SlideShare uma empresa Scribd logo
1 de 16
Baixar para ler offline
FACULTAD DE CIENCIAS BÁSICAS
MAESTRÍA EN ENSEÑANZA DE LA FÍSICA
ELECTROMAGNETISM
Professor: Jimmy A. Cortes, José A. Chaves
VECTOR ANALYSIS AN INTRODUCTION
Verification of the properties of the scalar and vector product in R3
using general vector
expressions
Produced by:
Jhon F. González, Gelver Osorio, Julián F. Villada
April 8, 2021
Part I
Scalar product
1 Properties of dot product (Proof)
Carry out the verification of the properties of the scalar and vector product in R3
using general vector expres-
sions such as:
~
u = (ux,uy,uz); ~
v = (vx,vy,vz); ~
w = (wx,wy,wz).
1. The dot product is distributive over vector addition:
~
u·(~
v+ ~
w) = ~
u·~
v+~
u· ~
w
Proof:
Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz) and ~
w =
(wx,wy,wz), then we have:
~
u·(~
v+ ~
w) = (ux,uy,uz)· (vx,vy,vz)+(wx,wy,wz)

~
u·(~
v+ ~
w) = (ux,uy,uz)·(vx,vy,vz)

+ (ux,uy,uz)·(wx,wy,wz)

~
u·(~
v+ ~
w) = ux ·vx +uy ·vy +uz ·vz +ux ·wx +uy ·wy +uz ·wz
~
u·(~
v+ ~
w) = ux ·vx +uy ·vy +uz ·vz

+ ux ·wx +uy ·wy +uz ·wz

.
~
u·~
v+~
u· ~
w = ux ·vx +uy ·vy +uz ·vz

+ ux ·wx +uy ·wy +uz ·wz

.
~
u·(~
v+ ~
w) = ~
u·~
v+~
u· ~
w  (1)
2. The dot product is commutative:
~
v· ~
w = ~
w·~
v
Proof:
Assuming that the vectors are represented by ~
v = (vx,vy,vz) and ~
w = (wx,wy,wz), then we have:
~
v· ~
w = (vx,vy,vz)·(wx,wy,wz)
= vx ·wx +vy ·wy +vz ·wz
= wx ·vx +wy ·vy +wz ·vz .
~
w·~
v = (wx,wy,wz)·(vx,vy,vz)
= wx ·vx +wy ·vy +wz ·vz .
~
v· ~
w = ~
w·~
v  (2)
3. The formula for the Euclidean length of the vector is:
~
v·~
v = k~
vk2
1
Proof:
Assuming that the vector ~
v is represented by ~
v = (vx,vy,vz) , then we have:
~
v·~
v = (vx,vy,vz)·(vx,vy,vz) = vx ·vx +vy ·vy +vz ·vz = (vx)2
+(vy)2
+(vz)2
.
k~
vk2
= k~
vk k~
vk =
q
(vx)2 +(vy)2 +(vz)2
 q
(vx)2 +(vy)2 +(vz)2

= (vx)2
+(vy)2
+(vz)2
~
v·~
v = k~
vk2
 (3)
4. Distributive property for scalar multiplication:
(c~
v)· ~
w =~
v·(c~
w) = c(~
v· ~
w)
Proof:
Assuming that the vectors~
v and ~
w are represented by~
v = (vx,vy,vz), ~
w = (wx,wy,wz) and c ∈ R, then
we have:
(c~
v)· ~
w = (c(vx,vy,vz))·(wx,wy,wz) = (cvx,cvy,cvz)·(wx,wy,wz)
= cvxwx +cvywy +cvzwz = (cvxwx +cvywy +cvzwz)
= cvxwx +cvywy +cvzwz .
~
v·(c~
w) = (vx,vy,vz)·(c(wx,wy,wz)) = (vx,vy,vz)·(cwx,cwy,cwz)
= vxcwx +vycwy +vzcwz = (vxcwx +vycwy +vzcwz)
= cvxwx +cvywy +cvzwz .
c(~
v· ~
w) = c((vx,vy,vz)·(wx,wy,wz)) = c(vxwx +vywy +vzwz)
= cvxwx +cvywy +cvzwz = (cvxwx +cvywy +cvzwz)
= cvxwx +cvywy +cvzwz .
(c~
v)· ~
w =~
v·(c~
w) = c(~
v· ~
w)  (4)
5. Dot product between a vector different of zero and the zero vector:
~
v·~
0 = 0
Proof:
Assuming that the vectors~
v different of zero and~
0 are represented by~
v = (vx,vy,vz) and~
0 = (0x,0y,0z),
then we have:
~
v·~
0 = (vx,vy,vz)·(0x,0y,0z) = vx ·0x +vy ·0y +vz ·0z
= 0+0+0 = 0
~
v·~
0 = 0  (5)
2
6. If ~
v·~
v = 0 , then ~
v =~
0
Proof:
Assuming that the vector ~
v is represented by ~
v = (vx,vy,vz) and that the vector ~
0 = (0x,0y,0z), then we
have:
~
v·~
v = (vx,vy,vz)·(vx,vy,vz) = vx ·vx +vy ·vy +vz ·vz = (vx)2
+(vy)2
+(vz)2
= 0
=
q
(vx)2 +(vy)2 +(vz)2
2
= 0 .
k~
vk2
=
q
(vx)2 +(vy)2 +(vz)2
2
=
q
(0)2 +(0)2 +(0)2
2
= 0
~
v = (0x,0y,0z)  (6)
Part II
Cross product
2 Cross product properties
1. If θ is the angle between the vectors ~
u and ~
v then, the length of the cross product of two vector is:
k~
u×~
vk = kukkvksinθ
Proof:Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz), ~
w =
(wx,wy,wz), then we have:
(a) The cross product between the vectors ~
u and ~
v is calculated:
~
u×~
v =
î ĵ k̂
ux uy uz
vx vy vz
~
u×~
v =

