):18–26. Retrieved February 10,2012,
525
from: http://www.arpapress.com/Volumes/Vol5Issue1/IJRRAS_5_1_03.pdf
526
21. Rodgers SH. A functional job analysis technique. Occup Med. 1992;7(4):679–
527
711.
528
22. Morris, A H. Decision support and safety of clinical environments. Qual Saf
529
Health Care. 2002;11:69-75.
530
23. Lin, J. An object-oriented development method for Customer Knowledge
531
Management Information Systems. Knowledge-Based Systems. 2007;20:17–36.
532
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Retrieved February 25,2013, from:
533
http://www.sciencedirect.com/science/article/pii/S0950705106001110
534
24. Kayis, B., & Charoenchai, N. Development of a knowledge-based system for non-
535
powered hand tools (Tool Expert): Part I-The scientific basis. Hum Factors Ergon
536
Manuf. 2004;14:257-68.
537
25. Moynihan, G.P., Fonseca, D.J., Meritt, T.W., & Ray, P.S. An object-oriented
538
system for ergonomic risk assessment. Expert Systems. 1995;12(2):149-56.
539
Retrieved February 25,2013, from:
540
http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0394.1995.tb00047.x/abstract
541
26. Aluclu, I., Dalgic, A., & Toprak, Z.F. A fuzzy logic-based model for noise control
542
at industrial workplaces. Appl Ergon. 2008;39:368-78.
543
27. Akay, D., Akcayol, M.A., & Kurt, M. NEFCLASS based extraction of fuzzy rules
544
and classification of risks of low back disorders. Expert Syst Appl. 2008;35:
545
2107-12.
546
28. Azadeh, A., Fam, I.M., Khoshnoud, M., & Nikafrouz, M. Design and
547
implementation of a fuzzy expert system for performance assessment of an
548
integrated health, safety, environment (HSE) and ergonomics system: The case of
549
a gas refinery. Inf Sci (Ny). 2008;178:4280-300.
550
29. Gurcanli, G. E., & Mungen, U. An occupational safety risk analysis method at
551
construction sites using fuzzy sets. Int J Ind Ergon. 2009;39:371-87.
552
30. Liao, S.-H. Expert system methodologies and applications - a decade review from
553
1995 to 2004. Expert Syst Appl. 2005;28:93-103.
554
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Table 1: Working memory of DSSfPS Model and functions
Working Memory Function
Worker Memory Compiles data and information on workplace’s profile (company
name, worker’s department, worker’s workstation); worker’s profile
(name, employee number, age, and job activity).
Posture Memory Saves data, information, and result of working posture analysis.
Muscle Memory Saves data and information, and result of muscles activity analysis.
Standing Memory Saves data, and result of standing duration analysis.
Holding Memory Saves data, and result of holding time analysis.
WBV Memory Saves data, and result of whole-body vibration analysis.
IAQ Memory Saves data, and result of indoor air quality analysis.
PSSI Memory Saves result of PSSI and recommendations.
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Table 2: Summary of knowledge base of DSSfPS model
Knowledge Knowledge description
No. of
rule
No. of
question
No. of optional
answer
Working
Posture
• Trunk movement and posture
• Neck movement and posture
• Legs posture and condition
• Upper arms posture
• Lower arms movement
• Wrist movement
• Load mass and force condition
• Coupling condition
• Posture activity
299 16 53
Muscles
activity
• Effort level of neck, shoulders, back,
arms/elbow, wrists/ hands/ fingers,
legs/ knees, ankles/ feet/ toes
• Continuous effort duration of neck,
shoulders, back, arms/elbow, wrists/
hands/ fingers, legs/ knees, ankles/
feet/ toes
• Effort frequency of neck, shoulders,
back, arms/elbow, wrists/ hands/
fingers, legs/ knees, ankles/ feet/ toes
455 21 84
Holding time
• Shoulder height
• Arm reach distance
10 2 10
Standing
duration
• Standing period 3 1 3
WBV
• Frequency of vibration (foot-to-head
direction)
• Acceleration of vibration (foot-to-head
direction)
166 3 200
IAQ
• The quantity of carbon dioxide
• The quantity of carbon monoxide
• The quantity of formaldehyde
• The quantity of respirable particulates
• The quantity of TVOC
11 5 -
PSSI
• To quantify risk level due to
prolonged standing jobs in the
workstation
25 6 22
Total 969 54 372
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Table 3: Validation of knowledge for working posture
Data and information Results (DSS) Results (CM)
Trunk: 0º to 20º flexion
Neck: More than 20º flexion
Legs: Unstable posture
Upper arms: 20º to 45º flexion
Lower arms: Less than 60º flexion
Wrists: More than 15º flexion
Load: Less than 5 kg
Coupling: Fair (hand hold is acceptable)
Activity: Repeated small range action
Medium risk Medium risk
Trunk: 0º to 20º flexion
Neck: 0º to 20º flexion and twisting
Legs: Bilateral weight bearing
Upper arms: 45º to 90º flexion
Lower arms: 60º to 100º flexion
Wrists: More than 15º flexion
Load: Less than 5 kg
Coupling: Fair (Handhold acceptable)
Activity: Repeated small range actions
Medium risk Medium risk
Trunk: Upright
Neck: 0º to 20º flexion
Legs: Bilateral weight bearing
Upper arms: 20º extension to 20º flexion
Lower arms: 60º to 100º flexion
Wrists: 0º to 15º flexion
Load: Less than 5 kg
Coupling: Good (well-fitted handle)
Activity: Body parts are static
Low risk Low risk
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Table 4: Validation of knowledge for muscle activity
Data and information Results (DSS) Results (CM)
Neck effort level: Moderate-head forward about 20º
Neck effort duration: 6 to 20s
Neck effort frequency: 1-5/ min
Shoulders effort level: Light-arm slightly extended
Shoulders effort duration: Less than 6s
Shoulders effort frequency: 1-5/ min
Back effort level: Moderate-forward bending
Back effort duration: 6 to 20s
Back effort frequency: 1-5/ min
Arms/ elbows effort level: Moderate-Moderate force of lifting
Arms/ elbows effort duration: 6 to 20s
Arms/ elbows effort frequency: 1-5/ min
Wrists/ hands/ fingers effort: Moderate- grip with moderate force
Wrists/ hands/ fingers effort duration: 6 to 20s
Wrists/ hands/ fingers effort frequency: 1-5/ min
Legs/ knees effort level: Moderate-bending forward
Legs/ knees effort duration: 6 to 20s
Legs/ knees effort frequency: 1-5/ min
Ankles/ feet/ toes effort level: Moderate-bending forward
Ankles/ feet/ toes effort duration: 6 to 20s
Ankles/ feet/ toes frequency: 1-5/ min
Medium risk Medium risk
Trunk: 0º to 20º flexion
Neck: 0º to 20º flexion and twisting
Legs: Bilateral weight bearing
Upper arms: 45º to 90º flexion
Lower arms: 60º to 100º flexion
Wrists: More than 15º flexion
Load: Less than 5 kg
Coupling: Fair (Handhold acceptable)
Activity: Repeated small range actions
Neck effort : Light-Head turned partly to side and slightly forward
Neck effort duration: Less than 6s
Neck effort frequency: Less than 1/ min
Shoulders effort level: Light-Arm slightly extended
Shoulders effort duration: Less than 6s
Shoulders effort frequency: Less than 1/ min
Back effort level: Moderate-forward bending
Back effort duration: Less than 6s
Back effort frequency: Less than 1/ min
Arms/ elbows effort level: Light-Light lifting
Arms/ elbows effort duration: Less than 6s
Arms/ elbows effort frequency: Less than 1/ min
Wrists/ hands/ fingers effort level: Light-light forces
Wrists/ hands/ fingers effort duration: Less than 6s
Wrists/ hands/ fingers effort frequency: Less than 1/ min
Legs/ knees effort level: Light-standing without bending
Legs/ knees effort duration: Less than 6s
Legs/ knees effort frequency: Less than 1/ min
Ankles/ feet/ toes effort level: Light-standing without bending
Ankles/ feet/ toes effort duration: Less than 6s
Low risk Low risk
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Table 5: Validation of knowledge for standing duration
Data and information Results (DSS) Results (CM)
More than 1 hour of continuous standing, or
more than 4 hrs in total
Medium risk Medium risk
More than 1 hour of continuous standing, and
more than 4 hrs in total
High risk High risk
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Table 6: Validation of knowledge for holding time
Data and information Results (DSS) Results (CM)
Shoulder height: 50%
Arm reach distance: 25%
Low risk Low risk
Shoulder height: 50%
Arm reach distance: 50%
Low risk Low risk
Shoulder height: 75%
Arm reach distance: 25%
Low risk Low risk
Shoulder height: 75%
Arm reach distance: 50%
Low risk Low risk
Shoulder height: 100%
Arm reach distance: 25%
Medium risk Medium risk
Shoulder height: 100%
Arm reach distance: 50% Low risk Low risk
Shoulder height: 50%
Arm reach distance: 75% Medium risk Medium risk
Shoulder height: 75%
Arm reach distance: 75% Medium risk Medium risk
Shoulder height:100%
Arm reach distance: 75%
Medium risk Medium risk
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Table 7: Validation of knowledge for whole-body vibration
Data and information Results (DSS) Results (CM)
Acceleration between
0.100 m/s2
to 0.214 m/s2
Comfort Comfort
Acceleration between
0.315 m/s2
to 0.369 m/s2
Little discomfort Little discomfort
Acceleration between
0.374 m/s2
to 0.382 m/s2 Fairly discomfort Fairly discomfort
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Table 8: Validation of knowledge for indoor air quality
Data and information Results (DSS) Results (CM)
Carbon dioxide: 4045 ppm Safe Safe
Carbon monoxide: 1.67 ppm Safe Safe
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Table 9: Validation for PSSI
Risk factors Risk level Rating criterion Multiplier Results (Manual) Results (DSS)
Working posture Low Safe 2 2x1x244x1x3x1
= 1464
Muscle activity Low Little fatigue 1 1464
Standing duration High Unsafe 244
Holding time Low Comfort
1
Whole-body
vibration
Little
discomfort
Little
discomfort
3
Indoor air quality Safe Safe 1
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Figure 1: An integrated environment between Ergonomic Workstation model and
DSSfPS model within MOSES architecture
INTEGRATED ENVIRONMENT
DESIGN FOR
FUNCTION
MANUFACTURING CODE
GENERATION
MANUFACTURING
MODEL
PRODUCT MODEL
DESIGN FOR
MANUFACTURE
DSSfPS
Ergonomic
Workstation
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Figure 2: Information structure in the Ergonomic Workstation model to represent human-
machine-environment in a workstation
COMPANY
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
DEPARTMENT
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
WORKSTATION
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
WORKER
IAQ WBV
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
E
X
P E
R
T
JOB
ACTIVITY STANDING
DURATION
HOLDING
TIME
MUSCLES
ACTIVITY
WORKING
POSTURE
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Figure 3: DSSfPS model and its mechanisms
Existing
Workstation
Design
Ergonomics
Experts
Improved
Workstation
Design
DSSfPS Model
Working
Memory
Knowledge
Base
Inference
Engine
Analysis and Design
of Standing
Workstation
GUIs
Ergonomics
Info database
Ergonomics
Workstation
Model
M
A
N
U
S
C
R
I
P
T
A
C
C
E
P
T
E
D
ACCEPTED MANUSCRIPT
Figure 4: Structure of knowledge base and working memory in the DSSfPS model
DSSfPS
Posture
Memory
Worker
Memory
Muscle
Rule
Posture
Rule
Holding
Rule
IAQ
Rule
IAQ
Memory
KNOWLEDGE
BASE
WBV
Rule
PSSI
Rule
Holding
Memory
WORKING
MEMORY
PSSI
Memory
Muscle
Memory
Standing
Memory
WBV
Memory
Standing
Rule

