SlideShare uma empresa Scribd logo
1 de 15
MULTIPLE QUESTIONS (EXEMPLAR PROBLEMS)
1. Let R be a relationon the setN of natural numbersdefinedbynRm if n dividesm. thenR is
a. Reflexive andsymmetric
b. Transitive and symmetric
c. Equivalence
d. Reflexive,transitive butnot symmetric
2. Let N be the set of natural numbers and the function f : N  be definedby f(n) = 2n + 3  n  N. thenf is
a. Surjective b. Injective c. Biijective d. None of these
3. Set A has 3 elementsandthe setB has 4 elements.Thenthe number ofinjective mappings that can be
definedfromA to B is
a. 144 b. 12 c. 24 d. 64
4. Let f : R  R be definedbyf(x) = sin x and g : R R be definedbyg(x) = x,then f o g is
a. x2
sinx b. (sinx)2
c. sin x2
d.
𝒔𝒊𝒏 𝒙
𝒙 𝟐
5. Let f : R  R be definedbyf(x) = 3x – 4. Then f-1
(x) isgiven by
a.
𝒙+𝟒
𝟑
b.
𝒙
𝟑
- 4 c. 3x – 4 d. none of these
6. The maximumnumber of equivalence relationsonthe set A = {1, 2, 3} are
a. 1 b. 2 c. 3 d. 5
7. Let us define a relationR in R as aRb if a b. thenR is
a. An equivalence relation
b. Reflexive,transitive butnot symmetric
c. Symmetric,transitive but not reflexive
d. Neithertransitive nor reflexive butsymmetric.
8. The identityelementforthe binary operation  definedinQ  {0} as a  b=
𝒂𝒃
𝟐
 a, b  Q  {0} is
a. 1 b. 2 c. 0 d. none of these
9. Let A = {1, 2, 3,….., n} and B = {a, b}. thenthe numbersof surjections from A intoB is
a. n
P2 b. 2n
– 2 c. 2n
– 1 d. none of these
10. Let f : R  R be definedbyf(x) = 3x2
- 5 and g : R  R by g(x) =
𝒙
𝒙 𝟐+ 𝟏
.theng o f is
a.
𝟑 𝒙 𝟐− 𝟓
𝟗𝒙 𝟒− 𝟑𝟎𝒙 𝟐+ 𝟐𝟔
b.
𝟑 𝒙 𝟐− 𝟓
𝟗𝒙 𝟒− 𝟔𝒙 𝟐+ 𝟐𝟔
c.
𝟑 𝒙 𝟐
𝒙 𝟒+𝟐𝒙 𝟐− 𝟒
d.
𝟑 𝒙 𝟐
𝟗𝒙 𝟒+ 𝟑𝟎𝒙 𝟐− 𝟐
11. Whichof the followingfunctionsfromZ into Z are bijections?
a. f(x) = x3
b. f(x) = x + 2 c. f(x) = 2x + 1 d. f(x) = x2
+ 1
12. Let f : R  R be the functionsdefinedbyf(x) = x3
+ 5. Then f-1
(x) is
a. (𝒙 + 𝟓)
𝟏
𝟑 b. (𝒙 − 𝟓)
𝟏
𝟑 c. (𝟓 − 𝒙)
𝟏
𝟑 d. 5 – x
13. Let f : R - {
𝟑
𝟓
}  R be definedbyf(x) =
𝟑𝒙+𝟐
𝟓𝒙−𝟑
. Then
a. f-1
(x) = f(x) b. f-1
(x) = - f(x) c. (fo f) x = - x d. f-1
(x) =
𝟏
𝟏𝟗
f(x)
14. Let f : [2, )  Rbe the functiondefined byf(x) = x2
- 4x + 5, then the range of f is
a. R b. [1, ) c. [4, ) d. [5, )
15. Let f : R  R be givenby f(x) = tan x. Then f-1
(1) is
a.
𝝅
𝟒
b. { n  +
𝝅
𝟒
: n  Z} c. does not exist d. none of these
16. Let the relationR be definedinN by aRb if2a + 3b = 30. Then R = …………………….
17. The principal value branch of sec-1
is
a. [−
𝝅
𝟐
,
𝝅
𝟐
] - {0} b. [0, ]- {
𝝅
𝟐
} c. (0, ) d. (−
𝝅
𝟐
,
𝝅
𝟐
)
18. The value of 𝐬𝐢𝐧−𝟏 ( 𝒄𝒐𝒔(
𝟒𝟑 
𝟓
)) is
a.
𝟑𝝅
𝟓
b.
−𝟕𝝅
𝟓
c.
𝝅
𝟏𝟎
d. -
𝝅
𝟏𝟎
19. The principal value ofthe expressioncos-1
[cos (-6800
)]is
a.
𝟐𝝅
𝟗
b.
−𝟐𝝅
𝟗
c.
𝟑𝟒𝝅
𝟗
d.
𝝅
𝟗
20. If tan-1
x =
𝝅
𝟏𝟎
for some x  R, thenthe value of cot-1
x is
a.
𝝅
𝟓
b.
𝟐𝝅
𝟓
c.
𝟑𝝅
𝟓
d.
𝟒𝝅
𝟓
21. The principal value ofsin-1
(
−√ 𝟑
𝟐
) is
a. −
𝟐𝝅
𝟑
b. −
𝝅
𝟑
c.
𝟒𝝅
𝟑
d.
𝟓𝝅
𝟑
22. The greatestand leastvaluesof (sin-1
x)2
+ (cos-1
x)2
are respectively
a.
𝟓𝝅 𝟐
𝟒
𝒂𝒏𝒅
𝝅 𝟐
𝟖
b.
𝝅
𝟐
𝒂𝒏𝒅
−𝝅
𝟐
c.
𝝅 𝟐
𝟒
𝒂𝒏𝒅
−𝝅 𝟐
𝟒
d.
𝝅 𝟐
𝟒
𝒂𝒏𝒅 𝟎.
23. The value of sin (2 sin-1
(.6)) is
a. .48 b. .96 c. 1.2 d. sin 1.2
24. If sin-1
x + sin-1
y =

