SlideShare uma empresa Scribd logo
1 de 35
พันธะเคมี
พันธะเคมี กระบวนการต่าง ๆ ในเคมี โมเลกุลมีบทบาทมากกว่าอะตอม ในโมเลกุลต้องมีแรงเหนี่ยวระหว่างอะตอม การที่อะตอมสร้างพันธะเคมีกันเพื่อเกิดเป็นโมเลกุล โมเลกุลที่เกิดขึ้นจะมีพลังงานต่ำกว่าพลังงานรวมของอะตอมเมื่อยังแยกกันอยู่ พันธะเคมีแบ่งตามชนิดของอะตอมได้เป็น   3  ชนิด   คือ
1. พันธะโคเวเลนต์   เป็นพันธะในสารประกอบของธาตุที่เป็นอโลหะกับอโลหะชนิดเดียวกันหรือคนละชนิด   เช่น   Cl2, HCl, HCN  เป็นต้น 2. พันธะไอออนิก   เป็นพันธะในสารประกอบของธาตุที่เป็นโลหะกับอโลหะ   เช่น   NaCl, CaCl2,KBr  เป็นต้น 3. พันธะโลหะ   เป็นพันธะที่ยึดเหนี่ยวระหว่างอะตอมของโลหะชนิดเดียวกันเข้าด้วยกัน
[object Object],[object Object],[object Object]
พันธะโคเวเลนต์
พันธะโคเวเลนต์  คือ พันธะเคมีที่เกิดจากการใช้เวเลนซ์อิเล็กตรอนของอะตอมของธาตุ ที่เป็นอโลหะร่วมกันตามกฎออกเตต แบ่งออกเป็นพันธะโคเวเลนต์ระหว่างธาตุชนิดเดียวกันกับพันธะโคเวเลนต์ระหว่างธาตุต่างชนิดกัน 2H(g) ;  ดูดพลังงาน   436 kJ นั่นคือ พลังงานพันธะของ   H - H  เท่ากับ   436  กิโลจูล พลังงานพันธะจะบอกความแข็งแรงของพันธะ พันธะที่แข็งแรงมากจะมีพลังงานพันธะมากพันธะที่แข็งแรงน้อยจะมีพลังงานพันธะน้อย 2H(g) H2(g) + 436 kJ ;  ดูดพลังงาน   436 kJ H2(g) + 436 kJ
พลังงานของปฏิกิริยา   คำนวณได้จากพลังงานพันธะโดยอาศัยหลักการที่ว่า สารตั้งต้นทุกตัวต้องดูดพลังงานเพื่อใช้ในการสลายพันธะเดิมออกให้หมด และผลิตภัณฑ์ต้องมีการสร้างพันธะขึ้นมาใหม่จะคายพลังงานออกมา ถ้าระบบดูดพลังงาน   >  คายพลังงาน ปฏิกิริยาจะดูดพลังงาน   =  พลังงานที่ดูด   -  พลังงานที่คาย ถ้าระบบคายพลังงาน   >  ดูดพลังงาน   ปฏิกิริยาจะคายพลังงาน   =  พลังงานที่คาย   -  พลังงานที่ดูด
พลังงานพันธะ  H - H 436 kJ/mol, O = O 498 kJ/mol  และ  O-H 463 kJ/mol 2H 2 O(g)  2H 2 (g) + O 2 (g) 2H - O - H(g)   2H - H(g) + O=O(g) ดูดพลังงาน   = 2 x 2 x (O-H) แทนค่า   = 4 x 463 kJ/mol   = 1,852  kJ/mol คายพลังงาน   = 2(H-H) + O = O   = (2 x 436) + 498 kJ/mol   = 1,360  kJ/mol ดังนั้น   ปฏิกิริยานี้ดูดพลังงาน   >  คายพลังงาน ดังนั้น   ปฏิกิริยานี้ดูดพลังงาน   = 1,852 - ,360 = 492 kJ/mol ตัวอย่างเช่น   จงหาพลังงานของปฏิกิริยา   2H2O(g)  2H2(g) + O2(g)  เมื่อกำหนดให้
ความยาวพันธะ ในการเกิดพันธะเคมี อะตอมจะต้องเข้าใกล้กันด้วยระยะเฉพาะระยะใดระยะหนึ่งเกินกว่าระยะนี้ไม่ได้จะเกิดการผลักกันหรือดึงดูดกันน้อยที่สุด และระยะนี้จะทำให้โมเลกุลมีพลังงานต่ำสุดและเสถียรที่สุด ระยะนี้เรียกว่า  ความยาวพันธะ ความยาวพันธะของอะตอมชนิดเดียวกัน พันธะเดี่ยว   >  พันธะคู่   >  พันธะสาม เช่น ความยาวพันธะ   C - C  เท่ากับ   154  พิโกเมตร , C = C  เท่ากับ   134  พิโกเมตร ,  สรุป  พลังงานพันธะ ความยาวพันธะ ความแข็งแรงของพันธะ และความเสถียรของพันธะ C  C  เท่ากับ   120  พิโกเมตร
พันะธโคออร์ดิเนตโคเวเลนต์   คือ พันธะโคเวเลนต์ที่เกิดจากการใช้อิเล็กตรอนร่วมกันของอะตอมโดยอิเล็กตรอนคู่นี้มาจากอะตอมใดอะตอมหนึ่งไม่ได้มาจากทั้ง   2  อะตอม การเกิดพันธะจะเกิดเมื่อเกิดพันธะโคเวเลนต์ตามปกติ แล้วยังมีอะตอมใดอะตอมหนึ่งที่เวเลนซ์อิเล็กตรอนยังไม่ครบตามกฎออกเตต
เรโซแนนซ์   คือ ปรากฏการณ์ที่ไม่สามารถเขียนสูตรเคมีใดสูตรหนึ่ง เพื่อแสดงโครงสร้างและอธิบายสมบัติของสารหนึ่ง ๆ ได้ เช่น โมเลกุลของซัลเฟอร์ไดออกไซด์เกิดจากการรวมตัวระหว่างกำมะถันกับออกซิเจนซึ่งเป็นไปตามกฎออกเตต จากสูตรจะพบว่ากำมะถันสร้างพันธะเดี่ยว   1  พันธะและพันธะคู่   1  พันธะ ความยาวพันธะควรจะแตกต่างกันเพราะเป็นพันธะคนละชนิดกัน แต่จากการทดลองพบว่าความยาวพันธะทั้งสองเท่ากัน จึงอาจสรุปได้ว่ากำมะถันกับออกซิเจนอะตอมแต่ละอะตอมใช้อิเล็กตรอนร่วมกัน   1  คู่ โดย   1  คู่ เป็นพันธะตามปกติ   ส่วนอีกครึ่งหนึ่งมาจากการมีอิเล็กตรอน   1  คู่เคลื่อนที่ไปมาระหว่างอะตอมทั้งสาม
รูปร่างโมเลกุลโคเวเลนต์ ปัจจัยสำคัญในการกำหนดรูปร่าง คือ   จำนวนอิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอน คู่โดดเดี่ยวรอบอะตอม หลักการกำหนดรูปร่าง คือ   ต้องจัดให้อิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอนคู่โดดเดี่ยว รอบอะตอมวางในที่ว่างที่ลดแรงผลักกันของคู่อิเล็กตรอนเหล่านี้มากที่สุด วิธีทำนายรูปร่างโมเลกุลโคเวเลนต์ 1.  ให้นับจำนวนอิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอนคู่โดดเดี่ยวว่ามีกี่คู่ 2.  จัดคู่อิเล็กตรอนทั้งหมดในที่ว่างให้ลดแรงผลักให้มากที่สุด 3.  จัดอะตอมต่าง ๆ และอิเล็กตรอนคู่โดดเดี่ยวลงไปรอบ ๆ อะตอมกลาง 4.  ดูรูปร่างเฉพาะอะตอมต่าง ๆ รอบอะตอมกลาง ไม่คิดอิเล็กตรอนคู่โดดเดี่ยว