Mais conteúdo relacionado

Destaque

Job shop-scheduling uain heurstic bottle neck shift
Job shop-scheduling uain heurstic bottle neck shiftJob shop-scheduling uain heurstic bottle neck shift
Job shop-scheduling uain heurstic bottle neck shift
Kassu Jilcha (PhD)
 
Proposal to establish_center_for_excellence_in_curricular_
Proposal to establish_center_for_excellence_in_curricular_Proposal to establish_center_for_excellence_in_curricular_
Proposal to establish_center_for_excellence_in_curricular_
Kassu Jilcha (PhD)
 
Proposal for center for information assurance
Proposal for center for information assuranceProposal for center for information assurance
Proposal for center for information assurance
Kassu Jilcha (PhD)
 
Occupational health and safety management systems
Occupational health and safety management systemsOccupational health and safety management systems
Occupational health and safety management systems
Kassu Jilcha (PhD)
 

Destaque (14)

Job shop-scheduling uain heurstic bottle neck shift
Job shop-scheduling uain heurstic bottle neck shiftJob shop-scheduling uain heurstic bottle neck shift
Job shop-scheduling uain heurstic bottle neck shift
 
1 s2.0-s2093791114000201-main
1 s2.0-s2093791114000201-main1 s2.0-s2093791114000201-main
1 s2.0-s2093791114000201-main
 
1 s2.0-s2093791114000080-main
1 s2.0-s2093791114000080-main1 s2.0-s2093791114000080-main
1 s2.0-s2093791114000080-main
 
1 s2.0-s2093791114000250-main
1 s2.0-s2093791114000250-main1 s2.0-s2093791114000250-main
1 s2.0-s2093791114000250-main
 
1 s2.0-s2093791114000079-main
1 s2.0-s2093791114000079-main1 s2.0-s2093791114000079-main
1 s2.0-s2093791114000079-main
 
1 s2.0-s0022437513001552-main
1 s2.0-s0022437513001552-main1 s2.0-s0022437513001552-main
1 s2.0-s0022437513001552-main
 
1 s2.0-s2093791114000237-main
1 s2.0-s2093791114000237-main1 s2.0-s2093791114000237-main
1 s2.0-s2093791114000237-main
 
Proposal to establish_center_for_excellence_in_curricular_
Proposal to establish_center_for_excellence_in_curricular_Proposal to establish_center_for_excellence_in_curricular_
Proposal to establish_center_for_excellence_in_curricular_
 
Nps37
Nps37Nps37
Nps37
 
Improving safety culture..
Improving safety culture..Improving safety culture..
Improving safety culture..
 