𝟐
, then value of cos-1
x + cos-1
y is
a.
𝝅
𝟐
b.  c. 0 d.
𝟐𝝅
𝟑
25. The value of the expressionsin[cot-1
(cos (tan-1
1))]is
a. 0 b. 1 c.
𝟏
√ 𝟑
d. √
𝟐
𝟑
26. Whichof the followingisthe principal value branch ofcosec-1
x?
a. [−
𝝅
𝟐
,
𝝅
𝟐
] b. (0, ) - {
𝝅
𝟐
} c. (−
𝝅
𝟐
,
𝝅
𝟐
) d. [−
𝝅
𝟐
,
𝝅
𝟐
] - {0}
27. If 3tan-1
x + cot-1
x = ,thenx equals
a. 0 b. 1 c. -1 d. ½
28. The value of sin-1
𝐬𝐢𝐧−𝟏 ( 𝒄𝒐𝒔(
𝟑𝟑 
𝟓
)) is
a.
𝟑𝝅
𝟓
b.
−𝟕𝝅
𝟓
c.
𝝅
𝟏𝟎
d. -
𝝅
𝟏𝟎
29. If cos (𝐬𝐢𝐧−𝟏 𝟐
𝟓
+ 𝐜𝐨𝐬−𝟏 𝒙)= 0, thenx is equal to
a.
𝟏
𝟓
b.
𝟐
𝟓
c. 0 d. 1
30. The value of cos-1
(𝒄𝒐𝒔
𝟑𝝅
𝟐
)is equal to
a.
𝟑𝝅
𝟐
b.
𝟓𝝅
𝟐
c.
𝝅
𝟐
d.
𝟕𝝅
𝟐
31. The value of the expression2sec-1
2 + sin-1
(
𝟏
𝟐
) is
a.
𝝅
𝟔
b.
𝟓𝝅
𝟔
c. 1 d.
𝟕𝝅
𝟔
32. If sin-1
(
𝟐𝒂
𝟏+ 𝒂 𝟐
) + cos-1
(
𝟏− 𝒂 𝟐
𝟏+ 𝒂 𝟐
) = tan-1
(
𝟐𝒙
𝟏− 𝒙 𝟐
), where a, x  ]0, 1, then the value of x is
a. 0 b.
𝒂
𝟐
c. a d.
𝟐𝒂
𝟏− 𝒂 𝟐
33. The value of the expressiontan (
𝟏
𝟐
𝐜𝐨𝐬−𝟏 𝟐
√ 𝟓
) is
a. 2 + √ 𝟓 b. √ 𝟓 – 2 c. 5 + √ 𝟐 d.
√ 𝟓+ 𝟐
𝟐
34. If A = [
𝟐 −𝟏 𝟑
−𝟒 𝟓 𝟏
] 𝒂𝒏𝒅 𝑩 = [
𝟐 𝟑
𝟒 −𝟐
𝟏 𝟓
] , then
a. Only AB is defined
b. Only BA is defined
c. AB and BA both are defined
d. AB and BA both are not defined.
35. If A and B are two matrices of the order 3  m and 3  n. respectively,andm = n, then the order of matrix
(5A – 2B) is
a. m  3 b. 3  3 c. m  n d. 3  n
36. if A = [
𝟎 𝟏
𝟏 𝟎
] , thenA2
isequal to
a. [
𝟎 𝟏
𝟏 𝟎
] b. [
𝟏 𝟎
𝟏 𝟎
] c. [
𝟎 𝟏
𝟎 𝟏
] d. [
𝟏 𝟎
𝟎 𝟏
]
37. If matrix A = [ 𝒂𝒊𝒋]2  2 , where aij = 1 if i  j= 0 if i = j
a. I b. A c. 0 d. none of these
38. The matrix [
𝟏 𝟎 𝟎
𝟎 𝟐 𝟎
𝟎 𝟎 𝟒
]is a
a. Identitymatrix b. symmetric matrix c. skew symmetricmatrix d. none of these
39. If A is matrix of order m  n and B is a matrix such that AB and BAare both defined,thenorderof matrix B is
a. m  m b. n  n c. m  n d. n  m
40. if A and B are matrices ofsame order, then(AB - BA) isa
a. skew symmetricmatrix
b. null matrix
c. symmetricmatrix
d. unit matrix
41. If A is a square matrix such that A2
= I, then(A – I)3
+ (A + I)3
- 7A is equal to
a. A b. I – A c. I + A d. 3A
42. For any two matrices A and B, we have
a. AB = BA b. AB  BA c. AB= 0 d. none of these
43. If x , y  R, thenthe determinant  = |
𝒄𝒐𝒔 𝒙 −𝒔𝒊𝒏 𝒙 𝟏
𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝟏
𝒄𝒐𝒔(𝒙 + 𝒚) −𝒔𝒊𝒏(𝒙 + 𝒚) 𝟎
| liesinthe interval
a. [- √ 𝟐, √ 𝟐] b. [-1, 1] c. [-√ 𝟐, 1] d. [-1. -√ 𝟐]
44. The value of determinant |
𝒂 − 𝒃 𝒃 + 𝒄 𝒂
𝒃 − 𝒂 𝒄 + 𝒂 𝒃
𝒄 − 𝒂 𝒂 + 𝒃 𝒄
|
a. a3
+ b3
+ c3
b. 3 bc c. a3
+ b3
+ c3
– 3abc d. none of these
45. the determinants |
𝒃 𝟐 − 𝒂𝒃 𝒃 − 𝒄 𝒃𝒄 − 𝒂𝒄
𝒂𝒃 − 𝒂 𝟐 𝒂 − 𝒃 𝒃 𝟐 − 𝒂𝒃
𝒃𝒄 − 𝒂𝒄 𝒄 − 𝒂 𝒂𝒃 − 𝒂 𝟐
| equals
a. abc(b-c) (c-a) (a-b) b. (b-c) (c-a) (a-b) c. (a+b+c)(b-c) (c-a) (a-b) d. None ofthese
46. the maximumvalue of ∆ = |
𝟏 𝟏 𝟏
𝟏 𝟏 + 𝒔𝒊𝒏 𝟏
𝟏 + 𝒄𝒐𝒔 𝟏 𝟏
| is ( is a real number)
a.
𝟏
𝟐
b.
√ 𝟑
𝟐
c. √ 𝟐 d.
𝟐√ 𝟑
𝟒
47. If A = [
𝟐  −𝟑
𝟎 𝟐 𝟓
𝟏 𝟏 𝟑
] , then A-1
existsif
a.  = 2 b.   2 c.   -2 d. none of these
48. If x, y, z are all differentfromzero and |
𝟏 + 𝒙 𝟏 𝟏
𝟏 𝟏 + 𝒚 𝟏
𝟏 𝟏 𝟏 + 𝒛
| = 0, thenvalue of x-1
+ y-1
+ z-1
is
a. x y z b. x-1
y-1
z-1
c. –x-y-z d. -1
49. The functionf(x) = {
𝒔𝒊𝒏𝒙
𝒙
+ 𝒄𝒐𝒔 𝒙, 𝒊𝒇 𝒙 ≠ 𝟎
𝒌, 𝒊𝒇 𝒙 = 𝟎
iscontinuous at x = 0, then the value of k is
a. 3 b. 1 c. 2 d. 1.5
50. The functionf(x) = [x] denotesthe greatestintegerfunction,continuous at
a. 4 b. -2 c. 1 d. 1.5
51. The functionf(x) = | 𝒙| + | 𝒙 + 𝟏| is
a. Continuousat x = 0 as well as x = 1
b. Continuousat x = 1 but not at x = 0
c. Discontinuousat x = 0 as well as at x = 1
d. Continuousat x = 0 but not at x = 1
52. The value of k which makes the functiondefinedby f(x) = {
𝒔𝒊𝒏
𝟏
𝒙
, 𝒊𝒇 𝒙 ≠ 𝟎
𝒌, 𝒊𝒇 𝒙 = 𝟎
, continuose at x = 0 is
a. 8 b. 1 c. -1 d. none of these
53. If u = sin-1
(
𝟐𝒙
𝟏+ 𝒙 𝟐
) and y = tan-1
(
𝟐𝒙
𝟏− 𝒙 𝟐
) , then
𝒅𝒖
𝒅𝒗
is
a.
𝟏
𝟐
b. x c.
𝟏− 𝒙 𝟐
𝟏+ 𝒙 𝟐
d. 1
54. The value of c inMean value theoremfor the functionf(x) = x(x – 2), x  [1. 2] is
a.
𝟑
𝟐
b.
𝟐
𝟑
c.
𝟏
𝟐
d.
𝟑
𝟐
55. The functionf(x) =
𝟒− 𝒙 𝟐
𝟒𝒙− 𝒙 𝟑
is
a. Discontinuousat onlyone point
b. Discontinuousat exactlytwo point
c. Discontinuousat exactlythree point
d. None of these
56. The setof points where the functionf givenby f(x) = | 𝟐𝒙 − 𝟏| isdifferentiable is
a. R b. R - {
𝟏
𝟐
} c. (0,  ) d. none of these
57. If y = log (
𝟏− 𝒙 𝟐
𝟏+ 𝒙 𝟐
) , thenfind
𝒅𝒚
𝒅𝒙
is equal to
a.
𝟒𝒙 𝟑
𝟏− 𝒙 𝟒
b.
−𝟒𝒙
𝟏− 𝒙 𝟒
c.
𝟏
𝟒− 𝒙 𝟒
d.
−𝟒𝒙 𝟑
𝟏− 𝒙 𝟒
58. If x = t2
, y = t3
, then
𝒅 𝟐 𝒚
𝒅𝒙 𝟐
is
a.
𝟑
𝟐
b.
𝟑
𝟒𝒕
c.
𝟑
𝟐𝒕
d.
𝟑
𝟐𝒕
59. The value of c on Rolle’stheoremforthe functionf(x) = x3
- 3x in the interval [0, √ 𝟑] is
a. 1 b. -1 c.
𝟑
𝟐
d.
𝟏
𝟑
60. For the functionf(x) = x +
𝟏
𝒙
, x  [1, 3], the value ofc for mean value theoremis
a. 1 b. 2 c. √ 𝟑 d. none of these
61. The two curves x3
-3xy2
+ 2 = 0 and 3x2
y – y3
= 2
a. Touch each other
b. Cut at right angle
c. Cut an angle
𝝅
𝟑
d. Cut an angle
𝝅
𝟒
62. The tangent to the curve givenby x = et
. cost, y =et
. sin t at t =
𝝅
𝟒
makes withx– axis an angle :
a. 0 b.
𝝅
𝟒
c.
𝝅
𝟑
d.
𝝅
𝟐
63. The equationof the normal to the curve y = sin x at (0, 0) is:
a. x = 0 b. y = 0 c. x + y = 0 d. x – y = 0
64. the pointon the curve y2
= x, where the tangentmakes an angle of
𝝅
𝟒
with x – axis is
a. (
𝟏
𝟐
,
𝟏
𝟒
) b. (
𝟏
𝟒
,
𝟏
𝟐
) c. (4, 2) d. (1, 1)
65. Minimumvalue of f if f(x) = sin x [
−𝝅
𝟐
,
𝝅
𝟐
] is…………………..
66. The sidesof an equilateral triangle are increasingat the ratio of 2 cm/sec. the rate at which the area
increases,whenside is 10 cm is:
a. 10 cm2
/s b. √ 𝟑cm2
/s c. 10 √ 𝟑cm2
/s d.
𝟏𝟎
𝟑
cm2
/s
67. The curve y = 𝒙
𝟏
𝟓 has at (0, 0)
a. A vertical tangent (parallel to y 0 axis)
b. A horizontal tangent(parallel to x – axis)
c. An oblique tangent
d. No tangent
68. The equationof normal to the curve 3x2
- y2
= 8 which isparallel to the line x + 3y = 8 is
a. 3x – y = 8 b. 3x + y + 8 = 0 c. x + 3y ±8 = 0 d. x + 3y = 0
69. If y = x4
– 10 and ifx changes from 2 to 1.99, what is the change in y
a. .32 b. .032 c. 5.68 d. 5.968
70. The pointsat which the tangents to the curve y = x3
- 12x + 18 are parallel to x – axisare:
a. (2, -2), (-2,-34) b. (2, 34), (-2,0) c. (0, 34), (-2, 0) d. (2,2), (-2, 34)
71. The two curves x3
- 3xy2
+ 2 = 0 and 3x2
y – y3
- 2= 0 intersectat an angle of
a.
𝝅
𝟒
b.
𝝅
𝟑
c.
𝝅
𝟐
d.
𝝅
𝟔
72. y = x (x – 3)2
decreasesforthe valuesof x givenby :
a. 1 < x< 3 b. x < 0 c. x > 0 d. 0< x <
𝟑
𝟐
73. Whichof the followingfunctionsisdecreasingon (𝟎,
𝝅
𝟐
)
a. sin 2x b. tan x c. cos x d. cos 3x
74. if x isreal, the minimumvalue of x2
- 8x + 17 is
a. -1 b. 0 c. 1 d. 2
75. The smallestvalue of the polynomial x3
– 18x2
+ 96x in [0,9] is
a. 126 b. 0 c. 135 d. 160
76. The functionf(x) = 2x3
– 3x2
- 12x + 4, has
a. Two points of local maximum
b. Two points of local minimum
c. One maximumand one minimum
d. No maximumor minimum
77. Maximumslope of the curve y = -x3
+ 3x2
+ 9x – 27 is:
a. 0 b. 12 c. 16 d. 32
78. ∫ 𝒆 𝒙 (𝒄𝒐𝒔 𝒙 − 𝒔𝒊𝒏 𝒙 )dx is equal to
a. 𝒆 𝒙 cos x + C b. 𝒆 𝒙 sin x + C c. -𝒆 𝒙 cos x + C d. -𝒆 𝒙 sin x + C
79. ∫
𝒅𝒙
𝒔𝒊𝒏 𝟐 𝒙 𝒄𝒐𝒔 𝟐 𝒙
is equal to
a. Tan x + cot x + C b. (tan x + cit x)2
+ C c. tan x – cot x+C d. (tan x – cot x)2
+ C
80. If ∫
𝟑𝒆 𝒙− 𝟓𝒆−𝒙
𝟒𝒆 𝒙+ 𝟓𝒆−𝒙
dx = ax + b log | 𝟒𝒆 𝒙 + 𝟓𝒆−𝒙|+ 𝑪 , then
a. a =
−𝟏
𝟖
, 𝒃 =
𝟕
𝟖
b. a =
𝟏
𝟖
, 𝒃 =
𝟕
𝟖
c. a =
−𝟏
𝟖
, 𝒃 =
−𝟕
𝟖
d. a =
𝟏
𝟖
, 𝒃 =
−𝟕
𝟖
81. if f and g are continuous functionsin [0, 1] satisfy f(x) = f(a – x) and g = (x) + g (a – x), then∫ 𝒇( 𝒙). 𝒈(𝒙)
𝒂
𝟎 dx is
equal to
a.
𝒂
𝟐
b.
𝒂
𝟐
∫ 𝒇(𝒙)
𝒂
𝟎 dx c. ∫ 𝒇(𝒙)
𝒂
𝟎 dx d. a ∫ 𝒇(𝒙)
𝒂
𝟎 dx
82. If ∫
𝒆 𝒕
𝟏+𝒕
𝒅𝒕 = 𝒂, 𝒕𝒉𝒆𝒏 ∫
𝒆 𝒕
( 𝟏+𝒕) 𝟐
𝟏
𝟎
𝟏
𝟎 dt is equal to
a. a – 1 +
𝒆
𝟐
b. a + 1 -
𝒆
𝟐
c. a – 1 -
𝒆
𝟐
d. a + 1 +
𝒆
𝟐
83. ∫ | 𝒙 𝒄𝒐𝒔 𝝅𝒙| 𝒅𝒙
𝟏
𝟎 is equal to
a.
𝟖
𝝅
b.
𝟒
𝝅
c.
𝟐
𝝅
d.
𝟏
𝝅
84. ∫
𝒄𝒐𝒔 𝟐𝒙−𝒄𝒐𝒔 𝟐
𝒄𝒐𝒔 𝒙−𝒄𝒐𝒔
dx is equal to
a. 2(sinx+ x cos  ) + C b. 2(sinx - x cos  ) + C c. 2(sinx + 2xcos  ) + C d. 2(sinx - 2xcos  ) + C
85. ∫
𝒅𝒙
𝒔𝒊𝒏 ( 𝒙−𝒂) 𝒔𝒊𝒏 (𝒙−𝒃)
is equal to
a. sin (b– a) log |
𝒔𝒊𝒏 (𝒙−𝒃)
𝒔𝒊𝒏 (𝒙−𝒂)
|+ C
b. cosec (b– a) log |
𝒔𝒊𝒏 (𝒙−𝒂)
𝒔𝒊𝒏 (𝒙−𝒃)
|+ C
c. cosec (b– a) log |
𝒔𝒊𝒏 (𝒙−𝒃)
𝒔𝒊𝒏 (𝒙−𝒂)
|+ C
d. sin (b– a) log |
𝒔𝒊𝒏 (𝒙−𝒂)
𝒔𝒊𝒏 (𝒙−𝒃)
|+ C
86. ∫ 𝐭𝐚𝐧−𝟏
√ 𝒙 dx is equal to
a. (x + 1) tan-1
√ 𝒙 - √ 𝒙 + C
b. x tan-1
√ 𝒙 - √ 𝒙 + C
c. √ 𝒙 - x tan-1
√ 𝒙 + C
d. √ 𝒙 – ( + 1) x tan-1
√ 𝒙 + C
87. ∫ 𝒆 𝒙 (
𝟏−𝒙
𝟏+ 𝒙 𝟐
)
𝟐
is equal to
a.
𝒆 𝒙
𝟏+ 𝒙 𝟐
+ C b.
−𝒆 𝒙
𝟏+ 𝒙 𝟐
+ C c.
𝒆 𝒙
( 𝟏+ 𝒙 𝟐) 𝟐
+ C d.
−𝒆 𝒙
( 𝟏+ 𝒙 𝟐) 𝟐
+ C
88. ∫
𝒙 𝟗
( 𝟒𝒙 𝟐+ 𝟏) 𝟔
dx is equal to
a.
𝟏
𝟓𝒙
(𝟒 −
𝟏
𝒙 𝟐
)
−𝟓
+ 𝑪
b.
𝟏
𝟓
(𝟒 +
𝟏
𝒙 𝟐
)
−𝟓
+ 𝑪
c.
𝟏
𝟏𝟎𝒙
( 𝟏 + 𝟒)−𝟓 + 𝑪
d.
𝟏
𝟏𝟎
(
𝟏
𝒙 𝟐
+ 𝟒)
−𝟓
+ 𝑪
89. If ∫
𝒅𝒙
( 𝒙+𝟐)(𝒙 𝟐+ 𝟏)
= 𝒂 𝒍𝒐𝒈| 𝟏+ 𝒙 𝟐| + 𝒃 𝐭𝐚𝐧−𝟏 𝒙 +
𝟏
𝟓
𝒍𝒐𝒈 | 𝒙 + 𝟐| + 𝑪, then
a. a =
−𝟏
𝟏𝟎
, 𝒃 =
−𝟐
𝟓
b. a =
𝟏
𝟏𝟎
, 𝒃 = −
𝟐
𝟓
c. a = 𝟏𝟎 , 𝒃 =
𝟐
𝟓
d. a =
𝟏
𝟏𝟎
, 𝒃 =
𝟐
𝟓
90. ∫
𝒙 𝟑
𝒙+𝟏
is equal to
a. x +
𝒙 𝟐
𝟐
+
𝒙 𝟑
𝟑
− 𝒍𝒐𝒈| 𝟏− 𝒙| + 𝑪
b. x +
𝒙 𝟐
𝟐
−
𝒙 𝟑
𝟑
− 𝒍𝒐𝒈| 𝟏− 𝒙| + 𝑪
c. x -
𝒙 𝟐
𝟐
−
𝒙 𝟑
𝟑
− 𝒍𝒐𝒈 | 𝟏+ 𝒙| + 𝑪
d. x -
𝒙 𝟐
𝟐
+
𝒙 𝟑
𝟑
− 𝒍𝒐𝒈 | 𝟏+ 𝒙| + 𝑪
91. If ∫
𝒙 𝟑 𝒅𝒙
√ 𝟏+ 𝒙 𝟐
= 𝒂( 𝟏 + 𝒙 𝟐)
𝟑
𝟐
+ 𝒃√ 𝟏 + 𝒙 𝟐 + C, then
