SlideShare uma empresa Scribd logo
1 de 42
Light, Reflection, & Mirrors
Facts about Light
 It is a form of Electromagnetic Energy
 It is a part of the Electromagnetic Spectrum and the only part we
can really see
Facts about Light
The speed of light, c, is constant in a vacuum.
Light can be:
•REFLECTED
•ABSORBED
•REFRACTED
Light is an electromagnetic wave in that it has wave like properties
which can be influenced by electric and magnetic fields.
To study the reflection of light, we
need a simple way to draw situations
we are interested in. A convenient
method is to use rays. A ray is an
arrow that points in the direction that
light travels.
The Reflection of Light
 The circles represent crests of the outgoing waves. The outward
motion of the waves is indicated by the outward-pointing arrows—
the rays.
 Rays are always at right angles to the wave fronts.
 A similar situation applies to light and other electromagnetic waves,
as illustrated in the figure below.
© 2014 Pearson Education, Inc.
A digital micromirror projection system
is shown in the figure below.
Suppose, instead, that light travels from point A to a mirror, reflects
from the mirror, and then continues to point B. This situation is
shown in the figure below.
Which path should the light take if it is to get to B in the least time? That is, from which point
on the mirror should the light reflect?
This path is also the shortest possible reflecting path from A to B. The distances
(and travel times) along paths 1 and 3 are greater, as is shown in the figure below.
An interesting application of mirror images is the heads-
up display. An example from an airplane is shown in the
figure below.
If three plane mirrors are joined at right angles, as shown
in the figure below, the result is referred to as a corner
reflector.
A typical spherical mirror is just a
portion of a spherical shell of radius R.
The two situations are illustrated in
the figures below.
Several parallel rays are shown approaching a
convex mirror in the figure below.
Real Image
Real Images are ones you can project on to a screen.
For MIRRORS they always appear on the SAME SIDE of the mirror as the object.
object
image
The characteristics of the
image, however, may be
different from the original object.
These characteristics are:
•SIZE (reduced,enlarged,same
size)
•POSITION (same side,
opposite side)
•ORIENTATION (right side up,
inverted)
What if the mirror isn’t flat?
Spherical Mirrors – Concave & Convex
Also called CONVERGING mirror
Also called DIVERGING mirror
Converging (Concave) Mirror
A converging mirror is one that is spherical in nature
by which it can FOCUS parallel light rays to a point
directly in front of its surface. Every spherical mirror
can do this and this special point is at a “fixed”
position for every mirror. We call this point the
FOCAL POINT. To find this point you MUST use
light from “infinity”
Light from an “infinite”
distance, most likely the
sun.
Converging (Concave) Mirror
Since the mirror is
spherical it technically
has a CENTER OF
CURVATURE, C. The
focal point happens to
be HALF this distance.
We also draw a line through the
center of the mirror and call it the
PRINCIPAL AXIS.
f
C
C
f
2
2


Ray Diagram
A ray diagram is a pictorial representation of how the
light travels to form an image and can tell you the
characteristics of the image.
Principal axis
f
C
object
Rule One: Draw a ray, starting from the top of the object, parallel to the
principal axis and then through “f” after reflection.
Ray Diagrams
Principal axis
f
C
object
Rule Two: Draw a ray, starting from the top of the object, through the focal
point, then parallel to the principal axis after reflection.
Ray Diagrams
Principal axis
f
C
object
Rule Three: Draw a ray, starting from the top of the object, through C, then
back upon itself.
What do you notice about the three lines? THEY INTERSECT
The intersection is the location of the image.
Ray Diagram – Image Characteristics
Principal axis
f
C
object
After getting the intersection, draw an arrow down from the principal axis to
the point of intersection. Then ask yourself these questions:
1) Is the image on the SAME or OPPOSITE side of the mirror as the object?
Same, therefore it is a REAL IMAGE.
2) Is the image ENLARGED or REDUCED?
3) Is the image INVERTED or RIGHT SIDE UP?
Summary for Concave Mirror
When object is:
• Beyond C
• At C
• Between C and F
• At F
• Between F and mirror
Image is:
• Between C and
F
• At C
• Beyond C
• No image
• Virtual image
The Mirror/Lens Equation
Is there any OTHER way to predict image characteristics besides
the ray diagram? YES!
One way is to use the MIRROR/LENS equation to
CALCULATE the position of the image.
i
o d
d
f
1
1
1


Mirror/Lens Equation
Assume that a certain concave spherical mirror has a
focal length of 10.0 cm. Locate the image for an
object distance of 25 cm and describe the image’s
characteristics.






