SlideShare uma empresa Scribd logo
1 de 58
SAFETY TALK
FIRED HEATERS
M.C JOMON
1
Kochi Refinery
HEATER
Heater is used to raise the temperature of a process fluid from lower
temperature to higher temperature.
Services in Refinery
• Fractionation: Crude, Vacuum, Reboilers.
• Thermal cracking: DCU , Visbreaker, Hydrocracker.
• Catalytic cracking: Reformer, CCR.
• Reaction: Hydrotreater
2
Kochi Refinery
HEATER
3
Kochi Refinery
HEATER
Types
Vertical tube cylindrical heater
• Most common type refinery heaters.
• Vertical radiant tubes and horizontal
convection tubes.
• Smallest plot area required.
• Tubes expand vertically.
• Less number of tube supports. One at top and
one guide at the bottom for each tube.
• Not preferably used for highly vaporizing
services.
• Heat duty up to 40 MM K cal/hr.
4
Kochi Refinery
HEATER
Types
Horizontal box type
[ single shell/ twin shell ]
• Heat duty from 20-125 MM Kcal/hr.
• Horizontal radiant/convection tubes.
• Requires large plot area.
• Choice of having heater outlet at the
radiant section bottom or top.
• Large number of tube supports required.
• 20-25% costlier than vertical heater.
• Used in crude vacuum coker heaters.
5
Kochi Refinery
HEATER
Types
Arbor or wicket type heater
[for very low pressure drop [ .2-.3 kg/cm2]
• Tubes are like inverted U shape.
• All vapour flow. Non coking services.
• Low pressure heaters.
• Heat duties of 17.5-100 MM Kcal/hr.
eg. CCR ,
• Bottom manifold.
• Free draining.
• Can be combination firing because of bottom firing.
6
Kochi Refinery
HEATER
Types
Inverted wicket type
• Horizontal firing.
• Single or double firing.
• In situ hydro testing not possible.
• Eg. CCR
7
Kochi Refinery
HEATER
Types
Helical coil heater
small heat duties up to 15 mm kcal/hr.
Not used in refineries.
8
Kochi Refinery
HEATER
Types
Classification based on firing.
• Side fired -One side / both side.
• Bottom fired
• Top fired.
• Side fired Bottom fired Top fired 9
Kochi Refinery
HEATER
Types
Classification based on fuel
• Gas firing
• Oil firing
• Combination firing
Gas firing Oil firing Oil + Gas firing
10
Kochi Refinery
HEATER
Types
Classification based on Draft
• Natural Draft-
• Forced Draft - using F.D fan
• Induced Draft – using I.D fan and drop out doors.
• Balanced Draft – using F.D and I.D fans.
11
Kochi Refinery
HEATER
Draft
Draft is the difference in pressure which causes the flow of air into the furnace
and flue gases through the heater. The pressure differential is caused by the
difference in densities of the flue gas in the heater and stack and the air
surrounding the furnace.
• Positive draft means flue gas pressure is below ambient pressure.
• Negative draft means fluid pressure is above ambient pressure at the same
elevation.
• Draft is controlled by stack damper or by ID fan.
• Ideal draft in a natural draft furnace is -1 mm wc.
12
Kochi Refinery
HEATER
Impact of higher draft
• Taller flame
• Flame lift –off
• High air flow through burners[ in
natural draft burners only]
• Air leakages thru joints of heater
body/ explosion door/peepholes.
• Excess air more.
Impact of lower draft
• Damaging heater structure.
• Flame or hot air leakage to
atmosphere
• Low air flow through burners , low
excess air [ in natural draft]
• Pressurization of heater.
13
Kochi Refinery
HEATER
Complete Combustion
• Complete combustion occurs when 100% of the energy in the fuel is extracted There must be
enough air in the combustion chamber for complete combustion to occur.
• The combustion process is extremely dependent on time, temperature, and turbulence.
Excess Air
• In order to ensure complete combustion, combustion chambers are Fired with excess air.
• Excess air increases the amount of oxygen and nitrogen entering the flame increasing the
probability that oxygen will find and react with the fuel. [ Nox formation ]
• Addition of excess air greatly lowers the formation of CO.
14
Kochi Refinery
HEATER
Excess Air = 100 x (20.9%) / (20.9% -O2m%) - 100%
Where O2 m% = The measured value of oxygen in the exhaust.
Examples:
When O2m% = 5%
Then: excess air = 100 x (20.9%) / (20.9%-5%) - 100%
= 100 x (20.9%) / (15.9%) - 100%
= 100 x (1.31) - 100%
excess air = 31%
15
Kochi Refinery
HEATER
sections
• Convection section.
• Radiant section
• Header box: internally insulated structural compartment separated
from the flue gas stream which is used to enclose a number of
headers or manifolds.
• Stack
16
Kochi Refinery
HEATER
sections
Convection section
• Bare tubes at the bottom of the convection section shields the studded tubes from direct
radiation.
• Normally 3 rows. Absorbs remaining 40-20% of total duty.
• Core bells to prevent flue gas by passing around tubes.
• May have additional waste heat recovery coils or super heating coils for efficiency
improvement.
• Soot blowing area.
17
Kochi Refinery
HEATER
sections
Radiant section
• Absorbs 60-80% of total duty.
• Radiation contribution -90%
• Tubes are in Vertical or Horizontal.
18
Kochi Refinery
HEATER
Parts/ terminology
• Bridge wall : Wall separating two adjacent heater zones.
• Arch: Flat or sloped portion of the radiant section opposite the floor.
• Damper: A device for regulating the flow of air or flue gas.
• Pilot : Small burner that provides the ignition source for the mail burner
• Atomizer : Device used to reduce a liquid fuel to fine mist using steam.
• Breeching: Heater section that where the flue gases are collected after the last convection
coil for transmission to the stack or the outlet duct.
• Jump over: Inter connecting pipe work within a heater coil section.
19
Kochi Refinery
HEATER
Parts / terminology
• Louver damper: Damper consists of several blades [ Combustion air Control]
• Corbel : Projection from refractory surface generally used to prevent flue
gas bypassing the tubes in the convection section. if they are
triangular pitch.
• Duct: conduit for air or flue gas
• Anchor / Tieback/ Jagger : a metallic or refractory material that holds refractory
or insulation.
• Ceramic wool / Refractory bricks : Insulators
• SOB : Shut off Blind./guillotine blind : single blade isolation of air ducts in a
heater , like blind.
20
Kochi Refinery
HEATER
Parts / terminology
• Pass: flow streams: Flow circuits consisting of one or more tubes in parallel.
• Plenum wind box: Chamber surrounding the burner that is used to distribute air to the burners
or reduce combustion noise.
• Primary air: Portion of the total air that first mixes with fuel.
• Setting loss: Radiation loss: heat lost to the surroundings from the casing of the heater and
the ducts and auxiliary equipment's.
• Secondary air: Air supplied to the fuel to supplement primary air.
• Shield section/ shock section: Tubes that shield the remaining convection section tubes from
direct radiation.
• Target wall/ reradiating wall: Vertical refractory brick which is exposed to direct flame
impingement on one or both sides.- mainly in DCU heaters.
21
Kochi Refinery
HEATER
Parts terminology
• Tube guide: Device used with vertical tubes to restrict horizontal movement while allowing the
tube to expand horizontally while firing.
• Tube supports: Device used to support tubes.
• Tube retainer: Device used to retain horizontal radiant tubes from lifting off the intermediate
tube supports during operation
• Vapour barrier: Metallic foil placed between layers of refractory as a barrier to flue gas flow.
• Soot blower: device used to remove soot or deposits.
• Strake/spoiler: metal attachment to a stack that prevent the formation of vortices that can
cause wind induced vibration.
22
Kochi Refinery
HEATER
TUBES
• Bare Tubes.
• Tubes with extended surface.
• Fins
• Studs
• Segmented fins
Bare tubes Studded tubes Fins Segmented fins
23
Kochi Refinery
HEATER
Tubes with extended surface
Solid fins.
• Most commonly used in gas
firing heaters.
• Soot deposit chance is more.
• Easy to fabricate.
• Less pressure drop.
Segmented fins
• More prone to damage.
• Higher heat transfer rate than
solid fins.
• Higher pressure drop.
• Rarely used in refinery.
24
Kochi Refinery
HEATER
Tubes with extended surface
Studded tubes
• Used for oil firing /combination firing case.
• Easier to clean.
• Strong.
• Costlier than fins.
25
Kochi Refinery
HEATER
TUBES
• Horizontal tubes –maximum 25m due to construction /handling
problems.
• Vertical tubes- maxi. 18m due to limit large variation in the
longitudinal heat flux distribution.
• Convection area -Normally all tubes are horizontally.
26
Kochi Refinery
HEATER
Tube Metallurgies
• Carbon steel:- Reboiler, steam generator, super heater, hot oil etc.
• 5 Cr/ 9cr :- Crude, Vacuum ,Visbreaker, DCU.
• SS316L/317L:- Crude with high TAN. Vacuum with high TAN.
• SS347H:- Hydrotreter ,Hydrocracker, and Hydrogen.
27
Kochi Refinery
HEATER
Soot blower
Soot blowers.
• Soot blower remove the soot from the studded tubes in convection section.
• Dry MP steam is used.
• After soot blowing flue gas temperature leaving convection section increases.
• Soot blower frequency is depended on the fuel used.
• In case of Fuel oil case daily is recommendable.
28
Kochi Refinery
HEATER
Burner
Burners
Classification based on fuel
• Fuel gas burner.
• Fuel oil burner.
• Combination burner.
Classification based on draft
• Natural draft.
• Forced draft
29
Kochi Refinery
HEATER
Burners
Classification based on fuel air mixing
• Premix gas burner
• Raw gas/oil burner.
• Staged fuel burner
• Staged air burner. Low Nox Burners.
• Flue gas recirculation burner.
Classification based on NOx emission.
• Low NOx burner [ less than 50 ppm]
• Ultra NOx burner. 20-50 ppm
• Next generation or new technology burner -less than 10 ppm.
30
HEATER
Burners
Raw gas/ oil burner
• Can fire fuel oil fuel gas or combination.
• Typical turn down ratio 3:1 [oil] and 5:1 [ gas ]
31mcj
HEATER
BURNERS
Staged Fuel Burners
• Low Nox burner [ 40 ppm vd]
• Typically 30% primary fuel and
• 70% secondary fuel
• High excess air in primary tip
reduces flame temperature.
• Low O2 in secondary tip results
in longer combustion time
32mcj
HEATER
BURNERS
Staged Air Burner
• Low Nox burner - [50-70 ppm vd]
• More effective with combination firing.
• Air is split into 2-3 zones to slow the
combustion
• Primary air to initiate combustion.
• Secondary air to complete the combustion
and maintain flame shape.
• Tertiary air to control the flame outer
temperature.
33mcj
HEATER
BURNERS
Flue Gas Recirculation Burner
• Ultra Nox burner [ 25- 30 ppm]
• A part of flue gas is circulated back into
