SlideShare uma empresa Scribd logo
1 de 115
Baixar para ler offline
The UK’s European university
New Broken Time-reversal Symmetry
Superconductors / Theoretical Constraints
on Pairing States and Mechanisms
Jorge Quintanilla
Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 2
Superconductivity
Triplet
pairing
Broken time-
reversal
symmetry
Topological
transitions
LaNiC2
,
LaNiGa2
UPt3
,Sr2
RuO4
Re6
Zr Topological
insulators
Ferro-
magnets
Antiferro-
magnets
R5
Rh6
Sn18
Cu-based
HTSC
Fe-based
HTSC
URhGe,UGe2
Conventional
superconductors
Li2
Pt3-x
Pdx
B
Noncentrosymmetric
superconductors
Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 3
People
Theory: James F. Annett (Bristol)
Bayan Mazidian (RAL/Bristol) / LaNiGa2, Re6Zr
Experiment: Adrian Hillier (RAL)
Bob Cywinski (Huddersfield) / LaNiC2, LaNiGa2
Michael Smidman, Huiqiu Yuan,
C. F. Weng, J. L. Zhang, T. Shang, G. M. Pang,
L. Jiao, W. B. Jiang & Y. Chen (Zhejiang),
M. Nicklas & F. Steglich (MPI-CPS, Dresden) / LaNiGa2
Ravi P. Singh, Martin Lees,
Gheeta Balakrishnan & Don Paul (Warwick) / Re6Zr
Amitava Bhattacharyya & D. T. Adroja (RAL),
Naoki Kase & J. Akimitsu (Aoyama-Gakuin),
A. M. Strydom (Dresden) / Lu5Rh6Sn18
Additional discussions:
V. Mineev (CEA Grenoble), Susumu Katano (Saitama), Akihiko Sumiyama (Hyogo),
Takashi Yanagisawa (Tokyo), David Singh (ORNL),
Silvia Ramos, Paul Strange, Phil Whittlesea & Mark A. Green (Kent)
Funding:
STFC
SEPnet (HEFCE)
EPSRC
AWM (EU-RDF)
SA-NRF
& FRC of UJ
Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 4
People
Theory: James F. Annett (Bristol)
Bayan Mazidian (RAL/Bristol) / LaNiGa2, Re6Zr
Experiment: Adrian Hillier (RAL)
Bob Cywinski (Huddersfield) / LaNiC2, LaNiGa2
Michael Smidman, Huiqiu Yuan,
C. F. Weng, J. L. Zhang, T. Shang, G. M. Pang,
L. Jiao, W. B. Jiang & Y. Chen (Zhejiang),
M. Nicklas & F. Steglich (MPI-CPS, Dresden) / LaNiGa2
Ravi P. Singh, Martin Lees,
Gheeta Balakrishnan & Don Paul (Warwick) / Re6Zr
Amitava Bhattacharyya & D. T. Adroja (RAL),
Naoki Kase & J. Akimitsu (Aoyama-Gakuin),
A. M. Strydom (Dresden) / Lu5Rh6Sn18
Additional discussions:
V. Mineev (CEA Grenoble), Susumu Katano (Saitama), Akihiko Sumiyama (Hyogo),
Takashi Yanagisawa (Tokyo), David Singh (ORNL),
Silvia Ramos, Paul Strange, Phil Whittlesea & Mark A. Green (Kent)
Funding:
STFC
SEPnet (HEFCE)
EPSRC
AWM (EU-RDF)
SA-NRF
& FRC of UJ
Unconventional
superconductors
Unconventional
superconductorsPhoto:EddieHui-Bon-Hoa,www.shiromi.com
Photo:KennethG.Libbrecht,snowflakes.com
Unconventional
superconductors
Photo:commons.wikimedia.org
Unconventional
superconductors
Photo:commons.wikimedia.org
Unconventional
superconductors
‘Unconventional’
superconductors:
Photo:commons.wikimedia.org
Unconventional
superconductors
‘Unconventional’
superconductors:
Cuprates,
Sr2RuO4,
PrOs4Sb12, UPt3,
(UTh)Be13 , ...
Photo:commons.wikimedia.org
Unconventional
superconductors
‘Unconventional’
superconductors:
Cuprates,
Sr2RuO4,
PrOs4Sb12, UPt3,
(UTh)Be13 , ...
LaNiC2: data
LaNiC2 – a weakly-correlated, paramagnetic
superconductor?
Tc=2.7 K
W. H. Lee et al., Physica C 266, 138 (1996)
V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)
ΔC/TC=1.26
(BCS: 1.43)
specific heat susceptibility
 0 = 6.5 mJ/mol K2
 0 = 22.2 10-6
emu/mol
Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 14
Time-reversal symmetry breaking
Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 15
Time-reversal symmetry breaking
Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 16
Detecting broken time-reversal symmetry:
Zero-field muSR
+
Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 17
Detecting broken time-reversal symmetry:
Zero-field muSR
Field on:
measure 
+
Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 18
Detecting broken time-reversal symmetry:
Zero-field muSR
Field on:
measure 
Field off:
measure m
+
Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 19
Detecting broken time-reversal symmetry:
Zero-field muSR
Field on:
measure 
Field off:
measure m
Gives yes/no answer to the
question:
“Does this system respect
time-reversal symmetry?”
+
Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 20
The “classics”
Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 21
Confirmed by the Kerr effect
Symmetry of the gap function
See J.F. Annett Adv. Phys. 1990.
Symmetry of the gap function
See J.F. Annett Adv. Phys. 1990.
Symmetry of the gap function
See J.F. Annett Adv. Phys. 1990.
Symmetry of the gap function
See J.F. Annett Adv. Phys. 1990.
Neutron diffraction
30 40 50 60 70 80
0
5000
10000
15000
20000
25000
30000
35000
Intensity(arbunits)
2
o