Innovative knowledge sharing
Innovative knowledge sharingInnovative knowledge sharing
Innovative knowledge sharing
 
Proposal for center for information assurance
Proposal for center for information assuranceProposal for center for information assurance
Proposal for center for information assurance
 
Occupational health and safety management systems
Occupational health and safety management systemsOccupational health and safety management systems
Occupational health and safety management systems
 
Proposal establishment
Proposal establishmentProposal establishment
Proposal establishment
 

1 s2.0-s2093791114000262-main

  • 1. Accepted Manuscript Development of decision support system for analysis and solutions of prolonged standing at workplace Isa Halim, PhD Hambali Arep, PhD Seri Rahayu kamat, PhD Rohana Abdullah, MSc Abdul Rahman Omar, PhD Ahmad Rasdan Ismail, PhD PII: S2093-7911(14)00026-2 DOI: 10.1016/j.shaw.2014.04.002 Reference: SHAW 41 To appear in: Safety and Health at Work Received Date: 30 December 2013 Accepted Date: 15 April 2014 Please cite this article as: Halim I, Arep H, kamat SR, Abdullah R, Rahman Omar A, Ismail AR, Development of decision support system for analysis and solutions of prolonged standing at workplace, Safety and Health at Work (2014), doi: 10.1016/j.shaw.2014.04.002. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
  • 2. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Development of decision support system for analysis and solutions of prolonged standing 1 at workplace 2 3 Isa HALIM, PhD1 , Hambali AREP, PhD1 , Seri Rahayu KAMAT, PhD1 , Rohana 4 ABDULLAH, MSc2 , Abdul Rahman OMAR, PhD3 , Ahmad Rasdan ISMAIL, PhD4 5 1 Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian 6 Tunggal, Hang Tuah Jaya, Melaka, Malaysia. 7 2 Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka, 76100 Durian 8 Tunggal, Hang Tuah Jaya, Melaka, Malaysia. 9 3 Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, 10 Selangor, Malaysia. 11 4 Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, 12 Malaysia. 13 14 15 Correspondence to: 16 Isa Halim 17 Faculty of Manufacturing Engineering 18 Universiti Teknikal Malaysia Melaka 19 76100 Durian Tunggal, Hang Tuah Jaya, Melaka, Malaysia. 20 Tel.: +606-3316501 21 Fax: +606-3316411 22 e-mail: isa@utem.edu.my 23 24 Running tittle: Decision support system for prolonged standing 25
  • 3. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT TITLE: Development of decision support system for analysis and solutions of prolonged 1 standing at workplace 2 ABSTRACT 3 Background: Prolonged standing has been hypothesized as one of vital contributors to 4 discomfort and muscle fatigue to workers at workplace. 5 Objectives: The objective of this study is to develop a decision support system that can 6 provide systematic analysis and solutions in minimizing discomfort and muscle fatigue 7 associated with prolonged standing. 8 Methods: Integration of object oriented programming (OOP) and Model Oriented 9 Simultaneous Engineering System (MOSES) were deployed to design the architecture of 10 the decision support system. 11 Results: Validation of the decision support system was carried out in two manufacturing 12 companies. The validation process demonstrated that the decision support system has 13 generated reliable results. 14 Conclusion: Therefore, this study concluded that the decision support system is a reliable 15 advisory tool for analysis and solutions related to discomfort and muscle fatigue 16 associated with prolonged standing. The decision support system is suggested to undergo 17 further testing for commercialization purpose. 18 19 Keywords: Decision support system, Discomfort, Ergonomics, Fatigue, Prolonged 20 standing 21 22 23
  • 4. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Introduction 24 In industrial workplaces, a lot of jobs require workers to perform in standing 25 position. One of the advantages of standing is that it can provide a large degree of 26 freedom to workers for manipulating materials and tools at the workstation. In addition, 27 standing position is practical and effective when the workers are operating large 28 machines and huge workpieces, reaching of materials and tools, and pushing and pulling 29 any excessive loads. For instance, a worker who works at a conventional surface grinding 30 machine requires large degree of freedom to push and pull the machine table when 31 performing grinding process on the workpiece’s surface. This kind of job nature is nearly 32 impossible to be performed in sitting position, so standing is the best option. Standing 33 working position also promotes the worker to be more productive and consequently 34 contributes to higher productivity for the organization. However, when workers spent a 35 long period of time in standing position throughout their working hours, they may 36 experience discomfort and muscle fatigue at the end of workday. In the long run, they 37 will potentially experience occupational injuries such as work-related musculoskeletal 38 disorders, chronic venous insufficiency, and carotid atherosclerosis [1]. A worker is 39 considered to be exposed to prolonged standing if he or she spent over fifty percent of the 40 total working hours during a full work shift in standing position [2]. Working in standing 41 position for an extended period of time has been recognized as a vital contributor to 42 decrease workers’ performance in industry. It includes occupational injuries, productivity 43 decrement, increased of treatment and medical costs, and lead to subjective discomfort to 44 the workers. When workers perform jobs in prolonged standing, static contraction 45 occurred particularly in their back and legs, thus resulted in discomfort and muscle 46 fatigue [3]. Besides, the employers will also be affected due to lost of revenue in the 47
  • 5. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT forms of productivity, workers’ compensation and health treatment costs [4]. For 48 example, pain in the lower back due to prolonged standing can affect the ability of a 49 worker to perform job that involving flexion or extension postures. This may in turn 50 affect the productivity of the worker. In addition, workers who suffered from 51 occupational injuries must be referred to clinical experts for health treatment, which 52 definitely involve substantial amount of consultancy and medication costs. 53 Many ergonomics simulation systems have been introduced to improve 54 productivity, comfort and safety of workers in manufacturing workplaces [5], [6]. In 55 industrial ergonomics, numerous assessment tools have been suggested for assessing and 56 analyzing risk factors associated with prolonged standing. For examples, the Rapid Entire 57 Body Assessment (REBA) and guidelines on standing at work can be applied to analyze 58 and minimize postural stress due to standing jobs [7], [8]. However, almost all existing 59 methods are available in the form of pen and paper-based and do not provide a 60 comprehensive assessment on prolonged standing. The methods are time consuming, 61 difficult to retrieve electronically, manual data processing, and causes human error when 62 performing calculations. In addition, the existing assessment methods are seen as 63 individual and isolated tools, hence it is difficult to perform multi assessments 64 concurrently [9]. Up till now, innovative best practices and the underlying measurement 65 science for assessing and analyzing the risk factors associated with prolonged standing, 66 and documenting the results of the computations do not exist. As a consequence, the 67 authorized institutions and industry practitioners who are concerned with occupational 68 safety and health do not have a reliable measurement technique to assess and analyze the 69 risk factors associated with prolonged standing jobs in the workplace. This includes 70 proposing solutions to minimize the risk level. 71
  • 6. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT To counter the above limitations, this study was aimed at developing a decision 72 support system to assess, analyze, and propose solutions to minimize discomfort and 73 muscle fatigue associated with prolonged standing at industrial workplaces. Six risk 74 factors related to prolonged standing jobs such as working posture, muscle activity, 75 standing duration, holding time, whole-body vibration, and indoor air quality [10] were 76 considered as the basis to develop the knowledge of the decision support system. These 77 risk factors are related to human, machine, and environment at the workplace. All risk 78 factors were analyzed individually to obtain their risk levels. Then, the risk levels of each 79 risk factor were assigned with multipliers to represent their severity for discomfort and 80 fatigue. A strain index arises through multiplicative interactions between the assigned 81 multipliers. Then, the developed decision support system proposes alternative solutions to 82 minimize the risk levels corresponding to the strain index. In the developed decision 83 support system, Ergonomic Workstation model and Decision Support System for 84 Prolonged Standing (DSSfPS) model were designed to function as data capturing and 85 analysis respectively. 86 Materials and methods 87 There are three major stages involved to develop the decision support system. 88 Stage 1: Knowledge acquisition 89 The first stage in developing the decision support system is knowledge acquisition. 90 In a decision support system, knowledge can be considered as the ‘brain’ to process input 91 data and information that are supplied to the system. The knowledge can be obtained by 92 extracting, structuring, and organizing knowledge from one or more sources [11]. In this 93 study, the knowledge acquisition was performed to determine the risk factors that 94 contribute significantly to discomfort, and muscle fatigue associated with prolonged 95 standing jobs. In addition, the ergonomics evaluation tools to analyze the risk factors 96