(uy)(vz)−(vy)(uz)

î−

(ux)(vz)−(vx)(uz)

ĵ+

(ux)(vy)−(vx)(uy)

k̂
(b) The length of the cross product between the vectors ~
u and ~
v is calculated:
k~
u×~
vk =
q
(uy)(vz)−(vy)(uz)
2
+ (ux)(vz)−(vx)(uz)
2
+ (ux)(vy)−(vx)(uy)
2
(c) The square of the length of the cross product between the vectors ~
u and ~
v is calculated:
k~
u×~
vk2
=

(uy)(vz)−(vy)(uz)
2
| {z }
part 1
+

(ux)(vz)−(vx)(uz)
2
| {z }
part 2
+

(ux)(vy)−(vx)(uy)
2
| {z }
part 3
3
(d) The squared binomials that appear within the radical are calculated separately:

(uy)(vz)−(vy)(uz)
2
| {z }
part 1
=

(uy)(vz)
2
−2

(uy)(vz)(vy)(uz)

+

(vy)(uz)
2
= (uy)2
(vz)2
−2

(uy)(uz)(vy)(vz)

+(vy)2
(uz)2
= (uy)2
(vz)2
−2(uy)(uz)(vy)(vz)+(vy)2
(uz)2
= (uy)2
(vz)2
+(vy)2
(uz)2
−2(uy)(uz)(vy)(vz)

(ux)(vz)−(vx)(uz)
2
| {z }
part 2
=

(ux)(vz)
2
−2

(ux)(vz)(vx)(uz)

+

(vx)(uz)
2
= (ux)2
(vz)2
−2

(ux)(vz)(vx)(uz)

+(vx)2
(uz)2
= (ux)2
(vz)2
−2(ux)(vz)(vx)(uz)+(vx)2
(uz)2
= (ux)2
(vz)2
+(vx)2
(uz)2
−2(ux)(uz)(vx)(vz)

(ux)(vy)−(vx)(uy)
2
| {z }
part 3
=

(ux)(vy)
2
−2

(ux)(vy)(vx)(uy)

+

(vx)(uy)
2
= (ux)2
(vy)2
−2

(ux)(vy)(vx)(uy)

+(vx)2
(uy)2
= (ux)2
(vy)2
−2(ux)(uy)(vx)(vy)+(vx)2
(uy)2
= (ux)2
(vy)2
+(vx)2
(uy)2
−2(ux)(uy)(vx)(vy)
(e) The square of the length of the cross product between the vectors ~
u and ~
v is calculated by replacing
the calculations of the item (d) and simplifying:
k~
u×~
vk2
=

(uy)2
(vz)2
+(vy)2
(uz)2
−2(uy)(uz)(vy)(vz)

+
+

(ux)2
(vz)2
+(vx)2
(uz)2
−2(ux)(uz)(vx)(vz)

+
+

(ux)2
(vy)2
+(vx)2
(uy)2
−2(ux)(uy)(vx)(vy)

k~
u×~
vk2
= (uy)2
(vz)2
+(vy)2
(uz)2
+(ux)2
(vz)2
+(vx)2
(uz)2
+(ux)2
(vy)2
+(vx)2
(uy)2
−2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)
(f) Now it can be verified by comparing components that:
k~
u×~
vk2
= k~
uk2
k~
vk2
−(~
u·~
v)2
(7)
k~
u×~
vk2
= (uy)2
(vz)2
+(vy)2
(uz)2
+(ux)2
(vz)2
+(vx)2
(uz)2
+(ux)2
(vy)2
+(vx)2
(uy)2
−2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)
k~
uk2
= (ux)2
+(uy)2
+(uz)2
4
k~
vk2
= (vx)2
+(vy)2
+(vz)2
k~
uk2
k~
vk2
=