Orthorhombic Amm2 C2v
a=3.96 Å
b=4.58 Å
c=6.20 Å
Data from
D1B @
ILL
Note no inversion centre.
C.f. CePt3Si (1)
, Li2Pt3B & Li2Pd3B (2)
, ...
(1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06
LaNiC2: analysis
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
180
o
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
C2v
Symmetries
and their
characters
Sample basis
functions
Irreducible
representatio
n
E C2
v ’v Even Odd
A1 1 1 1 1 1 Z
A2 1 1 -1 -1 XY XYZ
B1 1 -1 1 -1 XZ X
B2 1 -1 -1 1 YZ Y
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
C2v
Symmetries
and their
characters
Sample basis
functions
Irreducible
representatio
n
E C2
v ’v Even Odd
A1 1 1 1 1 1 Z
A2 1 1 -1 -1 XY XYZ
B1 1 -1 1 -1 XZ X
B2 1 -1 -1 1 YZ Y
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
These must be combined with the singlet and
triplet representations of SO(3).
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
SO(3)xC2v Gap function
(unitary)
Gap function
(non-unitary)
1
A1
(k)=1 -
1
A2
(k)=kxkY -
1
B1
(k)=kXkZ -
1
B2
(k)=kYkZ -
3
A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3
A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3
B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX
3
B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY
Possible order parameters
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
SO(3)xC2v Gap function
(unitary)
Gap function
(non-unitary)
1
A1
(k)=1 -
1
A2
(k)=kxkY -
1
B1
(k)=kXkZ -
1
B2
(k)=kYkZ -
3
A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3
A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3
B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX
3
B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY
Possible order parameters
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
SO(3)xC2v Gap function
(unitary)
Gap function
(non-unitary)
1
A1
(k)=1 -
1
A2
(k)=kxkY -
1
B1
(k)=kXkZ -
1
B2
(k)=kYkZ -
3
A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3
A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3
B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX
3
B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY
Possible order parameters
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
SO(3)xC2v Gap function
(unitary)
Gap function
(non-unitary)
1
A1
(k)=1 -
1
A2
(k)=kxkY -
1
B1
(k)=kXkZ -
1
B2
(k)=kYkZ -
3
A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3
A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3
B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX
3
B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY
Non-unitary
d x d* ≠ 0
Possible order parameters
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
SO(3)xC2v Gap function
(unitary)
Gap function
(non-unitary)
1
A1
(k)=1 -
1
A2
(k)=kxkY -
1
B1
(k)=kXkZ -
1
B2
(k)=kYkZ -
3
A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3
A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3
B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX
3
B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY
Non-unitary
d x d* ≠ 0
breaks only SO(3) x U(1) x T
Possible order parameters
* C.f. Li2Pd3B & Li2Pt3B,
H. Q. Yuan et al. PRL’06
*
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
How is this unusual?
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Spin-up superfluid
coexisting with
spin-down Fermi
liquid.
Non-unitary pairing
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Spin-up superfluid
coexisting with
spin-down Fermi
liquid.
Non-unitary pairing
C.f.
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Spin-up superfluid
coexisting with
spin-down Fermi
liquid.
The A1 phase of
liquid 3
He.
Non-unitary pairing
C.f.
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Spin-up superfluid
coexisting with
spin-down Fermi
liquid.
The A1 phase of
liquid 3
He.
Non-unitary pairing
C.f.
Ferromagnetic
superconductors.
F. Hardy et al., Physica B
359-61, 1111-13 (2005)
[ See A. de Visser in Encyclopedia of
Materials: Science and Technology
(Eds. K. H. J. Buschow et al.),
Elsevier, 2010 ]
[ See A. de Visser in Encyclopedia of
Materials: Science and Technology
(Eds. K. H. J. Buschow et al.),
Elsevier, 2010 ]
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Ferromagnetic
superconductors
A. de Visser in Encyclopedia of Materials: Science and Technology
(Eds. K. H. J. Buschow et al.), Elsevier, 2010
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
But LaNiC2 is a paramagnet !
V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)
W. H. Lee et al., Physica C 266, 138 (1996)
What about spin-orbit
coupling?
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Gap function may have both singlet and triplet components