the flame to dilute air/fuel mixture.
• Delayed combustion as well as cooler flame.
• Very large spacing required between burners
And burners are bigger in size.
• Very tall flames.
34mcj
HEATER
BURNERS
New technology next generation Ultra Nox burner
• Nox less than 10 ppm
• Employ combination of staged air, staged fuel, flue gas recirculation methods.
35mcj
HEATER
Our fuel specifications
Fuel oil
LHV 9500-10000
Viscosity @ 185oc 19-23 cst
Sulphur .4-.7 %
N2 2000ppm
Na 90-170ppm
Va 2.5 ppm
CCR 14-19 %
C/H ratio 8.1 -8.3
Nickel 36-52ppm
Fuel Gas
LHV 9000
H2S 300ppm
H2 15-20 %
C1 25.3%
C2 19.6%
C4 4%
C5 .2%
C6 Nil
mcj 36
HEATER
Efficiency
Fuel efficiency
• Total heat absorbed divided by the total input of heat derived from the combustion of
fuel only. [Lower heating value basis.]
Thermal efficiency
• Total heat absorbed divided by the total input of heat derived from the combustion of fuel
plus sensible heats from air fuel and any atomizing medium.
• The heat absorbed is equal to the total heat input minus the total heat losses from
the system.
Total heat input – Stack losses – Radiation heat losses
Efficiency = X 100
Total heat input
37mcj
HEATER
Checking
1. Tube external corrosion ,tube crack , colour change, bend.
2. Arch area refractory damage.
3. Bottom refractory damage, refractory bulging, bottom body bulging.
4. Flame impingements on tubes.
5. Coking on oil/ gas burners.
6. Atomization of fuel oil.
7. Fuel oil temperature/ viscosity.
8. Tube over heating by flame impingement/ coking/ low coil flow.
9. Tube support / retainer damages.
38mcj
HEATER
Checking
11 . Heater body red hot / paint damage due to over heat
12 . Refractory damage.
13 . Flame flash back.
14 . Flame lift off [ high draft, high fuel gas pressure, atomizing steam / fuel oil
Dp more]
15 . After burning or secondary combustion.[ re- ignition CO in convection
section ]
16 . Pilot burner tip damages
17 . Flue gas / combustion air leakages through burner plenum chamber.
18 . Pilot lite off.
19 . Skin temp raise
20 . Arch temp raise 39mcj
HEATER
Checking
21 . Stack temp high/low.
22 . Fuel oil/ gas leaks.
23 . Incomplete combustion [ black smoke ]
24 . More excess air [ over bright flame, and white smoke on stack]
25 . Intermittent flame/ flame height more.
26 . Condensate in atomizing steam[ sparkling flame].
27 . Condensate in fuel gas.
28 . High fuel oil/ gas firing pressure
29 . Hot spots on tubes.
30 . Flue gas leaks through air ducts.
40mcj
HEATER
Checking
31 . Check fuel oil pressure temp and flow , and steam tracing.
32 . Ensure atomizing steam pressure, and condensate free.
33 . Skin temperature- normal value 450- 4800C
34 . Stack damper condition
35 . Air leaks[ open doors ,bolts joints]
36 . Burner flame shape height , smoke.
37 . Abnormal flue gas temperature in convection section.
38 . O2 level in stack- 2-3% normal
39 . Draft/ arch pressure.
40 .Combustion air damper, opening. hot spot ,flame back up.
41mcj
HEATER
Checking
41 . Individual burner valve opening [ should not be pinched]
42 . Individual burner air damper opening [ should be same for all burners]
43 . Fuel oil viscosity, return header flow, steam tracing.
44 . Dp of atomizing steam / fuel oil.
45 . Burner tile conditions
46 . Abnormal noise, whistling sound.
47 . Flue gas temperature at APH inlet and outlet.
48 . ID suction temperature.
49 .Fluid coupling loading/ VFD . rpm indication.
50 . Bearing cooling water temperature/ flow.
42mcj
HEATER
Checking
51 . Any abnormal sound/ vibration on coil jump over.
52 . Coil jump over supports ,coil outlet supports outside heater.
53 . Convection inlet flange leak, pressure reading.
54 . Igniter working condition.
55 . ID , FD motor amperages.
56 . Leakages through ID, FD , and ducts.
57 .ID, FD inlet outlet damper opening.
58 Clogging of FD inlet filter.
59 . ID suction pressure.
60 . ID, FD bearing temperature, vibration, sound.
43mcj
HEATER
Checking
61 . Soot blower steam valve conditions
62 . Soot blowing steam condensate traps.
63 . Soot blower poppet valve opening / closing/ passing.
64 . Soot blower shaft condition after soot blowing[ retract or not]
65 . Damage of castable refractory after soot blowing.
66 . Pilot conditions, pilot air register condition, any flame flash back through
pilot.
67 . Convection outlet temperature reading
68 . Radiation outlet individual pass out let temperature.
69 . COT.
70 . Box purging steam any passing.
44mcj
HEATER
Checking
71 . Peep hole damages, glass damages, rope damages etc.
72 . Atomizing steam, fuel oil, gas valves passing/ gland leaks/wheel damages.
73. Lp gas burner status. Lp gas flame arrestor dp. Lp gas pressure.
74 . Hot well gas burner conditions. Flame arrestor dp, line plugging, condensate
carryover etc.
75 . Hot well gas knock out drum level.
76 . Fuel gas knock out drum level.
77 . Fuel gas c/v SDV status, opening, gland leaks, SDV solenoid valve.
78 . Fuel oil c/v SDV supply and return status.
79 . Fuel header PCV opening [ supply/ return tie up].
80 . Fuel oil heater steam/ condensate flow, temperature.
45mcj
HEATER
Checking
81 . Fuel oil supply return header pressures at battery limit.
82 . Oil leakages through oil guns.
83 . Any abnormal fuel gas/ flue gas smell near heater.
84 . Leakages through SOBs.
85 . Any instrument air leaks, near c/v s stack dampers.
86 . Stack damper openings.
87 . Acid corroded spots on the body.
88 . Explosion door opening.
89 . Analyzers readings.
90 . Insulation damages.
46mcj
HEATER
Checking
91 . Heat resistant paint damage on heater body.
92 . Heater body red hot bulging.
93 . Velocity steam dryness.
94 . Any abnormal vibration of coils due to velocity steam.
95 . Radiation out let/ swing elbow flange leaks.
96 . Oil soaking in insulation while start up after shut down.
97 . Heater transfer line flange [ at column nozzle ] leak.
98 . Pass control valve openings, gland leak, coil pressure.
99 . Emergency steam to be closed while heater starting.
100 . Ensure plant air line blinds.
101 . Ensure coil minimum flow.
47mcj
HEATER
Decoking
Thermal decoking : Using air and steam inside tubes , controlled firing in heater.
[ It take more time, chance to tube metallurgy damage]
Mechanical decoking : Using water with pigs inside the tubes.
On line Spalling : Steam inside tube and firing in heater. One individual pass can be done
on line. Coke removed by thermal shock. [ only in DCU heater]
48mcj
HEATER
dry out
• To be done after heater long shut down work or refractory work .
• Controlled fire inside the furnace and steam inside the tubes .
49mcj
HEATER
problems - reasons
Internal tube corrosion sulphur and naphthenic acid corrosion
External tube corrosion metal oxidation, and by H2S04
Erosion High velocity with solids, impingement on
fitting
Polythionic acid corrosion [ for steel tubes]
on tube outside.
In hydro cracking /hydrode-sulphurisation
heaters only.
Creep rupture damage Due to high tube temp [ skin]
Hot spot / tube bulging Due to coking inside tube , flame
impingement , and by low coil flow
/velocity.
Coking on fuel oil gun / oil dripping High viscosity , poor atomization ,
improper gun guide tube fitting.
50mcj
HEATER
problems - reasons
Flame lift off high draft
Back fire High arch pressure, burner coking , burner
tip damage , block inside burner chamber
Flame impingement on tubes Burner tip coking , tip damage ,poor
atomizing .
Sparkling flame Condensate in atomizing steam
Over bright flame [ combination firing ] More excess air
Smoky flame High fuel firing pressure , low combustion
air , poor atomizing , and burner coking
High arch pressure Over firing , stack damper/ ID problem ,
burner coke purging
51mcj
HEATER
problems - reasons
High arch temperature Over firing , flame lift off , high gas firing
pressure , secondary combustion .
Pulsating fire [ alternately ignite and goes
out]
Lack of air and low draft
Excess smoke on stack Incomplete combustion , burner coking ,
poor atomizing , burner tip damage , less
combustion air , and heater tube failure
Burner tile damage Due to sodium Vandate corrosion ,
Tube coloure change Ash burning , coking inside tube , flame
impingement
Tube support damage Flame impingement , hammering of tubes
high temp oxidation ,
52mcj
HEATER
problems - reasons
Tube sheet damage in convection section After burning , If Na, Va in fuel oil is more
corrosion chance is more.
Refractory damages High arch temp, improper dry out ,
thermal shock due to fast temperature
raise, soot blowing steam condensate ,
poor casting .
Hot spot / acid corroded holes on heater
body
Refractory damages , flue gas entry inside
the refractory bed gaps .
mcj 53
HEATER
mcj 54
EMERGENCIES ACTIONS
Pass flow control valve / flow failure Closely monitor individual pass outlet
temp , put c/v in MAN mode or open b/p
b/v.
Fuel oil trip Rectify the problem and start oil firing
Fuel gas trip Rectify the problem and restart firing
Heater total trip Restart after rectifying problem , ensure
proper coil flow , and furnace draft , and
ensure pilot flame .
Heater tube failure shut down the heater from remote
emergency switch , cut the coil flow, open
emergency coil steam,
DO NOT
mcj 55
• Do not run heater with by passed interlocks
• Do not pinch individual burners
• Do not keep different openings in individual air louvers
• In case of tube failure do not admit air into heater , use steam only
• Do not run heater with fully closed stack damper
Use proper PPE s [ gloves , thermal protecting face shields ]
HEATER
Crude heater start up after shut down
• Purge Fuel gas line with N2.
• Reset FG / pilot SOVs and charge fuel gas.
• Flush fuel oil lines to CBD , Reset supply /return SDV s.
• Establish fuel oil circulation in supply and return headers.
• Purge individual oil lines up to oil gun [ to a drum ] and insert oil guns.
• Line up all instruments.
• Start cold oil circulation inside heater coils.
• Wide open stack damper and box purge heater with steam [ 20
minutes].ensure draft.
56mcj
HEATER
Crude heater start up after shut down
• Start FD fan , open combustion air louvers, and purge heater with air.
• Lite the pilot burners.
• Lite FG burners. [ never lite from the adjacent burner]
• Purge the FO burner with steam.
• After gun purging open FO atomizing steam, then slowly open fuel oil and
adjust the flame.
• After stabilizing start ID fan , and kept stack damper opening minimum .
• Control arch pressure using ID fan speed, and stack damper opening.
57mcj
Thank You mc jomon 58