(ux)2
+(uy)2
+(uz)2

(vx)2
+(vy)2
+(vz)2

= (ux)2
(vx)2
+(ux)2
(vy)2
+(ux)2
(vz)2
+(uy)2
(vx)2
+(uy)2
(vy)2
+(uy)2
(vz)2
+(uz)2
(vx)2
+(uz)2
(vy)2
+(uz)2
(vz)2
k~
uk2
k~
vk2
= (ux)2
(vx)2
+(ux)2
(vy)2
+(ux)2
(vz)2
+(uy)2
(vx)2
+(uy)2
(vy)2
+(uy)2
(vz)2
+(uz)2
(vx)2
+(uz)2
(vy)2
+(uz)2
(vz)2
k~
uk2
k~
vk2
= (ux)2
(vx)2
+(ux)2
(vy)2
+(ux)2
(vz)2
+(uy)2
(vx)2
+(uy)2
(vy)2
+(uy)2
(vz)2
+
(uz)2
(vx)2
+(uz)2
(vy)2
+(uz)2
(vz)2
−(~
u·~
v)2
= −
h
(ux,uy,uz)·(vx,vy,vz)
i2
= −
h
(ux)(vx)+(uy)(vy)+(uz)(vz)
i2
= −
h
(ux)(vx)+(uy)(vy)+(uz)(vz)

(ux)(vx)+(uy)(vy)+(uz)(vz)
i
= −
h
(ux)(vx)(ux)(vx)+(ux)(vx)(uy)(vy)+(ux)(vx)(uz)(vz)

+
+

(uy)(vy)(ux)(vx)+(uy)(vy)(uy)(vy)+(uy)(vy)(uz)(vz)

+
+

(uz)(vz)(ux)(vx)+(uz)(vz)(uy)(vy)+(uz)(vz)(uz)(vz)
i
= −(ux)2
(vx)2
−(uy)2
(vy)2
−(uz)2
(vz)2
−2

(ux)(uy)(vx)(vy)

−2

(ux)(uz)(vx)(vz)

−2

(uy)(uz)(vy)(vz)

(g) Expressing equality k~
u×~
vk2
= k~
uk2
k~
vk2
−(~
u·~
v)2
and simplifying, we have:
(uy)2
(vz)2
+(vy)2
(uz)2
+(ux)2
(vz)2
+(vx)2
(uz)2
+(ux)2
(vy)2
+(vx)2
(uy)2
−
2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) =
(ux)2
(vx)2
+(ux)2
(vy)2
+(ux)2
(vz)2
+(uy)2
(vx)2
+(uy)2
(vy)2
+(uy)2
(vz)2
+(uz)2
(vx)2
+
(uz)2
(vy)2
+(uz)2
(vz)2
−(ux)2
(vx)2
−(uy)2
(vy)2
−(uz)2
(vz)2
−2(ux)(uy)(vx)(vy)−
2(ux)(uz)(vx)(vz)−2(uy)(uz)(vy)(vz)
(uy)2
(vz)2
+(uz)2
(vy)2
+(ux)2
(vz)2
+(uz)2
(vx)2
+(ux)2
(vy)2
+(uy)2
(vx)2
−
2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) =
(uy)2
(vz)2
+(uz)2
(vy)2
+(ux)2
(vz)2
+(uz)2
(vx)2
+(ux)2
(vy)2
+(uy)2
(vx)2
−
2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)+(ux)2
(vx)2
−(ux)2
(vx)2
+
(uy)2
(vy)2
−(uy)2
(vy)2
+(uz)2
(vz)2
−(uz)2
(vz)2
5
(uy)2
(vz)2
−(uy)2
(vz)2
+(uz)2
(vy)2
−(uz)2
(vy)2
+(ux)2
(vz)2
−(ux)2
(vz)2
+(uz)2
(vx)2
−
(uz)2
(vx)2
+(ux)2
(vy)2
−(ux)2
(vy)2
+(uy)2
(vx)2
−(uy)2
(vx)2
−2(uy)(uz)(vy)(vz)+
2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)+2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)+
2(ux)(uy)(vx)(vy)−(ux)2
(vx)2
+(ux)2
(vx)2
−(uy)2
(vy)2
+(uy)2
(vy)2
−(uz)2
(vz)2
+
(uz)2
(vz)2
0 = 0
k~
u×~
vk2
= k~
uk2
k~
vk2
−(~
u·~
v)2

