O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Ecuaciones parametricas

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Ecuaciones paramétricas
Ecuaciones paramétricas
Carregando em…3
×

Confira estes a seguir

1 de 25 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Semelhante a Ecuaciones parametricas (17)

Anúncio

Mais recentes (20)

Ecuaciones parametricas

  1. 1. ECUACIONES PARAMETRICAS ´Republica Bolivariana DeVenezuela . Ministerio Del Poder Popular Para la educación . instituto universitario politécnico ¨ Santiago Mariño ¨. sede Barcelona – estado Anzoátegui. ECUACIONES PARAMÉTRICAS Profesor: Pedro Beltran Bachiller: Karianna Bravo C.I:29.733.730 Barcelona,19 de octubre del 2020
  2. 2. INTRODUCCIÓN El álgebra lineal es una de las ramas de las matemáticas que estudia conceptos tales como vectores, matrices, sistemas de ecuaciones lineales y en un enfoque más formal, espacios vectoriales, y sus transformaciones lineales. A continuación veremos como se representa una curva o superficie en el plano o en el espacio mediante la aplicación de las ecuaciones paramétricas ,comparar la grafica de ecuaciones paramétricas con la grafica de la ecuación cartesiana ,determinar la longitud de arco de una curva a través de sus ecuaciones paramétricas y aplicar ecuaciones vectoriales paramétricas para la determinación de las características cinemáticas de una partícula en movimiento.
  3. 3. ÁLGEBRA VECTORIAL Es una rama de las matemáticas encargada de estudiar sistemas de ecuaciones lineales, vectores, matrices, espacios vectoriales y sus transformaciones lineales. Se relaciona con áreas como ingeniería, resolución de ecuaciones diferenciales, análisis funcional, investigación de operaciones, gráficas computacionales, entre otras.
  4. 4. Existen tres modos esencialmente distintos para introducir el álgebra vectorial: geométricamente, analíticamente y axiomáticamente.  Geométricamente Los vectores son representados por rectas que tienen una orientación, y las operaciones como suma, resta y multiplicación por números reales son definidas a través de métodos geométricos.  Analíticamente La descripción de los vectores y sus operaciones es realizada con números, llamados componentes. Este tipo de descripción es resultado de una representación geométrica porque se utiliza un sistema de coordenadas.  Axiomáticamente Se hace una descripción de los vectores, independientemente del sistema de coordenadas o de cualquier tipo de representación geométrica. ÁLGEBRA VECTORIAL
  5. 5. VECTORES son segmentos de recta en los que su extremo final es la punta de una flecha. Estos son determinados por su módulo o longitud del segmento, su sentido que es indicado por la punta de su flecha y su dirección de acuerdo con la recta a la que pertenezca. El origen de un vector es también conocido como el puntode aplicación. Elementos  Módulo :Es la distancia que hay desde el origen hasta el extremo de un vector, representada por un número real junto con una unidad.  Dirección :Es la medida del ángulo que existe entre el eje x (a partir del positivo) y el vector, así como también se utilizan los puntos cardinales (norte, sur, este y oeste).  Sentido :Es dado por la punta de flecha ubicada en el extremo del vector, indicando hacia dónde se dirige este.
  6. 6. Clasificaciónde losvectores  Vector fijo Es aquel cuyo punto de aplicación (origen) es fijo; es decir, que se mantiene ligado a un punto del espacio, por lo que no puede desplazarse en este.  Vector libre Puede moverse libremente en el espacio porque su origen se traslada a cualquier punto sin cambiar su módulo, sentido o dirección.  Vector deslizante Es aquel que puede trasladar su origen a lo largo de su línea de acción sin cambiar su módulo, sentido o dirección.