• However, if we have a centre of inversion
basis functions either even or odd under inversion
 still have either singlet or triplet pairing (at Tc)
• No centre of inversion:
may have singlet and triplet (even at Tc)
The role of spin-orbit coupling (SOC)
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Quintanilla, Hillier, Annett and Cywinski, PRB
82, 174511 (2010)
E.g. reflection through a vertical
plane perpendicular to the y
axis:
The role of spin-orbit coupling (SOC)
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Quintanilla, Hillier, Annett and Cywinski, PRB
82, 174511 (2010)
E.g. reflection through a vertical
plane perpendicular to the y
axis:
This affects d(k) (a vector
under spin rotations).
The role of spin-orbit coupling (SOC)
SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations
Quintanilla, Hillier, Annett and Cywinski, PRB
82, 174511 (2010)
E.g. reflection through a vertical
plane perpendicular to the y
axis:
This affects d(k) (a vector
under spin rotations).
It does not affect 0(k)
(a scalar).
The role of spin-orbit coupling (SOC)
C2v,Jno t Gap function,
singlet component
Gap function,
triplet component
A1
(k) = A d(k) = (Bky,Ckx,Dkxkykz)
A2
(k) = AkxkY d(k) = (Bkx,Cky,Dkz)
B1
(k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky)
B2
(k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx)
The role of spin-orbit coupling (SOC)
Quintanilla, Hillier, Annett and Cywinski, PRB
82, 174511 (2010)
C2v,Jno t Gap function,
singlet component
Gap function,
triplet component
A1
(k) = A d(k) = (Bky,Ckx,Dkxkykz)
A2
(k) = AkxkY d(k) = (Bkx,Cky,Dkz)
B1
(k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky)
B2
(k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx)
None of these break time-reversal
symmetry!
The role of spin-orbit coupling (SOC)
Quintanilla, Hillier, Annett and Cywinski, PRB
82, 174511 (2010)
A new example:
LaNiGa2
Zeng et al,
Phys. Rev B 66 092503 (2002)
Cmmm (centrosymmetric)
a=4.27 Å
b=17.70 Å
c=4.23 Å
ΔC/TC=1.3
(BCS: 1.43)
LaNiGa2: physical properties
LaNiGa2: muSR
0 2 4 6 8 10 12 14
0.0
0.1
0.2
0.3
Asymmetry
Time (s)
Hillier, Quintanilla, Mazidian, Annett & Cywinski,
PRL 109, 097001 (2012)
SO(3)xD2h Gap function
(unitary)
Gap function
(non-unitary)
1
A1
(k)=1 -
1
B1
(k)=kxkY -
1
B2
(k)=kXkZ -
1
B3
(k)=kYkZ -
3
A1 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3
B1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3
B2 d(k)=(0,0,1)ky d(k)=(1,i,0)ky
3
B3 d(k)=(0,0,1)kx d(k)=(1,i,0)kx
Possible order parameters
Hillier, Quintanilla, Mazidian, Annett & Cywinski,
PRL 109, 097001 (2012)
SO(3)xD2h Gap function
(unitary)
Gap function
(non-unitary)
1
A1
(k)=1 -
1
B1
(k)=kxkY -
1
B2
(k)=kXkZ -
1
B3
(k)=kYkZ -
3
A1 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3
B1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3
B2 d(k)=(0,0,1)ky d(k)=(1,i,0)ky
3
B3 d(k)=(0,0,1)kx d(k)=(1,i,0)kx
Possible order parameters
Hillier, Quintanilla, Mazidian, Annett & Cywinski,
PRL 109, 097001 (2012)
SO(3)xD2h Gap function
(unitary)
Gap function
(non-unitary)
1
A1
(k)=1 -
1
B1
(k)=kxkY -
1
B2
(k)=kXkZ -
1
B3
(k)=kYkZ -
3
A1 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3
B1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3
B2 d(k)=(0,0,1)ky d(k)=(1,i,0)ky
3
B3 d(k)=(0,0,1)kx d(k)=(1,i,0)kx
Possible order parameters
Hillier, Quintanilla, Mazidian, Annett & Cywinski,
PRL 109, 097001 (2012)
SO(3)xD2h Gap function
(unitary)
Gap function
(non-unitary)
1
A1
(k)=1 -
1
B1
(k)=kxkY -
1
B2
(k)=kXkZ -
1
B3
(k)=kYkZ -
3
A1 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3
B1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3
B2 d(k)=(0,0,1)ky d(k)=(1,i,0)ky
3
B3 d(k)=(0,0,1)kx d(k)=(1,i,0)kx
Non-unitary
d x d* ≠ 0
Possible order parameters
Hillier, Quintanilla, Mazidian, Annett & Cywinski,
PRL 109, 097001 (2012)
Why non-unitary?
(Let's make a prediction!)
Superconducting magnetism
Free energy of a triplet superconductor:
T
T=Tc
(a=0)
 > 0 unitary
< 0 nonunitary
AD Hillier, JQ, B Mazidian
and JF Annett, PRL (2012)
Superconducting magnetism
T
T=Tc
(a=0)
Add magnetism:
> 0 unitary
< 0 nonunitary

AD Hillier, JQ, B Mazidian
and JF Annett, PRL (2012)
Superconducting magnetism
T
T=Tc
(a=0)
Add magnetism:
> 0 unitary
< 0 nonunitary

AD Hillier, JQ, B Mazidian
and JF Annett, PRL (2012)
Superconducting magnetism
T
T=Tc
(a=0)
Add magnetism:
> 0 unitary
< 0 nonunitary

AD Hillier, JQ, B Mazidian
and JF Annett, PRL (2012)
Superconducting magnetism
T
T=Tc
(a=0)
Add magnetism:
> 0 unitary
< 0 nonunitary
m

AD Hillier, JQ, B Mazidian
and JF Annett, PRL (2012)
Superconducting magnetism
T
T=Tc
(a=0)
Add magnetism:
> 0 unitary
< 0 nonunitary
m