(h) So, as (~
u·~
v)2
= k~
uk2
k~
vk2
cos2
θ from the definition of dot product, we have:
k~
u×~
vk2
= k~
uk2
k~
vk2
−k~
uk2
k~
vk2
cos2
θ = k~
uk2
k~
vk2

1−cos2
θ

k~
u×~
vk2
= k~
uk2
k~
vk2
sin2
θ
q
k~
u×~
vk2
=
q
k~
uk2
k~
vk2
sin2
θ .
k~
u×~
vk = k~
uk k~
vk sinθ  (8)
2. The length of the cross product of two vectors is equal to the area of the parallelogram determined by the
two vectors (see figure below).
Proof:
Assuming that the vectors ~
u and ~
v are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz), and the angle θ
between the vectors ~
u and ~
v, then we have for example:
6
(a) After verifying that the length of the cross product of two vectors is equal to area of parallelogram
determined by two vectors. The formula will be applied given the following vectors:
~
u = (3,1,−2), ~
v = (1,3,−4)
(b) The dot product between the vectors ~
u and ~
v is calculated:
~
u·~
v = (3,1,−2)·(1,3,−4) = 3·1+1·3+(−2)·(−4) = 3+3+8 = 14
~
u·~
v = 14
(c) The length of the vectors ~
u and ~
v is calculated:
k~
uk =
√
14, k~
vk =
√
26
(d) So, as (~
u·~
v) = k~
uk k~
vkcosθ and θ the angle between the vectors ~
u and ~
v from the definition of
dot product, we have:
cosθ =
~
u·~
v
k~
uk k~
vk
, θ = arccos
~
u·~
v
k~
uk k~
vk
= arccos
14
√
14
√
26
= arccos
14
√
364
θ = 42.79◦
(e) The cross product between the vectors ~
u = (3,1,−2) and ~
v = (1,3,−4) is calculated:
~
u×~
v =
î ĵ k̂
3 1 −2
1 3 −4
= (1)(−4)−(3)(−2)

î− (3)(−4)−(1)(−2)

ĵ+ (3)(3)−(1)(1)

k̂
~
u×~
v = 2î+10ĵ+8k̂
(f) The length of cross product between the vectors ~
u = (3,1,−2) and ~
v = (1,3,−4) is calculated:
k~
u×~
vk =
q
(2)2 +(10)2 +(8)2 =
√
4+100+64 =
√
168
k~
u×~
vk =
√
168 = 12.96
(g) (Previously verified property in literal 1). If θ is the angle between the vectors ~
u and ~
v then, the
length of the cross product of two vector is:
k~
u×~
vk = kukkvksinθ
(h) Replacing the values in the literal (g), we have:
k~
u×~
vk =
√
168 = 12.96
k~
u×~
vk = 12.96
k~
uk k~
vk sinθ =
√
14
√
26 sin(42.79◦
) =
√
364 sin(42.79◦
) = 12.96
k~
uk k~
vk sinθ = 12.96
12.96 = 12.96
k~
u×~
vk = k~
uk k~
vk sinθ 
7
3. Anticommutative property:
~
u×~
v = −(~
v×~
u)
Proof:
Assuming that the vectors ~
u and~
v are represented by ~
u = (ux,uy,uz) and~
v = (vx,vy,vz), then we have:
(a) The cross product between the vectors ~
u and ~
v is calculated:
~
u×~
v =
î ĵ k̂
ux uy uz
vx vy vz
~
u×~
v = (uy)(vz)−(uz)(vy)

î− (ux)(vz)−(uz)(vx)

ĵ+ (ux)(vy)−(uy)(vx)

k̂
(b) The cross product between the vectors ~
v and ~
u is calculated:
~
v×~
u =
î ĵ k̂
vx vy vz
ux uy uz
~
v×~
u = (uz)(vy)−(uy)(vz)

î− (uz)(vx)−(ux)(vz)

ĵ+ (uy)(vx)−(ux)(vy)

k̂
(c) The cross product between the vectors ~
v and ~
u multiplying by (-1) is calculated:
− ~
v×~
u

= (uy)(vz)−(uz)(vy)

î− (ux)(vz)−(uz)(vx)

ĵ+ (ux)(vy)−(uy)(vx)

k̂
(d) Comparing the expressions in the literals (a) and (c) we have:
~
u×~
v = (uy)(vz)−(uz)(vy)

î− (ux)(vz)−(uz)(vx)

ĵ+ (ux)(vy)−(uy)(vx)

k̂
− ~
v×~
u

= (uy)(vz)−(uz)(vy)

î− (ux)(vz)−(uz)(vx)