แสดงตัวอย่างรูปร่างโมเลกุลของสารโคเวเลนต์บางชนิด BeCl2, BeH2 BF3, BCl3 SO2, SnCl2, NO CH 4 , SiH 4 NH 3  , PBr 3 H 2 O, SCl 2 PCl 5 , PF 5 , PF 3 Cl 2 SF 4  , TeCl 4 BeF 3 , ClF 3 XeF 2 SF 6 , TeF 6 BrF 5 , IF 5 XeF 4 เส้นตรง รูปสามเหลี่ยมแบนราบ มุมงอ รูปทรงเหลี่ยมสี่หน้า รูปพีระมิดฐานสามเหลี่ยม มุมงอ รูปพีระมิดคู่ฐานสามเหลี่ยม รูปคล้ายไม้กระดานหก รูปตัวที   (T) เส้นตรง รูปทรงเหลี่ยมแปดหน้า รูปพีระมิดฐานสี่เหลี่ยม รูปสี่เหลี่ยมแบนราบ AX 2 AX 3 AX 2 E AX 4 AX 3 E AX 2 E 2 AX 5 AX 4 E AX 3 E 2 AX 2 E 3 AX 3 AX 5 E AX 4 E 2 ตัวอย่าง รูปร่างของโมเลกุล สูตร
สรุป   -  โมเลกุลโคเวเลนต์ที่ไม่มีอิเล็กตรอนคู่โดดเดี่ยวจะมีรูปร่างสมมาตร   เช่น   CH4, BCl3 -  โมเลกุลโคเวเลนต์ที่มีอิเล็กตรอนคู่โดดเดี่ยวจะมีรูปร่างไม่สมมาตร  เช่น   H2O, NH3
ขั้วพันธะโคเวเลนต์ พันธะโคเวเลนต์มีขั้ว เมื่อพันธะโคเวเลนต์นั้นยึดเหนี่ยวระหว่างอะตอมทั้งสองที่มีค่าอิเล็กโทรเนกาติวิตีต่างกัน และพันธะโคเวเลนต์ไม่มีขั้วเมื่ออะตอมทั้งสองมีค่าอิเล็กโทรเนตาติวิตีเท่ากันหรือใกล้เคียง ขั้วพันธะโคเวเลนต์ใช้สัญลักษณ์  และ  โดยอะตอมตัวที่มีค่าอิเล็กโทรเนกาติวิตีน้อยกว่าใช้ อะตอมตัวที่มีค่าอิเล็กโทรเนกาติวิตีสูงกว่าใช้  ขั้วพันธะโคเวเลนต์เป็นเวกเตอร์ที่มีทั้งปริมาณและทิศทางโดยทิศทางจะเขียนไปทางขั้วลบ
ขั้วของโมเลกุล   เกิดจากผลรวมทางเวกเตอร์ของขั้วของพันธะทุกพันธะในโมเลกุลโคเวเลนต์ โมเลกุลโคเวเลนต์   2  อะตอม   ขั้วของโมเลกุลมีค่าเท่ากับขั้วของพันธะ  ตัวอย่างเช่น   H - Cl  พันธะมีขั้ว โมเลกุลมีขั้ว   Cl - Cl  พันธะไม่มีขั้ว โมเลกุลไม่มีขั้ว โมเลกุลโคเวเลนต์มากกว่า   2  อะตอม โมเลกุลที่มีรูปร่างสมมาตร ทิศทางของขั้วพันธะทุกพันธะจะหักล้างกันหมดเหลือแต่ปริมาณ ถ้าอะตอมล้อมรอบเหมือนกันหมด ปริมาณของขั้วพันธะจะหักล้างกันหมด   ( โมเลกุล - ไม่มีขั้ว )  ถ้าอะตอมล้อมรอบไม่เหมือนกัน ปริมาณของขั้วพันธะจะหักล้างกันไม่หมด   ( โมเลกุลมีขั้ว )
สรุป  เมื่ออะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว   โมเลกุลจะมีรูปร่างสมมาตร   ถ้าอะตอม  ล้อมรอบอะตอมกลางเหมือนกันหมด โมเลกุลจะไม่มีขั้ว เช่น   CH 4 , BF 3 ,  BeCl 2 ,PCl 5   เป็นต้น ถ้าอะตอมล้อมรอบอะตอมกลางไม่เหมือนกัน โมเลกุลมีขั้ว  เช่น  CHCl 3   เป็นต้น โมเลกุลที่มีรูปร่างไม่สมมาตร   ทิศทางของขั้วพันธะทุกพันธะ จะหักล้างกันไม่หมด โมเลกุลชนิดนี้จะมีขั้วแน่น ๆ ไม่ว่าปริมาณจะหักล้างกันหมด  หรือไม่ก็ตาม สรุป  เมื่ออะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยว รูปร่างไม่สมมาตร โมเลกุลมีขั้ว เช่น   H 2 O,  OF 2 ,NH 3   เป็นต้น
แรงยึดเหนี่ยวระหว่างโมเลกุลโคเวเลนต์ แรงนี้มีผลต่อจุดเดือดและจุดหลอมเหลวของสาร ถ้าสารมีแรงยึดเหนี่ยวระหว่างอนุภาคสูงจะมีจุดเดือดและจุดหลอมเหลวสูง และสารที่มีแรงยึดเหนี่ยวระหว่างอนุภาคน้อยจะมีจุดเดือดและจุดหลอมเหลวต่ำ แรงยึดเหนี่ยวระหว่างโมเลกุลโคเวเลนต์มี   2  ชนิด  คือ 1 .  พันธะไฮโดรเจน   มีค่ามากที่สุด พบในโมเลกุลที่มีองค์ประกอบดังต่อไปนี้ -  โมเลกุลที่มีไฮโดรเจนอะตอมเกาะอยู่กับธาตุที่มีอิเล็กโทรเนกาติวิตีสูง ๆ -  มีอิเล็กตรอนคู่โดดเดี่ยวของธาตุ   F, O  และ   N
2 . แรงแวนเดอร์วาลส์  แบ่งออกเป็น   3  ชนิด คือแรงลอนดอน แรงระหว่างโมเลกุลมีขั้ว แรงระหว่างโมเลกุลมีขั้วกับโมเลกุลไม่มีขั้ว -  แรงลอนดอน   พบในทุกโมเลกุลโคเวเลนต์ แรงนี้จะแปรผันตามมวลโมเลกุล   มีค่าน้อยที่สุด -  แรงระหว่างขั้ว   เกิดกับโมเลกุลโคเวเลนต์ที่มีขั้วเท่านั้น แรงนี้มีค่ามากกว่า แรงลอนดอน -  แรงระหว่างโมเลกุลมีขั้วและโมเลกุลไม่มีขั้ว
ตาราง แสดงการเปรียบเทียบจุดเดือด ของ   CH 4 , NH 3 , HF  และ   H 2 O จากตาราง สารทั้ง   4  ตัวจะมีแรงลอนดอนใกล้เคียงกันเพราะมีมวลโมเลกุลใกล้เคียงกัน   NH 3 , HF  และ   H 2 O  มีจุดเดือดและจุดหลอมเหลวสูงกว่า   CH 4   เพราะมีแรงยึดเหนี่ยวระหว่างโมเลกุลมากกว่า -182 -78 -83 0 -161 -33 19 100 ไม่มี มี มี มี ไม่มี มี มี มี มี มี มี มี 16 17 20 18 CH 4 NH 3 HF H 2 O จุดหลอมเหลว   ( o C) จุดเดือด   ( o C) พันธะไฮโดรเจน แรงระหว่างขั้ว แรงลอนดอน มวลโมเลกุล สาร
พันธะไอออนิก
พันธะไอออนิก   คือ พันธะที่ยึดเหนี่ยวระหว่างโลหะและอโลหะเข้าด้วยกันเพื่อเกิดเป็นสารประกอบเช่น โซเดียมคลอไรด์   (NaCl)  เป็นต้น สารประกอบไอออนิก มีสมบัติดังนี้ 1.  เป็นแรงดึงดูดแบบไฟฟ้าสถิตระหว่างไอออนิกบวกของโลหะและไอออนลบของอโลหะที่มีความแข็งแรงสูง 2.  จุดเดือดและจุดหลอมเหลวสูง 3.  เมื่อเป็นของแข็งไม่นำไฟฟ้า นำไฟฟ้าได้เมื่อหลอมเหลวหรือเป็นสารละลาย 4.  ไม่มีสูตรโมเลกุล มีแต่สูตรเอมพิริคัล 5.  ส่วนใหญ่ละลายน้ำได้ ยกเว้นพวกสารประกอบคาร์บอเนต เช่น   CaCO 3   พวก สารประกอบซัลเฟต บางตัว เช่น   BaSO 4
การเกิดพันธะไอออนิก โลหะจะจ่ายอิเล็กตรอนเกิดเป็นอิออนบวก   อโลหะจะรับอิเล็กตรอนเกิดเป็นอิออบลบ   อิออนบวก   จะดึงดูดกับ อิออนลบแล้วทำให้ประจุรวมเป็นกลางหรือเป็นศูนย์ ตัวอย่างเช่น การเกิดโซเดียมคลอไรด์   (NaCl)  พลังงานของการเกิดสารประกอบไอออนิก