  7. 7. ECUACIONES PARAMÉTRICAS son aquellas definidas en términos de un solo parámetro, generalmente, este parámetro es ‘t’. Una curva que represente tal ecuación es llamada curva paramétrica. Para ello, las variables de la ecuación Cartesiana son transformadas con el fin de representar el parámetro ‘t’ como, x = f(t) y = g(t) GRAFICADE ECUACIONES PARAMETRICAS Las ecuaciones paramétricas son aquellas ecuaciones en que las variables x y y, cada una separadamente, están expresadas en función de la misma tercera variable. Según esto, designando por la letra z la tercera variable, comúnmente llamada variable paramétrica. Una curva plana C es un conjunto de puntos P(x, y) cuyas coordenadas están dadas por las ecuaciones paramétricas. x = f( t ), y = g ( t ). en donde f y g son funciones continuas en un intervalo [a,b]. Ejemplo:
  8. 8. Considera las ecuaciones paramétricas x=t y y=(t) para -3<t<2. se grafica las ecuaciones en papel cuadriculado. Solución Usa las ecuaciones para calcular los valores x y y que corresponden a los valores t en el intervalo Después grafica los puntos a medida que t aumenta, conectando cada punto con el anterior.ECUACIONES PARAMÉTRICAS
  9. 9. Representación paramétricade unacurva La representación paramétrica de una curva en un espacio n-dimensional consiste en n funciones de una variable t que en este caso es la variable independiente o parámetro (habitualmente se considera que t es un número real y que los puntos del espacio n-dimensional están representados por n coordenadas reales), de la forma donde x representa la i-ésima coordenada del punto generado al asignar valores del intervalo [a, b] a t. Por ejemplo, para representar una curva en el espacio se usan 3 funciones x = x(t), y = y(t), z = z(t) Es común que se exija que el intervalo [a, b] sea tal que a cada punto le corresponda un punto distinto de la curva; si las coordenadas del punto obtenido al hacer t = a son las mismas del punto correspondiente a t = b la curva se denomina cerrada. Se dice que un punto de la curva correspondiente a un valor t del intervalo es un punto ordinario si las derivadas de las funciones paramétricas existen en y son continuas en ese punto y al menos una es distinta de 0. Si un arco de curva está compuesto solamente de puntos ordinarios se denomina suave. Es común resumir las ecuaciones paramétricas de una curva en una sola ecuación vectorial donde ek representa al vector unitario correspondiente a la coordenada k-ésima. Por ejemplo, las funciones paramétricas de un círculo unitario con centro en el origen son x = cos t, y = sen t. Podemos reunir estas ecuaciones como una sola ecuación de la forma Siendo ij la base usual del espacio bidimensional real.
  10. 10. Transformarlas ecuaciones paramétricasalas cartesianas. Está dada por: Ax + By + Cz + D = 0, es decir, los puntos del espacio (x, y, z) que satisfacen la ecuación y forman un plano. Para encontrar la ecuación cartesiana de un plano, cuando está escrita en ecuación paramétrica:  1) Se igualan las coordenadas.  2) Se escribe como un sistema de ecuaciones correspondiente.  3) Se eliminan los parámetros para encontrar una única ecuación lineal en variables (x, y, z). Ecuación paramétrica: función que asocia un punto de la recta a cada valor del parámetro en la recta numérica. x= x + λp + μq y= y + λp + μq z= z + λp + μq  λ=0, μ=0  λ=0, μ=1  λ=2, μ=2
  11. 11. Comparacionde graficade ecuaciones paramétricascon graficadela ecuacióncartesiana. En general, una curva plana se define por dos variables, a saber, x e y. Tal plano se conoce como plano Cartesiano y su ecuación se llama ecuación Cartesiana. Las ecuaciones paramétricas son aquellas definidas en términos de un solo parámetro, generalmente, este parámetro es ‘t’. Una curva que represente tal ecuación es llamada curva paramétrica. Para ello, las variables de la ecuación Cartesiana son transformadas con el fin de representar el parámetro ‘t’ como: x = f(t) y = g(t) Una curva paramétrica puede ser dibujada de muchas formas diferentes y la más conveniente entre ellas es la selección de ciertos valores de t y obtener los valores correspondientes de f(t) y g(t), es decir, x e y. Entonces estos son después trazados en coordenadas Cartesianas.