ĵ+ (ux)(vy)−(uy)(vx)

k̂
~
u×~
v = −(~
v×~
u)  (9)
4. Distributive property for Multiplication by a constant:
(c~
u)×~
v = c(~
u×~
v) = ~
u×(c~
v)
Proof:
Assuming that the vectors ~
u and ~
v are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz) and c ∈ R, then
we have:
(a) The cross product between the vectors c~
u and ~
v is calculated:
(c~
u)×~
v =
î ĵ k̂
cux cuy cuz
vx vy vz
(c~
u)×~
v =

(cuy)(vz)−(cuz)(vy)

î−

(cux)(vz)−(cuz)(vx)

ĵ+

(cux)(vy)−(cuy)(vx)

k̂
8
(b) The multiplication by c of the cross product between the vectors ~
u and ~
v is calculated:
c(~
u×~
v) =
î ĵ k̂
ux uy uz
vx vy vz
c(~
u×~
v) = c
h
(uy)(vz)−(uz)(vy)

î−

(ux)(vz)−(uz)(vx)

ĵ+

(ux)(vy)−(uy)(vx)

k̂
i
c(~
u×~
v) =

(cuy)(vz)−(cuz)(vy)

î−

(cux)(vz)−(cuz)(vx)

ĵ+

(cux)(vy)−(cuy)(vx)

k̂
(c) The cross product between the vectors ~
u and c~
v is calculated:
~
u×(c~
v) =
î ĵ k̂
ux uy uz
cvx cvy cvz
~
u×(c~
v) =

(uy)(cvz)−(uz)(cvy)

î−

(ux)(cvz)−(uz)(cvx)

ĵ+

(ux)(cvy)−(uy)(cvx)

k̂
~
u×(c~
v) =

(cuy)(vz)−(cuz)(vy)

î−

(cux)(vz)−(cuz)(vx)

ĵ+

(cux)(vy)−(cuy)(vx)

k̂
(d) Comparing the results of the cross product in the literals a, b and c, it is verified that:
(c~
u)×~
v = c(~
u×~
v) = ~
u×(c~
v)  (10)
5. Distributive property:
~
u×(~
v+ ~
w) = ~
u×~
v+~
u× ~
w
Proof:Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz), ~
w =
(wx,wy,wz), then we have:
(a) The cross product between the vectors ~
u and ~
v+ ~
w is calculated:
~
u×(~
v+ ~
w) =
î ĵ k̂
ux uy uz
vx +wx vy +wy vz +wz
~
u×(~
v+ ~
w) =

(uy)(vz +wz)−(uz)(vy +wy)

î
−

(ux)(vz +wz)−(uz)(vx +wx)

ĵ
+

(ux)(vy +wy)−(uy)(vx +wx)

k̂
(b) The cross product between the vectors ~
u and ~
v is calculated:
~
u×~
v =
î ĵ k̂
ux uy uz
vx vy vz
~
u×~
v =

(uy)(vz)−(uz)(vy)

î−

(ux)(vz)−(uz)(vx)

ĵ+

(ux)(vy)−(uy)(vx)

k̂
9
(c) The cross product between the vectors ~
u and ~
w is calculated:
~
u× ~
w =
î ĵ k̂
ux uy uz
wx wy wz
~
u× ~
w =

(uy)(wz)−(uz)(wy)

î−

(ux)(wz)−(uz)(wx)

ĵ+

(ux)(wy)−(uy)(wx)

k̂
(d) The sum of the cross product between the vectors ~
u, ~
v and ~
u, ~
w is calculated:
~
u×~
v+~
u× ~
w =

(uy)(vz)−(uz)(vy)

+ (uy)(wz)−(uz)(wy)

î
−

(ux)(vz)−(uz)(vx)

+ (ux)(wz)−(uz)(wx)

ĵ
+

(ux)(vy)−(uy)(vx)

+ (ux)(wy)−(uy)(wx)

k̂
Simplifying we have:
~
u×~
v+~
u× ~
w = (uy)(vz +wz)−(uz)(vy +wy)

î
− (ux)(vz +wz)−(uz)(vx +wx)

ĵ
+ (ux)(vy +wy)−(uy)(vx +wx)

k̂
(e) Comparing the results in the literals (a) and (d) we have:
~
u×(~
v+ ~
w) = (uy)(vz +wz)−(uz)(vy +wy)

î
− (ux)(vz +wz)−(uz)(vx +wx)

ĵ
+ (ux)(vy +wy)−(uy)(vx +wx)

k̂
~
u×~
v+~
u× ~
w = (uy)(vz +wz)−(uz)(vy +wy)

î
− (ux)(vz +wz)−(uz)(vx +wx)