AD Hillier, JQ, B Mazidian
and JF Annett, PRL (2012)
Confirmed (weh-hey!) by bulk SQUID measurements on LaNiC2: [1,2]
Note: Scanning [3] and bulk [2] SQUID measurements on Sr2RuO4
were negative.
In LaNiC2 it is easier because of Rashba spin-orbit coupling
(Sumiyama, private communication).
[1] Sumiyama, A. et al.
JPSP 84, 13702
(2015).
[2] Sumiyama et al.,
JPS Conf. Proc.,
015017 (2014)
[3] Hicks et al.,
PRB (2010).
Two different gaps consistent with (one for spin-up, one for spin-down).
But our non-unitary triplet states are all nodal.
J Chen, L Jiao, J L Zhang, Y Chen, L Yang, M Nicklas, F Steglich, and H Q Yuan
”Evidence for two-gap superconductivity in the non-centrosymmetric compound LaNiC2”,
New J. Phys. 15, 53005 (2013).
More data:
Getting microscopic
LaNiC2 – a weakly-correlated, paramagnetic
superconductor?
Tc=2.7 K
W. H. Lee et al., Physica C 266, 138 (1996)
V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)
ΔC/TC=1.26
(BCS: 1.43)
specific heat susceptibility
 0 = 6.5 mJ/mol K2
 0 = 22.2 10-6
emu/mol
LaNiC2 – a weakly-correlated, paramagnetic
superconductor?
Tc=2.7 K
W. H. Lee et al., Physica C 266, 138 (1996)
V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)
ΔC/TC=1.26
(BCS: 1.43)
specific heat susceptibility
 0 = 6.5 mJ/mol K2
 0 = 22.2 10-6
emu/mol
Wilson ratio
RW = (1+F0
a
)-1
 0.3
Wilson ratio
RW = (1+F0
a
)-1
 0.3
At the Hartree-Fock level F0
a > 0 implies a net-attractive interaction
e.g. in a 3D continuum, [Quintanilla & Schofield PRB (2006)]
Wilson ratio
RW = (1+F0
a
)-1
 0.3
Wilson ratio
RW = (1+F0
a
)-1
 0.3
At the Hartree-Fock level F0
a > 0 implies a net-attractive interaction
e.g. in a 3D continuum, [Quintanilla & Schofield PRB (2006)]
Wilson ratio
RW = (1+F0
a
)-1
 0.3
Wilson ratio
RW = (1+F0
a
)-1
 0.3
Suggests a negative-U, equal-spin interaction (driven, for example,
by Hund on Ni):
At the Hartree-Fock level F0
a > 0 implies a net-attractive interaction
e.g. in a 3D continuum, [Quintanilla & Schofield PRB (2006)]
A
B
Must involve
two different
orbitals A,B
Wilson ratio
RW = (1+F0
a
)-1
 0.3
Wilson ratio
RW = (1+F0
a
)-1
 0.3
Suggests a negative-U, equal-spin interaction (driven, for example,
by Hund on Ni):
Construct variational mean field theory:
Hamiltonian:
Two bands:
Interaction:
Mean fields:
Construct variational mean field theory:
Hamiltonian:
Two bands:
Interaction:
Mean fields:
Non-unitary triplet pairing

Fully-gapped + equal-spin + orbital-
antisymmetric –similar to [1,2] but

Broken time-reversal symmetry
(nonunitary)
[1] X Dai, Z
Fang, Y Zhou,
& F-C Zhang,
PRL (2008).
[2] T Tzen
Ong, P
Coleman, & J
Schmalian
(2014).
Construct variational mean field theory:
Hamiltonian:
Two bands:
Interaction:
Mean fields:
Non-unitary triplet pairing

Fully-gapped + equal-spin + orbital-
antisymmetric –similar to [1,2] but

Broken time-reversal symmetry
(nonunitary)
Magnetisation

Discusssed
before for
Sr2RuO4 [3]
[1] X Dai, Z
Fang, Y Zhou,
& F-C Zhang,
PRL (2008).
[2] T Tzen
Ong, P
Coleman, & J
Schmalian
(2014).
Bogoliubov-de Gennes Hamiltonian:
Note spins completely decoupled.
ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas,
GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
A simple example:
EAk
= k2
-, EBk
= k2
-+
A
A
B
B
ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas,
GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
A simple example:
EAk
= k2
-, EBk
= k2
-+
A
A
B
B
ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas,
GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
A simple example:
EAk
= k2
-, EBk
= k2
-+
A
A
B
B
ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas,
GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
Note: very different from two-band superconductivity!

2-band
pairing:

Non-
unitary
triplet
pairing:
ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas,
GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
Note: very different from two-band superconductivity!

2-band
pairing:

Non-
unitary
triplet
pairing:
ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas,
GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
Note: very different from two-band superconductivity!

2-band
pairing:

Non-
unitary
triplet
pairing:
The band splitting emerges spontaneously -similar to Stoner.
ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas,
GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
Two-gap behaviour results from non-unitary triplet
 generic feature of this type of superconductor
ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas,
GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
Two-gap behaviour results from non-unitary triplet
 generic feature of this type of superconductor
Indeed it is observed for LaNiGa2
as well:
ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas,
GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
Conclusion
LaNiC2 and LaNiGa2 are two examples of a new class
of La-Ni superconductors with nonunitary triplet
pairing
This type of pairing induces a magnetisation as a
subdominant order parameter
This is achieved via spontaneous spin-splitting of
the bands similar to Stoner –but driven by the
superconductivity
Where did the correlations come from?
Epilogue
Epilogue
S Katano et al., PRB(R) (2014)
Epilogue
S Katano et al., PRB(R) (2014)
Is this the first
“backward
discovery” of a
quantum-critical
superconductor?
blogs.kent.ac.uk/strongcorrelations
THE UK’S
EUROPEAN
UNIVERSITY
www.kent.ac.uk
Places
THE UK’S
EUROPEAN
UNIVERSITY
www.kent.ac.uk
Places
Thanks!Thanks!

Mais conteúdo relacionado

Semelhante a New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on Pairing States and Mechanisms

Semelhante a New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on Pairing States and Mechanisms (20)

From unconventional to extreme to functional materials.
From unconventional to extreme to functional materials.From unconventional to extreme to functional materials.
From unconventional to extreme to functional materials.
 