a. a =
𝟏
𝟑
, b = 1 b. a =
−𝟏
𝟑
, b = 1 c. a =
−𝟏
𝟑
, b = -1 d. a =
𝟏
𝟑
, b = -1
92. ∫
𝒅𝒙
𝟏+𝒄𝒐𝒔 𝟐𝒙
𝝅
𝟒
−𝝅
𝟒
is equal to
a. 1 b. 2 c. 3 d. 4
93. ∫ √ 𝟏 − 𝒔𝒊𝒏 𝟐𝒙
𝝅
𝟐
𝟎 dx is equal to
a. 2√ 𝟐 b. 2 (√ 𝟐+ 1) c. 2 d. 2(√ 𝟐- 1)
94. The area enclosedby the circle x2
+ y2
= 2 is equal to
a. 4 sq unit b. 2 √ 𝟐 sq unit c. 42
sq unit d. 2 sq unit
95. The area enclosedby the ellipse
𝒙 𝟐
𝒂 𝟐
+
𝒚 𝟐
𝒃 𝟐
= 1 is equal to
a. 2
ab b.  ab c.  a2
b d. ab2
96. The area of the regionboundedby the curve y = x2
and the line y = 16
a.
𝟑𝟐
𝟑
b.
𝟐𝟓𝟔
𝟑
c.
𝟔𝟒
𝟑
d.
𝟏𝟐𝟖
𝟑
97. The area of the regionboundedby the y – axis,y = cos x and y = sinx,0 ≤ 𝒙 ≤
𝝅
𝟐
is
a. √ 𝟐sq unit b. (√ 𝟐+ 1) sq unit c. (√ 𝟐- 1) sq unit d. (2√ 𝟐- 1) sq unit
98. The area of the regionboundedby the curve y = √𝟏𝟔 − 𝒙 𝟐 and x – axis is
a. 8 sq unit b. 20  sq unit c. 16  squnit d. 256  squnit
99. Area of the regionboundedby the curve y = cos x betweenx= 0 and x =  is
a. 2 sq unit b. 4 sq unit c. 3 sq unit d. 1 sq unit
100. The area of the regionboundedby parabola y2
= x and the straight line 2y = x is
a.
𝟒
𝟑
sq unit b. 1 sq unit c.
𝟏
𝟑
sq unit d.
𝟐
𝟑
sq unit
101. The area of the regionboundedby the curve y = x + 1 and the linesx = 2 and x = 3 is
a. 2 sq unit b.  sq unit c. 3 sq unit d. 4  squnit
102. The area of the regionboundedby the curve y = x + 1 and the linesx = 2 and x = 3 is
a.
𝟕
𝟐
sq unit b.
𝟗
𝟐
sq unit c.
𝟏𝟏
𝟐
sq unit d.
𝟏𝟑
𝟐
sq unit
103. The degree ofthe differential equation(1+
𝒅𝒚
𝒅𝒙
)3
= (
𝒅 𝟐 𝒚
𝒅𝒙 𝟐
)2
is
a. 1 b. 2 c. 3 d. 4
104. The degree ofthe differential equation
𝒅 𝟐 𝒚
𝒅𝒙 𝟐
+ 𝟑 (
𝒅𝒚
𝒅𝒙
)
𝟐
= 𝒙 𝟐 𝒍𝒐𝒈 (
𝒅 𝟐 𝒚
𝒅𝒙 𝟐
) is
a. 1 b. 2 c. 3 d. not defined
105. The order and degree ofthe differential equation [ 𝟏+ (
𝒅𝒚
𝒅𝒙
)
𝟐
]
𝟐
=
𝒅 𝟐 𝒚
𝒅𝒙 𝟐
respectively,are
a. 1, 2 b. 2, 2 c. 2, 1 d. 4, 2
106. The solutionof the differential equation2x.
𝒅𝒚
𝒅𝒙
– y = 3 representsa familyof
a. Straight lines
b. Circles
c. Parabolas
d. Ellipses
107. The integratingfactor ofthe differential equation
𝒅𝒚
𝒅𝒙
(x log x) + y = 2 logx is
a. ex
b. log xc. log (logx) d. x
108. A solutionof the differential equation(
𝒅𝒚
𝒅𝒙
)2
– x
𝒅𝒚
𝒅𝒙
+ y = 0 is
a. y = 2 b. y = 2x c. y = 2x – 4 d. y = 2x2
– 4
109. Whichof the followingisnot a homogeneousfunctionof x and y.
a. x2
+ 2xyb. 2x – y c. cos2
( ) + d. sinx – cos y
110. Solutionof the differential equation
𝒅𝒚
𝒙
+
𝒅𝒚
𝒚
= 0 is
a. =
𝟏
𝒙
+
𝟏
𝒚
= 𝒄 b. log x . log y = c c. xy = c d. x + y = c
111. The solutionof the differential equationx + 2y = x2
is
a. y =
𝒙 𝟐+ 𝒄
𝟒𝒙 𝟐
b. y =
𝒙 𝟐
𝟒
+ c c. y =
𝒙 𝟐+ 𝒄
𝒙 𝟐
d. y =
𝒙 𝟐+ 𝒄
𝟒𝒙 𝟐
112. The degree ofthe differential equation[1 + (
𝒅𝒚
𝒅𝒙
)2
] =
𝒅 𝟐 𝒚
𝒅𝒙 𝟐
is
a. 4 b.
𝟑
𝟐
c. not defined d. 2
113. The order and degree ofthe differential equation
𝒅 𝟐 𝒚
𝒅𝒙 𝟐
+ (
𝒅𝒚
𝒅𝒙
)
𝟏
𝟒
+ 𝒙
𝟏
𝟓= 0, respectivelyare
a. 2 and not defined b. 2 and 2 c. 2 and 3 d. 3 and 3
114. Integrating factor of the differential equationcosx
𝒅𝒚
𝒅𝒙
+ y sin x = 1 is:
a. cos x b. tan xc. sec x d. sin x
115. Familyy = Ax + A3
of curvesis representedbythe differential equationofdegree:
a. 1 b. 2 c. 3 d. 4
116. Solutionof
𝒅𝒚
𝒅𝒙
- y = 1, y(0) = 1 isgiven by
a. xy = -ex
b. xy = -e-x
c. xy = -1 d. y = 2 ex
– 1
117. The numberof solutions of
𝒅𝒚
𝒅𝒙
=
𝒚+𝟏
𝒙−𝟏
when y(1) = 2 is:
a. None b. one c. two d. infinite
118. Integrating factor of the differential equation(1– x2
)
𝒅𝒚
𝒅𝒙
- xy = 1 is
a. –x b.
𝒙
𝟏+ 𝒙 𝟐
c.√𝟏 − 𝒙 𝟐 d. ½ log(1 – x2
)
119. The general solutionof ex
cos y dx – ex
siny dy = 0 is:
a. ex
cos y = k b. ex
sin y = k c. ex
= k cos y d. ex
= k siny
120. The solutionof the differential equation
𝒅𝒚
𝒅𝒙
=
𝟏+ 𝒚 𝟐
𝟏+ 𝒙 𝟐
is:
a. y = tan-1
x b. y-x = k (1 =xy) c. x = tan-1
y d. tan (xy) = k
121. The integratingfactor ofthe differential equation
𝒅𝒚
𝒅𝒙
+ 𝒚 =
𝟏+𝒚
𝒙
is:
a.
𝒙
𝒆 𝒙
b.
𝒆 𝒙
𝒙
c. xex
d. ex
122. The solutionof the differential equationcosx sin y dx + sinx cos y dy = 0 is:
a.
𝒔𝒊𝒏𝒙
𝒔𝒊𝒏 𝒚
= c b. sin x siny = c c. sin x + siny = c d. cos x cos y = c
123. The solutionof x
𝒅𝒚
𝒅𝒙
+ y = ex
is:
a. y =
𝒆 𝒙
𝒙
+
𝒌
𝒙
b. y = xex
+ cx c. y = xex
+ k d. x =
𝒆 𝒚
𝒚
+
𝒌
𝒚
124. The differential equationofthe familyof curves x2
+ y2
– 2ay = 0, where a isarbitrary constant, is:
a. (x2
– y2
)
𝒅𝒚
𝒅𝒙
= 2xy b. 2(x2
+ y2
)
𝒅𝒚
𝒅𝒙
= xy c. 2(x2
- y2
)
𝒅𝒚
𝒅𝒙
= xy d. (x2
+y2
)
𝒅𝒚
𝒅𝒙
= 2xy
125. The general solutionof
𝒅𝒚
𝒅𝒙
= 2x 𝒆 𝒙 𝟐− 𝒚 is:
a. 𝒆 𝒙 𝟐− 𝒚 = 𝒄 b. 𝒆−𝒚 + 𝒆 𝒙 𝟐
= 𝒄 c. 𝒆 𝒚 + 𝒆 𝒙 𝟐
= 𝒄 d. 𝒆 𝒙 𝟐+ 𝒚 = 𝒄
126. The general solutionof the differential equation
𝒅𝒚
𝒅𝒙
+ xy is:
a. y = c𝒆
−𝒙 𝟐
𝟐 b. y = c𝒆
𝒙 𝟐
𝟐 c. y = (x + c) 𝒆
𝒙 𝟐
𝟐 d. y = (c-x) 𝒆
𝒙 𝟐
𝟐
127. the solutionof the equation(2y – 1) dx– (2x + 3) dy = 0 is:
a.
𝟐𝒙−𝟏
𝟐𝒚+𝟑
= k b.
𝟐𝒚+ 𝟏
𝟐𝒙− 𝟑
= k c.
𝟐𝒙+𝟑
𝟐𝒚−𝟏
= k d.
𝟐𝒙−𝟏
𝟐𝒚−𝟏
= k
128. The solutionof
𝒅𝒚
𝒅𝒙
+ y = e-x
,y (0) = 0 is:
a. y = e-x
(x– 1) b. y = xex
c. y = xe-x
+ 1 d. y = xe-x
129. The order and degree ofthe differential equation (
𝒅 𝟑 𝒚
𝒅𝒙 𝟑
)
𝟐
− 𝟑
𝒅 𝟐 𝒚
𝒅𝒙 𝟐
+ 𝟐 (
𝒅𝒚
𝒅𝒙
)
𝟒
= 𝒚 𝟒 are:
a. 1, 4 b. 3, 4 c. 2, 4 d. 3, 2
130. The order and degree ofthe differential equation [ 𝟏+ (
𝒅𝒚
𝒅𝒙
)
𝟐
] =
𝒅 𝟐 𝒚
𝒅𝒙 𝟐
are:
a. 2,
𝟑
𝟐
b. 2, 3 . 2, 1 d. 3, 4
131. Whichof the followingisthe general solutionof
𝒅 𝟐 𝒚
𝒅𝒙 𝟐
−
𝒅𝒚
𝒅𝒙
𝟐 + y = 0?
a. y = (Ax+ B)ex
b. y = (Ax + B) e-x
c. y = Aex
+ Be-x
d. y = Acos x + B sinx
132. Solutionof the differential equation
𝒅𝒚
𝒅𝒙
+
𝒚
𝒙
= sinx is:
a. x (y + cos x) = sin x + c
b. x (y – cos x 0 = sin x + c
c. xy cos x = sin x + c
d. x (y + cos x) = cos x + c
133. The solutionof the differential equation
𝒅𝒚
𝒅𝒙
= ex – y
+ x2
e-y
is:
a. y = ex – y
– x2
e-y
+ c
b. ey
– ex
= + c
c. ex
+ ey
= + c
d. ex
– ey
=
𝒙 𝟑
𝟑
+ c
134. The magnitude of the vector6𝒊̂ + 𝟐𝒋̂ + 𝟑𝒌̂ is
a. 5 b. 7 c. 12 d. 1
135. The positionvector of the point which dividedthe joinof points withpositionvectors 𝒂⃗⃗ + 𝒃⃗⃗ and 2𝒂⃗⃗ − 𝒃⃗⃗
in the ratio 1 : 2 is
a.
𝟑𝒂⃗⃗ + 𝟐𝒃⃗⃗
𝟑
b. 𝒂⃗⃗ c.
𝟓𝒂⃗⃗ − 𝒃⃗⃗
𝟑
d.
𝟒𝒂⃗⃗ + 𝒃⃗⃗
𝟑
136. The vector with initial pointP(2, -3, 5) and terminal point Q(3, -4, 7) is
a. 𝒊̂ − 𝒋̂ + 𝟐𝒌̂ b. 𝟓𝒊̂ − 𝟕𝒋̂ + 𝟏𝟐𝒌̂ c. −𝒊̂ + 𝒋̂ − 𝟐𝒌̂ d. None of these
137. The angle betweenthe vectors 𝒊̂ − 𝒋̂ 𝒂𝒏𝒅 𝒋̂− 𝒌̂ is
a.
𝝅
𝟑
b.
𝟐𝝅
𝟑
c.
−𝝅
𝟑
d.
𝟓𝝅
𝟔
138. The value of  for whichthe two vectors 2𝒊̂ − 𝒋̂ + 𝟐𝒌̂ 𝒂𝒏𝒅 𝟑𝒊̂ +  𝒋̂+ 𝒌̂ are perpendicularis
a. 2 b. 4 c. 6 d. 8
139. The area of the parallelogramwhose adjacent sidesare 𝒊̂ + 𝒌̂ and 𝟐𝒊̂ + 𝒋̂ + 𝒌̂ is
a. 3 b. 4 c. √ 𝟐 d. √ 𝟑
140. If | 𝒂⃗⃗ | = 𝟖, | 𝒃⃗⃗ | = 𝟑 𝒂𝒏𝒅 | 𝒂⃗⃗ × 𝒃⃗⃗ | = 𝟏𝟐 , thenvalue of is
a. 6√ 𝟑 b. 8√ 𝟑 c. 12√ 𝟑 d. none of these
141. The 2 vector 𝒋̂ + 𝒌̂ and 3𝒊̂ − 𝒋̂ + 𝟒𝒌̂ representsthe two sidesAB and AC,respectivelyofa ABC . the length
of the medianthrough A is
a.
√ 𝟑𝟒
𝟐
b.
√ 𝟒𝟖
𝟐
c. √ 𝟏𝟖 d. None of these
142. The projectionof vector 𝒂⃗⃗ = 𝟐𝒊̂ − 𝒋̂ + 𝒌̂ along 𝒃⃗⃗ = 𝒊̂ + 𝟐𝒋̂ + 𝟐𝒌̂ is
a. 2 b. √ 𝟔 c.
𝟐
𝟑
d.
𝟏
𝟑
143. If 𝒂⃗⃗ and 𝒃⃗⃗ are unit vectors,then what is the angle between 𝒂⃗⃗ and 𝒃⃗⃗ for √ 𝟑 𝒂⃗⃗ and 𝒃⃗⃗ to be a unit vector?
a. 30o
b. 45o
c. 60o
d. 90o
144. The unit vector perpendiculartothe vectors 𝒊̂ − 𝒋̂ 𝒂𝒏𝒅 𝒊̂ + 𝒋̂ forming a right handedsystemis
a. 𝒌̂ b. -𝒌̂ c.
𝒊̂− 𝒋̂
√ 𝟐
d.
𝒊̂+ 𝒋̂
√ 𝟐
145. If | 𝒂⃗⃗ | = 𝟑 and -1  k  2 , then| 𝒌𝒂⃗⃗ | liesinthe interval
a. [0,6] b. [-3,6] c. [3,6] d. [1,2]
146. The vector in the directionof the vector 𝒊̂ − 𝟐𝒋̂ + 𝟐𝒌̂ that has magnitude 9 is
a. 𝒊̂ − 𝟐𝒋̂ + 𝟐𝒌̂ b.
𝒊̂− 𝟐𝒋̂+ 𝟐𝒌̂
𝟑
c. (𝒊̂ − 𝟐𝒋̂ + 𝟐𝒌̂ ) d. 9( 𝒊̂ − 𝟐𝒋̂ + 𝟐𝒌̂)
147. The angle betweentwo vectors 𝒂⃗⃗ and 𝒃⃗⃗ with magnitude √ 𝟑 and 4, respectively,and 𝒂⃗⃗ . 𝒃⃗⃗ = 2√ 𝟑 is
a.
𝝅
𝟔
b.
𝝅
𝟑
c.
𝝅
𝟐
d.
𝟓𝝅
𝟐
148. Findthe value of  such that the vectors 𝒂⃗⃗ = 𝟐𝒊̂ +  𝒋̂+ 𝒌̂ and 𝒃⃗⃗ = 𝒊̂ + 𝟐𝒋̂ + 𝟑𝒌̂ are orthogonal
a. 0 b. 1 c.
𝟑
𝟐
d.
−𝟓
𝟐
149. the value of  for which the vectors 𝟑𝒊̂ − 𝟔𝒋̂ + 𝒌̂ 𝒂𝒏𝒅 𝟐𝒊̂ − 𝟒𝒋̂ +  𝒌̂ are parallel is
a.
𝟐
𝟓
b.
𝟐
𝟑
c.
𝟑
𝟐
d.
𝟓
𝟐
150. For any vector 𝒂⃗⃗ , the value of ( 𝒂⃗⃗ × 𝒊̂) 𝟐 + ( 𝒂⃗⃗ × 𝒋̂) 𝟐 + ( 𝒂⃗⃗ × 𝒌̂)
𝟐
is equal to
a. 𝒂⃗⃗ 𝟐 b. 3 𝒂⃗⃗ 𝟐 c. 4 𝒂⃗⃗ 𝟐 d. 2𝒂⃗⃗ 𝟐
151. If | 𝒂⃗⃗ | = 𝟏𝟎,| 𝒃⃗⃗ | = 𝟐 𝒂𝒏𝒅 𝒂⃗⃗ . 𝒃⃗⃗ = 𝟏𝟐, 𝐭𝐡𝐞𝐧 𝐯𝐚𝐥𝐮𝐞 𝐨𝐟 | 𝒂⃗⃗ × 𝒃⃗⃗ |, is
a. 5 b. 10 c. 14 c. 16
152. If 𝒂⃗⃗ , 𝒃⃗⃗ , 𝒄⃗ are unit vectorssuch that 𝒂⃗⃗ + 𝒃⃗⃗ + 𝒄⃗ = 𝟎⃗⃗ , thenvalue of 𝒂⃗⃗ . 𝒃⃗⃗ + 𝒃⃗⃗ . 𝒄⃗ + 𝒂⃗⃗ . 𝒄⃗
a. 1 b. 3 c. -
𝟑
𝟐
d. none of these
153. Projectionvector of 𝒂⃗⃗ on 𝒃⃗⃗ is
a. (
𝒂⃗⃗ .𝒃⃗⃗
| 𝒃⃗⃗ |
𝟐) 𝒃⃗⃗ b.
𝒂⃗⃗ .𝒃⃗⃗
| 𝒃⃗⃗ |
c.
𝒂⃗⃗ .𝒃⃗⃗
| 𝒂⃗⃗ |
d. (
𝒂⃗⃗ .𝒃⃗⃗
| 𝒂⃗⃗ | 𝟐
) 𝒃⃗⃗
154. If 𝒂⃗⃗ , 𝒃⃗⃗ , 𝒄⃗ are three vectors such that 𝒂⃗⃗ + 𝒃⃗⃗ + 𝒄⃗ = 𝟎⃗⃗ and | 𝒂⃗⃗ | = 𝟐, | 𝒃⃗⃗ | = 𝟑 , | 𝒄⃗ | = 𝟓, then value of
𝒂⃗⃗ . 𝒃⃗⃗ + 𝒃⃗⃗ . 𝒄⃗ + 𝒂⃗⃗ . 𝒄⃗
a. 0 b. 1 c. -19 d. 38
155. P is a point on the line segmentjoiningthe points(3, 2, -1) and (6, 2, -2). If x co-ordinate of P is5, thenits y co-
ordinate is
a. 2 b. 1 c. -1 d. -2
156. If ,, are the anglesthat a line makes withthe positive directionofx, y, z axis, respectively,thenthe
directioncosinesof the line are:
a. sin,sin,sin b. cos,cos,cos c. tan,tan,tan d. cos2
,cos2
,cos2