ĵ
+ (ux)(vy +wy)−(uy)(vx +wx)

k̂
(f) Equating the right side of the two previous equations component by component we have:
(uy)(vz +wz)−(uz)(vy +wy)

î = (uy)(vz +wz)−(uz)(vy +wy)

î
− (ux)(vz +wz)−(uz)(vx +wx)

ĵ = − (ux)(vz +wz)−(uz)(vx +wx)

ĵ
(ux)(vy +wy)−(uy)(vx +wx)

k̂ = (ux)(vy +wy)−(uy)(vx +wx)

k̂
(g) With the above it was possible to verify the distributive property of the cross product:
~
u×(~
v+ ~
w) = ~
u×~
v+~
u× ~
w  (11)
6. The scalar triple product of the vectors ~
u, ~
v, and ~
w:
~
u·(~
v× ~
w) = (~
u×~
v)· ~
w
Proof:Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz), ~
w =
(wx,wy,wz), then we have:
10
(a) The cross product between the vectors ~
v and ~
w is calculated:
~
v× ~
w =
î ĵ k̂
vx vy vz
wx wy wz
~
v× ~
w = (vy)(wz)−(vz)(wy)

î− (vx)(wz)−(vz)(wx)

ĵ+ (vx)(wy)−(vy)(wx)

k̂
(b) The cross product between the vectors ~
u and ~
v is calculated:
~
u×~
v =
î ĵ k̂
ux uy uz
vx vy vz
~
u×~
v = (uy)(vz)−(uz)(vy)

î− (ux)(vz)−(uz)(vx)

ĵ+ (ux)(vy)−(uy)(vx)

k̂
(c) The scalar triple product of the vectors ~
u·(~
v× ~
w) is calculated:
~
u·(~
v× ~
w) = (ux,uy,uz)·
·
h
(vy)(wz)−(vz)(wy)

î
− (vx)(wz)−(vz)(wx)

ĵ
+ (vx)(wy)−(vy)(wx)

k̂
i
.
~
u·(~
v× ~
w) = +ux · (vy)(wz)−(vz)(wy)

î
−uy · (vx)(wz)−(vz)(wx)

ĵ
+uz · (vx)(wy)−(vy)(wx)

k̂.
~
u·(~
v× ~
w) = + (ux)(vy)(wz)−(ux)(vz)(wy)

î
− (uy)(vx)(wz)−(uy)(vz)(wx)

ĵ
+ (uz)(vx)(wy)−(uz)(vy)(wx)

k̂
(12)
(d) The scalar triple product of the vectors (~
u×~
v)· ~
w is calculated:
(~
u×~
v)· ~
w =
h
(uy)(vz)−(uz)(vy)

î
− (ux)(vz)−(uz)(vx)

ĵ
+ (ux)(vy)−(uy)(vx)

k̂
i
·(wx,wy,wz).
(~
u×~
v)· ~
w = + (uy)(vz)−(uz)(vy)

·(wx)î
− (ux)(vz)−(uz)(vx)

·(wy)ĵ
+ (ux)(vy)−(uy)(vx)

·(wz)k̂.
(~
u×~
v)· ~
w = + (uy)(vz)(wx)−(uz)(vy)(wx)

î
− (ux)(vz)(wy)−(uz)(vx)(wy)

ĵ
+ (ux)(vy)(wz)−(uy)(vx)(wz)

k̂
(13)
11
(e) Comparing the results in the literals (c) and (d) we have:
~
u·(~
v× ~
w) = + (ux)(vy)(wz)−(ux)(vz)(wy)

î
− (uy)(vx)(wz)−(uy)(vz)(wx)

ĵ
+ (uz)(vx)(wy)−(uz)(vy)(wx)

k̂
(~
u×~
v)· ~
w = + (uy)(vz)(wx)−(uz)(vy)(wx)

î
− (ux)(vz)(wy)−(uz)(vx)(wy)

ĵ
+ (ux)(vy)(wz)−(uy)(vx)(wz)

k̂
(f) With the above it was possible to verify the scalar triple product of the vectors property of the cross
product:
~
u·(~
v× ~
w) = (~
u×~
v)· ~
w  (14)
7. The volume of the parallelepiped determined by the vectors ~
u, ~
v and ~
w is the magnitude of their scalar
triple product.
|~
w·(~
u×~
v)| = volume of the parallelepiped
Proof:Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz), ~
w =
(wx,wy,wz), then we have:
(a) The scalar triple product of the vectors ~
w·(~
u×~
v) is:
~
w·(~
u×~
v) =
wx wy wz
ux uy uz
vx vy vz
~
w·(~
u×~
v) = (uy)(vz)−(uz)(vy)

(wx)− (ux)(vz)−(uz)(vx)