Mais conteúdo relacionado

Mais procurados

Steam Reforming - (ATM) Approach to Equilibrium
Steam Reforming - (ATM) Approach to EquilibriumSteam Reforming - (ATM) Approach to Equilibrium
Steam Reforming - (ATM) Approach to EquilibriumGerard B. Hawkins
 
Steam Reforming - Tube Design
Steam Reforming - Tube DesignSteam Reforming - Tube Design
Steam Reforming - Tube DesignGerard B. Hawkins
 
Improve fired heaters performance and reliabilty
Improve fired heaters performance and reliabiltyImprove fired heaters performance and reliabilty
Improve fired heaters performance and reliabiltyAshutosh Garg
 
Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Gerard B. Hawkins
 
Distillation column internals.pptx
Distillation column internals.pptxDistillation column internals.pptx
Distillation column internals.pptxJOMON M.C
 
Furnace Improvements Sales Presentation
Furnace Improvements Sales PresentationFurnace Improvements Sales Presentation
Furnace Improvements Sales PresentationJonathan Morales
 
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...Gerard B. Hawkins
 
Fired Heater and Combustion Optimization From Yokogawa
Fired Heater and Combustion Optimization From YokogawaFired Heater and Combustion Optimization From Yokogawa
Fired Heater and Combustion Optimization From YokogawaMiller Energy, Inc.
 