i
i
i
o
d
d
d
d
f
1
25
1
10
1
1
1
1
16.67 cm
What does this tell us? First we know the image is BETWEEN “C” & “f”. Since the
image distance is POSITIVE the image is a REAL IMAGE.
Real image = positive image distance
Virtual image = negative image distance
What about the size and orientation?
Magnification Equation
To calculate the orientation and size of the image we
use the MAGNIFICATION EQUATION.
x
M
M
h
h
d
d
M
o
i
o
i
67
.
0
25
67
.
16







Here is how this works:
•If we get a POSITIVE magnification, the image is
UPRIGHT.
•If we get a NEGATIVE magnification, the image is
INVERTED
•If the magnification value is GREATER than 1, the
image is ENLARGED.
•If the magnification value is LESS than 1, the image
is REDUCED.
•If the magnification value is EQUAL to 1, the image
is the SAME SIZE as the object.
Using our previous data we see that our image was INVERTED, and REDUCED.
Example
Assume that a certain concave spherical mirror has a focal
length of 10.0 cm. Locate the image for an object distance of
5 cm and describe the image’s characteristics.









5
1
5
1
10
1
1
1
1
i
i
i
i
o
d
M
d
d
d
d
f
-10 cm
2x
•VIRTUAL (opposite side)
•Enlarged
•Upright
Characteristics?

Mais conteúdo relacionado

Semelhante a Mirrors.pptx

Light full chaptet 10 cbse x
Light full chaptet 10 cbse x Light full chaptet 10 cbse x
Light full chaptet 10 cbse x RAVNEET NAGI
 
Physics pp presentation ch 13
Physics pp presentation ch 13Physics pp presentation ch 13
Physics pp presentation ch 13josoborned
 
Reflection of the light in the mirror.pptx
Reflection of the light in the mirror.pptxReflection of the light in the mirror.pptx
Reflection of the light in the mirror.pptxkriselcello
 
Handout optik-geometri-english
Handout optik-geometri-englishHandout optik-geometri-english
Handout optik-geometri-englishsupraptounnes
 
reflectionoflight-100829070425-phpapp02.pptx
reflectionoflight-100829070425-phpapp02.pptxreflectionoflight-100829070425-phpapp02.pptx
reflectionoflight-100829070425-phpapp02.pptxSapnaPatiye
 
Lenses
LensesLenses
Lensesozo120
 
fdocuments.net_optics-lecture-2-book-chapter-3435.ppt
fdocuments.net_optics-lecture-2-book-chapter-3435.pptfdocuments.net_optics-lecture-2-book-chapter-3435.ppt
fdocuments.net_optics-lecture-2-book-chapter-3435.pptPedramMaghsoudi4
 
G10 Science Q2-Week 8- Properties of Mirror.ppt
G10 Science Q2-Week 8- Properties of Mirror.pptG10 Science Q2-Week 8- Properties of Mirror.ppt
G10 Science Q2-Week 8- Properties of Mirror.pptRegieBenigno
 
Lens and Mirrors [Autosaved] for Grade 10.pptx
Lens and Mirrors [Autosaved] for Grade 10.pptxLens and Mirrors [Autosaved] for Grade 10.pptx
Lens and Mirrors [Autosaved] for Grade 10.pptxMaamKatrynTan
 
introduction of mirror and lesson and ray diagramming
introduction of mirror and lesson and ray diagrammingintroduction of mirror and lesson and ray diagramming
introduction of mirror and lesson and ray diagrammingJockerColumna1
 
Reflection of light (Physics)
Reflection of light (Physics)Reflection of light (Physics)
Reflection of light (Physics)Sheikh Amman
 
Spherical mirror by Kshitiz Rai
Spherical mirror by Kshitiz RaiSpherical mirror by Kshitiz Rai
Spherical mirror by Kshitiz Rai26sep98
 
reflection in curved mirror.ppt
reflection in curved mirror.pptreflection in curved mirror.ppt
reflection in curved mirror.pptEugeneMorada
 

Semelhante a Mirrors.pptx (20)

Light
LightLight
Light
 
Light full chaptet 10 cbse x
Light full chaptet 10 cbse x Light full chaptet 10 cbse x
Light full chaptet 10 cbse x
 
Physics pp presentation ch 13
Physics pp presentation ch 13Physics pp presentation ch 13
Physics pp presentation ch 13
 
Hp 13 win
Hp 13 winHp 13 win
Hp 13 win
 
Light 1.pptx
Light 1.pptxLight 1.pptx
Light 1.pptx
 
Reflection of the light in the mirror.pptx
Reflection of the light in the mirror.pptxReflection of the light in the mirror.pptx
Reflection of the light in the mirror.pptx
 
Handout optik-geometri-english
Handout optik-geometri-englishHandout optik-geometri-english
Handout optik-geometri-english
 
reflectionoflight-100829070425-phpapp02.pptx
reflectionoflight-100829070425-phpapp02.pptxreflectionoflight-100829070425-phpapp02.pptx
reflectionoflight-100829070425-phpapp02.pptx
 