157. The equationsof x – axis in space are
a. x = 0, y = 0 b. x = 0, z = 0 c. x = 0 d. y = 0, z = 0
158. If the directionscosinesofa line are k, k, k then
a. k > 0 b. 0 < k< 1 c. k = 1 d. k =
𝟏
√ 𝟑
𝒐𝒓 −
𝟏
√ 𝟑
159. The distance of the plane 𝒓⃗ . (
𝟐
𝟕
𝒊̂ +
𝟑
𝟕
𝒋̂ −
𝟔
𝟕
𝒌̂) = 1 from the originis
a. 1 b. 7 c.
𝟏
𝟕
d. none of these
160. The area of the quadrilateral ABCD, where A(0,4,1), b(2,3,-1),c(4,5,0) and D(2, 6, 2) is equal to
a. 9 sq unit b. 18 sq unit c. 27 sq unit d. 81 sq unit
161. The unit vector normal to the plane x + 2y + 3z – 6 = 0
𝟏
√ 𝟏𝟒
𝒊̂ +
𝟐
√ 𝟏𝟒
𝒋̂ +
𝟑
√ 𝟏𝟒
𝒌̂ .
162. The corner pointsof the feasible regiondeterminedbythe systemof linearconstraints are (0, 10), (5,5), (15,
150), (0, 20). Let Z = px + qy, where p, q > 0. Conditionon p and q so that the maximumof Z occurs at both the
points(15, 15) and (0, 20) is
a. p = q b. p = 2q c. q = 2p d. q = 3p
163. Feasible region(shaded) fora LPP isshown in the Fig.Minimumof Z = 4x + 3y occurs at the point
a. (0, 80 b. (2, 5 ) c. (4, 3) d. (9, 0)
164. The corner points of the feasible regiondeterminedbythe system oflinear constraints are (0,0), (0, 40), (20,
40), (60, 20), (60, 0). The objective functionis Z = 4x + 3y. Compare the quantity inColumn A and ColumnB
ColumnA ColumnB
Maximumof Z 325
a. The quantity in columnA is greater
b. The quantity in columnB is greater
c. The two quantitiesare equal
d. The relationshipcan not be determinedonthe basis of the informationsupplied.
165. Corner pointsof the feasible regionforan LPP are (0, 2), (3, 0), (6,0), (6, 8) and (0, 5). Let F = 4x + 6y be the
objective function.The minimum value of F occurs at
a. (0, 2) only
b. (3, 0) only
c. The mid pointof the line segmentjoiningthe points(0, 2) and (3, 0) only
d. Any point on the line segmentjoiningthe points(0, 20 and (3, 0).
166. Let A and B be two events.If P (A) = 0.2, P(B) = 0.4, P(A B) = 0.6, then P(AIB) is equal to
a. 0.8 b. 0.5 c. 0.3 d. 0
167. Let A and B be two eventssuch that P(A) = 0.6, P(B) = 0.2 and P(AIB) = 0.5. thenP(AIB) equals
a.
𝟏
𝟏𝟎
b.
𝟑
𝟏𝟎
c.
𝟑
𝟖
d.
𝟔
𝟕
168. If A and B are independenteventssuchthat 0 < P(A) < 1 and 0 <P(B) < 1 then whichof the followingisnot
correct?
a. A and B are mutually exclusive
b. A and B are independent
c. A and B are independent
d. A and B are independent
169. If P(A) =
𝟒
𝟓
, and P(A  B) =
𝟕
𝟏𝟎
, thenP(B I A) is equal to
a.
𝟏
𝟏𝟎
b.
𝟏
𝟏𝟖
c.
𝟕
𝟖
d.
𝟏𝟕
𝟐𝟎
170. If P(A  B) =
𝟕
𝟏𝟎
and P(B) =
𝟏𝟕
𝟐𝟎
, then P(B I A) is equal to
a.
𝟏𝟒
𝟏𝟕
b.
𝟏
𝟖
c.
𝟕
𝟖
d.
𝟏𝟕
𝟐𝟎
171. If P(A) =
𝟑
𝟏𝟎
, P(B) =
𝟐
𝟓
and P(A  B) =
𝟑
𝟓
, thenP(B I A) + P(AI B) is equal to
a.
𝟏
𝟒
b.
𝟏
𝟑
c.
𝟓
𝟏𝟐
d.
𝟕
𝟐
172. If P(A) =
𝟐
𝟓
, P(B) =
𝟑
𝟏𝟎
and P(A  B) =
𝟏
𝟓
, thenP(B I A) . P(A IB) is equal to
a.
𝟓
𝟔
b.
𝟓
𝟕
c.
𝟐𝟓
𝟒𝟐
d. 1
173. If A and B are two eventssuch that P(A) = ½, P(B) =
𝟏
𝟑
, P(A / B) =
𝟏
𝟒
, thenP(A  B) equals
a.
𝟏
𝟏𝟐
b.
𝟑
𝟒
c.
𝟏
𝟒
d.
𝟑
𝟏𝟔
174. If P(A) = 0.4, P(B) = 0.8 and P(B I A) = 0.6, thenP(A  B) is equal to
a. 0.24 b. 0.3 c. 0.48 d. 0.96
175. You are giventhat A and B are two eventssuch that P(B) =
𝟑
𝟓
, P(A I B) = ½ and P(A  B) =
𝟒
𝟓
, thenP(A) equals
a.
𝟑
𝟏𝟎
b.
𝟏
𝟐
c.
𝟏
𝟓
d.
𝟑
𝟓
176. If P(B) =
𝟑
𝟓
, P(AIB) = ½ and P(A  B) =
𝟒
𝟓
, then P(A  B) + P(A  B) =
a.
𝟒
𝟓
b.
𝟏
𝟐
c.
𝟏
𝟓
d. 1
177. Let A and B be two eventssuch that P(A) =
𝟑
𝟖
, P(B) =
𝟓
𝟖
and thenP(A I B) . P(A IB) isequal to
a.
𝟐
𝟓
b.
𝟑
𝟖
c.
𝟑
𝟐𝟎
d.
𝟔
𝟐𝟓
178. If A and B are such eventsthat P(A) > 0 and P(B)  1, thenP(A I B) equals
a. 1 – P(A I B) b. 1 – P(A IB) c.
𝟏−𝑷(𝑨∪𝑩)
𝑷(𝑩′)
d. P(A) IP(B )
179. A bag contains5 red and 3 blue balls. If3 balls are drawn at random without replacementthe probabilityof
gettingexactly one red ball is
a.
𝟒𝟓
𝟏𝟗𝟔
b.
𝟏𝟑𝟓
𝟑𝟗𝟐
c.
𝟏𝟓
𝟓𝟔
d.
𝟏𝟓
𝟐𝟗
180. Assume that in a family,each child isequallylikelyto be or a girl.A family withthree childrenischosen at
random. The probabilitythat the eldestchildisa girl given that the familyhas at least one girl is
a.
𝟒
𝟕
b.
𝟏
𝟐
c.
𝟏
𝟑
d.
𝟐
𝟑
181. A die is thrown and a card is selectedatrandom from a deck of 52 playing cards. The probabilityof gettingan
evennumberon the die and a spade card is
a.
𝟑
𝟒
b.
𝟏
𝟐
c.
𝟏
𝟒
d.
𝟏
𝟖
182. A box contains 3 orange balls,3 greenballsand 2 blue balls. Three balls are drawn at random from the box
without replacement.The probabilityof drawing 2 greenballsand one blue ball is
a.
𝟑
𝟖
b.
𝟐
𝟐𝟏
c.
𝟏
𝟐𝟖
d.
𝟏𝟔𝟕
𝟏𝟔𝟖
183. Eight coins are tossedtogether.The probabilityof gettingexactly 3 headsis
a.
𝟏
𝟐𝟓𝟔
b.
𝟕
𝟑𝟐
c.
𝟓
𝟑𝟐
d.
𝟑
𝟑𝟐
184. In a college,30% studentsfail in physics,255 fail in mathematics and 10% fail in both. One studentis chosen
at random. The probabilitythat she failsin physicsif she has failedin mathematics is
a.
𝟏
𝟏𝟎
b.
𝟐
𝟓
c.
𝟏
𝟑
d.
𝟗
𝟐𝟎
185. The probabilitydistributionof a discrete random variable X is givenbelow:
X 2 3 4 5
P(X) 𝟓
𝒌
𝟕
𝒌
𝟗
𝒌
𝟏𝟏
𝒌
The value of k is
a. 8 b. 16 c. 32 d. 48