A new approach to improving heater efficiency
A new approach to improving heater efficiencyA new approach to improving heater efficiency
A new approach to improving heater efficiencyAshutosh Garg
 
AIChE Smart Stack Damper Design Provides Better Control of Fired Heaters
AIChE Smart Stack Damper Design Provides Better Control of Fired HeatersAIChE Smart Stack Damper Design Provides Better Control of Fired Heaters
AIChE Smart Stack Damper Design Provides Better Control of Fired HeatersAshutosh Garg
 
Burner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia PlantsBurner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia PlantsGerard B. Hawkins
 
Fired Equipment presentation on Types, Classification and governing Equations...
Fired Equipment presentation on Types, Classification and governing Equations...Fired Equipment presentation on Types, Classification and governing Equations...
Fired Equipment presentation on Types, Classification and governing Equations...Hassan ElBanhawi
 
Normal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsNormal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsGerard B. Hawkins
 
Steam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive ReviewSteam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive ReviewGerard B. Hawkins
 
HTRI PRESENTATION.pdf
HTRI PRESENTATION.pdfHTRI PRESENTATION.pdf
HTRI PRESENTATION.pdfssuserbd5784
 
Ammonia synthesis converter
Ammonia synthesis converterAmmonia synthesis converter
Ammonia synthesis converterPrem Baboo
 
Catalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IICatalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IIGerard B. Hawkins
 

Mais procurados (20)

Steam Reforming - (ATM) Approach to Equilibrium
Steam Reforming - (ATM) Approach to EquilibriumSteam Reforming - (ATM) Approach to Equilibrium
Steam Reforming - (ATM) Approach to Equilibrium
 
Steam Reforming - Tube Design
Steam Reforming - Tube DesignSteam Reforming - Tube Design
Steam Reforming - Tube Design
 
Steam Reforming - Poisons
Steam Reforming - PoisonsSteam Reforming - Poisons
Steam Reforming - Poisons
 
Flare technology
Flare technologyFlare technology
Flare technology
 
Improve fired heaters performance and reliabilty
Improve fired heaters performance and reliabiltyImprove fired heaters performance and reliabilty
Improve fired heaters performance and reliabilty
 
Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers -
 
Distillation column internals.pptx
Distillation column internals.pptxDistillation column internals.pptx
Distillation column internals.pptx
 
Furnace Improvements Sales Presentation
Furnace Improvements Sales PresentationFurnace Improvements Sales Presentation
Furnace Improvements Sales Presentation
 
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...
 
Fired Heater and Combustion Optimization From Yokogawa
Fired Heater and Combustion Optimization From YokogawaFired Heater and Combustion Optimization From Yokogawa
Fired Heater and Combustion Optimization From Yokogawa
 
A new approach to improving heater efficiency
A new approach to improving heater efficiencyA new approach to improving heater efficiency
A new approach to improving heater efficiency
 
AIChE Smart Stack Damper Design Provides Better Control of Fired Heaters
AIChE Smart Stack Damper Design Provides Better Control of Fired HeatersAIChE Smart Stack Damper Design Provides Better Control of Fired Heaters
AIChE Smart Stack Damper Design Provides Better Control of Fired Heaters
 
Burner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia PlantsBurner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia Plants
 
Fired Equipment presentation on Types, Classification and governing Equations...
Fired Equipment presentation on Types, Classification and governing Equations...Fired Equipment presentation on Types, Classification and governing Equations...
Fired Equipment presentation on Types, Classification and governing Equations...
 
Methanol Reformer Designs
Methanol Reformer DesignsMethanol Reformer Designs
Methanol Reformer Designs
 
Normal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsNormal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen Plants
 
Steam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive ReviewSteam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive Review
 
HTRI PRESENTATION.pdf
HTRI PRESENTATION.pdfHTRI PRESENTATION.pdf
HTRI PRESENTATION.pdf
 
Ammonia synthesis converter
Ammonia synthesis converterAmmonia synthesis converter
Ammonia synthesis converter
 
Catalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IICatalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - II
 

Semelhante a Heater operation

Boiler accessories
Boiler accessoriesBoiler accessories
Boiler accessoriesrudrik joshi
 
Steam generator@snist
Steam generator@snistSteam generator@snist
Steam generator@snistshaukat5175
 
Steam and Condensate system in a process plant.ppt
Steam and Condensate system in a process plant.pptSteam and Condensate system in a process plant.ppt
Steam and Condensate system in a process plant.pptMadan Karki
 
Condenser and cooling tower
Condenser and cooling towerCondenser and cooling tower
Condenser and cooling towerYashvir Singh
 
Steamboilers (elements of mechanical engineering)
Steamboilers (elements of mechanical engineering)Steamboilers (elements of mechanical engineering)
Steamboilers (elements of mechanical engineering)Rohan Lakhani
 
Condenser Types and Numerical Analysis
Condenser    Types   and    Numerical   AnalysisCondenser    Types   and    Numerical   Analysis
Condenser Types and Numerical AnalysisRavindra Kolhe
 
How to improve the efficiency of water tube boiler
How to improve the efficiency of water tube boilerHow to improve the efficiency of water tube boiler
How to improve the efficiency of water tube boilerMd Rabiul Hasan
 
Boilers and its types & components
Boilers and its types & componentsBoilers and its types & components
Boilers and its types & componentsYoga Sathish
 
Unit-1-Coal Based Thermal Power Plants.ppt
Unit-1-Coal Based Thermal Power Plants.pptUnit-1-Coal Based Thermal Power Plants.ppt
Unit-1-Coal Based Thermal Power Plants.pptdharma raja`
 
Power Generation-10n.ppt
Power Generation-10n.pptPower Generation-10n.ppt
Power Generation-10n.pptZookOne
 
Power Generation-10n.ppt
Power Generation-10n.pptPower Generation-10n.ppt
Power Generation-10n.pptHRHabib7
 
Power Generation-10n.ppt
Power Generation-10n.pptPower Generation-10n.ppt
Power Generation-10n.pptSupratimRoy16
 
Power Generation-10n.ppt
Power Generation-10n.pptPower Generation-10n.ppt
Power Generation-10n.pptrajam575648
 

Semelhante a Heater operation (20)

Boiler accessories
Boiler accessoriesBoiler accessories
Boiler accessories
 
Steam generator@snist
Steam generator@snistSteam generator@snist
Steam generator@snist
 
Steam and Condensate system in a process plant.ppt
Steam and Condensate system in a process plant.pptSteam and Condensate system in a process plant.ppt
Steam and Condensate system in a process plant.ppt
 
Hydrogen Production Unit
Hydrogen Production UnitHydrogen Production Unit
Hydrogen Production Unit
 
Condenser and cooling tower
Condenser and cooling towerCondenser and cooling tower
Condenser and cooling tower
 
Steamboilers (elements of mechanical engineering)
Steamboilers (elements of mechanical engineering)Steamboilers (elements of mechanical engineering)
Steamboilers (elements of mechanical engineering)
 
02 Boiler Construction.ppt
02 Boiler Construction.ppt02 Boiler Construction.ppt
02 Boiler Construction.ppt
 
Steam generator (boiler) vamshi
Steam generator (boiler) vamshiSteam generator (boiler) vamshi
Steam generator (boiler) vamshi
 
Condenser Types and Numerical Analysis
Condenser    Types   and    Numerical   AnalysisCondenser    Types   and    Numerical   Analysis
Condenser Types and Numerical Analysis
 
Boilers IN EME
Boilers IN EMEBoilers IN EME
Boilers IN EME
 
FIRED HEATERS.ppt
FIRED HEATERS.pptFIRED HEATERS.ppt
FIRED HEATERS.ppt
 
How to improve the efficiency of water tube boiler
How to improve the efficiency of water tube boilerHow to improve the efficiency of water tube boiler
How to improve the efficiency of water tube boiler
 
Steam boiler
Steam boilerSteam boiler
Steam boiler
 
Boilers and its types & components
Boilers and its types & componentsBoilers and its types & components
Boilers and its types & components
 
Unit-1-Coal Based Thermal Power Plants.ppt
Unit-1-Coal Based Thermal Power Plants.pptUnit-1-Coal Based Thermal Power Plants.ppt
Unit-1-Coal Based Thermal Power Plants.ppt
 
Power Generation-10n.ppt
Power Generation-10n.pptPower Generation-10n.ppt
Power Generation-10n.ppt
 
Power Generation-10n.ppt
Power Generation-10n.pptPower Generation-10n.ppt
Power Generation-10n.ppt
 
Power Generation-10n.ppt
Power Generation-10n.pptPower Generation-10n.ppt
Power Generation-10n.ppt
 
Power Generation-10n.ppt
Power Generation-10n.pptPower Generation-10n.ppt
Power Generation-10n.ppt
 
steam boilers.pptx
steam boilers.pptxsteam boilers.pptx
steam boilers.pptx
 

Último

DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdfDMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdfReemaKhan31
 
Kannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best Service
Kannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best ServiceKannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best Service
Kannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
Call Girls Alandi Road Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Road Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Alandi Road Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Road Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
➥🔝 7737669865 🔝▻ Bulandshahr Call-girls in Women Seeking Men 🔝Bulandshahr🔝 ...
➥🔝 7737669865 🔝▻ Bulandshahr Call-girls in Women Seeking Men  🔝Bulandshahr🔝  ...➥🔝 7737669865 🔝▻ Bulandshahr Call-girls in Women Seeking Men  🔝Bulandshahr🔝  ...
➥🔝 7737669865 🔝▻ Bulandshahr Call-girls in Women Seeking Men 🔝Bulandshahr🔝 ...amitlee9823
 
怎样办理哥伦比亚大学毕业证(Columbia毕业证书)成绩单学校原版复制
怎样办理哥伦比亚大学毕业证(Columbia毕业证书)成绩单学校原版复制怎样办理哥伦比亚大学毕业证(Columbia毕业证书)成绩单学校原版复制
怎样办理哥伦比亚大学毕业证(Columbia毕业证书)成绩单学校原版复制yynod
 
WhatsApp 📞 8448380779 ✅Call Girls In Salarpur Sector 81 ( Noida)
WhatsApp 📞 8448380779 ✅Call Girls In Salarpur Sector 81 ( Noida)WhatsApp 📞 8448380779 ✅Call Girls In Salarpur Sector 81 ( Noida)
WhatsApp 📞 8448380779 ✅Call Girls In Salarpur Sector 81 ( Noida)Delhi Call girls
 
➥🔝 7737669865 🔝▻ Satara Call-girls in Women Seeking Men 🔝Satara🔝 Escorts S...
➥🔝 7737669865 🔝▻ Satara Call-girls in Women Seeking Men  🔝Satara🔝   Escorts S...➥🔝 7737669865 🔝▻ Satara Call-girls in Women Seeking Men  🔝Satara🔝   Escorts S...
➥🔝 7737669865 🔝▻ Satara Call-girls in Women Seeking Men 🔝Satara🔝 Escorts S...amitlee9823
 
Chintamani Call Girls Service: ☎ 7737669865 ☎ High Profile Model Escorts | Ba...
Chintamani Call Girls Service: ☎ 7737669865 ☎ High Profile Model Escorts | Ba...Chintamani Call Girls Service: ☎ 7737669865 ☎ High Profile Model Escorts | Ba...
Chintamani Call Girls Service: ☎ 7737669865 ☎ High Profile Model Escorts | Ba...amitlee9823
 
Call Girls Hosur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hosur Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hosur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hosur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangaloreamitlee9823
 
Personal Brand Exploration - Fernando Negron
Personal Brand Exploration - Fernando NegronPersonal Brand Exploration - Fernando Negron
Personal Brand Exploration - Fernando Negronnegronf24
 
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...amitlee9823
 
➥🔝 7737669865 🔝▻ bhavnagar Call-girls in Women Seeking Men 🔝bhavnagar🔝 Esc...
➥🔝 7737669865 🔝▻ bhavnagar Call-girls in Women Seeking Men  🔝bhavnagar🔝   Esc...➥🔝 7737669865 🔝▻ bhavnagar Call-girls in Women Seeking Men  🔝bhavnagar🔝   Esc...
➥🔝 7737669865 🔝▻ bhavnagar Call-girls in Women Seeking Men 🔝bhavnagar🔝 Esc...amitlee9823
 
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)amitlee9823
 
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...Pooja Nehwal
 
Just Call Vip call girls fazilka Escorts ☎️9352988975 Two shot with one girl ...
Just Call Vip call girls fazilka Escorts ☎️9352988975 Two shot with one girl ...Just Call Vip call girls fazilka Escorts ☎️9352988975 Two shot with one girl ...
Just Call Vip call girls fazilka Escorts ☎️9352988975 Two shot with one girl ...gajnagarg
 
Call Girls Bidadi Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Bidadi Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Bidadi Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Bidadi Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangaloreamitlee9823
 
➥🔝 7737669865 🔝▻ Pallavaram Call-girls in Women Seeking Men 🔝Pallavaram🔝 E...
➥🔝 7737669865 🔝▻ Pallavaram Call-girls in Women Seeking Men  🔝Pallavaram🔝   E...➥🔝 7737669865 🔝▻ Pallavaram Call-girls in Women Seeking Men  🔝Pallavaram🔝   E...
➥🔝 7737669865 🔝▻ Pallavaram Call-girls in Women Seeking Men 🔝Pallavaram🔝 E...amitlee9823
 
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men 🔝Tirupati🔝 Escor...
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men  🔝Tirupati🔝   Escor...➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men  🔝Tirupati🔝   Escor...
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men 🔝Tirupati🔝 Escor...amitlee9823
 
Dubai Call Girls Kiki O525547819 Call Girls Dubai Koko
Dubai Call Girls Kiki O525547819 Call Girls Dubai KokoDubai Call Girls Kiki O525547819 Call Girls Dubai Koko
Dubai Call Girls Kiki O525547819 Call Girls Dubai Kokokojalkojal131
 
➥🔝 7737669865 🔝▻ Secunderabad Call-girls in Women Seeking Men 🔝Secunderabad🔝...
➥🔝 7737669865 🔝▻ Secunderabad Call-girls in Women Seeking Men  🔝Secunderabad🔝...➥🔝 7737669865 🔝▻ Secunderabad Call-girls in Women Seeking Men  🔝Secunderabad🔝...
➥🔝 7737669865 🔝▻ Secunderabad Call-girls in Women Seeking Men 🔝Secunderabad🔝...amitlee9823
 

Último (20)

DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdfDMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
 
Kannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best Service
Kannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best ServiceKannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best Service
Kannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best Service
 
Call Girls Alandi Road Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Road Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Alandi Road Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Road Call Me 7737669865 Budget Friendly No Advance Booking
 
➥🔝 7737669865 🔝▻ Bulandshahr Call-girls in Women Seeking Men 🔝Bulandshahr🔝 ...
➥🔝 7737669865 🔝▻ Bulandshahr Call-girls in Women Seeking Men  🔝Bulandshahr🔝  ...➥🔝 7737669865 🔝▻ Bulandshahr Call-girls in Women Seeking Men  🔝Bulandshahr🔝  ...
➥🔝 7737669865 🔝▻ Bulandshahr Call-girls in Women Seeking Men 🔝Bulandshahr🔝 ...
 
怎样办理哥伦比亚大学毕业证(Columbia毕业证书)成绩单学校原版复制
怎样办理哥伦比亚大学毕业证(Columbia毕业证书)成绩单学校原版复制怎样办理哥伦比亚大学毕业证(Columbia毕业证书)成绩单学校原版复制
怎样办理哥伦比亚大学毕业证(Columbia毕业证书)成绩单学校原版复制
 
WhatsApp 📞 8448380779 ✅Call Girls In Salarpur Sector 81 ( Noida)
WhatsApp 📞 8448380779 ✅Call Girls In Salarpur Sector 81 ( Noida)WhatsApp 📞 8448380779 ✅Call Girls In Salarpur Sector 81 ( Noida)
WhatsApp 📞 8448380779 ✅Call Girls In Salarpur Sector 81 ( Noida)
 
➥🔝 7737669865 🔝▻ Satara Call-girls in Women Seeking Men 🔝Satara🔝 Escorts S...
➥🔝 7737669865 🔝▻ Satara Call-girls in Women Seeking Men  🔝Satara🔝   Escorts S...➥🔝 7737669865 🔝▻ Satara Call-girls in Women Seeking Men  🔝Satara🔝   Escorts S...
➥🔝 7737669865 🔝▻ Satara Call-girls in Women Seeking Men 🔝Satara🔝 Escorts S...
 
Chintamani Call Girls Service: ☎ 7737669865 ☎ High Profile Model Escorts | Ba...
Chintamani Call Girls Service: ☎ 7737669865 ☎ High Profile Model Escorts | Ba...Chintamani Call Girls Service: ☎ 7737669865 ☎ High Profile Model Escorts | Ba...
Chintamani Call Girls Service: ☎ 7737669865 ☎ High Profile Model Escorts | Ba...
 
