SlideShare uma empresa Scribd logo
1 de 17
Baixar para ler offline
A CENTURY OF THE BURNSIDE PROBLEM
J´anos Kurdics kurdics@nyf.hu
Seminar of Institute of Mathematics and Informatics of Ny´ıregyh´aza College
22nd of October, 2015, translated from Hungarian
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
General Burnside Problem (1902)
Every torsion group is locally finite.
Finite exponent Burnside Problem
Every torsion group of finite exponent is locally finite.
Let F be a free group of rank d, N = Fe. Then B(d, e) = F/N is
the Burnside group of parameter (d, e). The finite exponent
Burnside Problem is equivalent to finiteness of B(d, e)
Restricted Burnside Problem (W. Magnus)
There are finitely many isomorphism classes of finite d-generated
groups of exponent e.
If the restricted Burnside Problem holds, B(d, e) can be infinite.
Finitely many normal divisors of finite index, however, have the
intersection of finite index, hence there is a biggest finite
d-generated group B0(d, e) of exponent e, which has all finite
d-generated groups of exponent e as a homomorphix image.
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
William Burnside 1852-1927
for full biography visit
http://www-history.mcs.st-and.ac.uk/Biographies/Burnside.html
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
Parents
Emma Knight and William Burnside Sr
1858
Father died, he attended Christ’s Hospital primary
1871
Grant to Cambridge St John’s College
1873
Pembroke College
1875
Second wrangler to George Chrystal
1875
Smith grant, teaching assitant job in Pembroke, studies
hidrodynamics
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
1885
Professorship in Greenwich Royal Navy College
1891-92,94
Studies complex linear fractional function groups, then group
theory
1897
The Theory of Groups of Finite Order
1906-1908
Presides London Mathematical Society
1925
Stroke
1928
The Theory of Probability
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
Igor Rostislavovich Shafarevich 1923-
for full biography visit
http://www-history.mcs.st-and.ac.uk/Biographies/Shafarevich.html
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
Parents
Rostislav Stepanovich Shafarevich and Juliya Yakovlevna Vasilyeva
1938
At MGU takes examinations by B.Ny. Delone, A. G. Kurosh and
I.M. Gelfand
1940,42
graduation, candidate of sciences
1944
MGU Mechmat Faculty
1946
Doctor of Sciences, has 423 science descendants
50’s,70’s suspended
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
Burnside 1902
B(d, 3) is finite, |B(d, 3)| ≤ 32m − 1, B(2, 4) is finite,
|B(2, 4)| ≤ 212
Burnside 1905
Torsion complex matrix group is locally finite.
Sanov 1940
B(d, 4) is finite.
A.I. Kostrikin 1955
B0(2, 5) is finite.
Higman 1956
B0(d, 5) and B0(d, 6) exist.
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
Marshall Hall 1958
B(d, 6) is finite
Ye.S. Golod and I.R. Shafarevich 1964
There exists a finitely generated infinite dimensional nilalgebra.
There exists a finitely generated infinite p-group, general Burnside
Problem is refuted.
S.I. Adyan ´es P.S. Novikov 1968
B(d, e) is infinite for odd e ≥ 4381 exponent, finite exponent
Burnside Problem is refuted.
Yu. Olshanskiy 1982
For p > 1075 primes there exists infinite groups with all proper
subgroups of order p.
Open problems
A finitely presented torsion group is finite. A finitely presented
algebraic algebra is finite dimensional. B(2, 5) is finite.
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
Yefim Isakovich Zelmanov 1955-
for full biography visit
http://www-history.mcs.st-and.ac.uk/history/Biographies/Zelmanov.html
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
1977,79