Mais conteúdo relacionado

Mais procurados

Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi indu psthakur
 
(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5SAMEER NAIK
 
The Quadratic Function Derived From Zeros of the Equation (SNSD Theme)
The Quadratic Function Derived From Zeros of the Equation (SNSD Theme)The Quadratic Function Derived From Zeros of the Equation (SNSD Theme)
The Quadratic Function Derived From Zeros of the Equation (SNSD Theme)SNSDTaeyeon
 
15 multi variable functions
15 multi variable functions15 multi variable functions
15 multi variable functionsmath267
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equationsmath123b
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functionsTarun Gehlot
 
5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadraticsmath123b
 
Mathematics 9 Lesson 1-D: System of Equations Involving Quadratic Equations
Mathematics 9 Lesson 1-D: System of Equations Involving Quadratic EquationsMathematics 9 Lesson 1-D: System of Equations Involving Quadratic Equations
Mathematics 9 Lesson 1-D: System of Equations Involving Quadratic EquationsJuan Miguel Palero
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
Integration
IntegrationIntegration
Integrationsuefee
 

Mais procurados (11)

Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
 
(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5
 
The Quadratic Function Derived From Zeros of the Equation (SNSD Theme)
The Quadratic Function Derived From Zeros of the Equation (SNSD Theme)The Quadratic Function Derived From Zeros of the Equation (SNSD Theme)
The Quadratic Function Derived From Zeros of the Equation (SNSD Theme)
 
brain gate
brain gatebrain gate
brain gate
 
15 multi variable functions
15 multi variable functions15 multi variable functions
15 multi variable functions
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equations
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics
 
Mathematics 9 Lesson 1-D: System of Equations Involving Quadratic Equations
Mathematics 9 Lesson 1-D: System of Equations Involving Quadratic EquationsMathematics 9 Lesson 1-D: System of Equations Involving Quadratic Equations
Mathematics 9 Lesson 1-D: System of Equations Involving Quadratic Equations
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Integration
IntegrationIntegration
Integration
 

Semelhante a Mcq exemplar class 12

Mcq for manavsthali( 7 worksheets)
Mcq for manavsthali( 7 worksheets)Mcq for manavsthali( 7 worksheets)
Mcq for manavsthali( 7 worksheets)KarunaGupta1982
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)CrackDSE
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XIIindu thakur
 
Aieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeAieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeMr_KevinShah
 
Midterm Study Guide
Midterm Study GuideMidterm Study Guide
Midterm Study Guidevhiggins1
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)Amr Mohamed
 
Relations and Functions #BB2.0.pdf
Relations and Functions #BB2.0.pdfRelations and Functions #BB2.0.pdf
Relations and Functions #BB2.0.pdfAakashKushwaha26
 
Mcq differential and ordinary differential equation
Mcq differential and ordinary differential equationMcq differential and ordinary differential equation
Mcq differential and ordinary differential equationSayyad Shafi
 
Class XII Mathematics long assignment
Class XII Mathematics long assignmentClass XII Mathematics long assignment
Class XII Mathematics long assignmentnitishguptamaps
 
Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el apMARCELOCHAVEZ23
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Asad Bukhari
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Nur Kamila
 
Review for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docxReview for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docxjoellemurphey
 

Semelhante a Mcq exemplar class 12 (20)

Mcq for manavsthali( 7 worksheets)
Mcq for manavsthali( 7 worksheets)Mcq for manavsthali( 7 worksheets)
Mcq for manavsthali( 7 worksheets)
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
 
TABREZ KHAN.ppt
TABREZ KHAN.pptTABREZ KHAN.ppt
TABREZ KHAN.ppt
 
Aieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeAieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjee
 
Maieee03
Maieee03Maieee03
Maieee03
 
Midterm Study Guide
Midterm Study GuideMidterm Study Guide
Midterm Study Guide
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
Relations and Functions #BB2.0.pdf
Relations and Functions #BB2.0.pdfRelations and Functions #BB2.0.pdf
Relations and Functions #BB2.0.pdf
 
Mcq differential and ordinary differential equation
Mcq differential and ordinary differential equationMcq differential and ordinary differential equation
Mcq differential and ordinary differential equation
 
Class XII Mathematics long assignment
Class XII Mathematics long assignmentClass XII Mathematics long assignment
Class XII Mathematics long assignment
 
Chapters 1 8 ( 6 marks)
Chapters 1   8 ( 6 marks)Chapters 1   8 ( 6 marks)
Chapters 1 8 ( 6 marks)
 