Call Girls Hosur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hosur Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hosur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hosur Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
 
Personal Brand Exploration - Fernando Negron
Personal Brand Exploration - Fernando NegronPersonal Brand Exploration - Fernando Negron
Personal Brand Exploration - Fernando Negron
 
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
 
➥🔝 7737669865 🔝▻ bhavnagar Call-girls in Women Seeking Men 🔝bhavnagar🔝 Esc...
➥🔝 7737669865 🔝▻ bhavnagar Call-girls in Women Seeking Men  🔝bhavnagar🔝   Esc...➥🔝 7737669865 🔝▻ bhavnagar Call-girls in Women Seeking Men  🔝bhavnagar🔝   Esc...
➥🔝 7737669865 🔝▻ bhavnagar Call-girls in Women Seeking Men 🔝bhavnagar🔝 Esc...
 
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Sa...
 
Just Call Vip call girls fazilka Escorts ☎️9352988975 Two shot with one girl ...
Just Call Vip call girls fazilka Escorts ☎️9352988975 Two shot with one girl ...Just Call Vip call girls fazilka Escorts ☎️9352988975 Two shot with one girl ...
Just Call Vip call girls fazilka Escorts ☎️9352988975 Two shot with one girl ...
 
Call Girls Bidadi Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Bidadi Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Bidadi Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Bidadi Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
 
➥🔝 7737669865 🔝▻ Pallavaram Call-girls in Women Seeking Men 🔝Pallavaram🔝 E...
➥🔝 7737669865 🔝▻ Pallavaram Call-girls in Women Seeking Men  🔝Pallavaram🔝   E...➥🔝 7737669865 🔝▻ Pallavaram Call-girls in Women Seeking Men  🔝Pallavaram🔝   E...
➥🔝 7737669865 🔝▻ Pallavaram Call-girls in Women Seeking Men 🔝Pallavaram🔝 E...
 
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men 🔝Tirupati🔝 Escor...
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men  🔝Tirupati🔝   Escor...➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men  🔝Tirupati🔝   Escor...
➥🔝 7737669865 🔝▻ Tirupati Call-girls in Women Seeking Men 🔝Tirupati🔝 Escor...
 
Dubai Call Girls Kiki O525547819 Call Girls Dubai Koko
Dubai Call Girls Kiki O525547819 Call Girls Dubai KokoDubai Call Girls Kiki O525547819 Call Girls Dubai Koko
Dubai Call Girls Kiki O525547819 Call Girls Dubai Koko
 
➥🔝 7737669865 🔝▻ Secunderabad Call-girls in Women Seeking Men 🔝Secunderabad🔝...
➥🔝 7737669865 🔝▻ Secunderabad Call-girls in Women Seeking Men  🔝Secunderabad🔝...➥🔝 7737669865 🔝▻ Secunderabad Call-girls in Women Seeking Men  🔝Secunderabad🔝...
➥🔝 7737669865 🔝▻ Secunderabad Call-girls in Women Seeking Men 🔝Secunderabad🔝...
 