  • 7. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT were also obtained through this stage. This is carried out by obtaining information from 97 reliable sources such as published literatures, on-site observations in industries, 98 interviews with management staff and production workers, guidelines and standards from 99 the authorized organizations, and experts’ opinions. 100 Reviews on articles were performed through hard-bound publications such as 101 magazines, journals, and guidelines, as well as on-line databases. The main purposes of 102 literature review are to attain the risk factors that contribute significantly to discomfort 103 and muscle fatigue associated with prolonged standing jobs. Besides, literature review is 104 also useful to identify ergonomics evaluation tools and control measures that can be 105 applied to assess, analyze, and minimize the discomfort, and muscle fatigue. The 106 identified risk factors, methods, and control measures were compiled to be considered in 107 the decision support system. 108 Series of on-site observations were conducted with three metal stamping companies 109 in Malaysia. The main purpose of the on-site observations was to identify risk factors that 110 are present in the standing workstations. A video camcorder was used to record the risk 111 factors in the workstations. The video camcorder was set close to the workstation to 112 record postures, movements and job cycles while workers are performing their jobs. The 113 process of video recording took about 30 minutes to ensure all risk factors, working 114 practices, and job processes in the workstation are completely recorded. The advantage of 115 video recording is that recorded information is easy to replay, stop or pause so that 116 postures, movements and job cycles in the workstation can be monitored. In addition, the 117 risk factors captured by video recording can be considered as knowledge for the decision 118 support system. 119 In addition to the on-site observations, interview sessions with management staff 120 and production workers have been performed to acquire the personal background and job 121
  • 8. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT activities of the workers, discomfort and fatigue experienced by the workers while 122 performing jobs in prolonged standing, history of pain and treatment taken, and 123 suggestions to improve standing workstations. The Prolonged Standing Questionnaire 124 [12] was applied during the interview sessions. Through the interview sessions, the 125 authors were able to acquire useful information that could not be obtained during the on- 126 site observations such as the solutions applied by the management staff and production 127 workers to minimize discomfort and muscle fatigue associated with prolonged standing. 128 Authorized organizations such as International Organization for Standardization 129 (ISO) and Department of Safety and Health of Malaysia (DOSH) are good sources to 130 acquire information on prolonged standing at workplace. These institutions have 131 published regulations and guidelines on standing at workplace. Guidelines on standing at 132 workplace [8], code of practice for indoor air quality [13], and standards of comfort 133 levels due to acceleration values of whole-body vibration [14] were referred to establish 134 the knowledge of decision support system. 135 Experts include ergonomic practitioners, medical doctors, physiotherapists, safety 136 and health engineers, and academicians are the significant contributors to develop the 137 knowledge of decision support system. Their opinions and advices were gathered through 138 discussions in seminars and conferences. One of the outcomes from the discussion was 139 the selection of ergonomics evaluation tools to be applied in the decision support system. 140 All risk factors related to discomfort and muscle fatigue associated with prolonged 141 standing which are compiled from the abovementioned sources have been categorized 142 into three domains namely human, machine and environment. Each risk factor from these 143 domains was equipped with ergonomics evaluation tools to analyze and quantify the risk 144 levels. For example, risk factor associated with awkward working posture has been 145 identified as a vital contributor to discomfort and fatigue. It is categorized under human 146
  • 9. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT domain, and the Rapid Entire Body Assessment [7] was applied to analyze the working 147 posture when a worker performs jobs in prolonged standing. The process to integrate the 148 risk factors and ergonomics evaluation tools will be performed in second stage. 149 Stage 2: Knowledge integration 150 The second stage continues with integrating all the knowledge obtained through the 151 abovementioned sources. All risk factors that contribute significantly to discomfort and 152 muscle fatigue associated with prolonged standing are suited with ergonomics evaluation 153 tools to quantify the risk levels. Based on the risk factors, Prolonged Standing Strain 154 Index (PSSI) was developed. Details of the PSSI development can be found in the recent 155 publication [10]. 156 Stage 3: Ergonomic workstation model and DSSfPS model 157 This study deployed the Model Oriented Simultaneous Engineering System 158 (MOSES) architecture [9], [15] to develop the decision support system. The decision 159 support system has two main models namely Ergonomic Workstation model and 160 Decision Support System for Prolonged Standing (DSSfPS) model. The Ergonomic 161 Workstation model captures data and information on workplace, worker, working 162 posture, muscles activity, standing duration, holding time, whole-body vibration, and 163 indoor air quality in the workplaces. 164 DSSfPS model on the other hand comprises knowledge and established ergonomics 165 evaluation tools to analyze data about risk factors that are captured by Ergonomic 166 Workstation model. The DSSfPS model is functioned to quantify risk levels of each risk 167 factor, and compute Prolonged Standing Strain Index (PSSI) value. The DSSfPS model 168 will suggest alternative solutions with respect to PSSI value to minimize discomfort and 169 fatigue while performing jobs in standing workstation. A working memory in DSSfPS 170 model is used to save all results from the analysis. Both Ergonomic Workstation model 171
  • 10. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT and DSSfPS model are well fitted under Manufacturing Model of MOSES architecture 172 (Figure 1). 173 Insert FIGURE 1 here 174 The Ergonomic Workstation model is represented by a workstation, the place of a 175 worker to perform jobs. The data and information captured by the Ergonomic 176 Workstation model are then supplied to DSSfPS model for further analysis. The users 177 (e.g. ergonomics experts) can apply the outcomes of analysis to perform modification on 178 the design of workstation to minimize discomfort and muscle fatigue associated with 179 prolonged standing jobs. The communication between both models in the decision 180 support system is achieved when information and data captured by the Ergonomics 181 Workstation model are supplied to DSSfPS model through an integrated computer 182 environment. 183 The programming architecture of Ergonomic Workstation model and DSSfPS 184 model was developed using Object Oriented Programming (OOP). In addition, Java 185 programming language and open source database db4o (Oracle Corporation, USA) was 186 used as programming language and database engine respectively. The OOP is a 187 programming paradigm uses interactions of class and attribute (sometimes called object) 188 to design the computer programs. The advantage of using OOP is that, any modifications 189 to the information architecture are required, can be done easily. For example, if a system 190 developer wishes to modify the information architecture for certain reasons, he or she can 191 manipulate respective class without interfering other classes. 192 193