Chapters 1 8 ( 6 marks)
Chapters 1   8 ( 6 marks)Chapters 1   8 ( 6 marks)
Chapters 1 8 ( 6 marks)
 
Chapters 1 8 ( 6 marks)
Chapters 1   8 ( 6 marks)Chapters 1   8 ( 6 marks)
Chapters 1 8 ( 6 marks)
 
Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el ap
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
AEM.pptx
AEM.pptxAEM.pptx
AEM.pptx
 
Review for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docxReview for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docx
 

Mais de KarunaGupta1982

Sample paper class XII MATHEMATICS
Sample paper class XII MATHEMATICSSample paper class XII MATHEMATICS
Sample paper class XII MATHEMATICSKarunaGupta1982
 
Class 11 chapters 9, 10, 11
Class 11 chapters 9, 10, 11Class 11 chapters 9, 10, 11
Class 11 chapters 9, 10, 11KarunaGupta1982
 
Class xi worksheet (9,10,11) two levels
Class xi worksheet (9,10,11) two levelsClass xi worksheet (9,10,11) two levels
Class xi worksheet (9,10,11) two levelsKarunaGupta1982
 
Assignment of straight lines and conic section
Assignment of straight lines and conic sectionAssignment of straight lines and conic section
Assignment of straight lines and conic sectionKarunaGupta1982
 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometryKarunaGupta1982
 
Class xii assignment chapters (1 to 9)
Class xii    assignment chapters (1 to 9)Class xii    assignment chapters (1 to 9)
Class xii assignment chapters (1 to 9)KarunaGupta1982
 
Application of integrals
Application of integralsApplication of integrals
Application of integralsKarunaGupta1982
 
Assignment chapters 3 to 7
Assignment chapters 3 to 7Assignment chapters 3 to 7
Assignment chapters 3 to 7KarunaGupta1982
 
Integrals formula and short questions
Integrals  formula and short questionsIntegrals  formula and short questions
Integrals formula and short questionsKarunaGupta1982
 
Class X1 assignment of chapters 1,3,4,5
Class X1 assignment of chapters 1,3,4,5Class X1 assignment of chapters 1,3,4,5
Class X1 assignment of chapters 1,3,4,5KarunaGupta1982
 
Continuity and differentiability
Continuity and differentiabilityContinuity and differentiability
Continuity and differentiabilityKarunaGupta1982
 
Notes of Matrices and Determinants
Notes of Matrices and DeterminantsNotes of Matrices and Determinants
Notes of Matrices and DeterminantsKarunaGupta1982
 
Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)KarunaGupta1982
 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometryKarunaGupta1982
 

Mais de KarunaGupta1982 (20)

Sample paper class XII MATHEMATICS
Sample paper class XII MATHEMATICSSample paper class XII MATHEMATICS
Sample paper class XII MATHEMATICS
 
Class 11 chapters 9, 10, 11
Class 11 chapters 9, 10, 11Class 11 chapters 9, 10, 11
Class 11 chapters 9, 10, 11
 
Class xi worksheet (9,10,11) two levels
Class xi worksheet (9,10,11) two levelsClass xi worksheet (9,10,11) two levels
Class xi worksheet (9,10,11) two levels
 
Class xii probability
Class xii probabilityClass xii probability
Class xii probability
 
Assignment of straight lines and conic section
Assignment of straight lines and conic sectionAssignment of straight lines and conic section
Assignment of straight lines and conic section
 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometry
 
Class xii assignment chapters (1 to 9)
Class xii    assignment chapters (1 to 9)Class xii    assignment chapters (1 to 9)
Class xii assignment chapters (1 to 9)
 
Mcq exemplar class 12
Mcq exemplar class 12Mcq exemplar class 12
Mcq exemplar class 12
 
Application of integrals
Application of integralsApplication of integrals
Application of integrals
 
Assignment chapters 3 to 7
Assignment chapters 3 to 7Assignment chapters 3 to 7
Assignment chapters 3 to 7
 
Integrals formula and short questions
Integrals  formula and short questionsIntegrals  formula and short questions
Integrals formula and short questions
 
Surface chemistry notes
Surface  chemistry  notesSurface  chemistry  notes
Surface chemistry notes
 
Assignment of solution
Assignment of solutionAssignment of solution
Assignment of solution
 
Class X1 assignment of chapters 1,3,4,5
Class X1 assignment of chapters 1,3,4,5Class X1 assignment of chapters 1,3,4,5
Class X1 assignment of chapters 1,3,4,5
 
Continuity and differentiability
Continuity and differentiabilityContinuity and differentiability
Continuity and differentiability
 
Notes of Matrices and Determinants
Notes of Matrices and DeterminantsNotes of Matrices and Determinants
Notes of Matrices and Determinants
 
Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)
 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometry
 
Differential equation
Differential equationDifferential equation
Differential equation
 
Maxima and minima
Maxima and minima Maxima and minima
Maxima and minima
 

Último

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 

Último (20)