  12. 12. Longituddearco enecuaciones paramétricas. En matemática, la longitud de arco, también llamada rectificación de una curva, es la medida de la distancia o camino recorrido a lo largo de una curva o dimensión lineal. Para encontrar la longitud de arco de una curva, construimos una integral de la forma: Cuando x y y son funciones de una nueva variable, el parámetro t Para poder usar la integral de longitud de arco, primero calculamos las derivadas de ambas funciones y obtenemos dx y dy en términos de dt Se sustituye estas expresiones en la integral y factoría el término dt2 fuera del radical.
  13. 13. LONGITUDDE UNACURVA PARAMETRIZADA Una curva se considera parametrizada por las siguentes ecuaciones: 𝑥( 𝑡) = 𝑡3 − 𝑡 𝑦( 𝑡) = 2𝑒−𝑡2 Si dejamos que t varíe de -1,5 a 1,5, la curva resultante se ve asi:
  14. 14. longituddearco deunacurvaa travésdesus ecuaciones paramétricas. Para encontrar la longitud de arco de una curva, construimos una integral de la forma ∫ (𝑑𝑥)2 + (𝑑𝑦)2 Los términos dx y dy representan el pequeño cambio en los valores de x e y desde el principio hasta el final del segmento. Ahora trabajaremos el caso en el que la curva está dada en forma paramétrica; es decir, cuando x y y son funciones de una nueva variable, el parámetro t. Para poder usar la integral de longitud de arco, primero calculamos las derivadas de ambas funciones y obtenemos dx y dy en términos de dt. 𝑑𝑥 = 𝑑𝑥 𝑑𝑡 𝑑𝑡 𝑑𝑦 = 𝑑𝑦 𝑑𝑡 dt Sustituye estas expresiones en la integral y factoriza el término 𝑑𝑡2 fuera del radical.
  15. 15. longituddearco deunacurvaa travésdesus ecuaciones paramétricas.  Ejemplo Procedimiento para obtener las derivadas de las funciones x y y Grafica
  16. 16. longituddearco deunacurvaa travésdesus ecuaciones paramétricas. Procedimiento para aplicar y resolver la integral para la longitud de arco Grafica Evaluacion de f
  17. 17. ecuacionesvectoriales paramétricasparala determinacióndelas características cinemáticasdeuna partículaen movimiento. Cinemáticay dinámica Se dice que un cuerpo se halla en movimiento respecto a otro cuando existe un cambio continuo de su posición relativa a lo largo del tiempo. La rama de la Física que se dedica al estudio del movimiento de los cuerpos es la Mecánica, y ésta se subdivide en las siguientes disciplinas: Cinemática :que describe geométricamente el movimiento sin atender a sus causas. Dinámica :que conecta el movimiento y sus características con las causas (fuerzas) que lo producen. Estática :que establece las condiciones de equilibrio mecánico (ausencia de movimiento). Para poder desarrollar la Cinemática es necesario establecer una serie de conceptos previos, que permitan sostener todo el entramado matemático. Entre estos postulados están  Espacio  Tiempo  Partícula (o punto material)  Sólido rígido
  18. 18. ecuacionesvectoriales paramétricasparala determinacióndelas característicascinemáticas deunapartículaen movimiento. Cinemática del movimiento rectilíneo Antes de considerar el problema completo del movimiento de una partícula en el espacio de tres dimensiones, examinaremos el problema unidimensional, más simple, de una partícula que realiza un movimiento rectilíneo. Posición Cuando tenemos una partícula cuyo movimiento se ciñe a una recta, no necesitamos el álgebra vectorial para identificar las diferentes posiciones de la partícula. Nos basta con una etiqueta x(t) que designa la posición a lo largo de la recta. Esta cantidad tiene un signo que indica si nos encontramos a la izquierda o a la derecha de la posición a lo largo de la recta que hayamos etiquetado como x = 0. En el caso unidimensional podemos representar la posición frente al tiempo, colocando el tiempo en el eje de abscisas y la posición en el de ordenadas. Esta posibilidad no existe en el caso tridimensional.