  • 11. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Development of ergonomic workstation model 194 The information model of Ergonomic Workstation was designed by considering 195 workers in their actual workplaces. Usually, a workplace is represented by the hierarchy 196 of company, department, and workstation. In the workstation, it consists of at least a 197 human (worker), machine, and working environment. When a worker is performing jobs 198 in standing position, his or her workstation is considered as a critical point where 199 ergonomics principles should be taken into account to minimize discomfort and muscle 200 fatigue. 201 In the Ergonomic Workstation information model, the relationship of each human- 202 machine-environment constituent in a workstation built their own classes represented by 203 the clouds as shown in the information structure (Figure 2). In the information structure, 204 the primary class of the Ergonomic Workstation is COMPANY. Then, DEPARTMENT 205 is assigned as a sub-class of COMPANY. Consecutively, WORKSTATION class is 206 created as sub-class of DEPARTMENT. To represent machine and environment 207 constituents, whole-body vibration (WBV) and indoor air quality (IAQ) classes are 208 created respectively. The WORKER class consists of five sub-classes to represent job 209 activity, working posture, muscle activity, standing duration, and holding time. Except 210 for job activity, all classes represent factors need to be assessed and analyzed when a 211 worker is performing jobs in prolonged standing. Even though there is no ergonomics 212 evaluation carried out for the job activity; however, its information is useful to decide 213 further analysis. For example, if a worker is exposed to activity of jobs associated with 214 ‘standing with forward bending’, ergonomics evaluation associated with working posture 215 assessment will be carried out. 216
  • 12. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT All information on workplace, worker’s profile, and data about risk factors will be 217 saved in Ergonomic Workstation model. The data and information will be manipulated 218 by the DSSfPS model for further analysis. 219 Insert FIGURE 2 here 220 Development of DSSfPS model 221 222 The DSSfPS model is used to analyze the risk factors, quantify standing risk level, 223 and obtain alternative solutions to improve the workstation design improvement. The 224 DSSfPS model plays an important role to provide alternative solutions to design an 225 ergonomic standing workstation; therefore its knowledge development should be given a 226 high priority to ensure the system can achieve desired performances. 227 As depicted in Figure 3, the DSSfPS model has three main mechanisms: a working 228 memory, a knowledge base, and an inference engine. In addition, Graphical User 229 Interfaces (GUIs) are provided in the system to facilitate communication between the 230 decision support system and the users. The relationship between working memory and 231 knowledge base in the DSSfPS model is clearly shown in Figure 4. 232 Insert FIGURE 3 here 233 Insert FIGURE 4 here 234 235 236 237 238
  • 13. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Working memory of the DSSfPS model 239 The DSSfPS Model is equipped with eight working memories. Generally, the 240 working memories functioned as the media to temporarily store the data and results of 241 analysis. Table 1 summarizes the functions of each working memory. 242 Insert TABLE 1 here 243 244 Knowledge base of the DSSfPS model 245 The knowledge base of DSSfPS model serves as a shell to occupy rule sets for the 246 ergonomic evaluation tools such as Posture Rule, Muscle Rule, Holding Rule, Standing 247 Rule, WBV Rule, and IAQ Rule. In addition, PSSI Rule is also embedded in the 248 knowledge base. The rule sets consist of a list of if statements and a list of then conditions 249 to process any input data and provide set of alternative solutions to minimize discomfort 250 and muscle fatigue associated with prolonged standing. The development of rule sets 251 involved two stages. The first stage is assigning each ergonomics evaluation tool into a 252 class. Then, the formulation of rules to reach final results is performed in the second 253 stage. 254 In the first stage, the ergonomics knowledge was assigned to several classes to 255 accommodate the following rule sets: 256 1. Posture Rule – containing rules for working posture analysis, 257 2. Muscle Rule – containing rules for muscles activity analysis, 258 3. Holding Rule – containing rules for holding duration analysis, 259 4. Standing Rule – containing rules for standing time analysis, 260 5. WBV Rule – containing rules for whole-body vibration exposure analysis, and 261 6. IAQ Rule – containing rules for indoor air quality analysis. 262
  • 14. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT In the second stage, the rule set for PSSI Rule was developed. The PSSI Rule has 263 several rules that are used to perform PSSI calculation and obtain recommendation to 264 minimize discomfort and muscle fatigue, based on the PSSI value. The development of 265 PSSI Rule began with assigning the results of risk factors analysis (in terms of risk 266 levels) to multipliers to represent their severity for discomfort and fatigue. A PSSI value 267 arises through multiplicative interactions between these multipliers. Then, potential 268 solutions to minimize the risk levels were recommended corresponding to the PSSI value. 269 Table 2 summarizes the knowledge base of DSSfPS model which include risk factors or 270 knowledge, knowledge description, numbers of rules, questions, and alternative answers. 271 Insert TABLE 2 here 272 273 Inference engine of the DSSfPS model 274 In DSSfPS model, an inference engine is used to achieve results (risk levels, PSSI 275 value and recommendations) by matching rule sets in the knowledge base and data 276 available in the working memory. The method applied to design the inference mechanism 277 is forward chaining. Forward chaining works by processing the data first, and keep using 278 the rules in knowledge base to draw new conclusions given by those data [16], [17]. This 279 study applied forward chaining because it operates via top-down approach which takes 280 data available in the working memory then generate results based on satisfied conditions 281 of rules in the knowledge base. In DSSfPS model, the inference engine performs these 282 functions: 283 1. supply background information of worker such as workplace’s profile, personal 284 details, job activities, and data about risk factors that have been captured by 285 Ergonomic Workstation model to working memory in DSSfPS model, 286
  • 15. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 2. search rule sets in knowledge base to be matched with data from the working 287 memory to obtain results (risk levels, PSSI value and recommendations), and 288 3. retrieve updated working memory database to display outcomes of the analysis. 289 The inference engine of DSSfPS model works in three stages: between GUIs and 290 working memory, between working memory and knowledge base, and at working 291 memory to display the analysis outcomes. 292 Graphical user interfaces (GUIs) 293 In the decision support system, the Graphical User Interfaces (GUIs) are used as 294 communication medium between the user, Ergonomic Workstation model, and DSSfPS 295 model. The GUIs were designed using facilities available in the NetBeans IDE 6.8 296 (Oracle Corporation, USA). The user provides information from the actual industrial 297 workstation such as workplace’s information, worker’s profile, and the data about risk 298 factors to the database in Ergonomic Workstation model through the GUIs. In the 299 decision support system, ten GUIs have been designed to perform various functions. 300 A main menu GUI was designed to enable a user to populate a database in the 301 Ergonomic Workstation model. When the program is executed, the main menu GUI will 302 appear. In the main menu GUI, there are several menus: 303 1. File menu – to exit from the decision support system, 304 2. Manage Database menu – to create databases, 305 3. Populate Database menu – to provide data and information about the risk factors to 306 be analyzed, 307 4. Display Information menu – to preview data and results of analysis, and 308 5. Help menu – to guide the user about the basic operation of the decision support 309 system. 310 311