Heater operation

  • 2. Kochi Refinery HEATER Heater is used to raise the temperature of a process fluid from lower temperature to higher temperature. Services in Refinery • Fractionation: Crude, Vacuum, Reboilers. • Thermal cracking: DCU , Visbreaker, Hydrocracker. • Catalytic cracking: Reformer, CCR. • Reaction: Hydrotreater 2
  • 4. Kochi Refinery HEATER Types Vertical tube cylindrical heater • Most common type refinery heaters. • Vertical radiant tubes and horizontal convection tubes. • Smallest plot area required. • Tubes expand vertically. • Less number of tube supports. One at top and one guide at the bottom for each tube. • Not preferably used for highly vaporizing services. • Heat duty up to 40 MM K cal/hr. 4
  • 5. Kochi Refinery HEATER Types Horizontal box type [ single shell/ twin shell ] • Heat duty from 20-125 MM Kcal/hr. • Horizontal radiant/convection tubes. • Requires large plot area. • Choice of having heater outlet at the radiant section bottom or top. • Large number of tube supports required. • 20-25% costlier than vertical heater. • Used in crude vacuum coker heaters. 5
  • 6. Kochi Refinery HEATER Types Arbor or wicket type heater [for very low pressure drop [ .2-.3 kg/cm2] • Tubes are like inverted U shape. • All vapour flow. Non coking services. • Low pressure heaters. • Heat duties of 17.5-100 MM Kcal/hr. eg. CCR , • Bottom manifold. • Free draining. • Can be combination firing because of bottom firing. 6
  • 7. Kochi Refinery HEATER Types Inverted wicket type • Horizontal firing. • Single or double firing. • In situ hydro testing not possible. • Eg. CCR 7
  • 8. Kochi Refinery HEATER Types Helical coil heater small heat duties up to 15 mm kcal/hr. Not used in refineries. 8
  • 9. Kochi Refinery HEATER Types Classification based on firing. • Side fired -One side / both side. • Bottom fired • Top fired. • Side fired Bottom fired Top fired 9
  • 10. Kochi Refinery HEATER Types Classification based on fuel • Gas firing • Oil firing • Combination firing Gas firing Oil firing Oil + Gas firing 10
  • 11. Kochi Refinery HEATER Types Classification based on Draft • Natural Draft- • Forced Draft - using F.D fan • Induced Draft – using I.D fan and drop out doors. • Balanced Draft – using F.D and I.D fans. 11
  • 12. Kochi Refinery HEATER Draft Draft is the difference in pressure which causes the flow of air into the furnace and flue gases through the heater. The pressure differential is caused by the difference in densities of the flue gas in the heater and stack and the air surrounding the furnace. • Positive draft means flue gas pressure is below ambient pressure. • Negative draft means fluid pressure is above ambient pressure at the same elevation. • Draft is controlled by stack damper or by ID fan. • Ideal draft in a natural draft furnace is -1 mm wc. 12
  • 13. Kochi Refinery HEATER Impact of higher draft • Taller flame • Flame lift –off • High air flow through burners[ in natural draft burners only] • Air leakages thru joints of heater body/ explosion door/peepholes. • Excess air more. Impact of lower draft • Damaging heater structure. • Flame or hot air leakage to atmosphere • Low air flow through burners , low excess air [ in natural draft] • Pressurization of heater. 13
  • 14. Kochi Refinery HEATER Complete Combustion • Complete combustion occurs when 100% of the energy in the fuel is extracted There must be enough air in the combustion chamber for complete combustion to occur. • The combustion process is extremely dependent on time, temperature, and turbulence. Excess Air • In order to ensure complete combustion, combustion chambers are Fired with excess air. • Excess air increases the amount of oxygen and nitrogen entering the flame increasing the probability that oxygen will find and react with the fuel. [ Nox formation ] • Addition of excess air greatly lowers the formation of CO. 14
  • 15. Kochi Refinery HEATER Excess Air = 100 x (20.9%) / (20.9% -O2m%) - 100% Where O2 m% = The measured value of oxygen in the exhaust. Examples: When O2m% = 5% Then: excess air = 100 x (20.9%) / (20.9%-5%) - 100% = 100 x (20.9%) / (15.9%) - 100% = 100 x (1.31) - 100% excess air = 31% 15
  • 16. Kochi Refinery HEATER sections • Convection section. • Radiant section • Header box: internally insulated structural compartment separated from the flue gas stream which is used to enclose a number of headers or manifolds. • Stack 16
  • 17. Kochi Refinery HEATER sections Convection section • Bare tubes at the bottom of the convection section shields the studded tubes from direct radiation. • Normally 3 rows. Absorbs remaining 40-20% of total duty. • Core bells to prevent flue gas by passing around tubes. • May have additional waste heat recovery coils or super heating coils for efficiency improvement. • Soot blowing area. 17
  • 18. Kochi Refinery HEATER sections Radiant section • Absorbs 60-80% of total duty. • Radiation contribution -90% • Tubes are in Vertical or Horizontal. 18
  • 19. Kochi Refinery HEATER Parts/ terminology • Bridge wall : Wall separating two adjacent heater zones. • Arch: Flat or sloped portion of the radiant section opposite the floor. • Damper: A device for regulating the flow of air or flue gas. • Pilot : Small burner that provides the ignition source for the mail burner • Atomizer : Device used to reduce a liquid fuel to fine mist using steam. • Breeching: Heater section that where the flue gases are collected after the last convection coil for transmission to the stack or the outlet duct. • Jump over: Inter connecting pipe work within a heater coil section. 19
  • 20. Kochi Refinery HEATER Parts / terminology • Louver damper: Damper consists of several blades [ Combustion air Control] • Corbel : Projection from refractory surface generally used to prevent flue gas bypassing the tubes in the convection section. if they are triangular pitch. • Duct: conduit for air or flue gas • Anchor / Tieback/ Jagger : a metallic or refractory material that holds refractory or insulation. • Ceramic wool / Refractory bricks : Insulators • SOB : Shut off Blind./guillotine blind : single blade isolation of air ducts in a heater , like blind. 20
  • 21. Kochi Refinery HEATER Parts / terminology • Pass: flow streams: Flow circuits consisting of one or more tubes in parallel. • Plenum wind box: Chamber surrounding the burner that is used to distribute air to the burners or reduce combustion noise. • Primary air: Portion of the total air that first mixes with fuel. • Setting loss: Radiation loss: heat lost to the surroundings from the casing of the heater and the ducts and auxiliary equipment's. • Secondary air: Air supplied to the fuel to supplement primary air. • Shield section/ shock section: Tubes that shield the remaining convection section tubes from direct radiation. • Target wall/ reradiating wall: Vertical refractory brick which is exposed to direct flame impingement on one or both sides.- mainly in DCU heaters. 21
  • 22. Kochi Refinery HEATER Parts terminology • Tube guide: Device used with vertical tubes to restrict horizontal movement while allowing the tube to expand horizontally while firing. • Tube supports: Device used to support tubes. • Tube retainer: Device used to retain horizontal radiant tubes from lifting off the intermediate tube supports during operation • Vapour barrier: Metallic foil placed between layers of refractory as a barrier to flue gas flow. • Soot blower: device used to remove soot or deposits. • Strake/spoiler: metal attachment to a stack that prevent the formation of vortices that can cause wind induced vibration. 22
  • 23. Kochi Refinery HEATER TUBES • Bare Tubes. • Tubes with extended surface. • Fins • Studs • Segmented fins Bare tubes Studded tubes Fins Segmented fins 23
  • 24. Kochi Refinery HEATER Tubes with extended surface Solid fins. • Most commonly used in gas firing heaters. • Soot deposit chance is more. • Easy to fabricate. • Less pressure drop. Segmented fins • More prone to damage. • Higher heat transfer rate than solid fins. • Higher pressure drop. • Rarely used in refinery. 24
  • 25. Kochi Refinery HEATER Tubes with extended surface Studded tubes • Used for oil firing /combination firing case. • Easier to clean. • Strong. • Costlier than fins. 25
  • 26. Kochi Refinery HEATER TUBES • Horizontal tubes –maximum 25m due to construction /handling problems. • Vertical tubes- maxi. 18m due to limit large variation in the longitudinal heat flux distribution. • Convection area -Normally all tubes are horizontally. 26
  • 27. Kochi Refinery HEATER Tube Metallurgies • Carbon steel:- Reboiler, steam generator, super heater, hot oil etc. • 5 Cr/ 9cr :- Crude, Vacuum ,Visbreaker, DCU. • SS316L/317L:- Crude with high TAN. Vacuum with high TAN. • SS347H:- Hydrotreter ,Hydrocracker, and Hydrogen. 27
  • 28. Kochi Refinery HEATER Soot blower Soot blowers. • Soot blower remove the soot from the studded tubes in convection section. • Dry MP steam is used. • After soot blowing flue gas temperature leaving convection section increases. • Soot blower frequency is depended on the fuel used. • In case of Fuel oil case daily is recommendable. 28
  • 29. Kochi Refinery HEATER Burner Burners Classification based on fuel • Fuel gas burner. • Fuel oil burner. • Combination burner. Classification based on draft • Natural draft. • Forced draft 29
  • 30. Kochi Refinery HEATER Burners Classification based on fuel air mixing • Premix gas burner • Raw gas/oil burner. • Staged fuel burner • Staged air burner. Low Nox Burners. • Flue gas recirculation burner. Classification based on NOx emission. • Low NOx burner [ less than 50 ppm] • Ultra NOx burner. 20-50 ppm • Next generation or new technology burner -less than 10 ppm. 30
  • 31. HEATER Burners Raw gas/ oil burner • Can fire fuel oil fuel gas or combination. • Typical turn down ratio 3:1 [oil] and 5:1 [ gas ] 31mcj
  • 32. HEATER BURNERS Staged Fuel Burners • Low Nox burner [ 40 ppm vd] • Typically 30% primary fuel and • 70% secondary fuel • High excess air in primary tip reduces flame temperature. • Low O2 in secondary tip results in longer combustion time 32mcj
  • 33. HEATER BURNERS Staged Air Burner • Low Nox burner - [50-70 ppm vd] • More effective with combination firing. • Air is split into 2-3 zones to slow the combustion • Primary air to initiate combustion. • Secondary air to complete the combustion and maintain flame shape. • Tertiary air to control the flame outer temperature. 33mcj