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 

Mcq exemplar class 12

  • 1. MULTIPLE QUESTIONS (EXEMPLAR PROBLEMS) 1. Let R be a relationon the setN of natural numbersdefinedbynRm if n dividesm. thenR is a. Reflexive andsymmetric b. Transitive and symmetric c. Equivalence d. Reflexive,transitive butnot symmetric 2. Let N be the set of natural numbers and the function f : N  be definedby f(n) = 2n + 3  n  N. thenf is a. Surjective b. Injective c. Biijective d. None of these 3. Set A has 3 elementsandthe setB has 4 elements.Thenthe number ofinjective mappings that can be definedfromA to B is a. 144 b. 12 c. 24 d. 64 4. Let f : R  R be definedbyf(x) = sin x and g : R R be definedbyg(x) = x,then f o g is a. x2 sinx b. (sinx)2 c. sin x2 d. 𝒔𝒊𝒏 𝒙 𝒙 𝟐 5. Let f : R  R be definedbyf(x) = 3x – 4. Then f-1 (x) isgiven by a. 𝒙+𝟒 𝟑 b. 𝒙 𝟑 - 4 c. 3x – 4 d. none of these 6. The maximumnumber of equivalence relationsonthe set A = {1, 2, 3} are a. 1 b. 2 c. 3 d. 5 7. Let us define a relationR in R as aRb if a b. thenR is a. An equivalence relation b. Reflexive,transitive butnot symmetric c. Symmetric,transitive but not reflexive d. Neithertransitive nor reflexive butsymmetric. 8. The identityelementforthe binary operation  definedinQ  {0} as a  b= 𝒂𝒃 𝟐  a, b  Q  {0} is a. 1 b. 2 c. 0 d. none of these 9. Let A = {1, 2, 3,….., n} and B = {a, b}. thenthe numbersof surjections from A intoB is a. n P2 b. 2n – 2 c. 2n – 1 d. none of these 10. Let f : R  R be definedbyf(x) = 3x2 - 5 and g : R  R by g(x) = 𝒙 𝒙 𝟐+ 𝟏 .theng o f is a. 𝟑 𝒙 𝟐− 𝟓 𝟗𝒙 𝟒− 𝟑𝟎𝒙 𝟐+ 𝟐𝟔 b. 𝟑 𝒙 𝟐− 𝟓 𝟗𝒙 𝟒− 𝟔𝒙 𝟐+ 𝟐𝟔 c. 𝟑 𝒙 𝟐 𝒙 𝟒+𝟐𝒙 𝟐− 𝟒 d. 𝟑 𝒙 𝟐 𝟗𝒙 𝟒+ 𝟑𝟎𝒙 𝟐− 𝟐 11. Whichof the followingfunctionsfromZ into Z are bijections? a. f(x) = x3 b. f(x) = x + 2 c. f(x) = 2x + 1 d. f(x) = x2 + 1 12. Let f : R  R be the functionsdefinedbyf(x) = x3 + 5. Then f-1 (x) is a. (𝒙 + 𝟓) 𝟏 𝟑 b. (𝒙 − 𝟓) 𝟏 𝟑 c. (𝟓 − 𝒙) 𝟏 𝟑 d. 5 – x 13. Let f : R - { 𝟑 𝟓 }  R be definedbyf(x) = 𝟑𝒙+𝟐 𝟓𝒙−𝟑 . Then
  • 2. a. f-1 (x) = f(x) b. f-1 (x) = - f(x) c. (fo f) x = - x d. f-1 (x) = 𝟏 𝟏𝟗 f(x) 14. Let f : [2, )  Rbe the functiondefined byf(x) = x2 - 4x + 5, then the range of f is a. R b. [1, ) c. [4, ) d. [5, ) 15. Let f : R  R be givenby f(x) = tan x. Then f-1 (1) is a. 𝝅 𝟒 b. { n  + 𝝅 𝟒 : n  Z} c. does not exist d. none of these 16. Let the relationR be definedinN by aRb if2a + 3b = 30. Then R = ……………………. 17. The principal value branch of sec-1 is a. [− 𝝅 𝟐 , 𝝅 𝟐 ] - {0} b. [0, ]- { 𝝅 𝟐 } c. (0, ) d. (− 𝝅 𝟐 , 𝝅 𝟐 ) 18. The value of 𝐬𝐢𝐧−𝟏 ( 𝒄𝒐𝒔( 𝟒𝟑  𝟓 )) is a. 𝟑𝝅 𝟓 b. −𝟕𝝅 𝟓 c. 𝝅 𝟏𝟎 d. - 𝝅 𝟏𝟎 19. The principal value ofthe expressioncos-1 [cos (-6800 )]is a. 𝟐𝝅 𝟗 b. −𝟐𝝅 𝟗 c. 𝟑𝟒𝝅 𝟗 d. 𝝅 𝟗 20. If tan-1 x = 𝝅 𝟏𝟎 for some x  R, thenthe value of cot-1 x is a. 𝝅 𝟓 b. 𝟐𝝅 𝟓 c. 𝟑𝝅 𝟓 d. 𝟒𝝅 𝟓 21. The principal value ofsin-1 ( −√ 𝟑 𝟐 ) is a. − 𝟐𝝅 𝟑 b. − 𝝅 𝟑 c. 𝟒𝝅 𝟑 d. 𝟓𝝅 𝟑 22. The greatestand leastvaluesof (sin-1 x)2 + (cos-1 x)2 are respectively a. 𝟓𝝅 𝟐 𝟒 𝒂𝒏𝒅 𝝅 𝟐 𝟖 b. 𝝅 𝟐 𝒂𝒏𝒅 −𝝅 𝟐 c. 𝝅 𝟐 𝟒 𝒂𝒏𝒅 −𝝅 𝟐 𝟒 d. 𝝅 𝟐 𝟒 𝒂𝒏𝒅 𝟎. 23. The value of sin (2 sin-1 (.6)) is a. .48 b. .96 c. 1.2 d. sin 1.2 24. If sin-1 x + sin-1 y =  𝟐 , then value of cos-1 x + cos-1 y is a. 𝝅 𝟐 b.  c. 0 d. 𝟐𝝅 𝟑 25. The value of the expressionsin[cot-1 (cos (tan-1 1))]is a. 0 b. 1 c. 𝟏 √ 𝟑 d. √ 𝟐 𝟑 26. Whichof the followingisthe principal value branch ofcosec-1 x? a. [− 𝝅 𝟐 , 𝝅 𝟐 ] b. (0, ) - { 𝝅 𝟐 } c. (− 𝝅 𝟐 , 𝝅 𝟐 ) d. [− 𝝅 𝟐 , 𝝅 𝟐 ] - {0} 27. If 3tan-1 x + cot-1 x = ,thenx equals a. 0 b. 1 c. -1 d. ½ 28. The value of sin-1 𝐬𝐢𝐧−𝟏 ( 𝒄𝒐𝒔( 𝟑𝟑  𝟓 )) is a. 𝟑𝝅 𝟓 b. −𝟕𝝅 𝟓 c. 𝝅 𝟏𝟎 d. - 𝝅 𝟏𝟎
  • 3. 29. If cos (𝐬𝐢𝐧−𝟏 𝟐 𝟓 + 𝐜𝐨𝐬−𝟏 𝒙)= 0, thenx is equal to a. 𝟏 𝟓 b. 𝟐 𝟓 c. 0 d. 1 30. The value of cos-1 (𝒄𝒐𝒔 𝟑𝝅 𝟐 )is equal to a. 𝟑𝝅 𝟐 b. 𝟓𝝅 𝟐 c. 𝝅 𝟐 d. 𝟕𝝅 𝟐 31. The value of the expression2sec-1 2 + sin-1 ( 𝟏 𝟐 ) is a. 𝝅 𝟔 b. 𝟓𝝅 𝟔 c. 1 d. 𝟕𝝅 𝟔 32. If sin-1 ( 𝟐𝒂 𝟏+ 𝒂 𝟐 ) + cos-1 ( 𝟏− 𝒂 𝟐 𝟏+ 𝒂 𝟐 ) = tan-1 ( 𝟐𝒙 𝟏− 𝒙 𝟐 ), where a, x  ]0, 1, then the value of x is a. 0 b. 𝒂 𝟐 c. a d. 𝟐𝒂 𝟏− 𝒂 𝟐 33. The value of the expressiontan ( 𝟏 𝟐 𝐜𝐨𝐬−𝟏 𝟐 √ 𝟓 ) is a. 2 + √ 𝟓 b. √ 𝟓 – 2 c. 5 + √ 𝟐 d. √ 𝟓+ 𝟐 𝟐 34. If A = [ 𝟐 −𝟏 𝟑 −𝟒 𝟓 𝟏 ] 𝒂𝒏𝒅 𝑩 = [ 𝟐 𝟑 𝟒 −𝟐 𝟏 𝟓 ] , then a. Only AB is defined b. Only BA is defined c. AB and BA both are defined d. AB and BA both are not defined. 35. If A and B are two matrices of the order 3  m and 3  n. respectively,andm = n, then the order of matrix (5A – 2B) is a. m  3 b. 3  3 c. m  n d. 3  n 36. if A = [ 𝟎 𝟏 𝟏 𝟎 ] , thenA2 isequal to a. [ 𝟎 𝟏 𝟏 𝟎 ] b. [ 𝟏 𝟎 𝟏 𝟎 ] c. [ 𝟎 𝟏 𝟎 𝟏 ] d. [ 𝟏 𝟎 𝟎 𝟏 ] 37. If matrix A = [ 𝒂𝒊𝒋]2  2 , where aij = 1 if i  j= 0 if i = j a. I b. A c. 0 d. none of these 38. The matrix [ 𝟏 𝟎 𝟎 𝟎 𝟐 𝟎 𝟎 𝟎 𝟒 ]is a a. Identitymatrix b. symmetric matrix c. skew symmetricmatrix d. none of these 39. If A is matrix of order m  n and B is a matrix such that AB and BAare both defined,thenorderof matrix B is a. m  m b. n  n c. m  n d. n  m 40. if A and B are matrices ofsame order, then(AB - BA) isa a. skew symmetricmatrix b. null matrix
  • 4. c. symmetricmatrix d. unit matrix 41. If A is a square matrix such that A2 = I, then(A – I)3 + (A + I)3 - 7A is equal to a. A b. I – A c. I + A d. 3A 42. For any two matrices A and B, we have a. AB = BA b. AB  BA c. AB= 0 d. none of these 43. If x , y  R, thenthe determinant  = | 𝒄𝒐𝒔 𝒙 −𝒔𝒊𝒏 𝒙 𝟏 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝟏 𝒄𝒐𝒔(𝒙 + 𝒚) −𝒔𝒊𝒏(𝒙 + 𝒚) 𝟎 | liesinthe interval a. [- √ 𝟐, √ 𝟐] b. [-1, 1] c. [-√ 𝟐, 1] d. [-1. -√ 𝟐] 44. The value of determinant | 𝒂 − 𝒃 𝒃 + 𝒄 𝒂 𝒃 − 𝒂 𝒄 + 𝒂 𝒃 𝒄 − 𝒂 𝒂 + 𝒃 𝒄 | a. a3 + b3 + c3 b. 3 bc c. a3 + b3 + c3 – 3abc d. none of these 45. the determinants | 𝒃 𝟐 − 𝒂𝒃 𝒃 − 𝒄 𝒃𝒄 − 𝒂𝒄 𝒂𝒃 − 𝒂 𝟐 𝒂 − 𝒃 𝒃 𝟐 − 𝒂𝒃 𝒃𝒄 − 𝒂𝒄 𝒄 − 𝒂 𝒂𝒃 − 𝒂 𝟐 | equals a. abc(b-c) (c-a) (a-b) b. (b-c) (c-a) (a-b) c. (a+b+c)(b-c) (c-a) (a-b) d. None ofthese 46. the maximumvalue of ∆ = | 𝟏 𝟏 𝟏 𝟏 𝟏 + 𝒔𝒊𝒏 𝟏 𝟏 + 𝒄𝒐𝒔 𝟏 𝟏 | is ( is a real number) a. 𝟏 𝟐 b. √ 𝟑 𝟐 c. √ 𝟐 d. 𝟐√ 𝟑 𝟒 47. If A = [ 𝟐  −𝟑 𝟎 𝟐 𝟓 𝟏 𝟏 𝟑 ] , then A-1 existsif a.  = 2 b.   2 c.   -2 d. none of these 48. If x, y, z are all differentfromzero and | 𝟏 + 𝒙 𝟏 𝟏 𝟏 𝟏 + 𝒚 𝟏 𝟏 𝟏 𝟏 + 𝒛 | = 0, thenvalue of x-1 + y-1 + z-1 is a. x y z b. x-1 y-1 z-1 c. –x-y-z d. -1 49. The functionf(x) = { 𝒔𝒊𝒏𝒙 𝒙 + 𝒄𝒐𝒔 𝒙, 𝒊𝒇 𝒙 ≠ 𝟎 𝒌, 𝒊𝒇 𝒙 = 𝟎 iscontinuous at x = 0, then the value of k is a. 3 b. 1 c. 2 d. 1.5 50. The functionf(x) = [x] denotesthe greatestintegerfunction,continuous at a. 4 b. -2 c. 1 d. 1.5 51. The functionf(x) = | 𝒙| + | 𝒙 + 𝟏| is a. Continuousat x = 0 as well as x = 1 b. Continuousat x = 1 but not at x = 0 c. Discontinuousat x = 0 as well as at x = 1 d. Continuousat x = 0 but not at x = 1
  • 5. 52. The value of k which makes the functiondefinedby f(x) = { 𝒔𝒊𝒏 𝟏 𝒙 , 𝒊𝒇 𝒙 ≠ 𝟎 𝒌, 𝒊𝒇 𝒙 = 𝟎 , continuose at x = 0 is a. 8 b. 1 c. -1 d. none of these 53. If u = sin-1 ( 𝟐𝒙 𝟏+ 𝒙 𝟐 ) and y = tan-1 ( 𝟐𝒙 𝟏− 𝒙 𝟐 ) , then 𝒅𝒖 𝒅𝒗 is a. 𝟏 𝟐 b. x c. 𝟏− 𝒙 𝟐 𝟏+ 𝒙 𝟐 d. 1 54. The value of c inMean value theoremfor the functionf(x) = x(x – 2), x  [1. 2] is a. 𝟑 𝟐 b. 𝟐 𝟑 c. 𝟏 𝟐 d. 𝟑 𝟐 55. The functionf(x) = 𝟒− 𝒙 𝟐 𝟒𝒙− 𝒙 𝟑 is a. Discontinuousat onlyone point b. Discontinuousat exactlytwo point c. Discontinuousat exactlythree point d. None of these 56. The setof points where the functionf givenby f(x) = | 𝟐𝒙 − 𝟏| isdifferentiable is a. R b. R - { 𝟏 𝟐 } c. (0,  ) d. none of these 57. If y = log ( 𝟏− 𝒙 𝟐 𝟏+ 𝒙 𝟐 ) , thenfind 𝒅𝒚 𝒅𝒙 is equal to a. 𝟒𝒙 𝟑 𝟏− 𝒙 𝟒 b. −𝟒𝒙 𝟏− 𝒙 𝟒 c. 𝟏 𝟒− 𝒙 𝟒 d. −𝟒𝒙 𝟑 𝟏− 𝒙 𝟒 58. If x = t2 , y = t3 , then 𝒅 𝟐 𝒚 𝒅𝒙 𝟐 is a. 𝟑 𝟐 b. 𝟑 𝟒𝒕 c. 𝟑 𝟐𝒕 d. 𝟑 𝟐𝒕 59. The value of c on Rolle’stheoremforthe functionf(x) = x3 - 3x in the interval [0, √ 𝟑] is a. 1 b. -1 c. 𝟑 𝟐 d. 𝟏 𝟑 60. For the functionf(x) = x + 𝟏 𝒙 , x  [1, 3], the value ofc for mean value theoremis a. 1 b. 2 c. √ 𝟑 d. none of these 61. The two curves x3 -3xy2 + 2 = 0 and 3x2 y – y3 = 2 a. Touch each other b. Cut at right angle c. Cut an angle 𝝅 𝟑 d. Cut an angle 𝝅 𝟒 62. The tangent to the curve givenby x = et . cost, y =et . sin t at t = 𝝅 𝟒 makes withx– axis an angle : a. 0 b. 𝝅 𝟒 c. 𝝅 𝟑 d. 𝝅 𝟐 63. The equationof the normal to the curve y = sin x at (0, 0) is: a. x = 0 b. y = 0 c. x + y = 0 d. x – y = 0
  • 6. 64. the pointon the curve y2 = x, where the tangentmakes an angle of 𝝅 𝟒 with x – axis is a. ( 𝟏 𝟐 , 𝟏 𝟒 ) b. ( 𝟏 𝟒 , 𝟏 𝟐 ) c. (4, 2) d. (1, 1) 65. Minimumvalue of f if f(x) = sin x [ −𝝅 𝟐 , 𝝅 𝟐 ] is………………….. 66. The sidesof an equilateral triangle are increasingat the ratio of 2 cm/sec. the rate at which the area increases,whenside is 10 cm is: a. 10 cm2 /s b. √ 𝟑cm2 /s c. 10 √ 𝟑cm2 /s d. 𝟏𝟎 𝟑 cm2 /s 67. The curve y = 𝒙 𝟏 𝟓 has at (0, 0) a. A vertical tangent (parallel to y 0 axis) b. A horizontal tangent(parallel to x – axis) c. An oblique tangent d. No tangent 68. The equationof normal to the curve 3x2 - y2 = 8 which isparallel to the line x + 3y = 8 is a. 3x – y = 8 b. 3x + y + 8 = 0 c. x + 3y ±8 = 0 d. x + 3y = 0 69. If y = x4 – 10 and ifx changes from 2 to 1.99, what is the change in y a. .32 b. .032 c. 5.68 d. 5.968 70. The pointsat which the tangents to the curve y = x3 - 12x + 18 are parallel to x – axisare: a. (2, -2), (-2,-34) b. (2, 34), (-2,0) c. (0, 34), (-2, 0) d. (2,2), (-2, 34) 71. The two curves x3 - 3xy2 + 2 = 0 and 3x2 y – y3 - 2= 0 intersectat an angle of a. 𝝅 𝟒 b. 𝝅 𝟑 c. 𝝅 𝟐 d. 𝝅 𝟔 72. y = x (x – 3)2 decreasesforthe valuesof x givenby : a. 1 < x< 3 b. x < 0 c. x > 0 d. 0< x < 𝟑 𝟐 73. Whichof the followingfunctionsisdecreasingon (𝟎, 𝝅 𝟐 ) a. sin 2x b. tan x c. cos x d. cos 3x 74. if x isreal, the minimumvalue of x2 - 8x + 17 is a. -1 b. 0 c. 1 d. 2 75. The smallestvalue of the polynomial x3 – 18x2 + 96x in [0,9] is a. 126 b. 0 c. 135 d. 160 76. The functionf(x) = 2x3 – 3x2 - 12x + 4, has a. Two points of local maximum b. Two points of local minimum c. One maximumand one minimum d. No maximumor minimum 77. Maximumslope of the curve y = -x3 + 3x2 + 9x – 27 is:
  • 7. a. 0 b. 12 c. 16 d. 32 78. ∫ 𝒆 𝒙 (𝒄𝒐𝒔 𝒙 − 𝒔𝒊𝒏 𝒙 )dx is equal to a. 𝒆 𝒙 cos x + C b. 𝒆 𝒙 sin x + C c. -𝒆 𝒙 cos x + C d. -𝒆 𝒙 sin x + C 79. ∫ 𝒅𝒙 𝒔𝒊𝒏 𝟐 𝒙 𝒄𝒐𝒔 𝟐 𝒙 is equal to a. Tan x + cot x + C b. (tan x + cit x)2 + C c. tan x – cot x+C d. (tan x – cot x)2 + C 80. If ∫ 𝟑𝒆 𝒙− 𝟓𝒆−𝒙 𝟒𝒆 𝒙+ 𝟓𝒆−𝒙 dx = ax + b log | 𝟒𝒆 𝒙 + 𝟓𝒆−𝒙|+ 𝑪 , then a. a = −𝟏 𝟖 , 𝒃 = 𝟕 𝟖 b. a = 𝟏 𝟖 , 𝒃 = 𝟕 𝟖 c. a = −𝟏 𝟖 , 𝒃 = −𝟕 𝟖 d. a = 𝟏 𝟖 , 𝒃 = −𝟕 𝟖 81. if f and g are continuous functionsin [0, 1] satisfy f(x) = f(a – x) and g = (x) + g (a – x), then∫ 𝒇( 𝒙). 𝒈(𝒙) 𝒂 𝟎 dx is equal to a. 𝒂 𝟐 b. 𝒂 𝟐 ∫ 𝒇(𝒙) 𝒂 𝟎 dx c. ∫ 𝒇(𝒙) 𝒂 𝟎 dx d. a ∫ 𝒇(𝒙) 𝒂 𝟎 dx 82. If ∫ 𝒆 𝒕 𝟏+𝒕 𝒅𝒕 = 𝒂, 𝒕𝒉𝒆𝒏 ∫ 𝒆 𝒕 ( 𝟏+𝒕) 𝟐 𝟏 𝟎 𝟏 𝟎 dt is equal to a. a – 1 + 𝒆 𝟐 b. a + 1 - 𝒆 𝟐 c. a – 1 - 𝒆 𝟐 d. a + 1 + 𝒆 𝟐 83. ∫ | 𝒙 𝒄𝒐𝒔 𝝅𝒙| 𝒅𝒙 𝟏 𝟎 is equal to a. 𝟖 𝝅 b. 𝟒 𝝅 c. 𝟐 𝝅 d. 𝟏 𝝅 84. ∫ 𝒄𝒐𝒔 𝟐𝒙−𝒄𝒐𝒔 𝟐 𝒄𝒐𝒔 𝒙−𝒄𝒐𝒔 dx is equal to a. 2(sinx+ x cos  ) + C b. 2(sinx - x cos  ) + C c. 2(sinx + 2xcos  ) + C d. 2(sinx - 2xcos  ) + C 85. ∫ 𝒅𝒙 𝒔𝒊𝒏 ( 𝒙−𝒂) 𝒔𝒊𝒏 (𝒙−𝒃) is equal to a. sin (b– a) log | 𝒔𝒊𝒏 (𝒙−𝒃) 𝒔𝒊𝒏 (𝒙−𝒂) |+ C b. cosec (b– a) log | 𝒔𝒊𝒏 (𝒙−𝒂) 𝒔𝒊𝒏 (𝒙−𝒃) |+ C c. cosec (b– a) log | 𝒔𝒊𝒏 (𝒙−𝒃) 𝒔𝒊𝒏 (𝒙−𝒂) |+ C d. sin (b– a) log | 𝒔𝒊𝒏 (𝒙−𝒂) 𝒔𝒊𝒏 (𝒙−𝒃) |+ C 86. ∫ 𝐭𝐚𝐧−𝟏 √ 𝒙 dx is equal to a. (x + 1) tan-1 √ 𝒙 - √ 𝒙 + C b. x tan-1 √ 𝒙 - √ 𝒙 + C c. √ 𝒙 - x tan-1 √ 𝒙 + C d. √ 𝒙 – ( + 1) x tan-1 √ 𝒙 + C 87. ∫ 𝒆 𝒙 ( 𝟏−𝒙 𝟏+ 𝒙 𝟐 ) 𝟐 is equal to a. 𝒆 𝒙 𝟏+ 𝒙 𝟐 + C b. −𝒆 𝒙 𝟏+ 𝒙 𝟐 + C c. 𝒆 𝒙 ( 𝟏+ 𝒙 𝟐) 𝟐 + C d. −𝒆 𝒙 ( 𝟏+ 𝒙 𝟐) 𝟐 + C 88. ∫ 𝒙 𝟗 ( 𝟒𝒙 𝟐+ 𝟏) 𝟔 dx is equal to
  • 8. a. 𝟏 𝟓𝒙 (𝟒 − 𝟏 𝒙 𝟐 ) −𝟓 + 𝑪 b. 𝟏 𝟓 (𝟒 + 𝟏 𝒙 𝟐 ) −𝟓 + 𝑪 c. 𝟏 𝟏𝟎𝒙 ( 𝟏 + 𝟒)−𝟓 + 𝑪 d. 𝟏 𝟏𝟎 ( 𝟏 𝒙 𝟐 + 𝟒) −𝟓 + 𝑪 89. If ∫ 𝒅𝒙 ( 𝒙+𝟐)(𝒙 𝟐+ 𝟏) = 𝒂 𝒍𝒐𝒈| 𝟏+ 𝒙 𝟐| + 𝒃 𝐭𝐚𝐧−𝟏 𝒙 + 𝟏 𝟓 𝒍𝒐𝒈 | 𝒙 + 𝟐| + 𝑪, then a. a = −𝟏 𝟏𝟎 , 𝒃 = −𝟐 𝟓 b. a = 𝟏 𝟏𝟎 , 𝒃 = − 𝟐 𝟓 c. a = 𝟏𝟎 , 𝒃 = 𝟐 𝟓 d. a = 𝟏 𝟏𝟎 , 𝒃 = 𝟐 𝟓 90. ∫ 𝒙 𝟑 𝒙+𝟏 is equal to a. x + 𝒙 𝟐 𝟐 + 𝒙 𝟑 𝟑 − 𝒍𝒐𝒈| 𝟏− 𝒙| + 𝑪 b. x + 𝒙 𝟐 𝟐 − 𝒙 𝟑 𝟑 − 𝒍𝒐𝒈| 𝟏− 𝒙| + 𝑪 c. x - 𝒙 𝟐 𝟐 − 𝒙 𝟑 𝟑 − 𝒍𝒐𝒈 | 𝟏+ 𝒙| + 𝑪 d. x - 𝒙 𝟐 𝟐 + 𝒙 𝟑 𝟑 − 𝒍𝒐𝒈 | 𝟏+ 𝒙| + 𝑪 91. If ∫ 𝒙 𝟑 𝒅𝒙 √ 𝟏+ 𝒙 𝟐 = 𝒂( 𝟏 + 𝒙 𝟐) 𝟑 𝟐 + 𝒃√ 𝟏 + 𝒙 𝟐 + C, then a. a = 𝟏 𝟑 , b = 1 b. a = −𝟏 𝟑 , b = 1 c. a = −𝟏 𝟑 , b = -1 d. a = 𝟏 𝟑 , b = -1 92. ∫ 𝒅𝒙 𝟏+𝒄𝒐𝒔 𝟐𝒙 𝝅 𝟒 −𝝅 𝟒 is equal to a. 1 b. 2 c. 3 d. 4 93. ∫ √ 𝟏 − 𝒔𝒊𝒏 𝟐𝒙 𝝅 𝟐 𝟎 dx is equal to a. 2√ 𝟐 b. 2 (√ 𝟐+ 1) c. 2 d. 2(√ 𝟐- 1) 94. The area enclosedby the circle x2 + y2 = 2 is equal to a. 4 sq unit b. 2 √ 𝟐 sq unit c. 42 sq unit d. 2 sq unit 95. The area enclosedby the ellipse 𝒙 𝟐 𝒂 𝟐 + 𝒚 𝟐 𝒃 𝟐 = 1 is equal to a. 2 ab b.  ab c.  a2 b d. ab2 96. The area of the regionboundedby the curve y = x2 and the line y = 16 a. 𝟑𝟐 𝟑 b. 𝟐𝟓𝟔 𝟑 c. 𝟔𝟒 𝟑 d. 𝟏𝟐𝟖 𝟑 97. The area of the regionboundedby the y – axis,y = cos x and y = sinx,0 ≤ 𝒙 ≤ 𝝅 𝟐 is