  • 16. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Integrating the ergonomic workstation model and DSSfPS model 312 Both Ergonomic Workstation model and DSSfPS model have to be integrated in a 313 decision support system to enable prospective users to analyze standing jobs in their 314 workplaces. To employ the decision support system, a user should create a database for 315 Ergonomic Workstation model and a working memory for DSSfPS model. Then, the user 316 should supply information on workplace, worker, and data of risk factors from the actual 317 workplaces and store them into the database in Ergonomic Workstation model. The 318 inference engine retrieves the data and information from the Ergonomic Workstation 319 database and sends to the database in working memory. Then, the inference engine 320 examines and matches rules embedded in the knowledge base of DSSfPS model with 321 data and information from working memory to generate results. The obtained results will 322 be saved in the working memory. The inference engine retrieves the saved results in the 323 working memory for display purpose. 324 Validation of the decision support system 325 A validation process was conducted to ensure the knowledge of developed decision 326 support system able to perform its functionality with an acceptable level of accuracy. To 327 achieve that, this study has performed the validation process through a technical 328 validation using two real case studies [18]. According to technical validation, the results 329 generated by decision support system should be consistent with the results of 330 conventional methods when assessing and analyzing a similar case study [19]. 331 The validation process was carried out through two on-site observations at a metal 332 stamping company in Shah Alam, Malaysia and a footwear manufacturer in Petaling 333 Jaya, Malaysia. To validate the knowledge of the developed decision support system, 334 twenty six workers (n=13 from each company) were selected as samples of study. Data 335 and information about workplace, workstation, worker, and risk factors were acquired 336
  • 17. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT directly from the companies. Data on risk factors including working posture, muscles 337 activity, standing duration, and holding time were observed at three conditions: high, 338 medium, and low risk levels. Data on risk factors associated with whole-body vibration 339 (WBV) were measured using a vibration accelerometer (QUEST Technologies, USA) at 340 the standing workstation. Additionally, the quantities of carbon dioxide and carbon 341 monoxide surrounding the workstation were measured using Indoor Air Quality Probe 342 IQ-410 (Gray Wolf, USA) [20]. In the decision support system, all data and information 343 were supplied to Ergonomic Workstation Model, and DSSfPS Model analyzed them to 344 generate results. The data and information were analyzed based on individual basis. In 345 other words, all workers have their own data and information about workplace, 346 workstation, worker, and risk factors. Similarly, the data about risk factors were analyzed 347 through conventional method, for examples, data about working posture and muscles 348 activity were analyzed using Rapid Entire Body Assessment worksheet [7] and Rodgers 349 Muscle Fatigue Analysis worksheet [21] respectively. 350 Then, this study performed a comparison between the results generated by decision 351 support system and conventional method to determine the validity of knowledge in the 352 developed decision support system. Table 3 to Table 8 present the comparison results of 353 knowledge for the six risk factors (working posture, muscle activity, duration, holding 354 time, whole-body vibration, and indoor air quality). The result of validation for the PSSI 355 is shown in Table 9. Based on the comparison, it is clearly shown that the developed 356 decision support system able to generate results comparable to conventional methods. In 357 other words, results from both decision support system and conventional method showed 358 a good agreement for all analyzed risk factors. 359 Insert TABLE 3 to TABLE 9 here 360 361
  • 18. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Discussion 362 Decision support system has been recognized as one of efficient decision making 363 tools in many applications. For example, in medical care, a decision support system that 364 provides explicit point of decision making to clinicians has achieved clinician compliance 365 rates of 90-95% [22]. This study has developed a decision support system that consists of 366 Ergonomic Workstation model and DSSfPS model. Both models were designed using 367 OOP. The authors found that OOP is versatile and flexible system especially when 368 designing the programming architecture because any modifications and improvement on 369 the models which are related to their classes and attributes can be done easily. In other 370 words, if the programming architecture has to be modified for certain reasons, the authors 371 can manipulate respective class without having to interfere with other classes. This 372 advantage enabled the authors to reorganize the programming architecture easily and 373 time saving. In addition, designing relationship of a work system and its components 374 using OOP is particularly useful for making the designed system easy to be understood 375 [23]. 376 In terms of knowledge base development, this study established the information 377 about risk factors by surveying numerous published research works and performing 378 onsite-observations at industrial workplaces. The combination of literature review and 379 on-site observations has shown an effective way to establish a comprehensive and total 380 knowledge base. As a result, information about risk factors related to human-machine- 381 environment has been established. Corresponding to each risk factor, this study applied 382 reliable sources such as established ergonomics evaluation tools, guidelines, and standard 383 for data analysis and decision making. As compared to other decision support system for 384 ergonomics application, the acquisition of knowledge is solely referred to literature 385 review [24]. 386
  • 19. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT In the knowledge base, the current study developed the rule sets utilizing if-then 387 production rule to execute the knowledge. The if-then production rule is preferred 388 because the data and information to be analyzed by the developed decision support 389 system requires straight forward manipulations. In many rule sets development, fuzzy 390 rule is widely used [25], [26], [27], [28], [29] however, the fuzzy rule is not suitable in 391 the current study because its decision-making is not always a matter of black and white; it 392 often involves grey areas [30]. 393 Working memory is a vital component in a decision support system as it is used to 394 store data and information supplied by the users. In developed decision support system, 395 data and information about workplaces, workers, and risk factors captured by the 396 Ergonomic Workstation model and results of analysis performed by DSSfPS model are 397 saved in a working memory. When the decision support system is used to perform many 398 assessments, the data in working memory become larger and there is a possibility of data 399 confliction. This may lead to data manipulation errors. To avoid this, the working 400 memory has to be cleaned. To clear the working memory, it should be initialized. This 401 study created a function to initialize working memory of DSSfPS model by deleting the 402 old data. Interestingly, the deletion process in the working memory of DSSfPS model is 403 not affecting the data and information about workplaces, workers, and risk factors that 404 are saved in the Ergonomic Workstation model. The program code deletes the results of 405 previous assessment in the working memory of DSSfPS model, however, the data and 406 information about workplaces, workers, and risk factors are still available in the 407 Ergonomic Workstation model. The advantage of this system is that data and information 408 stored in the Ergonomic Workstation model could be retrieved when further assessment 409 is required. 410
  • 20. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT In this study, forward chaining method was used to develop the inference engine. 411 The study prefers this method because it works through top-down approach which takes 412 data available in the working memory then generates results based on satisfied conditions 413 of rules in the knowledge base. For instance, consider rule sets in the class Posture Rule: 414 Rule 1: if reba_score = 1 then posture_risk_level = “Negligible” 415 Rule 2: if posture_risk_level = “Negligible” then PostureMultiplier = 1 416 Rule 3: if PostureMultiplier = 1 then 417 PostureRecommendation = “"The posture should be maintained" 418 Based on forward chaining method, start with Rule 1 and go on downward (Rule 3) till a 419 rule that fires is found. In other words, the forward chaining method is data-driven 420 because the initial data are processed first (reba_score, posture_risk_level, 421 PostureMultiplier) and keep using the rules to achieve goal (PostureRecommendation). 422 Ten GUIs have been equipped in the decision support system for convenient data 423 input, analysis, and display. The GUIs are predominantly used to key in data and 424 information about workplaces, workers, risk factors including working posture, muscles 425 activity, standing duration, holding time, whole-body vibration, and indoor air quality. 426 Each data and information is equipped with individual GUI. The GUIs were text-based 427 design with several facilities such as informative message, pull-down menus, check 428 boxes, radio button, and OK and Cancel buttons. There is no image provided in the GUIs 429 because the constraint of GUIs area and difficult to obtain suitable image to represent 430 certain data and information. For example, it is difficult to attach vibration image at 431 certain frequency and acceleration in the whole-body vibration GUI because the 432 quantities are nearly impossible to be captured. 433 At the end, the developed decision support system has undergone validation process. 434 Through the validation process, this study found that results generated by the decision 435