  19. 19. ecuacionesvectoriales paramétricasparala determinacióndelas característicascinemáticas deunapartículaen movimiento. Cuando una partícula cambia de posición pasando de encontrarse en x1 en el instante t1 a una posición x2 en el instante t2 se dice que en el intervalo de tiempo Δt = t2 − t1 ha experimentado un desplazamiento El desplazamiento que, como la posición, se mide en unidades de distancia (m, en el SI), posee la propiedad de que es independiente de que punto se toma como origen de posiciones.
  20. 20. ecuacionesvectoriales paramétricasparala determinacióndelas característicascinemáticas deunapartículaen movimiento. Velocidad Velocidad media Si una partícula realiza un desplazamiento Δx en un intervalo Δt, se define la velocidad media (en una dimensión) como el cociente entre el desplazamiento y el intervalo empleado en realizarlo
  21. 21. ECUACION VECTORIAL Para determinar la ecuación vectorial de una recta es necesario que conozcamos un punto de la recta y un vector de posición o dos puntos de la recta. Vamos a hallar la ecuación a partir de un punto y un vector de posición, si tuviésemos dos puntos A, B entonces el vector AB es un vector de posición. La ecuación de una recta es una expresión analítica que permite identificar todos los puntos de la recta.
  22. 22. ECUACION VECTORIAL Dados un punto de la recta y un vector de dirección , un punto genérico de la recta tendrá como vector de posición Es claro que , como el vecto y están en la misma dirección existe un número tal que , por tanto esta expresión se conoce como ecuación vectorial de la recta.
  23. 23. Las ecuaciones paramétricas son sistema de ecuaciones que permite representar una curva o superficie en el espacio, mediante valores que recorren un intervalo de números reales, mediante una variable , llamada parámetro, considerando cada coordenada de un punto como una función dependiente del parámetro. En las generalidades del algebra vectorial estudiar los sistemas de ecuaciones lineales, vectores, matrices, espacios vectoriales y sus transformaciones lineales. Se relaciona con áreas como ingeniería, resolución de ecuaciones diferenciales, análisis funcional, investigación de operaciones y gráficas computacionales. Otra de las áreas que ha adoptado el álgebra es la física, ya que a través de esta se ha logrado desarrollar el estudio de fenómenos físicos, describiéndolos mediante el uso de vectores. Esto ha hecho posible una mejor comprensión del universo. En el álgebra vectorial se originó del estudio de los cuaterniones 1, i, j, y k, así como también de la geometría cartesiana. En matemática la longitud de arco es la medida de la distancia o camino recorrido a lo largo de una curva o dimensión lineal. Una curva también es un conjunto de puntos que representan las distintas posiciones ocupadas por un punto que se mueve. CONCLUSION
  24. 24. ANEXOS  https://www.youtube.com/watch?v=uCm3HvF-EtQ  https://www.youtube.com/watch?v=UVqs1dat91g  https://www.youtube.com/watch?v=kZdgeJaHhPs  https://www.youtube.com/watch?v=9RW8oAb_eJ0
  25. 25. BIBLIOGRAFIA  Autor: Vincenzo Jesús D'Alessio Torres  Titulo: Álgebra Vectorial: Fundamentos, Magnitudes, Vectores  Direccion:https://www.lifeder.com/algebra-vectorial-fundamentos- magnitudes-vectores/  Autor:EcuRed  Titulo:Ecuaciones paramétricas  Direccion:https://www.ecured.cu/Ecuaciones_param%C3%A9tricas  Autor:Wikipedia  Titulo:Ecuación paramétrica  Direccion:https://es.wikipedia.org/wiki/Ecuaci%C3%B3n_ param%C3%A9trica#Representaci%C3%B3n_param%C3 %A9trica_de_una_curva  Autor:Wikipedia  Titulo: Algebra lineal  Direccion: https://es.wikipedia.org/wiki/%C3%81lgebra_lineal

×