ตัวอย่างเช่น  พลังงานของการเกิด   NaCl  ดังสมการ   Na(s) +  Cl 2 (g)    NaCl(s)  มีการเปลี่ยนแปลงดังนี้ ดูดพลังงาน   109 ดูดพลังงาน   121 ดูดพลังงาน   494 คายพลังงาน   347 คายพลังงาน   787 พลังงานการระเหิด พลังงานสลายพันธะ พลังงานไอออไนเซชัน สัมพรรคภาพอิเล็กตรอน พลังงานแลตทิช ,[object Object],[object Object],[object Object],[object Object],[object Object],ดูดหรือคายพลังงาน (kJ/mol) ชื่อพลังงาน สมการเคมี
ดูดพลังงานทั้งหมด   = 109 + 121 + 494 = 724  กิโลจูลต่อโมล คายพลังงานทั้งหมด   = 347 + 787 = 1,134  กิโลจูลต่อโมล ดังนั้น การเกิดสารประกอบไอออนิก   NaCl  คายพลังงาน   = 1,134 - 724  = 410  กิโลจูลต่อโมล
สารประกอบไอออนิก เมื่อโลหะทำปฏิกิริยากับอโลหะ ธาตุทั้งสองจะจับกันด้วยพันธะไอออนิกเกิดเป็นสารประกอบไอออนิก สูตรและการเรียกชื่อสารประกอบไอออนิก สูตรของสารประกอบไอออนิก   :  เขียนโลหะขึ้นก่อนแล้วตามด้วยอโลหะ  โดยผลรวมของประจุต้องเป็นศูนย์ เช่น   K +  + Cl -     KCl   Al 3+  + O 2-    Al 2 O 3 การเรียกชื่อสารประกอบเรียกตามลำดับในสูตร เช่น   NH 4 Cl  อ่านว่า แอมโมเนียมคลอไรด์   Al 2 (SO 4 ) 3   อ่านว่า อะลูมิเนียมซัลเฟต
การละลายน้ำของสารประกอบไอออนิก   ประกอบด้วยขั้นตอน   2  ขั้นตอน เช่น   การละลายน้ำของคอปเปอร์ (II)  ซัลเฟต   (CuSO 4 ) ขั้นแรก   :  CuSO 4   จะแตกตัวเป็นไอออนบวกและไอออนลบ ดังสมการ   CuSO 4 (s)    Cu 2+ (g) + SO   (g)  ( ดูดพลังงาน ,  พลังงานแลตทิช ) ขั้นที่   2 :  ไอออนบวกและลบจะรวมตัวกับน้ำ ดังสมการ Cu 2+ (g) + SO   (g)  Cu 2+ (g) + SO  (aq) ( คายพลังงาน ,  พลังงานไฮเดรชัน ) ถ้าดูดพลังงาน   >  คายพลังงาน   การละลายน้ำเป็นแบบดูดพลังงาน   =  ผลต่างของพลังงาน ถ้าคายพลังงาน   >  ดูดพลังงาน การละลายน้ำเป็นแบบคายพลังงาน   =  ผลต่างของพลังงาน
สมการไอออนิก   คือ สมการที่แสดงเฉพาะไอออนหรือสารที่เกี่ยวข้องในปฏิกิริยาเท่านั้น สารที่ไม่แตกตัวหรือเป็นก๊าซจะแสดงโดยสูตรของสารนั้น วิธีเขียนสมการไอออนิก  เขียนได้ดังนี้ 1.  จากสมการโมเลกุลปกติ ตัวที่เป็นสารละลายให้แตกเป็นไอออนบวกและไอออนลบ ตัวที่เป็น  ของแข็งและก๊าซไม่ต้องแตกตัว 2.  พิจารณาว่าตัวใดไม่เปลี่ยนแปลง ให้ตัดทิ้ง 3.  รวมไอออนบวกและไอออนลบที่เหลือ ตัวอย่างเช่น   Na 2 CO 3 (aq) + BaCl 2 (aq)  NaCl(g) + BaCO 3 (s) 2Na + (aq) + CO (aq) + Ba 2+ (aq) + 2Cl - (aq)  สมการไอออนิก   :  Ba 2+ (aq) + CO (aq)  BaCO 3 (s) 2Na+(aq) + 2Cl - (aq) + BaCO 3 (s)
พันธะโลหะ
พันธะโลหะ   คือ พันธะระหว่างอะตอมของโลหะโดยเกิดจากเวเลนซ์อิเล็กตรอนของอะตอม เคลื่อนที่ไปยังอะตอมอื่น ๆ ทั่วทั้งก้อนโลหะ เป็นพันธะที่แข็งแรงมากจึงทำให้โลหะส่วนใหญ่มีสถานะเป็นของแข็ง มีจุดหลอมเหลวสูง และการเกิดพันธะมีเวเลนซ์อิเล็กตรอนเคลื่อนที่ จึงทำให้โลหะนำไฟฟ้าและความร้อนได้ รีดเป็นแผ่นและดึงเป็นเส้นได้
รูปร่างโมเลกุล
น้อยกว่า  120  องศา NO 2 − ,  SO 2 ,  O 3   มุมงอ AX 2 E 1   120  องศา BF 3 ,  CO 3 2− ,  NO 3 − ,  SO 3 สามเหลี่ยมระนาบ AX 3 E 0   180  องศา BeCl 2 ,  HgCl 2 ,  CO 2 เส้นตรง AX 2 E 0  - HF ,  O 2  โมเลกุลอะตอมคู่ AX 1 E n  มุมระหว่างพันธะ  ตัวอย่าง  รูปร่างทางเรขาคณิต  การจัดเรียงกลุ่มอิเล็กตรอนรอบอะตอมกลาง  รูปร่างโมเลกุล  ประเภทของโมเลกุล
มุมระหว่างพันธะ  ตัวอย่าง  รูปร่างทางเรขาคณิต  การจัดเรียงกลุ่มอิเล็กตรอนรอบอะตอมกลาง  รูปร่างโมเลกุล  ประเภทของโมเลกุล น้อยกว่า  109.5  องศา NH 3 ,  PCl 3 พีระมิดฐานสามเหลี่ยม AX 3 E 1   109.5 องศา CH 4 ,  PO 4 3− ,  SO 4 2− ,  ClO 4 − ทรงสี่หน้า AX 4 E 0   ในแนวระนาบฐานพีระมิดทำมุมกัน  120   องศา ส่วนส่วนสูงของพีระมิดทำมุม  90   องศากับระนาบ  PCl 5 พีระมิดคู่ฐานสามเหลี่ยม AX 5 E 0  น้อยกว่า  109.5  องศา H 2 O ,  OF 2 มุมงอ AX 2 E 2
90   องศา  SF 6 ทรงแปดหน้า AX 6 E 0  180   องศา  XeF 2 ,  I 3 −   เส้นตรง AX 2 E 3  น้อยกว่า  90   องศา  ClF 3 ,  BrF 3 ตัวที AX 3 E 2  ในแนวระนาบฐานพีระมิดทำมุมกันน้อยกว่า  120   องศา ส่วนส่วนสูงของพีระมิดทำมุมน้อยกว่า  90   องศากับระนาบ  SF 4 ไม้กระดานหก AX 4 E 1  มุมระหว่างพันธะ  ตัวอย่าง  รูปร่างทางเรขาคณิต  การจัดเรียงกลุ่มอิเล็กตรอนรอบอะตอมกลาง  รูปร่างโมเลกุล  ประเภทของโมเลกุล
ในแนวระนาบฐานพีระมิดทำมุมกัน  72   องศา ส่วนส่วนสูงของพีระมิดทำมุมน้อยกว่า  90   องศากับระนาบ  XeF 6 พีระมิดฐานห้าเหลี่ยม AX 6 E 1  ในแนวระนาบฐานพีระมิดทำมุมกัน  72   องศา ส่วนส่วนสูงของพีระมิดทำมุม  90   องศากับระนาบ  IF 7   พีระมิดคู่ฐานห้าเหลี่ยม AX 7 E 0  90   องศา XeF 4  สี่เหลี่ยมจัตุรัส AX 4 E 2  น้อยกว่า  90   องศา  ClF 5 ,  BrF 5 พีระมิดฐานห้าเหลี่ยม AX 5 E 1  มุมระหว่างพันธะ  ตัวอย่าง  รูปร่างทางเรขาคณิต  การจัดเรียงกลุ่มอิเล็กตรอนรอบอะตอมกลาง  รูปร่างโมเลกุล  ประเภทของโมเลกุล