(wy)+ (ux)(vy)−(uy)(vx)

(wz)
~
w·(~
u×~
v) = (uy)(vz)(wx)−(uz)(vy)(wx)−(ux)(vz)(wy)
+(uz)(vx)(wy)+(ux)(vy)(wz)−(uy)(vx)(wz)
~
w·(~
u×~
v) = (ux)(vy)(wz)+(uy)(vz)(wx)+(uz)(vx)(wy)
−(ux)(vz)(wy)−(uy)(vx)(wz)−(uz)(vy)(wx)
(b) The magnitude of their scalar triple product is determinate by:
~
w·(~
u×~
v) = (ux)(vy)(wz)+(uy)(vz)(wx)+(uz)(vx)(wy)
−(ux)(vz)(wy)−(uy)(vx)(wz)−(uz)(vy)(wx)
(c) After verifying that the volume of the parallelepiped determined by the vectors ~
u, ~
v and ~
w = ~
u×~
v
is the magnitude of their scalar triple. The formula will be applied given the following vectors:
~
u = (3,1,−2), ~
v = (1,3,−4), ~
w = (2,10,8)
12
(d) Replacing the values in the literal (b), we have:
~
w·(~
u×~
v) = (3)(3)(8)+(1)(−4)(2)+(−2)(1)(10)−(3)(−4)(10)−(1)(1)(8)−(−2)(3)(2)
72−8−20+120−8+12 = 168 = 168
8. The vector triple product of the vectors ~
u, ~
v, and ~
w is:
~
u×(~
v× ~
w) = (~
u· ~
w)~
v−(~
u·~
v)~
w
Proof: Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz),
~
w = (wx,wy,wz), then we have:
(a) The cross product between the vectors ~
v and ~
w is calculated:
~
v× ~
w =
î ĵ k̂
vx vy vz
wx wy wz
~
v× ~
w = (vy)(wz)−(vz)(wy)

î− (vx)(wz)−(vz)(wx)

ĵ+ (vx)(wy)−(vy)(wx)

k̂
(b) The vector triple product of the vectors ~
u, ~
v, and ~
w is calculated:
~
u×(~
v× ~
w) =
î ĵ k̂
ux uy uz
(vy)(wz)−(vz)(wy)

− (vx)(wz)−(vz)(wx)

(vx)(wy)−(vy)(wx)

~
u×(~
v× ~
w) = +
h
(uy)

(vx)(wy)−(vy)(wx)

+(uz)

(vx)(wz)−(vz)(wx)
i
î
−
h
(ux)

(vx)(wy)−(vy)(wx)

−(uz)

(vy)(wz)−(vz)(wy)
i
ĵ
+
h
−(ux)

(vx)(wz)−(vz)(wx)

−(uy)

(vy)(wz)−(vz)(wy)
i
k̂
13
~
u×(~
v× ~
w) = +
h
(uy)(vx)(wy)−(uy)(vy)(wx)+(uz)(vx)(wz)−(uz)(vz)(wx)
i
î
−
h
(ux)(vx)(wy)−(ux)(vy)(wx)−(uz)(vy)(wz)+(uz)(vz)(wy)
i
ĵ
+
h
−(ux)(vx)(wz)+(ux)(vz)(wx)−(uy)(vy)(wz)+(uy)(vz)(wy)
i
k̂
~
u×(~
v× ~
w) = +
h
(uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx)
i
î
+
h
(ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz)
i
k̂
(15)
(c) The right side of the equation in the literal (a) is calculated:
(~
u· ~
w)~
v−(~
u·~
v)~
w
~
u· ~
w = (ux,uy,uz)·(wx,wy,wz) = (ux)(wx)+(uy)(wy)+(uz)(wz)
~
u·~
v = (ux,uy,uz)·(vx,vy,vz) = (ux)(vx)+(uy)(vy)+(uz)(vz)
(~
u· ~
w)~
v = (ux)(wx)+(uy)(wy)+(uz)(wz)

(vx,vy,vz)
+
h
(ux)(vx)(wx)+(uy)(vx)(wy)+(uz)(vx)(wz)
i
î
+
h
(ux)(vy)(wx)+(uy)(vy)(wy)+(uz)(vy)(wz)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)+(uz)(vz)(wz)
i
k̂
(16)
(~
u·~
v)~
w = (ux)(vx)+(uy)(vy)+(uz)(vz)