Talk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_webTalk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_web
 
Accelerated Materials Discovery & Characterization with Classical, Quantum an...
Accelerated Materials Discovery & Characterization with Classical, Quantum an...Accelerated Materials Discovery & Characterization with Classical, Quantum an...
Accelerated Materials Discovery & Characterization with Classical, Quantum an...
 
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
 
Computational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsComputational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methods
 
Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)
 
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic NucleiPhotoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
 
The Materials Project: An Electronic Structure Database for Community-Based M...
The Materials Project: An Electronic Structure Database for Community-Based M...The Materials Project: An Electronic Structure Database for Community-Based M...
The Materials Project: An Electronic Structure Database for Community-Based M...
 
The Missing Fundamental Element
The Missing Fundamental ElementThe Missing Fundamental Element
The Missing Fundamental Element
 
Netsci 2016
Netsci 2016Netsci 2016
Netsci 2016
 
N Herbots Us Patent6613667
N Herbots Us Patent6613667N Herbots Us Patent6613667
N Herbots Us Patent6613667
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
 
Anomalous Synchronization Stability of Power-grid Network
Anomalous Synchronization Stability of Power-grid NetworkAnomalous Synchronization Stability of Power-grid Network
Anomalous Synchronization Stability of Power-grid Network
 
Database of Topological Materials and Spin-orbit Spillage
Database of Topological Materials and Spin-orbit SpillageDatabase of Topological Materials and Spin-orbit Spillage
Database of Topological Materials and Spin-orbit Spillage
 
Non-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developmentsNon-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developments
 
Effect of alpha irradiation on silicon schottky diode detector
Effect of alpha irradiation on silicon schottky diode detectorEffect of alpha irradiation on silicon schottky diode detector
Effect of alpha irradiation on silicon schottky diode detector
 
Francisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFrancisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene research
 
Lattice Energy LLC- LENR Transmutation Networks can Produce Gold-May 19 2012
Lattice Energy LLC- LENR Transmutation Networks can Produce Gold-May 19 2012Lattice Energy LLC- LENR Transmutation Networks can Produce Gold-May 19 2012
Lattice Energy LLC- LENR Transmutation Networks can Produce Gold-May 19 2012
 

Mais de Jorge Quintanilla

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Jorge Quintanilla
 

Mais de Jorge Quintanilla (13)

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...
 
Thermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductorsThermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductors
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
New Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsNew Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar Fermions
 
2010 Quintanilla Loughborough
2010 Quintanilla Loughborough2010 Quintanilla Loughborough
2010 Quintanilla Loughborough
 

Último

(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Silpa
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
Silpa
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 

Último (20)

Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 

New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on Pairing States and Mechanisms