Graduation, candidate of sciences at NGU, studies nonassociative
algebras
1980,85
Matinstitute Novosibirsk, doctor of sciences
1990,94
Professor at Wisconsin-Madison and then at Chicago
1994
Fields Medal
1995-2002
Professor at Yale and then at San Diego
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
Schreier conjecture 1926
Outer automorphism groups of finite simple groups are soluble.
Ph. Hall and G. Higman 1956
Schreier conjecture implies that it suffices to prove the restricted
Burnside Problen for prime power exponents
1984
Classification of finite simple groups settles Schreier conjecture
W. Magnus 1950
For exponent p the restricted Burnside Problem holds provided
ecery p − 1-Engel Lie algebra over Zp is locally nilpotent
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
1959 A.P. Kosztrikin
Every p − 1-Engel Lie algebra is locally nilpotent
is
E.I. Zelmanov 1989
For exponents pk reduction to local nilpotency of Engel Lie rings
E.I. Zelmanov 1991
Every Engel Lie ring is locally nilpotent settling the restricted
Burnside Problem
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
Commutator identities
(x, yz) = (x, z)(x, y)z
(xy, z) = (x, z)y
(y, z) (x, y−1
) = (y, x)y−1
Hall-Witt (x, y−1
, z)y
(y, z−1
, x)z
(z, x−1
, y)x
Our aim is to prove the Burnside problem for exponent 3.
(1) A group is 2-Engel iff every conjugacy class generates an
Abelian normal divisor.
This follows from the identity (x, y, y) = ((y−1)x , y).
(2) A group of exponent 3 is 2-Engel
This follows from (1) and the identity
(xy , x) = ((x−1y)y )3(y−2x)3(yx )3.
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
(3) In a 2-Engel group (x, y, z) = (y, z, x) = (z, x, y).
We have (x, yz, z) = (x, y, z)y , but by (1) (x, y, z) commutes with
each argument hence (x, yz, z) = (x, y, z), analogously
(x, yz, y) = (x, z, y). In a 2-Engel group (x, y−1) = (y, x). Then
1 = (x, yz, z)(x, yz, y) = (x, y, z)(x, z, y) and (x, y, z) = (z, x, y).
Applying this again to (z, x, y) one gets (z, x, y) = (y, z, x).
(4) In a 2-Engel group, (x, y, z)3 = 1
This follows from Hall-Witt identity and (3).
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
(5) A 2-Engel group is nilpotent of class at most 3. (In particular,
it is locally finite.)
Applying the identities and (3) we see
(x, y, z, w) = (z, w, (x, y)) = ((w, z), (x, y))−1
= (x, y, w, z)−1
. By similar technique,
(x, y, z, w) = (x, y, w, z)−1
= ((w, x, y), z)−1
= ((w, x), y, z)−1
=
(y, z, (w, x))−1
= ((w, x), (y, z)) = ((y, z), w, x) = (y, z, w, x)
. This yields (y, z, w, x) = (y, z, x, w)−1 = (x, y, z, w)−1 and
(x, y, z, w) = (x, y, z, w)−1 = (x, y, z, w)2 by (4).
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
References
1 Burnside, W. (1902): On an unsettled question in the theory of
discontinuous groups, Quart. J. Pure and Applied Math. 33 (1902),
230-238.
2 Golod, E.S., Shafarevich, I.R. (1964): On the class field tower, Izv.
Akad. Nauk SSSR Ser. Mat., 28:2, 261–272.
3 Kostrikin, A.I. (1986): Vokrug Bernsayda, Nauka, Moszkva.
4 Kuros, A.G. (1941): Problem¨u tyeorii kol´ec, svyazann¨uye s problem¨u
Bernsayda periodicheskih gruppah, Izv. Akad. Nauk SSSR 5, no. 3,
233–240.
5 O’Connor, J.J., Robertson, F.: MacTutor History of Mathematics,
St. Andrews, http://www-history.mcs.st-and.ac.uk, accessed
12.09.2015
6 Sahoo, B.K., Sury, B. (2005): What is the Burnside problem?
Resonance 10(7), 34-48.
7 Sanov, I.I. (1940): Resenyiye problem¨u Bernsayda dlya pakazatyelya
4, Ucs. Zap. LGU 55, 166-170.
8 Zelmanov, Efim (2007): Some open problems in the theory of
infinite dimensional algebras, J. Korean Math. Soc. 44, No. 5,
1185–1195.
J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .

Mais conteúdo relacionado

Destaque (18)

e-Learning and YouTube
e-Learning and YouTubee-Learning and YouTube
e-Learning and YouTube
 
Costa rica
Costa ricaCosta rica
Costa rica
 
Li shengli ppt on pilot scheme
Li shengli ppt on pilot schemeLi shengli ppt on pilot scheme
Li shengli ppt on pilot scheme
 
Muro
MuroMuro
Muro
 
Вебліографічний список "Квіткова магія"
Вебліографічний список "Квіткова магія"Вебліографічний список "Квіткова магія"
Вебліографічний список "Квіткова магія"
 
La Biblioteca te ayuda a subir la cuesta
La Biblioteca te ayuda a subir la cuestaLa Biblioteca te ayuda a subir la cuesta
La Biblioteca te ayuda a subir la cuesta
 
Ceryfikowany instalator oze_2
Ceryfikowany instalator oze_2Ceryfikowany instalator oze_2
Ceryfikowany instalator oze_2
 
TEDxNYED -- Dan Meyer
TEDxNYED -- Dan MeyerTEDxNYED -- Dan Meyer
TEDxNYED -- Dan Meyer
 
UAB 2011 - Seekda Webservices Portal
UAB 2011 - Seekda Webservices PortalUAB 2011 - Seekda Webservices Portal
UAB 2011 - Seekda Webservices Portal
 
Calendario venezuela 2014
Calendario venezuela 2014Calendario venezuela 2014
Calendario venezuela 2014
 
Mi proyecto de vida
Mi proyecto de vidaMi proyecto de vida
Mi proyecto de vida
 
Raport Szybko.pl i Expandera
Raport Szybko.pl i ExpanderaRaport Szybko.pl i Expandera
Raport Szybko.pl i Expandera
 
Бизнес план Credit App
Бизнес план Credit AppБизнес план Credit App
Бизнес план Credit App
 
WEB_BLOG_NEWS_ content writing
WEB_BLOG_NEWS_ content writingWEB_BLOG_NEWS_ content writing
WEB_BLOG_NEWS_ content writing
 
Будущее нишевых СМИ
Будущее нишевых СМИБудущее нишевых СМИ
Будущее нишевых СМИ
 
куаст питер
куаст питеркуаст питер
куаст питер
 
onboarding brochure1
onboarding brochure1onboarding brochure1
onboarding brochure1
 
Apost. 01 flauta(slide)
Apost. 01 flauta(slide)Apost. 01 flauta(slide)
Apost. 01 flauta(slide)
 

Semelhante a seminartr_20151022

V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topSEENET-MTP
 
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...Θανάσης Δρούγας
 
Wild knots in higher dimensions as limit sets of kleinian groups
Wild knots in higher dimensions as limit sets of kleinian groupsWild knots in higher dimensions as limit sets of kleinian groups
Wild knots in higher dimensions as limit sets of kleinian groupsPaulo Coelho
 
Justin Math Presentation Rev1.2
Justin Math Presentation  Rev1.2Justin Math Presentation  Rev1.2
Justin Math Presentation Rev1.2David Sorrells
 
Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curvesmmasdeu
 
Group {1, −1, i, −i} Cordial Labeling of Product Related Graphs
Group {1, −1, i, −i} Cordial Labeling of Product Related GraphsGroup {1, −1, i, −i} Cordial Labeling of Product Related Graphs
Group {1, −1, i, −i} Cordial Labeling of Product Related GraphsIJASRD Journal
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-fieldcerniagigante
 
207 intro lecture2010
207 intro lecture2010207 intro lecture2010
207 intro lecture2010guest1db8cc6
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 

Semelhante a seminartr_20151022 (11)

V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski top
 
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...
 
Wild knots in higher dimensions as limit sets of kleinian groups
Wild knots in higher dimensions as limit sets of kleinian groupsWild knots in higher dimensions as limit sets of kleinian groups
Wild knots in higher dimensions as limit sets of kleinian groups
 
Justin Math Presentation Rev1.2
Justin Math Presentation  Rev1.2Justin Math Presentation  Rev1.2
Justin Math Presentation Rev1.2
 
Urysohn's lemma
Urysohn's lemmaUrysohn's lemma
Urysohn's lemma
 
Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curves
 
Group {1, −1, i, −i} Cordial Labeling of Product Related Graphs
Group {1, −1, i, −i} Cordial Labeling of Product Related GraphsGroup {1, −1, i, −i} Cordial Labeling of Product Related Graphs
Group {1, −1, i, −i} Cordial Labeling of Product Related Graphs
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-field
 
Wythoff construction and l1-embedding
Wythoff construction and l1-embeddingWythoff construction and l1-embedding
Wythoff construction and l1-embedding
 
207 intro lecture2010
207 intro lecture2010207 intro lecture2010
207 intro lecture2010
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 

Mais de János Kurdics (18)

kurdics_epass
kurdics_epasskurdics_epass
kurdics_epass
 
Braun Centenary
Braun CentenaryBraun Centenary
Braun Centenary
 
AtinerICT18
AtinerICT18AtinerICT18
AtinerICT18
 
Professor Ákos Császár
Professor Ákos CsászárProfessor Ákos Császár
Professor Ákos Császár
 
trans_kurdics
trans_kurdicstrans_kurdics
trans_kurdics
 
International conference on global studies
International conference on global studiesInternational conference on global studies
International conference on global studies
 