Ophthalmology 5th year, 3rd lecture (Dr. Tara)
Ophthalmology 5th year, 3rd lecture (Dr. Tara)Ophthalmology 5th year, 3rd lecture (Dr. Tara)
Ophthalmology 5th year, 3rd lecture (Dr. Tara)
 
Module No. 39
Module No. 39Module No. 39
Module No. 39
 
Lenses
LensesLenses
Lenses
 
fdocuments.net_optics-lecture-2-book-chapter-3435.ppt
fdocuments.net_optics-lecture-2-book-chapter-3435.pptfdocuments.net_optics-lecture-2-book-chapter-3435.ppt
fdocuments.net_optics-lecture-2-book-chapter-3435.ppt
 
G10 Science Q2-Week 8- Properties of Mirror.ppt
G10 Science Q2-Week 8- Properties of Mirror.pptG10 Science Q2-Week 8- Properties of Mirror.ppt
G10 Science Q2-Week 8- Properties of Mirror.ppt
 
Lens and Mirrors [Autosaved] for Grade 10.pptx
Lens and Mirrors [Autosaved] for Grade 10.pptxLens and Mirrors [Autosaved] for Grade 10.pptx
Lens and Mirrors [Autosaved] for Grade 10.pptx
 
Light - PModelo.pptx
Light - PModelo.pptxLight - PModelo.pptx
Light - PModelo.pptx
 
introduction of mirror and lesson and ray diagramming
introduction of mirror and lesson and ray diagrammingintroduction of mirror and lesson and ray diagramming
introduction of mirror and lesson and ray diagramming
 
Reflection of light (Physics)
Reflection of light (Physics)Reflection of light (Physics)
Reflection of light (Physics)
 
Light
LightLight
Light
 
Spherical mirror by Kshitiz Rai
Spherical mirror by Kshitiz RaiSpherical mirror by Kshitiz Rai
Spherical mirror by Kshitiz Rai
 
reflection in curved mirror.ppt
reflection in curved mirror.pptreflection in curved mirror.ppt
reflection in curved mirror.ppt
 

Mais de JanleTolentinoMercen

Mais de JanleTolentinoMercen (7)

LECTURE 4 PROF ED 4.pptx
LECTURE 4 PROF ED 4.pptxLECTURE 4 PROF ED 4.pptx
LECTURE 4 PROF ED 4.pptx
 
resistor.pptx
resistor.pptxresistor.pptx
resistor.pptx
 
Concave-and-convex.pptx
Concave-and-convex.pptxConcave-and-convex.pptx
Concave-and-convex.pptx
 
Nature-of-Light.pptx
Nature-of-Light.pptxNature-of-Light.pptx
Nature-of-Light.pptx
 
PROF ED 1 FINAL PPT.pptx
PROF ED 1 FINAL PPT.pptxPROF ED 1 FINAL PPT.pptx
PROF ED 1 FINAL PPT.pptx
 
DEVELOPMENTAL I-WPS Office.pptx
DEVELOPMENTAL I-WPS Office.pptxDEVELOPMENTAL I-WPS Office.pptx
DEVELOPMENTAL I-WPS Office.pptx
 
SCIENCE ,TECHNO-WPS Office.pptx
SCIENCE ,TECHNO-WPS Office.pptxSCIENCE ,TECHNO-WPS Office.pptx
SCIENCE ,TECHNO-WPS Office.pptx
 

Último

COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformationAreesha Ahmad
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Servicemonikaservice1
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptxAlMamun560346
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Mohammad Khajehpour
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Servicenishacall1
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Monika Rani
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flyPRADYUMMAURYA1
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 

Último (20)

COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 

Mirrors.pptx

  • 2. Facts about Light  It is a form of Electromagnetic Energy  It is a part of the Electromagnetic Spectrum and the only part we can really see
  • 3. Facts about Light The speed of light, c, is constant in a vacuum. Light can be: •REFLECTED •ABSORBED •REFRACTED Light is an electromagnetic wave in that it has wave like properties which can be influenced by electric and magnetic fields.
  • 4. To study the reflection of light, we need a simple way to draw situations we are interested in. A convenient method is to use rays. A ray is an arrow that points in the direction that light travels.
  • 5. The Reflection of Light  The circles represent crests of the outgoing waves. The outward motion of the waves is indicated by the outward-pointing arrows— the rays.  Rays are always at right angles to the wave fronts.  A similar situation applies to light and other electromagnetic waves, as illustrated in the figure below. © 2014 Pearson Education, Inc.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11. A digital micromirror projection system is shown in the figure below.
  • 12.
  • 13. Suppose, instead, that light travels from point A to a mirror, reflects from the mirror, and then continues to point B. This situation is shown in the figure below. Which path should the light take if it is to get to B in the least time? That is, from which point on the mirror should the light reflect?
  • 14. This path is also the shortest possible reflecting path from A to B. The distances (and travel times) along paths 1 and 3 are greater, as is shown in the figure below.
  • 15.
  • 16.
  • 17. An interesting application of mirror images is the heads- up display. An example from an airplane is shown in the figure below.
  • 18. If three plane mirrors are joined at right angles, as shown in the figure below, the result is referred to as a corner reflector.
  • 19. A typical spherical mirror is just a portion of a spherical shell of radius R.
  • 20. The two situations are illustrated in the figures below.
  • 21.
  • 22. Several parallel rays are shown approaching a convex mirror in the figure below.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30. Real Image Real Images are ones you can project on to a screen. For MIRRORS they always appear on the SAME SIDE of the mirror as the object. object image The characteristics of the image, however, may be different from the original object. These characteristics are: •SIZE (reduced,enlarged,same size) •POSITION (same side, opposite side) •ORIENTATION (right side up, inverted) What if the mirror isn’t flat?
  • 31. Spherical Mirrors – Concave & Convex Also called CONVERGING mirror Also called DIVERGING mirror
  • 32. Converging (Concave) Mirror A converging mirror is one that is spherical in nature by which it can FOCUS parallel light rays to a point directly in front of its surface. Every spherical mirror can do this and this special point is at a “fixed” position for every mirror. We call this point the FOCAL POINT. To find this point you MUST use light from “infinity” Light from an “infinite” distance, most likely the sun.
  • 33. Converging (Concave) Mirror Since the mirror is spherical it technically has a CENTER OF CURVATURE, C. The focal point happens to be HALF this distance. We also draw a line through the center of the mirror and call it the PRINCIPAL AXIS. f C C f 2 2  
  • 34. Ray Diagram A ray diagram is a pictorial representation of how the light travels to form an image and can tell you the characteristics of the image. Principal axis f C object Rule One: Draw a ray, starting from the top of the object, parallel to the principal axis and then through “f” after reflection.
  • 35. Ray Diagrams Principal axis f C object Rule Two: Draw a ray, starting from the top of the object, through the focal point, then parallel to the principal axis after reflection.
  • 36. Ray Diagrams Principal axis f C object Rule Three: Draw a ray, starting from the top of the object, through C, then back upon itself. What do you notice about the three lines? THEY INTERSECT The intersection is the location of the image.
  • 37. Ray Diagram – Image Characteristics Principal axis f C object After getting the intersection, draw an arrow down from the principal axis to the point of intersection. Then ask yourself these questions: 1) Is the image on the SAME or OPPOSITE side of the mirror as the object? Same, therefore it is a REAL IMAGE. 2) Is the image ENLARGED or REDUCED? 3) Is the image INVERTED or RIGHT SIDE UP?
  • 38. Summary for Concave Mirror When object is: • Beyond C • At C • Between C and F • At F • Between F and mirror Image is: • Between C and F • At C • Beyond C • No image • Virtual image
  • 39. The Mirror/Lens Equation Is there any OTHER way to predict image characteristics besides the ray diagram? YES! One way is to use the MIRROR/LENS equation to CALCULATE the position of the image. i o d d f 1 1 1  
  • 40. Mirror/Lens Equation Assume that a certain concave spherical mirror has a focal length of 10.0 cm. Locate the image for an object distance of 25 cm and describe the image’s characteristics.       i i i o d d d d f 1 25 1 10 1 1 1 1 16.67 cm What does this tell us? First we know the image is BETWEEN “C” & “f”. Since the image distance is POSITIVE the image is a REAL IMAGE. Real image = positive image distance Virtual image = negative image distance What about the size and orientation?
  • 41. Magnification Equation To calculate the orientation and size of the image we use the MAGNIFICATION EQUATION. x M M h h d d M o i o i 67 . 0 25 67 . 16        Here is how this works: •If we get a POSITIVE magnification, the image is UPRIGHT. •If we get a NEGATIVE magnification, the image is INVERTED •If the magnification value is GREATER than 1, the image is ENLARGED. •If the magnification value is LESS than 1, the image is REDUCED. •If the magnification value is EQUAL to 1, the image is the SAME SIZE as the object. Using our previous data we see that our image was INVERTED, and REDUCED.
  • 42. Example Assume that a certain concave spherical mirror has a focal length of 10.0 cm. Locate the image for an object distance of 5 cm and describe the image’s characteristics.          5 1 5 1 10 1 1 1 1 i i i i o d M d d d d f -10 cm 2x •VIRTUAL (opposite side) •Enlarged •Upright Characteristics?