  • 21. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT support system are comparable to conventional method. The advantage of using the 436 decision support system is time saving and systematic data manipulation. 437 Conclusion 438 A decision support system that is specifically used to analyze risk factors, predict 439 risk levels due to standing work, and propose recommendations to minimize discomfort 440 and fatigue has been developed in this study. This study identified that working posture, 441 muscles activity, standing duration, holding time, whole-body vibration, and indoor air 442 quality were the risk factors for discomfort and muscles fatigue while workers are 443 performing jobs in standing position. Risk levels of the risk factors can be predicted 444 through the Prolonged Standing Stress Index (PSSI). The risk factors and the PSSI have 445 been modeled in a decision support system to provide a systematic analysis and solutions 446 for discomfort and muscle fatigue associated with prolonged standing. Based on the 447 results of validation process, this study concluded that the decision support system is 448 reliable for assessing, analyzing, and proposing solutions to minimize discomfort and 449 muscle fatigue associated with prolonged standing at industrial workplaces. This study 450 suggests further efforts such as extensive testing, attractive and user friendly GUI to 451 make the decision support system commercially available. 452 Acknowledgements 453 The authors would like to acknowledge the Ministry of Higher Education of 454 Malaysia, the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia 455 Melaka, the Ministry of Science, Technology and Innovation of Malaysia for funding this 456 research under e-Science Research Grant (project no.: 06-01-01-SF0258), the Faculty of 457 Mechanical Engineering of Universiti Teknologi MARA and Research Management 458 Institute of Universiti Teknologi MARA for providing facilities and assistance in 459
  • 22. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT conducting this study. Special thank goes to Miyazu (M) Sdn. Bhd. and Kulitkraf Sdn. 460 Bhd. for facilitating the workplace surveys. 461 462 463 References 464 1. Isa H, Omar AR. A review on health effects associated with prolonged standing 465 in the industrial workplaces. International Journal of Research and Reviews in 466 Applied Sciences. 2011;8(1):14–21. Retrieved January 20, 2013, from: 467 www.arpapress.com/Volumes/Vol8Issue1/IJRRAS_8_1_03.pdf 468 2. Tomei F, Baccolo TP, Tomao E, Palmi S, Rosati MV. Chronic venous disorders 469 and occupation. Am J Ind Med.1999;36(6):653–65. 470 3. Krijnen RMA, de Boer EM, Ader HJ, Bruynzeel DP. Diurnal volume changes of 471 the lower legs in healthy males with a profession that requires standing. Skin Res 472 Technol. 1998;4(1):18–23. 473 4. Zander JE, King PM, Ezenwa BN. Influence of flooring conditions on lower leg 474 volume following prolonged standing. Int J Ind Ergon. 2004;34(4):279–88 475 (dx.doi.org/doi:10.1016/j.ergon.2004.04.014). 476 5. Chaffin, D.B. Human simulation for vehicle and workplace design. Hum Factors 477 Ergon Manuf. 2007;17:475-84. 478 6. Kazmierczak, K., Neumann, W.P., & Winkel, J. A case study of serial-flow car 479 disassembly: ergonomics, productivity and potential system performance. Hum 480 Factors Ergon Manuf. 2007; 17:331-51. 481 7. Hignett S, McAtamney L. Rapid entire body assessment (REBA). Appl Ergon. 482 2000;31(2):201–5 (dx.doi.org/doi:10.1016/S0003-6870(99)00039-3). 483
  • 23. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 8. Department of Safety and Health, Ministry of Human Resources, Malaysia. 484 Guidelines on occupational safety and health for standing at work. 2002. 485 Retrieved February 21, 2013, from: http://www.dosh. 486 gov.my/doshv2/phocadownload/guidelines/ garispanduan15.pdf 487 9. Abdul, R.O., & Isa, H. (2010). Modeling of and integrated workstation 488 environment for occupational safety and health application. In Halimahtun 489 Khalid, Alan Hedge & Tareq Z. Ahram (Eds.), Advances in ergonomics modeling 490 and usability evaluation. Boca Raton, FL, USA: CRC Press; 2010. p. 503-12. 491 10. Isa, H., & Abdul, R. O. Development of Prolonged Standing Strain Index to 492 quantify risk levels of standing jobs. Int J Occup Saf Ergon. 2012;18:85-96. 493 11. Turban, E. Decision support and expert systems. Management support systems 494 (Second ed.). New York: Macmillan,1990. 495 12. Halim I, Omar AR, Saman AM, Othman I, Ali MA. Development of a 496 questionnaire for prolonged standing jobs at manufacturing industry. In: 497 Karwowski W, Salvendy G, editors. Advances in human factors, ergonomics, and 498 safety in manufacturing and service industries. Boca Raton, FL, USA: CRC Press; 499 2010. p. 253–61. 500 13. Department of Safety and Health, Ministry of Human Resources, Malaysia. Code 501 of practice on indoor air quality. 2005. Retrieved January 18, 2012, from: 502 http://www.dosh.gov.my/doshv2/phocadownload/CodeOfPractice/codeofpractice 503 onindoorairquality.pdf 504 14. International Organization for Standardization (ISO). Mechanical vibration and 505 shock—evaluation of human exposure to whole-body vibration—part 1: general 506 requirements (Standard No. ISO 2631-1:1997). Geneva, Switzerland: ISO;1997. 507
  • 24. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 15. Harding, J. A., Omar, A. R., & Popplewell, K. Applications of QFD within a 508 concurrent engineering environment. International Journal of Agile Management 509 Systems.1999;1:88-98. Retrieved February 22, 2013, from: 510 http://www.emeraldinsight.com/journals.htm?articleid=852393 511 16. Abraham, A. Rule-based expert systems. In Peter H. Sydenham & Richard Thorn 512 (Eds.), Handbook of Measuring System Design (pp. 909-919): John Wiley & 513 Sons, 2005. 514 17. Lee, T.-Z., Wu, C.-H, & Wei, H.-H. (). KBSLUA: A knowledge-based system 515 applied in river land use assessment. Expert Syst Appl. 2008;34:889-99. 516 18. Imriyas, K. An expert system for strategic control of accidents and insurers’ risks 517 in building construction project. Expert Syst Appl. 2009;36:4021-34. 518 19. Jimenez, M.L, Santamaria, J.M., Barchino, R., Laita, L., Laita, L.M., Gonzalez, 519 L.A., & Asenjo, A. Knowledge representation for diagnosis of care problems 520 through an expert system: Model of the auto-care deficit situations. Expert Syst 521 Appl. 2008;34:2847-57. 522 20. Leman AM, Omar AR, Yusof MZM. Monitoring of welding work environment in 523 small and medium industries (SMIs). International Journal of Research and 524 Reviews in Applied Sciences. 2010;5(1):18–26. Retrieved February 10,2012, 525 from: http://www.arpapress.com/Volumes/Vol5Issue1/IJRRAS_5_1_03.pdf 526 21. Rodgers SH. A functional job analysis technique. Occup Med. 1992;7(4):679– 527 711. 528 22. Morris, A H. Decision support and safety of clinical environments. Qual Saf 529 Health Care. 2002;11:69-75. 530 23. Lin, J. An object-oriented development method for Customer Knowledge 531 Management Information Systems. Knowledge-Based Systems. 2007;20:17–36. 532
  • 25. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Retrieved February 25,2013, from: 533 http://www.sciencedirect.com/science/article/pii/S0950705106001110 534 24. Kayis, B., & Charoenchai, N. Development of a knowledge-based system for non- 535 powered hand tools (Tool Expert): Part I-The scientific basis. Hum Factors Ergon 536 Manuf. 2004;14:257-68. 537 25. Moynihan, G.P., Fonseca, D.J., Meritt, T.W., & Ray, P.S. An object-oriented 538 system for ergonomic risk assessment. Expert Systems. 1995;12(2):149-56. 539 Retrieved February 25,2013, from: 540 http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0394.1995.tb00047.x/abstract 541 26. Aluclu, I., Dalgic, A., & Toprak, Z.F. A fuzzy logic-based model for noise control 542 at industrial workplaces. Appl Ergon. 2008;39:368-78. 543 27. Akay, D., Akcayol, M.A., & Kurt, M. NEFCLASS based extraction of fuzzy rules 544 and classification of risks of low back disorders. Expert Syst Appl. 2008;35: 545 2107-12. 546 28. Azadeh, A., Fam, I.M., Khoshnoud, M., & Nikafrouz, M. Design and 547 implementation of a fuzzy expert system for performance assessment of an 548 integrated health, safety, environment (HSE) and ergonomics system: The case of 549 a gas refinery. Inf Sci (Ny). 2008;178:4280-300. 550 29. Gurcanli, G. E., & Mungen, U. An occupational safety risk analysis method at 551 construction sites using fuzzy sets. Int J Ind Ergon. 2009;39:371-87. 552 30. Liao, S.-H. Expert system methodologies and applications - a decade review from 553 1995 to 2004. Expert Syst Appl. 2005;28:93-103. 554