Mais conteúdo relacionado

Mais procurados

บทที่12 เชื้อเพลิงซากดึกดำบรรพ์และผลิตภัณฑ์
บทที่12 เชื้อเพลิงซากดึกดำบรรพ์และผลิตภัณฑ์บทที่12 เชื้อเพลิงซากดึกดำบรรพ์และผลิตภัณฑ์
บทที่12 เชื้อเพลิงซากดึกดำบรรพ์และผลิตภัณฑ์orasa1971
 
มวลอะตอม มวลโมเลกุล มวลไอออน
มวลอะตอม มวลโมเลกุล มวลไอออนมวลอะตอม มวลโมเลกุล มวลไอออน
มวลอะตอม มวลโมเลกุล มวลไอออนพัน พัน
 
เคมี
เคมีเคมี
เคมีcrazygno
 
แบบฝึกหัดเคมีอินทรีย์
แบบฝึกหัดเคมีอินทรีย์แบบฝึกหัดเคมีอินทรีย์
แบบฝึกหัดเคมีอินทรีย์Kapom K.S.
 
ปฏิกิริยานิวเคลียร์
ปฏิกิริยานิวเคลียร์ปฏิกิริยานิวเคลียร์
ปฏิกิริยานิวเคลียร์Chanthawan Suwanhitathorn
 
8พลังงานภายในระบบ
8พลังงานภายในระบบ8พลังงานภายในระบบ
8พลังงานภายในระบบWijitta DevilTeacher
 
การสังเคราะห์ด้วยแสงของพืช
การสังเคราะห์ด้วยแสงของพืชการสังเคราะห์ด้วยแสงของพืช
การสังเคราะห์ด้วยแสงของพืชsukanya petin
 
บทที่ 20 ฟิสิกส์นิวเคลียร์ แก้ไขครั้งที่ 1
บทที่ 20 ฟิสิกส์นิวเคลียร์ แก้ไขครั้งที่ 1บทที่ 20 ฟิสิกส์นิวเคลียร์ แก้ไขครั้งที่ 1
บทที่ 20 ฟิสิกส์นิวเคลียร์ แก้ไขครั้งที่ 1Wijitta DevilTeacher
 
บทที่ 1 พันธุกรรมกับหมู่เลือด
บทที่ 1 พันธุกรรมกับหมู่เลือดบทที่ 1 พันธุกรรมกับหมู่เลือด
บทที่ 1 พันธุกรรมกับหมู่เลือดPinutchaya Nakchumroon
 
6แบบทดสอบการลำเลียงสารผ่านเซลล์
6แบบทดสอบการลำเลียงสารผ่านเซลล์6แบบทดสอบการลำเลียงสารผ่านเซลล์
6แบบทดสอบการลำเลียงสารผ่านเซลล์สำเร็จ นางสีคุณ
 
แบบทดสอบ บทที่ 6 การถ่ายทอดลักษณะทางพันธูกรรม
แบบทดสอบ บทที่  6  การถ่ายทอดลักษณะทางพันธูกรรมแบบทดสอบ บทที่  6  การถ่ายทอดลักษณะทางพันธูกรรม
แบบทดสอบ บทที่ 6 การถ่ายทอดลักษณะทางพันธูกรรมdnavaroj
 
ไอโซโทป ไอโซโทน
ไอโซโทป ไอโซโทนไอโซโทป ไอโซโทน
ไอโซโทป ไอโซโทนkrupatcharee
 
ใบความรู้เรื่องแสง
ใบความรู้เรื่องแสงใบความรู้เรื่องแสง
ใบความรู้เรื่องแสงพัน พัน
 
ใบงานพอลิเมอร์
ใบงานพอลิเมอร์ใบงานพอลิเมอร์
ใบงานพอลิเมอร์Jariya Jaiyot
 
วิทยาศาสตร์กายภาพ 1 เรื่อง อากาศ
วิทยาศาสตร์กายภาพ 1 เรื่อง อากาศวิทยาศาสตร์กายภาพ 1 เรื่อง อากาศ
วิทยาศาสตร์กายภาพ 1 เรื่อง อากาศKatewaree Yosyingyong
 

Mais procurados (20)

บทที่12 เชื้อเพลิงซากดึกดำบรรพ์และผลิตภัณฑ์
บทที่12 เชื้อเพลิงซากดึกดำบรรพ์และผลิตภัณฑ์บทที่12 เชื้อเพลิงซากดึกดำบรรพ์และผลิตภัณฑ์
บทที่12 เชื้อเพลิงซากดึกดำบรรพ์และผลิตภัณฑ์
 
แก๊สอุดมคติ
แก๊สอุดมคติแก๊สอุดมคติ
แก๊สอุดมคติ
 
มวลอะตอม มวลโมเลกุล มวลไอออน
มวลอะตอม มวลโมเลกุล มวลไอออนมวลอะตอม มวลโมเลกุล มวลไอออน
มวลอะตอม มวลโมเลกุล มวลไอออน
 
เคมี
เคมีเคมี
เคมี
 
แบบฝึกหัดเคมีอินทรีย์
แบบฝึกหัดเคมีอินทรีย์แบบฝึกหัดเคมีอินทรีย์
แบบฝึกหัดเคมีอินทรีย์
 
ปฏิกิริยานิวเคลียร์
ปฏิกิริยานิวเคลียร์ปฏิกิริยานิวเคลียร์
ปฏิกิริยานิวเคลียร์
 
8พลังงานภายในระบบ
8พลังงานภายในระบบ8พลังงานภายในระบบ
8พลังงานภายในระบบ
 
การสกัดด้วยตัวทำละลาย
การสกัดด้วยตัวทำละลายการสกัดด้วยตัวทำละลาย
การสกัดด้วยตัวทำละลาย
 