Kalman Rudolf dies at 86
Kalman Rudolf dies at 86Kalman Rudolf dies at 86
Kalman Rudolf dies at 86
 
Research Trip To Poland
Research Trip To PolandResearch Trip To Poland
Research Trip To Poland
 
robo16
robo16robo16
robo16
 
Bialystok15
Bialystok15Bialystok15
Bialystok15
 
kjatiner
kjatinerkjatiner
kjatiner
 
th_kurdics
th_kurdicsth_kurdics
th_kurdics
 
robo
roborobo
robo
 
nao12
nao12nao12
nao12
 
nao11
nao11nao11
nao11
 
Hard times to come
Hard times to comeHard times to come
Hard times to come
 
978-3-659-62092-8_sample
978-3-659-62092-8_sample978-3-659-62092-8_sample
978-3-659-62092-8_sample
 
resume_kurdics1
resume_kurdics1resume_kurdics1
resume_kurdics1
 

seminartr_20151022

  • 1. A CENTURY OF THE BURNSIDE PROBLEM J´anos Kurdics kurdics@nyf.hu Seminar of Institute of Mathematics and Informatics of Ny´ıregyh´aza College 22nd of October, 2015, translated from Hungarian J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 2. General Burnside Problem (1902) Every torsion group is locally finite. Finite exponent Burnside Problem Every torsion group of finite exponent is locally finite. Let F be a free group of rank d, N = Fe. Then B(d, e) = F/N is the Burnside group of parameter (d, e). The finite exponent Burnside Problem is equivalent to finiteness of B(d, e) Restricted Burnside Problem (W. Magnus) There are finitely many isomorphism classes of finite d-generated groups of exponent e. If the restricted Burnside Problem holds, B(d, e) can be infinite. Finitely many normal divisors of finite index, however, have the intersection of finite index, hence there is a biggest finite d-generated group B0(d, e) of exponent e, which has all finite d-generated groups of exponent e as a homomorphix image. J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 3. William Burnside 1852-1927 for full biography visit http://www-history.mcs.st-and.ac.uk/Biographies/Burnside.html J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 4. Parents Emma Knight and William Burnside Sr 1858 Father died, he attended Christ’s Hospital primary 1871 Grant to Cambridge St John’s College 1873 Pembroke College 1875 Second wrangler to George Chrystal 1875 Smith grant, teaching assitant job in Pembroke, studies hidrodynamics J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 5. 1885 Professorship in Greenwich Royal Navy College 1891-92,94 Studies complex linear fractional function groups, then group theory 1897 The Theory of Groups of Finite Order 1906-1908 Presides London Mathematical Society 1925 Stroke 1928 The Theory of Probability J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 6. Igor Rostislavovich Shafarevich 1923- for full biography visit http://www-history.mcs.st-and.ac.uk/Biographies/Shafarevich.html J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 7. Parents Rostislav Stepanovich Shafarevich and Juliya Yakovlevna Vasilyeva 1938 At MGU takes examinations by B.Ny. Delone, A. G. Kurosh and I.M. Gelfand 1940,42 graduation, candidate of sciences 1944 MGU Mechmat Faculty 1946 Doctor of Sciences, has 423 science descendants 50’s,70’s suspended J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 8. Burnside 1902 B(d, 3) is finite, |B(d, 3)| ≤ 32m − 1, B(2, 4) is finite, |B(2, 4)| ≤ 212 Burnside 1905 Torsion complex matrix group is locally finite. Sanov 1940 B(d, 4) is finite. A.I. Kostrikin 1955 B0(2, 5) is finite. Higman 1956 B0(d, 5) and B0(d, 6) exist. J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 9. Marshall Hall 1958 B(d, 6) is finite Ye.S. Golod and I.R. Shafarevich 1964 There exists a finitely generated infinite dimensional nilalgebra. There exists a finitely generated infinite p-group, general Burnside Problem is refuted. S.I. Adyan ´es P.S. Novikov 1968 B(d, e) is infinite for odd e ≥ 4381 exponent, finite exponent Burnside Problem is refuted. Yu. Olshanskiy 1982 For p > 1075 primes there exists infinite groups with all proper subgroups of order p. Open problems A finitely presented torsion group is finite. A finitely presented algebraic algebra is finite dimensional. B(2, 5) is finite. J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 10. Yefim Isakovich Zelmanov 1955- for full biography visit http://www-history.mcs.st-and.ac.uk/history/Biographies/Zelmanov.html J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 11. 