  • 26. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Table 1: Working memory of DSSfPS Model and functions Working Memory Function Worker Memory Compiles data and information on workplace’s profile (company name, worker’s department, worker’s workstation); worker’s profile (name, employee number, age, and job activity). Posture Memory Saves data, information, and result of working posture analysis. Muscle Memory Saves data and information, and result of muscles activity analysis. Standing Memory Saves data, and result of standing duration analysis. Holding Memory Saves data, and result of holding time analysis. WBV Memory Saves data, and result of whole-body vibration analysis. IAQ Memory Saves data, and result of indoor air quality analysis. PSSI Memory Saves result of PSSI and recommendations.
  • 27. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Table 2: Summary of knowledge base of DSSfPS model Knowledge Knowledge description No. of rule No. of question No. of optional answer Working Posture • Trunk movement and posture • Neck movement and posture • Legs posture and condition • Upper arms posture • Lower arms movement • Wrist movement • Load mass and force condition • Coupling condition • Posture activity 299 16 53 Muscles activity • Effort level of neck, shoulders, back, arms/elbow, wrists/ hands/ fingers, legs/ knees, ankles/ feet/ toes • Continuous effort duration of neck, shoulders, back, arms/elbow, wrists/ hands/ fingers, legs/ knees, ankles/ feet/ toes • Effort frequency of neck, shoulders, back, arms/elbow, wrists/ hands/ fingers, legs/ knees, ankles/ feet/ toes 455 21 84 Holding time • Shoulder height • Arm reach distance 10 2 10 Standing duration • Standing period 3 1 3 WBV • Frequency of vibration (foot-to-head direction) • Acceleration of vibration (foot-to-head direction) 166 3 200 IAQ • The quantity of carbon dioxide • The quantity of carbon monoxide • The quantity of formaldehyde • The quantity of respirable particulates • The quantity of TVOC 11 5 - PSSI • To quantify risk level due to prolonged standing jobs in the workstation 25 6 22 Total 969 54 372
  • 28. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Table 3: Validation of knowledge for working posture Data and information Results (DSS) Results (CM) Trunk: 0º to 20º flexion Neck: More than 20º flexion Legs: Unstable posture Upper arms: 20º to 45º flexion Lower arms: Less than 60º flexion Wrists: More than 15º flexion Load: Less than 5 kg Coupling: Fair (hand hold is acceptable) Activity: Repeated small range action Medium risk Medium risk Trunk: 0º to 20º flexion Neck: 0º to 20º flexion and twisting Legs: Bilateral weight bearing Upper arms: 45º to 90º flexion Lower arms: 60º to 100º flexion Wrists: More than 15º flexion Load: Less than 5 kg Coupling: Fair (Handhold acceptable) Activity: Repeated small range actions Medium risk Medium risk Trunk: Upright Neck: 0º to 20º flexion Legs: Bilateral weight bearing Upper arms: 20º extension to 20º flexion Lower arms: 60º to 100º flexion Wrists: 0º to 15º flexion Load: Less than 5 kg Coupling: Good (well-fitted handle) Activity: Body parts are static Low risk Low risk
  • 29. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Table 4: Validation of knowledge for muscle activity Data and information Results (DSS) Results (CM) Neck effort level: Moderate-head forward about 20º Neck effort duration: 6 to 20s Neck effort frequency: 1-5/ min Shoulders effort level: Light-arm slightly extended Shoulders effort duration: Less than 6s Shoulders effort frequency: 1-5/ min Back effort level: Moderate-forward bending Back effort duration: 6 to 20s Back effort frequency: 1-5/ min Arms/ elbows effort level: Moderate-Moderate force of lifting Arms/ elbows effort duration: 6 to 20s Arms/ elbows effort frequency: 1-5/ min Wrists/ hands/ fingers effort: Moderate- grip with moderate force Wrists/ hands/ fingers effort duration: 6 to 20s Wrists/ hands/ fingers effort frequency: 1-5/ min Legs/ knees effort level: Moderate-bending forward Legs/ knees effort duration: 6 to 20s Legs/ knees effort frequency: 1-5/ min Ankles/ feet/ toes effort level: Moderate-bending forward Ankles/ feet/ toes effort duration: 6 to 20s Ankles/ feet/ toes frequency: 1-5/ min Medium risk Medium risk Trunk: 0º to 20º flexion Neck: 0º to 20º flexion and twisting Legs: Bilateral weight bearing Upper arms: 45º to 90º flexion Lower arms: 60º to 100º flexion Wrists: More than 15º flexion Load: Less than 5 kg Coupling: Fair (Handhold acceptable) Activity: Repeated small range actions Neck effort : Light-Head turned partly to side and slightly forward Neck effort duration: Less than 6s Neck effort frequency: Less than 1/ min Shoulders effort level: Light-Arm slightly extended Shoulders effort duration: Less than 6s Shoulders effort frequency: Less than 1/ min Back effort level: Moderate-forward bending Back effort duration: Less than 6s Back effort frequency: Less than 1/ min Arms/ elbows effort level: Light-Light lifting Arms/ elbows effort duration: Less than 6s Arms/ elbows effort frequency: Less than 1/ min Wrists/ hands/ fingers effort level: Light-light forces Wrists/ hands/ fingers effort duration: Less than 6s Wrists/ hands/ fingers effort frequency: Less than 1/ min Legs/ knees effort level: Light-standing without bending Legs/ knees effort duration: Less than 6s Legs/ knees effort frequency: Less than 1/ min Ankles/ feet/ toes effort level: Light-standing without bending Ankles/ feet/ toes effort duration: Less than 6s Low risk Low risk
  • 30. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Table 5: Validation of knowledge for standing duration Data and information Results (DSS) Results (CM) More than 1 hour of continuous standing, or more than 4 hrs in total Medium risk Medium risk More than 1 hour of continuous standing, and more than 4 hrs in total High risk High risk
  • 31. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Table 6: Validation of knowledge for holding time Data and information Results (DSS) Results (CM) Shoulder height: 50% Arm reach distance: 25% Low risk Low risk Shoulder height: 50% Arm reach distance: 50% Low risk Low risk Shoulder height: 75% Arm reach distance: 25% Low risk Low risk Shoulder height: 75% Arm reach distance: 50% Low risk Low risk Shoulder height: 100% Arm reach distance: 25% Medium risk Medium risk Shoulder height: 100% Arm reach distance: 50% Low risk Low risk Shoulder height: 50% Arm reach distance: 75% Medium risk Medium risk Shoulder height: 75% Arm reach distance: 75% Medium risk Medium risk Shoulder height:100% Arm reach distance: 75% Medium risk Medium risk
  • 32. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Table 7: Validation of knowledge for whole-body vibration Data and information Results (DSS) Results (CM) Acceleration between 0.100 m/s2 to 0.214 m/s2 Comfort Comfort Acceleration between 0.315 m/s2 to 0.369 m/s2 Little discomfort Little discomfort Acceleration between 0.374 m/s2 to 0.382 m/s2 Fairly discomfort Fairly discomfort
  • 33. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Table 8: Validation of knowledge for indoor air quality Data and information Results (DSS) Results (CM) Carbon dioxide: 4045 ppm Safe Safe Carbon monoxide: 1.67 ppm Safe Safe
  • 34. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Table 9: Validation for PSSI Risk factors Risk level Rating criterion Multiplier Results (Manual) Results (DSS) Working posture Low Safe 2 2x1x244x1x3x1 = 1464 Muscle activity Low Little fatigue 1 1464 Standing duration High Unsafe 244 Holding time Low Comfort 1 Whole-body vibration Little discomfort Little discomfort 3 Indoor air quality Safe Safe 1
  • 35. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Figure 1: An integrated environment between Ergonomic Workstation model and DSSfPS model within MOSES architecture INTEGRATED ENVIRONMENT DESIGN FOR FUNCTION MANUFACTURING CODE GENERATION MANUFACTURING MODEL PRODUCT MODEL DESIGN FOR MANUFACTURE DSSfPS Ergonomic Workstation
  • 36. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Figure 2: Information structure in the Ergonomic Workstation model to represent human- machine-environment in a workstation COMPANY E X P E R T E X P E R T E X P E R T E X P E R T E X P E R T E X P E R T DEPARTMENT E X P E R T E X P E R T E X P E R T E X P E R T E X P E R T E X P E R T WORKSTATION E X P E R T E X P E R T E X P E R T E X P E R T E X P E R T WORKER IAQ WBV E X P E R T E X P E R T E X P E R T E X P E R T E X P E R T E X P E R T JOB ACTIVITY STANDING DURATION HOLDING TIME MUSCLES ACTIVITY WORKING POSTURE
  • 37. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Figure 3: DSSfPS model and its mechanisms Existing Workstation Design Ergonomics Experts Improved Workstation Design DSSfPS Model Working Memory Knowledge Base Inference Engine Analysis and Design of Standing Workstation GUIs Ergonomics Info database Ergonomics Workstation Model
  • 38. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT Figure 4: Structure of knowledge base and working memory in the DSSfPS model DSSfPS Posture Memory Worker Memory Muscle Rule Posture Rule Holding Rule IAQ Rule IAQ Memory KNOWLEDGE BASE WBV Rule PSSI Rule Holding Memory WORKING MEMORY PSSI Memory Muscle Memory Standing Memory WBV Memory Standing Rule