โมล ม.4
โมล ม.4โมล ม.4
โมล ม.4
 
การสังเคราะห์ด้วยแสงของพืช
การสังเคราะห์ด้วยแสงของพืชการสังเคราะห์ด้วยแสงของพืช
การสังเคราะห์ด้วยแสงของพืช
 
ไอโซเมอร์
ไอโซเมอร์ไอโซเมอร์
ไอโซเมอร์
 
บทที่ 20 ฟิสิกส์นิวเคลียร์ แก้ไขครั้งที่ 1
บทที่ 20 ฟิสิกส์นิวเคลียร์ แก้ไขครั้งที่ 1บทที่ 20 ฟิสิกส์นิวเคลียร์ แก้ไขครั้งที่ 1
บทที่ 20 ฟิสิกส์นิวเคลียร์ แก้ไขครั้งที่ 1
 
บทที่ 1 พันธุกรรมกับหมู่เลือด
บทที่ 1 พันธุกรรมกับหมู่เลือดบทที่ 1 พันธุกรรมกับหมู่เลือด
บทที่ 1 พันธุกรรมกับหมู่เลือด
 
6แบบทดสอบการลำเลียงสารผ่านเซลล์
6แบบทดสอบการลำเลียงสารผ่านเซลล์6แบบทดสอบการลำเลียงสารผ่านเซลล์
6แบบทดสอบการลำเลียงสารผ่านเซลล์
 
แบบทดสอบ บทที่ 6 การถ่ายทอดลักษณะทางพันธูกรรม
แบบทดสอบ บทที่  6  การถ่ายทอดลักษณะทางพันธูกรรมแบบทดสอบ บทที่  6  การถ่ายทอดลักษณะทางพันธูกรรม
แบบทดสอบ บทที่ 6 การถ่ายทอดลักษณะทางพันธูกรรม
 
Esterification
Esterification Esterification
Esterification
 
ไอโซโทป ไอโซโทน
ไอโซโทป ไอโซโทนไอโซโทป ไอโซโทน
ไอโซโทป ไอโซโทน
 
ใบความรู้เรื่องแสง
ใบความรู้เรื่องแสงใบความรู้เรื่องแสง
ใบความรู้เรื่องแสง
 
ใบงานพอลิเมอร์
ใบงานพอลิเมอร์ใบงานพอลิเมอร์
ใบงานพอลิเมอร์
 
วิทยาศาสตร์กายภาพ 1 เรื่อง อากาศ
วิทยาศาสตร์กายภาพ 1 เรื่อง อากาศวิทยาศาสตร์กายภาพ 1 เรื่อง อากาศ
วิทยาศาสตร์กายภาพ 1 เรื่อง อากาศ
 

Semelhante a พันธะเคมี

covelent_bond
covelent_bondcovelent_bond
covelent_bondShe's Bee
 
พันธะเคมี
พันธะเคมีพันธะเคมี
พันธะเคมีTharit Khumon
 
Ch 02 ionic bond
Ch 02 ionic bond Ch 02 ionic bond
Ch 02 ionic bond kruannchem
 
พันธะโคเวเลนต์ Covalent Bond
พันธะโคเวเลนต์ Covalent Bondพันธะโคเวเลนต์ Covalent Bond
พันธะโคเวเลนต์ Covalent BondSaipanya school
 
โครงสร้างอะตอมและตารางธาตุ (โครงงานคอมพิวเตอร์)
โครงสร้างอะตอมและตารางธาตุ (โครงงานคอมพิวเตอร์)โครงสร้างอะตอมและตารางธาตุ (โครงงานคอมพิวเตอร์)
โครงสร้างอะตอมและตารางธาตุ (โครงงานคอมพิวเตอร์)Ajchariya Sitthikaew
 
Ch 01 โครงสร้างอะตอม
Ch 01 โครงสร้างอะตอมCh 01 โครงสร้างอะตอม
Ch 01 โครงสร้างอะตอมkruannchem
 
บทที่ 5 พันธะเคมี
บทที่ 5 พันธะเคมีบทที่ 5 พันธะเคมี
บทที่ 5 พันธะเคมีGawewat Dechaapinun
 
ทฤษฎีจลน์ของก๊าซ
ทฤษฎีจลน์ของก๊าซทฤษฎีจลน์ของก๊าซ
ทฤษฎีจลน์ของก๊าซNawamin Wongchai
 

Semelhante a พันธะเคมี (20)

Chemical bonding1
Chemical bonding1Chemical bonding1
Chemical bonding1
 
covelent_bond
covelent_bondcovelent_bond
covelent_bond
 
Chemical
ChemicalChemical
Chemical
 
พันธะเคมี
พันธะเคมีพันธะเคมี
พันธะเคมี
 
Ch 02 ionic bond
Ch 02 ionic bond Ch 02 ionic bond
Ch 02 ionic bond
 
Punmanee study 3
Punmanee study 3Punmanee study 3
Punmanee study 3
 
พันธะโคเวเลนต์ Covalent Bond
พันธะโคเวเลนต์ Covalent Bondพันธะโคเวเลนต์ Covalent Bond
พันธะโคเวเลนต์ Covalent Bond
 
Electrochem 1
Electrochem 1Electrochem 1
Electrochem 1
 
โครงสร้างอะตอมและตารางธาตุ (โครงงานคอมพิวเตอร์)
โครงสร้างอะตอมและตารางธาตุ (โครงงานคอมพิวเตอร์)โครงสร้างอะตอมและตารางธาตุ (โครงงานคอมพิวเตอร์)
โครงสร้างอะตอมและตารางธาตุ (โครงงานคอมพิวเตอร์)
 
Chembond
ChembondChembond
Chembond
 
Chembond
ChembondChembond
Chembond
 
Ch 01 โครงสร้างอะตอม
Ch 01 โครงสร้างอะตอมCh 01 โครงสร้างอะตอม
Ch 01 โครงสร้างอะตอม
 
Chap 5 chemical bonding
Chap 5 chemical bondingChap 5 chemical bonding
Chap 5 chemical bonding
 