  • 34. HEATER BURNERS Flue Gas Recirculation Burner • Ultra Nox burner [ 25- 30 ppm] • A part of flue gas is circulated back into the flame to dilute air/fuel mixture. • Delayed combustion as well as cooler flame. • Very large spacing required between burners And burners are bigger in size. • Very tall flames. 34mcj
  • 35. HEATER BURNERS New technology next generation Ultra Nox burner • Nox less than 10 ppm • Employ combination of staged air, staged fuel, flue gas recirculation methods. 35mcj
  • 36. HEATER Our fuel specifications Fuel oil LHV 9500-10000 Viscosity @ 185oc 19-23 cst Sulphur .4-.7 % N2 2000ppm Na 90-170ppm Va 2.5 ppm CCR 14-19 % C/H ratio 8.1 -8.3 Nickel 36-52ppm Fuel Gas LHV 9000 H2S 300ppm H2 15-20 % C1 25.3% C2 19.6% C4 4% C5 .2% C6 Nil mcj 36
  • 37. HEATER Efficiency Fuel efficiency • Total heat absorbed divided by the total input of heat derived from the combustion of fuel only. [Lower heating value basis.] Thermal efficiency • Total heat absorbed divided by the total input of heat derived from the combustion of fuel plus sensible heats from air fuel and any atomizing medium. • The heat absorbed is equal to the total heat input minus the total heat losses from the system. Total heat input – Stack losses – Radiation heat losses Efficiency = X 100 Total heat input 37mcj
  • 38. HEATER Checking 1. Tube external corrosion ,tube crack , colour change, bend. 2. Arch area refractory damage. 3. Bottom refractory damage, refractory bulging, bottom body bulging. 4. Flame impingements on tubes. 5. Coking on oil/ gas burners. 6. Atomization of fuel oil. 7. Fuel oil temperature/ viscosity. 8. Tube over heating by flame impingement/ coking/ low coil flow. 9. Tube support / retainer damages. 38mcj
  • 39. HEATER Checking 11 . Heater body red hot / paint damage due to over heat 12 . Refractory damage. 13 . Flame flash back. 14 . Flame lift off [ high draft, high fuel gas pressure, atomizing steam / fuel oil Dp more] 15 . After burning or secondary combustion.[ re- ignition CO in convection section ] 16 . Pilot burner tip damages 17 . Flue gas / combustion air leakages through burner plenum chamber. 18 . Pilot lite off. 19 . Skin temp raise 20 . Arch temp raise 39mcj
  • 40. HEATER Checking 21 . Stack temp high/low. 22 . Fuel oil/ gas leaks. 23 . Incomplete combustion [ black smoke ] 24 . More excess air [ over bright flame, and white smoke on stack] 25 . Intermittent flame/ flame height more. 26 . Condensate in atomizing steam[ sparkling flame]. 27 . Condensate in fuel gas. 28 . High fuel oil/ gas firing pressure 29 . Hot spots on tubes. 30 . Flue gas leaks through air ducts. 40mcj
  • 41. HEATER Checking 31 . Check fuel oil pressure temp and flow , and steam tracing. 32 . Ensure atomizing steam pressure, and condensate free. 33 . Skin temperature- normal value 450- 4800C 34 . Stack damper condition 35 . Air leaks[ open doors ,bolts joints] 36 . Burner flame shape height , smoke. 37 . Abnormal flue gas temperature in convection section. 38 . O2 level in stack- 2-3% normal 39 . Draft/ arch pressure. 40 .Combustion air damper, opening. hot spot ,flame back up. 41mcj
  • 42. HEATER Checking 41 . Individual burner valve opening [ should not be pinched] 42 . Individual burner air damper opening [ should be same for all burners] 43 . Fuel oil viscosity, return header flow, steam tracing. 44 . Dp of atomizing steam / fuel oil. 45 . Burner tile conditions 46 . Abnormal noise, whistling sound. 47 . Flue gas temperature at APH inlet and outlet. 48 . ID suction temperature. 49 .Fluid coupling loading/ VFD . rpm indication. 50 . Bearing cooling water temperature/ flow. 42mcj
  • 43. HEATER Checking 51 . Any abnormal sound/ vibration on coil jump over. 52 . Coil jump over supports ,coil outlet supports outside heater. 53 . Convection inlet flange leak, pressure reading. 54 . Igniter working condition. 55 . ID , FD motor amperages. 56 . Leakages through ID, FD , and ducts. 57 .ID, FD inlet outlet damper opening. 58 Clogging of FD inlet filter. 59 . ID suction pressure. 60 . ID, FD bearing temperature, vibration, sound. 43mcj
  • 44. HEATER Checking 61 . Soot blower steam valve conditions 62 . Soot blowing steam condensate traps. 63 . Soot blower poppet valve opening / closing/ passing. 64 . Soot blower shaft condition after soot blowing[ retract or not] 65 . Damage of castable refractory after soot blowing. 66 . Pilot conditions, pilot air register condition, any flame flash back through pilot. 67 . Convection outlet temperature reading 68 . Radiation outlet individual pass out let temperature. 69 . COT. 70 . Box purging steam any passing. 44mcj
  • 45. HEATER Checking 71 . Peep hole damages, glass damages, rope damages etc. 72 . Atomizing steam, fuel oil, gas valves passing/ gland leaks/wheel damages. 73. Lp gas burner status. Lp gas flame arrestor dp. Lp gas pressure. 74 . Hot well gas burner conditions. Flame arrestor dp, line plugging, condensate carryover etc. 75 . Hot well gas knock out drum level. 76 . Fuel gas knock out drum level. 77 . Fuel gas c/v SDV status, opening, gland leaks, SDV solenoid valve. 78 . Fuel oil c/v SDV supply and return status. 79 . Fuel header PCV opening [ supply/ return tie up]. 80 . Fuel oil heater steam/ condensate flow, temperature. 45mcj
  • 46. HEATER Checking 81 . Fuel oil supply return header pressures at battery limit. 82 . Oil leakages through oil guns. 83 . Any abnormal fuel gas/ flue gas smell near heater. 84 . Leakages through SOBs. 85 . Any instrument air leaks, near c/v s stack dampers. 86 . Stack damper openings. 87 . Acid corroded spots on the body. 88 . Explosion door opening. 89 . Analyzers readings. 90 . Insulation damages. 46mcj
  • 47. HEATER Checking 91 . Heat resistant paint damage on heater body. 92 . Heater body red hot bulging. 93 . Velocity steam dryness. 94 . Any abnormal vibration of coils due to velocity steam. 95 . Radiation out let/ swing elbow flange leaks. 96 . Oil soaking in insulation while start up after shut down. 97 . Heater transfer line flange [ at column nozzle ] leak. 98 . Pass control valve openings, gland leak, coil pressure. 99 . Emergency steam to be closed while heater starting. 100 . Ensure plant air line blinds. 101 . Ensure coil minimum flow. 47mcj
  • 48. HEATER Decoking Thermal decoking : Using air and steam inside tubes , controlled firing in heater. [ It take more time, chance to tube metallurgy damage] Mechanical decoking : Using water with pigs inside the tubes. On line Spalling : Steam inside tube and firing in heater. One individual pass can be done on line. Coke removed by thermal shock. [ only in DCU heater] 48mcj
  • 49. HEATER dry out • To be done after heater long shut down work or refractory work . • Controlled fire inside the furnace and steam inside the tubes . 49mcj
  • 50. HEATER problems - reasons Internal tube corrosion sulphur and naphthenic acid corrosion External tube corrosion metal oxidation, and by H2S04 Erosion High velocity with solids, impingement on fitting Polythionic acid corrosion [ for steel tubes] on tube outside. In hydro cracking /hydrode-sulphurisation heaters only. Creep rupture damage Due to high tube temp [ skin] Hot spot / tube bulging Due to coking inside tube , flame impingement , and by low coil flow /velocity. Coking on fuel oil gun / oil dripping High viscosity , poor atomization , improper gun guide tube fitting. 50mcj
  • 51. HEATER problems - reasons Flame lift off high draft Back fire High arch pressure, burner coking , burner tip damage , block inside burner chamber Flame impingement on tubes Burner tip coking , tip damage ,poor atomizing . Sparkling flame Condensate in atomizing steam Over bright flame [ combination firing ] More excess air Smoky flame High fuel firing pressure , low combustion air , poor atomizing , and burner coking High arch pressure Over firing , stack damper/ ID problem , burner coke purging 51mcj
  • 52. HEATER problems - reasons High arch temperature Over firing , flame lift off , high gas firing pressure , secondary combustion . Pulsating fire [ alternately ignite and goes out] Lack of air and low draft Excess smoke on stack Incomplete combustion , burner coking , poor atomizing , burner tip damage , less combustion air , and heater tube failure Burner tile damage Due to sodium Vandate corrosion , Tube coloure change Ash burning , coking inside tube , flame impingement Tube support damage Flame impingement , hammering of tubes high temp oxidation , 52mcj
  • 53. HEATER problems - reasons Tube sheet damage in convection section After burning , If Na, Va in fuel oil is more corrosion chance is more. Refractory damages High arch temp, improper dry out , thermal shock due to fast temperature raise, soot blowing steam condensate , poor casting . Hot spot / acid corroded holes on heater body Refractory damages , flue gas entry inside the refractory bed gaps . mcj 53
  • 54. HEATER mcj 54 EMERGENCIES ACTIONS Pass flow control valve / flow failure Closely monitor individual pass outlet temp , put c/v in MAN mode or open b/p b/v. Fuel oil trip Rectify the problem and start oil firing Fuel gas trip Rectify the problem and restart firing Heater total trip Restart after rectifying problem , ensure proper coil flow , and furnace draft , and ensure pilot flame . Heater tube failure shut down the heater from remote emergency switch , cut the coil flow, open emergency coil steam,
  • 55. DO NOT mcj 55 • Do not run heater with by passed interlocks • Do not pinch individual burners • Do not keep different openings in individual air louvers • In case of tube failure do not admit air into heater , use steam only • Do not run heater with fully closed stack damper Use proper PPE s [ gloves , thermal protecting face shields ]
  • 56. HEATER Crude heater start up after shut down • Purge Fuel gas line with N2. • Reset FG / pilot SOVs and charge fuel gas. • Flush fuel oil lines to CBD , Reset supply /return SDV s. • Establish fuel oil circulation in supply and return headers. • Purge individual oil lines up to oil gun [ to a drum ] and insert oil guns. • Line up all instruments. • Start cold oil circulation inside heater coils. • Wide open stack damper and box purge heater with steam [ 20 minutes].ensure draft. 56mcj
  • 57. HEATER Crude heater start up after shut down • Start FD fan , open combustion air louvers, and purge heater with air. • Lite the pilot burners. • Lite FG burners. [ never lite from the adjacent burner] • Purge the FO burner with steam. • After gun purging open FO atomizing steam, then slowly open fuel oil and adjust the flame. • After stabilizing start ID fan , and kept stack damper opening minimum . • Control arch pressure using ID fan speed, and stack damper opening. 57mcj
  • 58. Thank You mc jomon 58