  • 9. a. √ 𝟐sq unit b. (√ 𝟐+ 1) sq unit c. (√ 𝟐- 1) sq unit d. (2√ 𝟐- 1) sq unit 98. The area of the regionboundedby the curve y = √𝟏𝟔 − 𝒙 𝟐 and x – axis is a. 8 sq unit b. 20  sq unit c. 16  squnit d. 256  squnit 99. Area of the regionboundedby the curve y = cos x betweenx= 0 and x =  is a. 2 sq unit b. 4 sq unit c. 3 sq unit d. 1 sq unit 100. The area of the regionboundedby parabola y2 = x and the straight line 2y = x is a. 𝟒 𝟑 sq unit b. 1 sq unit c. 𝟏 𝟑 sq unit d. 𝟐 𝟑 sq unit 101. The area of the regionboundedby the curve y = x + 1 and the linesx = 2 and x = 3 is a. 2 sq unit b.  sq unit c. 3 sq unit d. 4  squnit 102. The area of the regionboundedby the curve y = x + 1 and the linesx = 2 and x = 3 is a. 𝟕 𝟐 sq unit b. 𝟗 𝟐 sq unit c. 𝟏𝟏 𝟐 sq unit d. 𝟏𝟑 𝟐 sq unit 103. The degree ofthe differential equation(1+ 𝒅𝒚 𝒅𝒙 )3 = ( 𝒅 𝟐 𝒚 𝒅𝒙 𝟐 )2 is a. 1 b. 2 c. 3 d. 4 104. The degree ofthe differential equation 𝒅 𝟐 𝒚 𝒅𝒙 𝟐 + 𝟑 ( 𝒅𝒚 𝒅𝒙 ) 𝟐 = 𝒙 𝟐 𝒍𝒐𝒈 ( 𝒅 𝟐 𝒚 𝒅𝒙 𝟐 ) is a. 1 b. 2 c. 3 d. not defined 105. The order and degree ofthe differential equation [ 𝟏+ ( 𝒅𝒚 𝒅𝒙 ) 𝟐 ] 𝟐 = 𝒅 𝟐 𝒚 𝒅𝒙 𝟐 respectively,are a. 1, 2 b. 2, 2 c. 2, 1 d. 4, 2 106. The solutionof the differential equation2x. 𝒅𝒚 𝒅𝒙 – y = 3 representsa familyof a. Straight lines b. Circles c. Parabolas d. Ellipses 107. The integratingfactor ofthe differential equation 𝒅𝒚 𝒅𝒙 (x log x) + y = 2 logx is a. ex b. log xc. log (logx) d. x 108. A solutionof the differential equation( 𝒅𝒚 𝒅𝒙 )2 – x 𝒅𝒚 𝒅𝒙 + y = 0 is a. y = 2 b. y = 2x c. y = 2x – 4 d. y = 2x2 – 4 109. Whichof the followingisnot a homogeneousfunctionof x and y. a. x2 + 2xyb. 2x – y c. cos2 ( ) + d. sinx – cos y 110. Solutionof the differential equation 𝒅𝒚 𝒙 + 𝒅𝒚 𝒚 = 0 is a. = 𝟏 𝒙 + 𝟏 𝒚 = 𝒄 b. log x . log y = c c. xy = c d. x + y = c 111. The solutionof the differential equationx + 2y = x2 is
  • 10. a. y = 𝒙 𝟐+ 𝒄 𝟒𝒙 𝟐 b. y = 𝒙 𝟐 𝟒 + c c. y = 𝒙 𝟐+ 𝒄 𝒙 𝟐 d. y = 𝒙 𝟐+ 𝒄 𝟒𝒙 𝟐 112. The degree ofthe differential equation[1 + ( 𝒅𝒚 𝒅𝒙 )2 ] = 𝒅 𝟐 𝒚 𝒅𝒙 𝟐 is a. 4 b. 𝟑 𝟐 c. not defined d. 2 113. The order and degree ofthe differential equation 𝒅 𝟐 𝒚 𝒅𝒙 𝟐 + ( 𝒅𝒚 𝒅𝒙 ) 𝟏 𝟒 + 𝒙 𝟏 𝟓= 0, respectivelyare a. 2 and not defined b. 2 and 2 c. 2 and 3 d. 3 and 3 114. Integrating factor of the differential equationcosx 𝒅𝒚 𝒅𝒙 + y sin x = 1 is: a. cos x b. tan xc. sec x d. sin x 115. Familyy = Ax + A3 of curvesis representedbythe differential equationofdegree: a. 1 b. 2 c. 3 d. 4 116. Solutionof 𝒅𝒚 𝒅𝒙 - y = 1, y(0) = 1 isgiven by a. xy = -ex b. xy = -e-x c. xy = -1 d. y = 2 ex – 1 117. The numberof solutions of 𝒅𝒚 𝒅𝒙 = 𝒚+𝟏 𝒙−𝟏 when y(1) = 2 is: a. None b. one c. two d. infinite 118. Integrating factor of the differential equation(1– x2 ) 𝒅𝒚 𝒅𝒙 - xy = 1 is a. –x b. 𝒙 𝟏+ 𝒙 𝟐 c.√𝟏 − 𝒙 𝟐 d. ½ log(1 – x2 ) 119. The general solutionof ex cos y dx – ex siny dy = 0 is: a. ex cos y = k b. ex sin y = k c. ex = k cos y d. ex = k siny 120. The solutionof the differential equation 𝒅𝒚 𝒅𝒙 = 𝟏+ 𝒚 𝟐 𝟏+ 𝒙 𝟐 is: a. y = tan-1 x b. y-x = k (1 =xy) c. x = tan-1 y d. tan (xy) = k 121. The integratingfactor ofthe differential equation 𝒅𝒚 𝒅𝒙 + 𝒚 = 𝟏+𝒚 𝒙 is: a. 𝒙 𝒆 𝒙 b. 𝒆 𝒙 𝒙 c. xex d. ex 122. The solutionof the differential equationcosx sin y dx + sinx cos y dy = 0 is: a. 𝒔𝒊𝒏𝒙 𝒔𝒊𝒏 𝒚 = c b. sin x siny = c c. sin x + siny = c d. cos x cos y = c 123. The solutionof x 𝒅𝒚 𝒅𝒙 + y = ex is: a. y = 𝒆 𝒙 𝒙 + 𝒌 𝒙 b. y = xex + cx c. y = xex + k d. x = 𝒆 𝒚 𝒚 + 𝒌 𝒚 124. The differential equationofthe familyof curves x2 + y2 – 2ay = 0, where a isarbitrary constant, is: a. (x2 – y2 ) 𝒅𝒚 𝒅𝒙 = 2xy b. 2(x2 + y2 ) 𝒅𝒚 𝒅𝒙 = xy c. 2(x2 - y2 ) 𝒅𝒚 𝒅𝒙 = xy d. (x2 +y2 ) 𝒅𝒚 𝒅𝒙 = 2xy 125. The general solutionof 𝒅𝒚 𝒅𝒙 = 2x 𝒆 𝒙 𝟐− 𝒚 is: a. 𝒆 𝒙 𝟐− 𝒚 = 𝒄 b. 𝒆−𝒚 + 𝒆 𝒙 𝟐 = 𝒄 c. 𝒆 𝒚 + 𝒆 𝒙 𝟐 = 𝒄 d. 𝒆 𝒙 𝟐+ 𝒚 = 𝒄 126. The general solutionof the differential equation 𝒅𝒚 𝒅𝒙 + xy is:
  • 11. a. y = c𝒆 −𝒙 𝟐 𝟐 b. y = c𝒆 𝒙 𝟐 𝟐 c. y = (x + c) 𝒆 𝒙 𝟐 𝟐 d. y = (c-x) 𝒆 𝒙 𝟐 𝟐 127. the solutionof the equation(2y – 1) dx– (2x + 3) dy = 0 is: a. 𝟐𝒙−𝟏 𝟐𝒚+𝟑 = k b. 𝟐𝒚+ 𝟏 𝟐𝒙− 𝟑 = k c. 𝟐𝒙+𝟑 𝟐𝒚−𝟏 = k d. 𝟐𝒙−𝟏 𝟐𝒚−𝟏 = k 128. The solutionof 𝒅𝒚 𝒅𝒙 + y = e-x ,y (0) = 0 is: a. y = e-x (x– 1) b. y = xex c. y = xe-x + 1 d. y = xe-x 129. The order and degree ofthe differential equation ( 𝒅 𝟑 𝒚 𝒅𝒙 𝟑 ) 𝟐 − 𝟑 𝒅 𝟐 𝒚 𝒅𝒙 𝟐 + 𝟐 ( 𝒅𝒚 𝒅𝒙 ) 𝟒 = 𝒚 𝟒 are: a. 1, 4 b. 3, 4 c. 2, 4 d. 3, 2 130. The order and degree ofthe differential equation [ 𝟏+ ( 𝒅𝒚 𝒅𝒙 ) 𝟐 ] = 𝒅 𝟐 𝒚 𝒅𝒙 𝟐 are: a. 2, 𝟑 𝟐 b. 2, 3 . 2, 1 d. 3, 4 131. Whichof the followingisthe general solutionof 𝒅 𝟐 𝒚 𝒅𝒙 𝟐 − 𝒅𝒚 𝒅𝒙 𝟐 + y = 0? a. y = (Ax+ B)ex b. y = (Ax + B) e-x c. y = Aex + Be-x d. y = Acos x + B sinx 132. Solutionof the differential equation 𝒅𝒚 𝒅𝒙 + 𝒚 𝒙 = sinx is: a. x (y + cos x) = sin x + c b. x (y – cos x 0 = sin x + c c. xy cos x = sin x + c d. x (y + cos x) = cos x + c 133. The solutionof the differential equation 𝒅𝒚 𝒅𝒙 = ex – y + x2 e-y is: a. y = ex – y – x2 e-y + c b. ey – ex = + c c. ex + ey = + c d. ex – ey = 𝒙 𝟑 𝟑 + c 134. The magnitude of the vector6𝒊̂ + 𝟐𝒋̂ + 𝟑𝒌̂ is a. 5 b. 7 c. 12 d. 1 135. The positionvector of the point which dividedthe joinof points withpositionvectors 𝒂⃗⃗ + 𝒃⃗⃗ and 2𝒂⃗⃗ − 𝒃⃗⃗ in the ratio 1 : 2 is a. 𝟑𝒂⃗⃗ + 𝟐𝒃⃗⃗ 𝟑 b. 𝒂⃗⃗ c. 𝟓𝒂⃗⃗ − 𝒃⃗⃗ 𝟑 d. 𝟒𝒂⃗⃗ + 𝒃⃗⃗ 𝟑 136. The vector with initial pointP(2, -3, 5) and terminal point Q(3, -4, 7) is a. 𝒊̂ − 𝒋̂ + 𝟐𝒌̂ b. 𝟓𝒊̂ − 𝟕𝒋̂ + 𝟏𝟐𝒌̂ c. −𝒊̂ + 𝒋̂ − 𝟐𝒌̂ d. None of these 137. The angle betweenthe vectors 𝒊̂ − 𝒋̂ 𝒂𝒏𝒅 𝒋̂− 𝒌̂ is a. 𝝅 𝟑 b. 𝟐𝝅 𝟑 c. −𝝅 𝟑 d. 𝟓𝝅 𝟔 138. The value of  for whichthe two vectors 2𝒊̂ − 𝒋̂ + 𝟐𝒌̂ 𝒂𝒏𝒅 𝟑𝒊̂ +  𝒋̂+ 𝒌̂ are perpendicularis
  • 12. a. 2 b. 4 c. 6 d. 8 139. The area of the parallelogramwhose adjacent sidesare 𝒊̂ + 𝒌̂ and 𝟐𝒊̂ + 𝒋̂ + 𝒌̂ is a. 3 b. 4 c. √ 𝟐 d. √ 𝟑 140. If | 𝒂⃗⃗ | = 𝟖, | 𝒃⃗⃗ | = 𝟑 𝒂𝒏𝒅 | 𝒂⃗⃗ × 𝒃⃗⃗ | = 𝟏𝟐 , thenvalue of is a. 6√ 𝟑 b. 8√ 𝟑 c. 12√ 𝟑 d. none of these 141. The 2 vector 𝒋̂ + 𝒌̂ and 3𝒊̂ − 𝒋̂ + 𝟒𝒌̂ representsthe two sidesAB and AC,respectivelyofa ABC . the length of the medianthrough A is a. √ 𝟑𝟒 𝟐 b. √ 𝟒𝟖 𝟐 c. √ 𝟏𝟖 d. None of these 142. The projectionof vector 𝒂⃗⃗ = 𝟐𝒊̂ − 𝒋̂ + 𝒌̂ along 𝒃⃗⃗ = 𝒊̂ + 𝟐𝒋̂ + 𝟐𝒌̂ is a. 2 b. √ 𝟔 c. 𝟐 𝟑 d. 𝟏 𝟑 143. If 𝒂⃗⃗ and 𝒃⃗⃗ are unit vectors,then what is the angle between 𝒂⃗⃗ and 𝒃⃗⃗ for √ 𝟑 𝒂⃗⃗ and 𝒃⃗⃗ to be a unit vector? a. 30o b. 45o c. 60o d. 90o 144. The unit vector perpendiculartothe vectors 𝒊̂ − 𝒋̂ 𝒂𝒏𝒅 𝒊̂ + 𝒋̂ forming a right handedsystemis a. 𝒌̂ b. -𝒌̂ c. 𝒊̂− 𝒋̂ √ 𝟐 d. 𝒊̂+ 𝒋̂ √ 𝟐 145. If | 𝒂⃗⃗ | = 𝟑 and -1  k  2 , then| 𝒌𝒂⃗⃗ | liesinthe interval a. [0,6] b. [-3,6] c. [3,6] d. [1,2] 146. The vector in the directionof the vector 𝒊̂ − 𝟐𝒋̂ + 𝟐𝒌̂ that has magnitude 9 is a. 𝒊̂ − 𝟐𝒋̂ + 𝟐𝒌̂ b. 𝒊̂− 𝟐𝒋̂+ 𝟐𝒌̂ 𝟑 c. (𝒊̂ − 𝟐𝒋̂ + 𝟐𝒌̂ ) d. 9( 𝒊̂ − 𝟐𝒋̂ + 𝟐𝒌̂) 147. The angle betweentwo vectors 𝒂⃗⃗ and 𝒃⃗⃗ with magnitude √ 𝟑 and 4, respectively,and 𝒂⃗⃗ . 𝒃⃗⃗ = 2√ 𝟑 is a. 𝝅 𝟔 b. 𝝅 𝟑 c. 𝝅 𝟐 d. 𝟓𝝅 𝟐 148. Findthe value of  such that the vectors 𝒂⃗⃗ = 𝟐𝒊̂ +  𝒋̂+ 𝒌̂ and 𝒃⃗⃗ = 𝒊̂ + 𝟐𝒋̂ + 𝟑𝒌̂ are orthogonal a. 0 b. 1 c. 𝟑 𝟐 d. −𝟓 𝟐 149. the value of  for which the vectors 𝟑𝒊̂ − 𝟔𝒋̂ + 𝒌̂ 𝒂𝒏𝒅 𝟐𝒊̂ − 𝟒𝒋̂ +  𝒌̂ are parallel is a. 𝟐 𝟓 b. 𝟐 𝟑 c. 𝟑 𝟐 d. 𝟓 𝟐 150. For any vector 𝒂⃗⃗ , the value of ( 𝒂⃗⃗ × 𝒊̂) 𝟐 + ( 𝒂⃗⃗ × 𝒋̂) 𝟐 + ( 𝒂⃗⃗ × 𝒌̂) 𝟐 is equal to a. 𝒂⃗⃗ 𝟐 b. 3 𝒂⃗⃗ 𝟐 c. 4 𝒂⃗⃗ 𝟐 d. 2𝒂⃗⃗ 𝟐 151. If | 𝒂⃗⃗ | = 𝟏𝟎,| 𝒃⃗⃗ | = 𝟐 𝒂𝒏𝒅 𝒂⃗⃗ . 𝒃⃗⃗ = 𝟏𝟐, 𝐭𝐡𝐞𝐧 𝐯𝐚𝐥𝐮𝐞 𝐨𝐟 | 𝒂⃗⃗ × 𝒃⃗⃗ |, is a. 5 b. 10 c. 14 c. 16 152. If 𝒂⃗⃗ , 𝒃⃗⃗ , 𝒄⃗ are unit vectorssuch that 𝒂⃗⃗ + 𝒃⃗⃗ + 𝒄⃗ = 𝟎⃗⃗ , thenvalue of 𝒂⃗⃗ . 𝒃⃗⃗ + 𝒃⃗⃗ . 𝒄⃗ + 𝒂⃗⃗ . 𝒄⃗ a. 1 b. 3 c. - 𝟑 𝟐 d. none of these 153. Projectionvector of 𝒂⃗⃗ on 𝒃⃗⃗ is
  • 13. a. ( 𝒂⃗⃗ .𝒃⃗⃗ | 𝒃⃗⃗ | 𝟐) 𝒃⃗⃗ b. 𝒂⃗⃗ .𝒃⃗⃗ | 𝒃⃗⃗ | c. 𝒂⃗⃗ .𝒃⃗⃗ | 𝒂⃗⃗ | d. ( 𝒂⃗⃗ .𝒃⃗⃗ | 𝒂⃗⃗ | 𝟐 ) 𝒃⃗⃗ 154. If 𝒂⃗⃗ , 𝒃⃗⃗ , 𝒄⃗ are three vectors such that 𝒂⃗⃗ + 𝒃⃗⃗ + 𝒄⃗ = 𝟎⃗⃗ and | 𝒂⃗⃗ | = 𝟐, | 𝒃⃗⃗ | = 𝟑 , | 𝒄⃗ | = 𝟓, then value of 𝒂⃗⃗ . 𝒃⃗⃗ + 𝒃⃗⃗ . 𝒄⃗ + 𝒂⃗⃗ . 𝒄⃗ a. 0 b. 1 c. -19 d. 38 155. P is a point on the line segmentjoiningthe points(3, 2, -1) and (6, 2, -2). If x co-ordinate of P is5, thenits y co- ordinate is a. 2 b. 1 c. -1 d. -2 156. If ,, are the anglesthat a line makes withthe positive directionofx, y, z axis, respectively,thenthe directioncosinesof the line are: a. sin,sin,sin b. cos,cos,cos c. tan,tan,tan d. cos2 ,cos2 ,cos2  157. The equationsof x – axis in space are a. x = 0, y = 0 b. x = 0, z = 0 c. x = 0 d. y = 0, z = 0 158. If the directionscosinesofa line are k, k, k then a. k > 0 b. 0 < k< 1 c. k = 1 d. k = 𝟏 √ 𝟑 𝒐𝒓 − 𝟏 √ 𝟑 159. The distance of the plane 𝒓⃗ . ( 𝟐 𝟕 𝒊̂ + 𝟑 𝟕 𝒋̂ − 𝟔 𝟕 𝒌̂) = 1 from the originis a. 1 b. 7 c. 𝟏 𝟕 d. none of these 160. The area of the quadrilateral ABCD, where A(0,4,1), b(2,3,-1),c(4,5,0) and D(2, 6, 2) is equal to a. 9 sq unit b. 18 sq unit c. 27 sq unit d. 81 sq unit 161. The unit vector normal to the plane x + 2y + 3z – 6 = 0 𝟏 √ 𝟏𝟒 𝒊̂ + 𝟐 √ 𝟏𝟒 𝒋̂ + 𝟑 √ 𝟏𝟒 𝒌̂ . 162. The corner pointsof the feasible regiondeterminedbythe systemof linearconstraints are (0, 10), (5,5), (15, 150), (0, 20). Let Z = px + qy, where p, q > 0. Conditionon p and q so that the maximumof Z occurs at both the points(15, 15) and (0, 20) is a. p = q b. p = 2q c. q = 2p d. q = 3p 163. Feasible region(shaded) fora LPP isshown in the Fig.Minimumof Z = 4x + 3y occurs at the point a. (0, 80 b. (2, 5 ) c. (4, 3) d. (9, 0) 164. The corner points of the feasible regiondeterminedbythe system oflinear constraints are (0,0), (0, 40), (20, 40), (60, 20), (60, 0). The objective functionis Z = 4x + 3y. Compare the quantity inColumn A and ColumnB ColumnA ColumnB Maximumof Z 325 a. The quantity in columnA is greater b. The quantity in columnB is greater c. The two quantitiesare equal
  • 14. d. The relationshipcan not be determinedonthe basis of the informationsupplied. 165. Corner pointsof the feasible regionforan LPP are (0, 2), (3, 0), (6,0), (6, 8) and (0, 5). Let F = 4x + 6y be the objective function.The minimum value of F occurs at a. (0, 2) only b. (3, 0) only c. The mid pointof the line segmentjoiningthe points(0, 2) and (3, 0) only d. Any point on the line segmentjoiningthe points(0, 20 and (3, 0). 166. Let A and B be two events.If P (A) = 0.2, P(B) = 0.4, P(A B) = 0.6, then P(AIB) is equal to a. 0.8 b. 0.5 c. 0.3 d. 0 167. Let A and B be two eventssuch that P(A) = 0.6, P(B) = 0.2 and P(AIB) = 0.5. thenP(AIB) equals a. 𝟏 𝟏𝟎 b. 𝟑 𝟏𝟎 c. 𝟑 𝟖 d. 𝟔 𝟕 168. If A and B are independenteventssuchthat 0 < P(A) < 1 and 0 <P(B) < 1 then whichof the followingisnot correct? a. A and B are mutually exclusive b. A and B are independent c. A and B are independent d. A and B are independent 169. If P(A) = 𝟒 𝟓 , and P(A  B) = 𝟕 𝟏𝟎 , thenP(B I A) is equal to a. 𝟏 𝟏𝟎 b. 𝟏 𝟏𝟖 c. 𝟕 𝟖 d. 𝟏𝟕 𝟐𝟎 170. If P(A  B) = 𝟕 𝟏𝟎 and P(B) = 𝟏𝟕 𝟐𝟎 , then P(B I A) is equal to a. 𝟏𝟒 𝟏𝟕 b. 𝟏 𝟖 c. 𝟕 𝟖 d. 𝟏𝟕 𝟐𝟎 171. If P(A) = 𝟑 𝟏𝟎 , P(B) = 𝟐 𝟓 and P(A  B) = 𝟑 𝟓 , thenP(B I A) + P(AI B) is equal to a. 𝟏 𝟒 b. 𝟏 𝟑 c. 𝟓 𝟏𝟐 d. 𝟕 𝟐 172. If P(A) = 𝟐 𝟓 , P(B) = 𝟑 𝟏𝟎 and P(A  B) = 𝟏 𝟓 , thenP(B I A) . P(A IB) is equal to a. 𝟓 𝟔 b. 𝟓 𝟕 c. 𝟐𝟓 𝟒𝟐 d. 1 173. If A and B are two eventssuch that P(A) = ½, P(B) = 𝟏 𝟑 , P(A / B) = 𝟏 𝟒 , thenP(A  B) equals a. 𝟏 𝟏𝟐 b. 𝟑 𝟒 c. 𝟏 𝟒 d. 𝟑 𝟏𝟔 174. If P(A) = 0.4, P(B) = 0.8 and P(B I A) = 0.6, thenP(A  B) is equal to a. 0.24 b. 0.3 c. 0.48 d. 0.96 175. You are giventhat A and B are two eventssuch that P(B) = 𝟑 𝟓 , P(A I B) = ½ and P(A  B) = 𝟒 𝟓 , thenP(A) equals a. 𝟑 𝟏𝟎 b. 𝟏 𝟐 c. 𝟏 𝟓 d. 𝟑 𝟓
  • 15. 176. If P(B) = 𝟑 𝟓 , P(AIB) = ½ and P(A  B) = 𝟒 𝟓 , then P(A  B) + P(A  B) = a. 𝟒 𝟓 b. 𝟏 𝟐 c. 𝟏 𝟓 d. 1 177. Let A and B be two eventssuch that P(A) = 𝟑 𝟖 , P(B) = 𝟓 𝟖 and thenP(A I B) . P(A IB) isequal to a. 𝟐 𝟓 b. 𝟑 𝟖 c. 𝟑 𝟐𝟎 d. 𝟔 𝟐𝟓 178. If A and B are such eventsthat P(A) > 0 and P(B)  1, thenP(A I B) equals a. 1 – P(A I B) b. 1 – P(A IB) c. 𝟏−𝑷(𝑨∪𝑩) 𝑷(𝑩′) d. P(A) IP(B ) 179. A bag contains5 red and 3 blue balls. If3 balls are drawn at random without replacementthe probabilityof gettingexactly one red ball is a. 𝟒𝟓 𝟏𝟗𝟔 b. 𝟏𝟑𝟓 𝟑𝟗𝟐 c. 𝟏𝟓 𝟓𝟔 d. 𝟏𝟓 𝟐𝟗 180. Assume that in a family,each child isequallylikelyto be or a girl.A family withthree childrenischosen at random. The probabilitythat the eldestchildisa girl given that the familyhas at least one girl is a. 𝟒 𝟕 b. 𝟏 𝟐 c. 𝟏 𝟑 d. 𝟐 𝟑 181. A die is thrown and a card is selectedatrandom from a deck of 52 playing cards. The probabilityof gettingan evennumberon the die and a spade card is a. 𝟑 𝟒 b. 𝟏 𝟐 c. 𝟏 𝟒 d. 𝟏 𝟖 182. A box contains 3 orange balls,3 greenballsand 2 blue balls. Three balls are drawn at random from the box without replacement.The probabilityof drawing 2 greenballsand one blue ball is a. 𝟑 𝟖 b. 𝟐 𝟐𝟏 c. 𝟏 𝟐𝟖 d. 𝟏𝟔𝟕 𝟏𝟔𝟖 183. Eight coins are tossedtogether.The probabilityof gettingexactly 3 headsis a. 𝟏 𝟐𝟓𝟔 b. 𝟕 𝟑𝟐 c. 𝟓 𝟑𝟐 d. 𝟑 𝟑𝟐 184. In a college,30% studentsfail in physics,255 fail in mathematics and 10% fail in both. One studentis chosen at random. The probabilitythat she failsin physicsif she has failedin mathematics is a. 𝟏 𝟏𝟎 b. 𝟐 𝟓 c. 𝟏 𝟑 d. 𝟗 𝟐𝟎 185. The probabilitydistributionof a discrete random variable X is givenbelow: X 2 3 4 5 P(X) 𝟓 𝒌 𝟕 𝒌 𝟗 𝒌 𝟏𝟏 𝒌 The value of k is a. 8 b. 16 c. 32 d. 48