บทที่ 5 พันธะเคมี
บทที่ 5 พันธะเคมีบทที่ 5 พันธะเคมี
บทที่ 5 พันธะเคมี
 
Atom
AtomAtom
Atom
 
ทฤษฎีจลน์ของก๊าซ
ทฤษฎีจลน์ของก๊าซทฤษฎีจลน์ของก๊าซ
ทฤษฎีจลน์ของก๊าซ
 
พันธะเคมี
พันธะเคมีพันธะเคมี
พันธะเคมี
 
พันธะเคมี
พันธะเคมีพันธะเคมี
พันธะเคมี
 
พันธะเคมี
พันธะเคมีพันธะเคมี
พันธะเคมี
 
Bond
BondBond
Bond
 

พันธะเคมี

  • 2. พันธะเคมี กระบวนการต่าง ๆ ในเคมี โมเลกุลมีบทบาทมากกว่าอะตอม ในโมเลกุลต้องมีแรงเหนี่ยวระหว่างอะตอม การที่อะตอมสร้างพันธะเคมีกันเพื่อเกิดเป็นโมเลกุล โมเลกุลที่เกิดขึ้นจะมีพลังงานต่ำกว่าพลังงานรวมของอะตอมเมื่อยังแยกกันอยู่ พันธะเคมีแบ่งตามชนิดของอะตอมได้เป็น 3 ชนิด คือ
  • 3. 1. พันธะโคเวเลนต์ เป็นพันธะในสารประกอบของธาตุที่เป็นอโลหะกับอโลหะชนิดเดียวกันหรือคนละชนิด เช่น Cl2, HCl, HCN เป็นต้น 2. พันธะไอออนิก เป็นพันธะในสารประกอบของธาตุที่เป็นโลหะกับอโลหะ เช่น NaCl, CaCl2,KBr เป็นต้น 3. พันธะโลหะ เป็นพันธะที่ยึดเหนี่ยวระหว่างอะตอมของโลหะชนิดเดียวกันเข้าด้วยกัน
  • 4.
  • 6. พันธะโคเวเลนต์ คือ พันธะเคมีที่เกิดจากการใช้เวเลนซ์อิเล็กตรอนของอะตอมของธาตุ ที่เป็นอโลหะร่วมกันตามกฎออกเตต แบ่งออกเป็นพันธะโคเวเลนต์ระหว่างธาตุชนิดเดียวกันกับพันธะโคเวเลนต์ระหว่างธาตุต่างชนิดกัน 2H(g) ; ดูดพลังงาน 436 kJ นั่นคือ พลังงานพันธะของ H - H เท่ากับ 436 กิโลจูล พลังงานพันธะจะบอกความแข็งแรงของพันธะ พันธะที่แข็งแรงมากจะมีพลังงานพันธะมากพันธะที่แข็งแรงน้อยจะมีพลังงานพันธะน้อย 2H(g) H2(g) + 436 kJ ; ดูดพลังงาน 436 kJ H2(g) + 436 kJ
  • 7. พลังงานของปฏิกิริยา คำนวณได้จากพลังงานพันธะโดยอาศัยหลักการที่ว่า สารตั้งต้นทุกตัวต้องดูดพลังงานเพื่อใช้ในการสลายพันธะเดิมออกให้หมด และผลิตภัณฑ์ต้องมีการสร้างพันธะขึ้นมาใหม่จะคายพลังงานออกมา ถ้าระบบดูดพลังงาน > คายพลังงาน ปฏิกิริยาจะดูดพลังงาน = พลังงานที่ดูด - พลังงานที่คาย ถ้าระบบคายพลังงาน > ดูดพลังงาน ปฏิกิริยาจะคายพลังงาน = พลังงานที่คาย - พลังงานที่ดูด
  • 8. พลังงานพันธะ H - H 436 kJ/mol, O = O 498 kJ/mol และ O-H 463 kJ/mol 2H 2 O(g) 2H 2 (g) + O 2 (g) 2H - O - H(g) 2H - H(g) + O=O(g) ดูดพลังงาน = 2 x 2 x (O-H) แทนค่า = 4 x 463 kJ/mol = 1,852 kJ/mol คายพลังงาน = 2(H-H) + O = O = (2 x 436) + 498 kJ/mol = 1,360 kJ/mol ดังนั้น ปฏิกิริยานี้ดูดพลังงาน > คายพลังงาน ดังนั้น ปฏิกิริยานี้ดูดพลังงาน = 1,852 - ,360 = 492 kJ/mol ตัวอย่างเช่น จงหาพลังงานของปฏิกิริยา 2H2O(g) 2H2(g) + O2(g) เมื่อกำหนดให้
  • 9. ความยาวพันธะ ในการเกิดพันธะเคมี อะตอมจะต้องเข้าใกล้กันด้วยระยะเฉพาะระยะใดระยะหนึ่งเกินกว่าระยะนี้ไม่ได้จะเกิดการผลักกันหรือดึงดูดกันน้อยที่สุด และระยะนี้จะทำให้โมเลกุลมีพลังงานต่ำสุดและเสถียรที่สุด ระยะนี้เรียกว่า ความยาวพันธะ ความยาวพันธะของอะตอมชนิดเดียวกัน พันธะเดี่ยว > พันธะคู่ > พันธะสาม เช่น ความยาวพันธะ C - C เท่ากับ 154 พิโกเมตร , C = C เท่ากับ 134 พิโกเมตร , สรุป พลังงานพันธะ ความยาวพันธะ ความแข็งแรงของพันธะ และความเสถียรของพันธะ C C เท่ากับ 120 พิโกเมตร
  • 10. พันะธโคออร์ดิเนตโคเวเลนต์ คือ พันธะโคเวเลนต์ที่เกิดจากการใช้อิเล็กตรอนร่วมกันของอะตอมโดยอิเล็กตรอนคู่นี้มาจากอะตอมใดอะตอมหนึ่งไม่ได้มาจากทั้ง 2 อะตอม การเกิดพันธะจะเกิดเมื่อเกิดพันธะโคเวเลนต์ตามปกติ แล้วยังมีอะตอมใดอะตอมหนึ่งที่เวเลนซ์อิเล็กตรอนยังไม่ครบตามกฎออกเตต
  • 11. เรโซแนนซ์ คือ ปรากฏการณ์ที่ไม่สามารถเขียนสูตรเคมีใดสูตรหนึ่ง เพื่อแสดงโครงสร้างและอธิบายสมบัติของสารหนึ่ง ๆ ได้ เช่น โมเลกุลของซัลเฟอร์ไดออกไซด์เกิดจากการรวมตัวระหว่างกำมะถันกับออกซิเจนซึ่งเป็นไปตามกฎออกเตต จากสูตรจะพบว่ากำมะถันสร้างพันธะเดี่ยว 1 พันธะและพันธะคู่ 1 พันธะ ความยาวพันธะควรจะแตกต่างกันเพราะเป็นพันธะคนละชนิดกัน แต่จากการทดลองพบว่าความยาวพันธะทั้งสองเท่ากัน จึงอาจสรุปได้ว่ากำมะถันกับออกซิเจนอะตอมแต่ละอะตอมใช้อิเล็กตรอนร่วมกัน 1 คู่ โดย 1 คู่ เป็นพันธะตามปกติ ส่วนอีกครึ่งหนึ่งมาจากการมีอิเล็กตรอน 1 คู่เคลื่อนที่ไปมาระหว่างอะตอมทั้งสาม
  • 12. รูปร่างโมเลกุลโคเวเลนต์ ปัจจัยสำคัญในการกำหนดรูปร่าง คือ จำนวนอิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอน คู่โดดเดี่ยวรอบอะตอม หลักการกำหนดรูปร่าง คือ ต้องจัดให้อิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอนคู่โดดเดี่ยว รอบอะตอมวางในที่ว่างที่ลดแรงผลักกันของคู่อิเล็กตรอนเหล่านี้มากที่สุด วิธีทำนายรูปร่างโมเลกุลโคเวเลนต์ 1. ให้นับจำนวนอิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอนคู่โดดเดี่ยวว่ามีกี่คู่ 2. จัดคู่อิเล็กตรอนทั้งหมดในที่ว่างให้ลดแรงผลักให้มากที่สุด 3. จัดอะตอมต่าง ๆ และอิเล็กตรอนคู่โดดเดี่ยวลงไปรอบ ๆ อะตอมกลาง 4. ดูรูปร่างเฉพาะอะตอมต่าง ๆ รอบอะตอมกลาง ไม่คิดอิเล็กตรอนคู่โดดเดี่ยว