  • 1. The UK’s European university New Broken Time-reversal Symmetry Superconductors / Theoretical Constraints on Pairing States and Mechanisms Jorge Quintanilla
  • 2. Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 2 Superconductivity Triplet pairing Broken time- reversal symmetry Topological transitions LaNiC2 , LaNiGa2 UPt3 ,Sr2 RuO4 Re6 Zr Topological insulators Ferro- magnets Antiferro- magnets R5 Rh6 Sn18 Cu-based HTSC Fe-based HTSC URhGe,UGe2 Conventional superconductors Li2 Pt3-x Pdx B Noncentrosymmetric superconductors
  • 3. Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 3 People Theory: James F. Annett (Bristol) Bayan Mazidian (RAL/Bristol) / LaNiGa2, Re6Zr Experiment: Adrian Hillier (RAL) Bob Cywinski (Huddersfield) / LaNiC2, LaNiGa2 Michael Smidman, Huiqiu Yuan, C. F. Weng, J. L. Zhang, T. Shang, G. M. Pang, L. Jiao, W. B. Jiang & Y. Chen (Zhejiang), M. Nicklas & F. Steglich (MPI-CPS, Dresden) / LaNiGa2 Ravi P. Singh, Martin Lees, Gheeta Balakrishnan & Don Paul (Warwick) / Re6Zr Amitava Bhattacharyya & D. T. Adroja (RAL), Naoki Kase & J. Akimitsu (Aoyama-Gakuin), A. M. Strydom (Dresden) / Lu5Rh6Sn18 Additional discussions: V. Mineev (CEA Grenoble), Susumu Katano (Saitama), Akihiko Sumiyama (Hyogo), Takashi Yanagisawa (Tokyo), David Singh (ORNL), Silvia Ramos, Paul Strange, Phil Whittlesea & Mark A. Green (Kent) Funding: STFC SEPnet (HEFCE) EPSRC AWM (EU-RDF) SA-NRF & FRC of UJ
  • 4. Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 4 People Theory: James F. Annett (Bristol) Bayan Mazidian (RAL/Bristol) / LaNiGa2, Re6Zr Experiment: Adrian Hillier (RAL) Bob Cywinski (Huddersfield) / LaNiC2, LaNiGa2 Michael Smidman, Huiqiu Yuan, C. F. Weng, J. L. Zhang, T. Shang, G. M. Pang, L. Jiao, W. B. Jiang & Y. Chen (Zhejiang), M. Nicklas & F. Steglich (MPI-CPS, Dresden) / LaNiGa2 Ravi P. Singh, Martin Lees, Gheeta Balakrishnan & Don Paul (Warwick) / Re6Zr Amitava Bhattacharyya & D. T. Adroja (RAL), Naoki Kase & J. Akimitsu (Aoyama-Gakuin), A. M. Strydom (Dresden) / Lu5Rh6Sn18 Additional discussions: V. Mineev (CEA Grenoble), Susumu Katano (Saitama), Akihiko Sumiyama (Hyogo), Takashi Yanagisawa (Tokyo), David Singh (ORNL), Silvia Ramos, Paul Strange, Phil Whittlesea & Mark A. Green (Kent) Funding: STFC SEPnet (HEFCE) EPSRC AWM (EU-RDF) SA-NRF & FRC of UJ
  • 13. LaNiC2 – a weakly-correlated, paramagnetic superconductor? Tc=2.7 K W. H. Lee et al., Physica C 266, 138 (1996) V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998) ΔC/TC=1.26 (BCS: 1.43) specific heat susceptibility  0 = 6.5 mJ/mol K2  0 = 22.2 10-6 emu/mol
  • 14. Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 14 Time-reversal symmetry breaking
  • 15. Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 15 Time-reversal symmetry breaking
  • 16. Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 16 Detecting broken time-reversal symmetry: Zero-field muSR +
  • 17. Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 17 Detecting broken time-reversal symmetry: Zero-field muSR Field on: measure  +
  • 18. Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 18 Detecting broken time-reversal symmetry: Zero-field muSR Field on: measure  Field off: measure m +
  • 19. Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 19 Detecting broken time-reversal symmetry: Zero-field muSR Field on: measure  Field off: measure m Gives yes/no answer to the question: “Does this system respect time-reversal symmetry?” +
  • 20. Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 20 The “classics”
  • 21. Jorge Quintanilla (www.cond-mat.org) SCES 2016 (Hangzhou, 13 May 2016)Page 21 Confirmed by the Kerr effect
  • 22.
  • 23. Symmetry of the gap function See J.F. Annett Adv. Phys. 1990.
  • 24. Symmetry of the gap function See J.F. Annett Adv. Phys. 1990.
  • 25. Symmetry of the gap function See J.F. Annett Adv. Phys. 1990.
  • 26. Symmetry of the gap function See J.F. Annett Adv. Phys. 1990.
  • 27. Neutron diffraction 30 40 50 60 70 80 0 5000 10000 15000 20000 25000 30000 35000 Intensity(arbunits) 2 o  Orthorhombic Amm2 C2v a=3.96 Å b=4.58 Å c=6.20 Å Data from D1B @ ILL Note no inversion centre. C.f. CePt3Si (1) , Li2Pt3B & Li2Pd3B (2) , ... (1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 43. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 44. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 45. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) 180 o
  • 46. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations C2v Symmetries and their characters Sample basis functions Irreducible representatio n E C2 v ’v Even Odd A1 1 1 1 1 1 Z A2 1 1 -1 -1 XY XYZ B1 1 -1 1 -1 XZ X B2 1 -1 -1 1 YZ Y Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 47. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations C2v Symmetries and their characters Sample basis functions Irreducible representatio n E C2 v ’v Even Odd A1 1 1 1 1 1 Z A2 1 1 -1 -1 XY XYZ B1 1 -1 1 -1 XZ X B2 1 -1 -1 1 YZ Y Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) These must be combined with the singlet and triplet representations of SO(3).
  • 48. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations SO(3)xC2v Gap function (unitary) Gap function (non-unitary) 1 A1 (k)=1 - 1 A2 (k)=kxkY - 1 B1 (k)=kXkZ - 1 B2 (k)=kYkZ - 3 A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3 A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3 B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 3 B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Possible order parameters Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 49. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations SO(3)xC2v Gap function (unitary) Gap function (non-unitary) 1 A1 (k)=1 - 1 A2 (k)=kxkY - 1 B1 (k)=kXkZ - 1 B2 (k)=kYkZ - 3 A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3 A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3 B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 3 B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Possible order parameters Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 50. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations SO(3)xC2v Gap function (unitary) Gap function (non-unitary) 1 A1 (k)=1 - 1 A2 (k)=kxkY - 1 B1 (k)=kXkZ - 1 B2 (k)=kYkZ - 3 A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3 A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3 B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 3 B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Possible order parameters Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 51. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations SO(3)xC2v Gap function (unitary) Gap function (non-unitary) 1 A1 (k)=1 - 1 A2 (k)=kxkY - 1 B1 (k)=kXkZ - 1 B2 (k)=kYkZ - 3 A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3 A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3 B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 3 B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Non-unitary d x d* ≠ 0 Possible order parameters Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 52. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations SO(3)xC2v Gap function (unitary) Gap function (non-unitary) 1 A1 (k)=1 - 1 A2 (k)=kxkY - 1 B1 (k)=kXkZ - 1 B2 (k)=kYkZ - 3 A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3 A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3 B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 3 B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Non-unitary d x d* ≠ 0 breaks only SO(3) x U(1) x T Possible order parameters * C.f. Li2Pd3B & Li2Pt3B, H. Q. Yuan et al. PRL’06 * Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 53. How is this unusual?
  • 54. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Spin-up superfluid coexisting with spin-down Fermi liquid. Non-unitary pairing
  • 55. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Spin-up superfluid coexisting with spin-down Fermi liquid. Non-unitary pairing C.f.
  • 56. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Spin-up superfluid coexisting with spin-down Fermi liquid. The A1 phase of liquid 3 He. Non-unitary pairing C.f.
  • 57. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Spin-up superfluid coexisting with spin-down Fermi liquid. The A1 phase of liquid 3 He. Non-unitary pairing C.f. Ferromagnetic superconductors. F. Hardy et al., Physica B 359-61, 1111-13 (2005) [ See A. de Visser in Encyclopedia of Materials: Science and Technology (Eds. K. H. J. Buschow et al.), Elsevier, 2010 ] [ See A. de Visser in Encyclopedia of Materials: Science and Technology (Eds. K. H. J. Buschow et al.), Elsevier, 2010 ]
  • 58. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Ferromagnetic superconductors A. de Visser in Encyclopedia of Materials: Science and Technology (Eds. K. H. J. Buschow et al.), Elsevier, 2010
  • 59. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations But LaNiC2 is a paramagnet ! V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998) W. H. Lee et al., Physica C 266, 138 (1996)
  • 61. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Gap function may have both singlet and triplet components  • However, if we have a centre of inversion basis functions either even or odd under inversion  still have either singlet or triplet pairing (at Tc) • No centre of inversion: may have singlet and triplet (even at Tc) The role of spin-orbit coupling (SOC)
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) E.g. reflection through a vertical plane perpendicular to the y axis: The role of spin-orbit coupling (SOC)
  • 71. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) E.g. reflection through a vertical plane perpendicular to the y axis: This affects d(k) (a vector under spin rotations). The role of spin-orbit coupling (SOC)
  • 72. SEPnet Conference, 13 Sep 2012 blogs.kent.ac.uk/strongcorrelations Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) E.g. reflection through a vertical plane perpendicular to the y axis: This affects d(k) (a vector under spin rotations). It does not affect 0(k) (a scalar). The role of spin-orbit coupling (SOC)
  • 73. C2v,Jno t Gap function, singlet component Gap function, triplet component A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz) A2 (k) = AkxkY d(k) = (Bkx,Cky,Dkz) B1 (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky) B2 (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx) The role of spin-orbit coupling (SOC) Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 74. C2v,Jno t Gap function, singlet component Gap function, triplet component A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz) A2 (k) = AkxkY d(k) = (Bkx,Cky,Dkz) B1 (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky) B2 (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx) None of these break time-reversal symmetry! The role of spin-orbit coupling (SOC) Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 76. Zeng et al, Phys. Rev B 66 092503 (2002) Cmmm (centrosymmetric) a=4.27 Å b=17.70 Å c=4.23 Å ΔC/TC=1.3 (BCS: 1.43) LaNiGa2: physical properties
  • 77. LaNiGa2: muSR 0 2 4 6 8 10 12 14 0.0 0.1 0.2 0.3 Asymmetry Time (s) Hillier, Quintanilla, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)
  • 78. SO(3)xD2h Gap function (unitary) Gap function (non-unitary) 1 A1 (k)=1 - 1 B1 (k)=kxkY - 1 B2 (k)=kXkZ - 1 B3 (k)=kYkZ - 3 A1 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3 B1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3 B2 d(k)=(0,0,1)ky d(k)=(1,i,0)ky 3 B3 d(k)=(0,0,1)kx d(k)=(1,i,0)kx Possible order parameters Hillier, Quintanilla, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)
  • 79. SO(3)xD2h Gap function (unitary) Gap function (non-unitary) 1 A1 (k)=1 - 1 B1 (k)=kxkY - 1 B2 (k)=kXkZ - 1 B3 (k)=kYkZ - 3 A1 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3 B1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3 B2 d(k)=(0,0,1)ky d(k)=(1,i,0)ky 3 B3 d(k)=(0,0,1)kx d(k)=(1,i,0)kx Possible order parameters Hillier, Quintanilla, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)
  • 80. SO(3)xD2h Gap function (unitary) Gap function (non-unitary) 1 A1 (k)=1 - 1 B1 (k)=kxkY - 1 B2 (k)=kXkZ - 1 B3 (k)=kYkZ - 3 A1 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3 B1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3 B2 d(k)=(0,0,1)ky d(k)=(1,i,0)ky 3 B3 d(k)=(0,0,1)kx d(k)=(1,i,0)kx Possible order parameters Hillier, Quintanilla, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)
  • 81. SO(3)xD2h Gap function (unitary) Gap function (non-unitary) 1 A1 (k)=1 - 1 B1 (k)=kxkY - 1 B2 (k)=kXkZ - 1 B3 (k)=kYkZ - 3 A1 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3 B1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3 B2 d(k)=(0,0,1)ky d(k)=(1,i,0)ky 3 B3 d(k)=(0,0,1)kx d(k)=(1,i,0)kx Non-unitary d x d* ≠ 0 Possible order parameters Hillier, Quintanilla, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)