1977,79 Graduation, candidate of sciences at NGU, studies nonassociative algebras 1980,85 Matinstitute Novosibirsk, doctor of sciences 1990,94 Professor at Wisconsin-Madison and then at Chicago 1994 Fields Medal 1995-2002 Professor at Yale and then at San Diego J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 12. Schreier conjecture 1926 Outer automorphism groups of finite simple groups are soluble. Ph. Hall and G. Higman 1956 Schreier conjecture implies that it suffices to prove the restricted Burnside Problen for prime power exponents 1984 Classification of finite simple groups settles Schreier conjecture W. Magnus 1950 For exponent p the restricted Burnside Problem holds provided ecery p − 1-Engel Lie algebra over Zp is locally nilpotent J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 13. 1959 A.P. Kosztrikin Every p − 1-Engel Lie algebra is locally nilpotent is E.I. Zelmanov 1989 For exponents pk reduction to local nilpotency of Engel Lie rings E.I. Zelmanov 1991 Every Engel Lie ring is locally nilpotent settling the restricted Burnside Problem J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 14. Commutator identities (x, yz) = (x, z)(x, y)z (xy, z) = (x, z)y (y, z) (x, y−1 ) = (y, x)y−1 Hall-Witt (x, y−1 , z)y (y, z−1 , x)z (z, x−1 , y)x Our aim is to prove the Burnside problem for exponent 3. (1) A group is 2-Engel iff every conjugacy class generates an Abelian normal divisor. This follows from the identity (x, y, y) = ((y−1)x , y). (2) A group of exponent 3 is 2-Engel This follows from (1) and the identity (xy , x) = ((x−1y)y )3(y−2x)3(yx )3. J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 15. (3) In a 2-Engel group (x, y, z) = (y, z, x) = (z, x, y). We have (x, yz, z) = (x, y, z)y , but by (1) (x, y, z) commutes with each argument hence (x, yz, z) = (x, y, z), analogously (x, yz, y) = (x, z, y). In a 2-Engel group (x, y−1) = (y, x). Then 1 = (x, yz, z)(x, yz, y) = (x, y, z)(x, z, y) and (x, y, z) = (z, x, y). Applying this again to (z, x, y) one gets (z, x, y) = (y, z, x). (4) In a 2-Engel group, (x, y, z)3 = 1 This follows from Hall-Witt identity and (3). J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 16. (5) A 2-Engel group is nilpotent of class at most 3. (In particular, it is locally finite.) Applying the identities and (3) we see (x, y, z, w) = (z, w, (x, y)) = ((w, z), (x, y))−1 = (x, y, w, z)−1 . By similar technique, (x, y, z, w) = (x, y, w, z)−1 = ((w, x, y), z)−1 = ((w, x), y, z)−1 = (y, z, (w, x))−1 = ((w, x), (y, z)) = ((y, z), w, x) = (y, z, w, x) . This yields (y, z, w, x) = (y, z, x, w)−1 = (x, y, z, w)−1 and (x, y, z, w) = (x, y, z, w)−1 = (x, y, z, w)2 by (4). J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .
  • 17. References 1 Burnside, W. (1902): On an unsettled question in the theory of discontinuous groups, Quart. J. Pure and Applied Math. 33 (1902), 230-238. 2 Golod, E.S., Shafarevich, I.R. (1964): On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat., 28:2, 261–272. 3 Kostrikin, A.I. (1986): Vokrug Bernsayda, Nauka, Moszkva. 4 Kuros, A.G. (1941): Problem¨u tyeorii kol´ec, svyazann¨uye s problem¨u Bernsayda periodicheskih gruppah, Izv. Akad. Nauk SSSR 5, no. 3, 233–240. 5 O’Connor, J.J., Robertson, F.: MacTutor History of Mathematics, St. Andrews, http://www-history.mcs.st-and.ac.uk, accessed 12.09.2015 6 Sahoo, B.K., Sury, B. (2005): What is the Burnside problem? Resonance 10(7), 34-48. 7 Sanov, I.I. (1940): Resenyiye problem¨u Bernsayda dlya pakazatyelya 4, Ucs. Zap. LGU 55, 166-170. 8 Zelmanov, Efim (2007): Some open problems in the theory of infinite dimensional algebras, J. Korean Math. Soc. 44, No. 5, 1185–1195. J´anos Kurdics kurdics@nyf.hu BURNSIDE PROBLEM . . .