  • 13. แสดงตัวอย่างรูปร่างโมเลกุลของสารโคเวเลนต์บางชนิด BeCl2, BeH2 BF3, BCl3 SO2, SnCl2, NO CH 4 , SiH 4 NH 3 , PBr 3 H 2 O, SCl 2 PCl 5 , PF 5 , PF 3 Cl 2 SF 4 , TeCl 4 BeF 3 , ClF 3 XeF 2 SF 6 , TeF 6 BrF 5 , IF 5 XeF 4 เส้นตรง รูปสามเหลี่ยมแบนราบ มุมงอ รูปทรงเหลี่ยมสี่หน้า รูปพีระมิดฐานสามเหลี่ยม มุมงอ รูปพีระมิดคู่ฐานสามเหลี่ยม รูปคล้ายไม้กระดานหก รูปตัวที (T) เส้นตรง รูปทรงเหลี่ยมแปดหน้า รูปพีระมิดฐานสี่เหลี่ยม รูปสี่เหลี่ยมแบนราบ AX 2 AX 3 AX 2 E AX 4 AX 3 E AX 2 E 2 AX 5 AX 4 E AX 3 E 2 AX 2 E 3 AX 3 AX 5 E AX 4 E 2 ตัวอย่าง รูปร่างของโมเลกุล สูตร
  • 14. สรุป - โมเลกุลโคเวเลนต์ที่ไม่มีอิเล็กตรอนคู่โดดเดี่ยวจะมีรูปร่างสมมาตร เช่น CH4, BCl3 - โมเลกุลโคเวเลนต์ที่มีอิเล็กตรอนคู่โดดเดี่ยวจะมีรูปร่างไม่สมมาตร เช่น H2O, NH3
  • 15. ขั้วพันธะโคเวเลนต์ พันธะโคเวเลนต์มีขั้ว เมื่อพันธะโคเวเลนต์นั้นยึดเหนี่ยวระหว่างอะตอมทั้งสองที่มีค่าอิเล็กโทรเนกาติวิตีต่างกัน และพันธะโคเวเลนต์ไม่มีขั้วเมื่ออะตอมทั้งสองมีค่าอิเล็กโทรเนตาติวิตีเท่ากันหรือใกล้เคียง ขั้วพันธะโคเวเลนต์ใช้สัญลักษณ์ และ โดยอะตอมตัวที่มีค่าอิเล็กโทรเนกาติวิตีน้อยกว่าใช้ อะตอมตัวที่มีค่าอิเล็กโทรเนกาติวิตีสูงกว่าใช้ ขั้วพันธะโคเวเลนต์เป็นเวกเตอร์ที่มีทั้งปริมาณและทิศทางโดยทิศทางจะเขียนไปทางขั้วลบ
  • 16. ขั้วของโมเลกุล เกิดจากผลรวมทางเวกเตอร์ของขั้วของพันธะทุกพันธะในโมเลกุลโคเวเลนต์ โมเลกุลโคเวเลนต์ 2 อะตอม ขั้วของโมเลกุลมีค่าเท่ากับขั้วของพันธะ ตัวอย่างเช่น H - Cl พันธะมีขั้ว โมเลกุลมีขั้ว Cl - Cl พันธะไม่มีขั้ว โมเลกุลไม่มีขั้ว โมเลกุลโคเวเลนต์มากกว่า 2 อะตอม โมเลกุลที่มีรูปร่างสมมาตร ทิศทางของขั้วพันธะทุกพันธะจะหักล้างกันหมดเหลือแต่ปริมาณ ถ้าอะตอมล้อมรอบเหมือนกันหมด ปริมาณของขั้วพันธะจะหักล้างกันหมด ( โมเลกุล - ไม่มีขั้ว ) ถ้าอะตอมล้อมรอบไม่เหมือนกัน ปริมาณของขั้วพันธะจะหักล้างกันไม่หมด ( โมเลกุลมีขั้ว )
  • 17. สรุป เมื่ออะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว โมเลกุลจะมีรูปร่างสมมาตร ถ้าอะตอม ล้อมรอบอะตอมกลางเหมือนกันหมด โมเลกุลจะไม่มีขั้ว เช่น CH 4 , BF 3 , BeCl 2 ,PCl 5 เป็นต้น ถ้าอะตอมล้อมรอบอะตอมกลางไม่เหมือนกัน โมเลกุลมีขั้ว เช่น CHCl 3 เป็นต้น โมเลกุลที่มีรูปร่างไม่สมมาตร ทิศทางของขั้วพันธะทุกพันธะ จะหักล้างกันไม่หมด โมเลกุลชนิดนี้จะมีขั้วแน่น ๆ ไม่ว่าปริมาณจะหักล้างกันหมด หรือไม่ก็ตาม สรุป เมื่ออะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยว รูปร่างไม่สมมาตร โมเลกุลมีขั้ว เช่น H 2 O, OF 2 ,NH 3 เป็นต้น
  • 18. แรงยึดเหนี่ยวระหว่างโมเลกุลโคเวเลนต์ แรงนี้มีผลต่อจุดเดือดและจุดหลอมเหลวของสาร ถ้าสารมีแรงยึดเหนี่ยวระหว่างอนุภาคสูงจะมีจุดเดือดและจุดหลอมเหลวสูง และสารที่มีแรงยึดเหนี่ยวระหว่างอนุภาคน้อยจะมีจุดเดือดและจุดหลอมเหลวต่ำ แรงยึดเหนี่ยวระหว่างโมเลกุลโคเวเลนต์มี 2 ชนิด คือ 1 . พันธะไฮโดรเจน มีค่ามากที่สุด พบในโมเลกุลที่มีองค์ประกอบดังต่อไปนี้ - โมเลกุลที่มีไฮโดรเจนอะตอมเกาะอยู่กับธาตุที่มีอิเล็กโทรเนกาติวิตีสูง ๆ - มีอิเล็กตรอนคู่โดดเดี่ยวของธาตุ F, O และ N
  • 19. 2 . แรงแวนเดอร์วาลส์ แบ่งออกเป็น 3 ชนิด คือแรงลอนดอน แรงระหว่างโมเลกุลมีขั้ว แรงระหว่างโมเลกุลมีขั้วกับโมเลกุลไม่มีขั้ว - แรงลอนดอน พบในทุกโมเลกุลโคเวเลนต์ แรงนี้จะแปรผันตามมวลโมเลกุล มีค่าน้อยที่สุด - แรงระหว่างขั้ว เกิดกับโมเลกุลโคเวเลนต์ที่มีขั้วเท่านั้น แรงนี้มีค่ามากกว่า แรงลอนดอน - แรงระหว่างโมเลกุลมีขั้วและโมเลกุลไม่มีขั้ว
  • 20. ตาราง แสดงการเปรียบเทียบจุดเดือด ของ CH 4 , NH 3 , HF และ H 2 O จากตาราง สารทั้ง 4 ตัวจะมีแรงลอนดอนใกล้เคียงกันเพราะมีมวลโมเลกุลใกล้เคียงกัน NH 3 , HF และ H 2 O มีจุดเดือดและจุดหลอมเหลวสูงกว่า CH 4 เพราะมีแรงยึดเหนี่ยวระหว่างโมเลกุลมากกว่า -182 -78 -83 0 -161 -33 19 100 ไม่มี มี มี มี ไม่มี มี มี มี มี มี มี มี 16 17 20 18 CH 4 NH 3 HF H 2 O จุดหลอมเหลว ( o C) จุดเดือด ( o C) พันธะไฮโดรเจน แรงระหว่างขั้ว แรงลอนดอน มวลโมเลกุล สาร
  • 22. พันธะไอออนิก คือ พันธะที่ยึดเหนี่ยวระหว่างโลหะและอโลหะเข้าด้วยกันเพื่อเกิดเป็นสารประกอบเช่น โซเดียมคลอไรด์ (NaCl) เป็นต้น สารประกอบไอออนิก มีสมบัติดังนี้ 1. เป็นแรงดึงดูดแบบไฟฟ้าสถิตระหว่างไอออนิกบวกของโลหะและไอออนลบของอโลหะที่มีความแข็งแรงสูง 2. จุดเดือดและจุดหลอมเหลวสูง 3. เมื่อเป็นของแข็งไม่นำไฟฟ้า นำไฟฟ้าได้เมื่อหลอมเหลวหรือเป็นสารละลาย 4. ไม่มีสูตรโมเลกุล มีแต่สูตรเอมพิริคัล 5. ส่วนใหญ่ละลายน้ำได้ ยกเว้นพวกสารประกอบคาร์บอเนต เช่น CaCO 3 พวก สารประกอบซัลเฟต บางตัว เช่น BaSO 4