  • 83. Superconducting magnetism Free energy of a triplet superconductor: T T=Tc (a=0)  > 0 unitary < 0 nonunitary AD Hillier, JQ, B Mazidian and JF Annett, PRL (2012)
  • 84. Superconducting magnetism T T=Tc (a=0) Add magnetism: > 0 unitary < 0 nonunitary  AD Hillier, JQ, B Mazidian and JF Annett, PRL (2012)
  • 85. Superconducting magnetism T T=Tc (a=0) Add magnetism: > 0 unitary < 0 nonunitary  AD Hillier, JQ, B Mazidian and JF Annett, PRL (2012)
  • 86. Superconducting magnetism T T=Tc (a=0) Add magnetism: > 0 unitary < 0 nonunitary  AD Hillier, JQ, B Mazidian and JF Annett, PRL (2012)
  • 87. Superconducting magnetism T T=Tc (a=0) Add magnetism: > 0 unitary < 0 nonunitary m  AD Hillier, JQ, B Mazidian and JF Annett, PRL (2012)
  • 88. Superconducting magnetism T T=Tc (a=0) Add magnetism: > 0 unitary < 0 nonunitary m  AD Hillier, JQ, B Mazidian and JF Annett, PRL (2012)
  • 89. Confirmed (weh-hey!) by bulk SQUID measurements on LaNiC2: [1,2] Note: Scanning [3] and bulk [2] SQUID measurements on Sr2RuO4 were negative. In LaNiC2 it is easier because of Rashba spin-orbit coupling (Sumiyama, private communication). [1] Sumiyama, A. et al. JPSP 84, 13702 (2015). [2] Sumiyama et al., JPS Conf. Proc., 015017 (2014) [3] Hicks et al., PRB (2010).
  • 90. Two different gaps consistent with (one for spin-up, one for spin-down). But our non-unitary triplet states are all nodal. J Chen, L Jiao, J L Zhang, Y Chen, L Yang, M Nicklas, F Steglich, and H Q Yuan ”Evidence for two-gap superconductivity in the non-centrosymmetric compound LaNiC2”, New J. Phys. 15, 53005 (2013). More data:
  • 92. LaNiC2 – a weakly-correlated, paramagnetic superconductor? Tc=2.7 K W. H. Lee et al., Physica C 266, 138 (1996) V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998) ΔC/TC=1.26 (BCS: 1.43) specific heat susceptibility  0 = 6.5 mJ/mol K2  0 = 22.2 10-6 emu/mol
  • 93. LaNiC2 – a weakly-correlated, paramagnetic superconductor? Tc=2.7 K W. H. Lee et al., Physica C 266, 138 (1996) V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998) ΔC/TC=1.26 (BCS: 1.43) specific heat susceptibility  0 = 6.5 mJ/mol K2  0 = 22.2 10-6 emu/mol Wilson ratio RW = (1+F0 a )-1  0.3 Wilson ratio RW = (1+F0 a )-1  0.3
  • 94. At the Hartree-Fock level F0 a > 0 implies a net-attractive interaction e.g. in a 3D continuum, [Quintanilla & Schofield PRB (2006)] Wilson ratio RW = (1+F0 a )-1  0.3 Wilson ratio RW = (1+F0 a )-1  0.3
  • 95. At the Hartree-Fock level F0 a > 0 implies a net-attractive interaction e.g. in a 3D continuum, [Quintanilla & Schofield PRB (2006)] Wilson ratio RW = (1+F0 a )-1  0.3 Wilson ratio RW = (1+F0 a )-1  0.3 Suggests a negative-U, equal-spin interaction (driven, for example, by Hund on Ni):
  • 96. At the Hartree-Fock level F0 a > 0 implies a net-attractive interaction e.g. in a 3D continuum, [Quintanilla & Schofield PRB (2006)] A B Must involve two different orbitals A,B Wilson ratio RW = (1+F0 a )-1  0.3 Wilson ratio RW = (1+F0 a )-1  0.3 Suggests a negative-U, equal-spin interaction (driven, for example, by Hund on Ni):
  • 97. Construct variational mean field theory: Hamiltonian: Two bands: Interaction: Mean fields:
  • 98. Construct variational mean field theory: Hamiltonian: Two bands: Interaction: Mean fields: Non-unitary triplet pairing  Fully-gapped + equal-spin + orbital- antisymmetric –similar to [1,2] but  Broken time-reversal symmetry (nonunitary) [1] X Dai, Z Fang, Y Zhou, & F-C Zhang, PRL (2008). [2] T Tzen Ong, P Coleman, & J Schmalian (2014).
  • 99. Construct variational mean field theory: Hamiltonian: Two bands: Interaction: Mean fields: Non-unitary triplet pairing  Fully-gapped + equal-spin + orbital- antisymmetric –similar to [1,2] but  Broken time-reversal symmetry (nonunitary) Magnetisation  Discusssed before for Sr2RuO4 [3] [1] X Dai, Z Fang, Y Zhou, & F-C Zhang, PRL (2008). [2] T Tzen Ong, P Coleman, & J Schmalian (2014).
  • 100. Bogoliubov-de Gennes Hamiltonian: Note spins completely decoupled. ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas, GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
  • 101. A simple example: EAk = k2 -, EBk = k2 -+ A A B B ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas, GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
  • 102. A simple example: EAk = k2 -, EBk = k2 -+ A A B B ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas, GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
  • 103. A simple example: EAk = k2 -, EBk = k2 -+ A A B B ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas, GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
  • 104. Note: very different from two-band superconductivity!  2-band pairing:  Non- unitary triplet pairing: ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas, GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
  • 105. Note: very different from two-band superconductivity!  2-band pairing:  Non- unitary triplet pairing: ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas, GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
  • 106. Note: very different from two-band superconductivity!  2-band pairing:  Non- unitary triplet pairing: The band splitting emerges spontaneously -similar to Stoner. ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas, GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
  • 107. Two-gap behaviour results from non-unitary triplet  generic feature of this type of superconductor ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas, GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
  • 108. Two-gap behaviour results from non-unitary triplet  generic feature of this type of superconductor Indeed it is observed for LaNiGa2 as well: ZF Weng, JL Zhang, M Smidman, T Shang, J Quintanilla, JF Annett, M Nicklas, GM Pang, L Jiao, WB Jiang, Y Chen, F Steglich, and HQ Yuan, Phys. Rev. Lett. (submitted)
  • 110. LaNiC2 and LaNiGa2 are two examples of a new class of La-Ni superconductors with nonunitary triplet pairing This type of pairing induces a magnetisation as a subdominant order parameter This is achieved via spontaneous spin-splitting of the bands similar to Stoner –but driven by the superconductivity Where did the correlations come from?
  • 112. Epilogue S Katano et al., PRB(R) (2014)
  • 113. Epilogue S Katano et al., PRB(R) (2014) Is this the first “backward discovery” of a quantum-critical superconductor? blogs.kent.ac.uk/strongcorrelations