  • 23. การเกิดพันธะไอออนิก โลหะจะจ่ายอิเล็กตรอนเกิดเป็นอิออนบวก อโลหะจะรับอิเล็กตรอนเกิดเป็นอิออบลบ อิออนบวก จะดึงดูดกับ อิออนลบแล้วทำให้ประจุรวมเป็นกลางหรือเป็นศูนย์ ตัวอย่างเช่น การเกิดโซเดียมคลอไรด์ (NaCl) พลังงานของการเกิดสารประกอบไอออนิก
  • 24.
  • 25. ดูดพลังงานทั้งหมด = 109 + 121 + 494 = 724 กิโลจูลต่อโมล คายพลังงานทั้งหมด = 347 + 787 = 1,134 กิโลจูลต่อโมล ดังนั้น การเกิดสารประกอบไอออนิก NaCl คายพลังงาน = 1,134 - 724 = 410 กิโลจูลต่อโมล
  • 26. สารประกอบไอออนิก เมื่อโลหะทำปฏิกิริยากับอโลหะ ธาตุทั้งสองจะจับกันด้วยพันธะไอออนิกเกิดเป็นสารประกอบไอออนิก สูตรและการเรียกชื่อสารประกอบไอออนิก สูตรของสารประกอบไอออนิก : เขียนโลหะขึ้นก่อนแล้วตามด้วยอโลหะ โดยผลรวมของประจุต้องเป็นศูนย์ เช่น K + + Cl -  KCl Al 3+ + O 2-  Al 2 O 3 การเรียกชื่อสารประกอบเรียกตามลำดับในสูตร เช่น NH 4 Cl อ่านว่า แอมโมเนียมคลอไรด์ Al 2 (SO 4 ) 3 อ่านว่า อะลูมิเนียมซัลเฟต
  • 27. การละลายน้ำของสารประกอบไอออนิก ประกอบด้วยขั้นตอน 2 ขั้นตอน เช่น การละลายน้ำของคอปเปอร์ (II) ซัลเฟต (CuSO 4 ) ขั้นแรก : CuSO 4 จะแตกตัวเป็นไอออนบวกและไอออนลบ ดังสมการ CuSO 4 (s)  Cu 2+ (g) + SO  (g) ( ดูดพลังงาน , พลังงานแลตทิช ) ขั้นที่ 2 : ไอออนบวกและลบจะรวมตัวกับน้ำ ดังสมการ Cu 2+ (g) + SO  (g)  Cu 2+ (g) + SO (aq) ( คายพลังงาน , พลังงานไฮเดรชัน ) ถ้าดูดพลังงาน > คายพลังงาน การละลายน้ำเป็นแบบดูดพลังงาน = ผลต่างของพลังงาน ถ้าคายพลังงาน > ดูดพลังงาน การละลายน้ำเป็นแบบคายพลังงาน = ผลต่างของพลังงาน
  • 28. สมการไอออนิก คือ สมการที่แสดงเฉพาะไอออนหรือสารที่เกี่ยวข้องในปฏิกิริยาเท่านั้น สารที่ไม่แตกตัวหรือเป็นก๊าซจะแสดงโดยสูตรของสารนั้น วิธีเขียนสมการไอออนิก เขียนได้ดังนี้ 1. จากสมการโมเลกุลปกติ ตัวที่เป็นสารละลายให้แตกเป็นไอออนบวกและไอออนลบ ตัวที่เป็น ของแข็งและก๊าซไม่ต้องแตกตัว 2. พิจารณาว่าตัวใดไม่เปลี่ยนแปลง ให้ตัดทิ้ง 3. รวมไอออนบวกและไอออนลบที่เหลือ ตัวอย่างเช่น Na 2 CO 3 (aq) + BaCl 2 (aq) NaCl(g) + BaCO 3 (s) 2Na + (aq) + CO (aq) + Ba 2+ (aq) + 2Cl - (aq) สมการไอออนิก : Ba 2+ (aq) + CO (aq) BaCO 3 (s) 2Na+(aq) + 2Cl - (aq) + BaCO 3 (s)
  • 30. พันธะโลหะ คือ พันธะระหว่างอะตอมของโลหะโดยเกิดจากเวเลนซ์อิเล็กตรอนของอะตอม เคลื่อนที่ไปยังอะตอมอื่น ๆ ทั่วทั้งก้อนโลหะ เป็นพันธะที่แข็งแรงมากจึงทำให้โลหะส่วนใหญ่มีสถานะเป็นของแข็ง มีจุดหลอมเหลวสูง และการเกิดพันธะมีเวเลนซ์อิเล็กตรอนเคลื่อนที่ จึงทำให้โลหะนำไฟฟ้าและความร้อนได้ รีดเป็นแผ่นและดึงเป็นเส้นได้
  • 32. น้อยกว่า 120 องศา NO 2 − , SO 2 , O 3 มุมงอ AX 2 E 1 120 องศา BF 3 , CO 3 2− , NO 3 − , SO 3 สามเหลี่ยมระนาบ AX 3 E 0 180 องศา BeCl 2 , HgCl 2 , CO 2 เส้นตรง AX 2 E 0 - HF , O 2 โมเลกุลอะตอมคู่ AX 1 E n มุมระหว่างพันธะ ตัวอย่าง รูปร่างทางเรขาคณิต การจัดเรียงกลุ่มอิเล็กตรอนรอบอะตอมกลาง รูปร่างโมเลกุล ประเภทของโมเลกุล
  • 33. มุมระหว่างพันธะ ตัวอย่าง รูปร่างทางเรขาคณิต การจัดเรียงกลุ่มอิเล็กตรอนรอบอะตอมกลาง รูปร่างโมเลกุล ประเภทของโมเลกุล น้อยกว่า 109.5 องศา NH 3 , PCl 3 พีระมิดฐานสามเหลี่ยม AX 3 E 1 109.5 องศา CH 4 , PO 4 3− , SO 4 2− , ClO 4 − ทรงสี่หน้า AX 4 E 0 ในแนวระนาบฐานพีระมิดทำมุมกัน 120 องศา ส่วนส่วนสูงของพีระมิดทำมุม 90 องศากับระนาบ PCl 5 พีระมิดคู่ฐานสามเหลี่ยม AX 5 E 0 น้อยกว่า 109.5 องศา H 2 O , OF 2 มุมงอ AX 2 E 2
  • 34. 90 องศา SF 6 ทรงแปดหน้า AX 6 E 0 180 องศา XeF 2 , I 3 − เส้นตรง AX 2 E 3 น้อยกว่า 90 องศา ClF 3 , BrF 3 ตัวที AX 3 E 2 ในแนวระนาบฐานพีระมิดทำมุมกันน้อยกว่า 120 องศา ส่วนส่วนสูงของพีระมิดทำมุมน้อยกว่า 90 องศากับระนาบ SF 4 ไม้กระดานหก AX 4 E 1 มุมระหว่างพันธะ ตัวอย่าง รูปร่างทางเรขาคณิต การจัดเรียงกลุ่มอิเล็กตรอนรอบอะตอมกลาง รูปร่างโมเลกุล ประเภทของโมเลกุล
  • 35. ในแนวระนาบฐานพีระมิดทำมุมกัน 72 องศา ส่วนส่วนสูงของพีระมิดทำมุมน้อยกว่า 90 องศากับระนาบ XeF 6 พีระมิดฐานห้าเหลี่ยม AX 6 E 1 ในแนวระนาบฐานพีระมิดทำมุมกัน 72 องศา ส่วนส่วนสูงของพีระมิดทำมุม 90 องศากับระนาบ IF 7 พีระมิดคู่ฐานห้าเหลี่ยม AX 7 E 0 90 องศา XeF 4 สี่เหลี่ยมจัตุรัส AX 4 E 2 น้อยกว่า 90 องศา ClF 5 , BrF 5 พีระมิดฐานห้าเหลี่ยม AX 5 E 1 มุมระหว่างพันธะ ตัวอย่าง รูปร่างทางเรขาคณิต การจัดเรียงกลุ่มอิเล็กตรอนรอบอะตอมกลาง รูปร่างโมเลกุล ประเภทของโมเลกุล