(wx,wy,wz)
+
h
(ux)(vx)(wx)+(uy)(vy)(wx)+(uz)(vz)(wx)
i
î
+
h
(ux)(vx)(wy)+(uy)(vy)(wy)+(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vx)(wz)+(uy)(vy)(wz)+(uz)(vz)(wz)
i
k̂
(17)
(~
u· ~
w)~
v−(~
u·~
v)~
w =
+
h
(ux)(vx)(wx)+(uy)(vx)(wy)+(uz)(vx)(wz)−(ux)(vx)(wx)−(uy)(vy)(wx)−(uz)(vz)(wx)
i
î
+
h
(ux)(vy)(wx)+(uy)(vy)(wy)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uy)(vy)(wy)−(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)+(uz)(vz)(wz)−(ux)(vx)(wz)−(uy)(vy)(wz)−(uz)(vz)(wz)
i
k̂
(~
u· ~
w)~
v−(~
u·~
v)~
w = +
h
(uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx)
i
î
+
h
(ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz)
i
k̂
(18)
(d) Comparing the equations 15 and 18 literals (b) and (c) we have:
~
u×(~
v× ~
w) = +
h
(uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx)
i
î
+
h
(ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz)
i
k̂
14
(~
u· ~
w)~
v−(~
u·~
v)~
w = +
h
(uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx)
i
î
+
h
(ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz)
i
k̂
(e) With the above it was possible to verify the vector triple product of the vectors ~
u, ~
v, and ~
w is:
~
u×(~
v× ~
w) = (~
u· ~
w)~
v−(~
u·~
v)~
w 
15

Mais conteúdo relacionado

Semelhante a ANALISIS VECTORIAL.pdf

Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)Himanshi Upadhyay
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalharshid panchal
 
dot product of vectors
dot product of vectorsdot product of vectors
dot product of vectorsElias Dinsa
 
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesGopi Saiteja
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spacesEasyStudy3
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma ediciónSohar Carr
 
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01  Vector SpacesMath for Intelligent Systems - 01 Linear Algebra 01  Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01 Vector SpacesAndres Mendez-Vazquez
 
Vectorspace in 2,3and n space
Vectorspace in 2,3and n spaceVectorspace in 2,3and n space
Vectorspace in 2,3and n spaceAhmad Saifullah
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential slides
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces xmath266
 
Efficient Algorithm for Constructing KU-algebras from Block Codes
Efficient Algorithm for Constructing KU-algebras from Block CodesEfficient Algorithm for Constructing KU-algebras from Block Codes
Efficient Algorithm for Constructing KU-algebras from Block Codesinventionjournals
 
Integration
IntegrationIntegration
IntegrationRipaBiba
 
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChaimae Baroudi
 

Semelhante a ANALISIS VECTORIAL.pdf (20)

P1 . norm vector space
P1 . norm vector spaceP1 . norm vector space
P1 . norm vector space
 
Vector Space.pptx
Vector Space.pptxVector Space.pptx
Vector Space.pptx
 
Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
 
dot product of vectors
dot product of vectorsdot product of vectors
dot product of vectors
 
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variables
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spaces
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01  Vector SpacesMath for Intelligent Systems - 01 Linear Algebra 01  Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
 
Vectorspace in 2,3and n space
Vectorspace in 2,3and n spaceVectorspace in 2,3and n space
Vectorspace in 2,3and n space
 
Vectors 2.pdf
Vectors 2.pdfVectors 2.pdf
Vectors 2.pdf
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
 
Calculus Homework Help
Calculus Homework HelpCalculus Homework Help
Calculus Homework Help
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces x
 
Mcs 013 solve assignment
Mcs 013 solve assignmentMcs 013 solve assignment
Mcs 013 solve assignment
 
Ch4
Ch4Ch4
Ch4
 
150490106037
150490106037150490106037
150490106037
 
Efficient Algorithm for Constructing KU-algebras from Block Codes
Efficient Algorithm for Constructing KU-algebras from Block CodesEfficient Algorithm for Constructing KU-algebras from Block Codes
Efficient Algorithm for Constructing KU-algebras from Block Codes
 
Integration
IntegrationIntegration
Integration
 
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
 

Último

"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 

Último (20)

"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 

ANALISIS VECTORIAL.pdf

  • 1. FACULTAD DE CIENCIAS BÁSICAS MAESTRÍA EN ENSEÑANZA DE LA FÍSICA ELECTROMAGNETISM Professor: Jimmy A. Cortes, José A. Chaves VECTOR ANALYSIS AN INTRODUCTION Verification of the properties of the scalar and vector product in R3 using general vector expressions Produced by: Jhon F. González, Gelver Osorio, Julián F. Villada April 8, 2021
  • 2. Part I Scalar product 1 Properties of dot product (Proof) Carry out the verification of the properties of the scalar and vector product in R3 using general vector expres- sions such as: ~ u = (ux,uy,uz); ~ v = (vx,vy,vz); ~ w = (wx,wy,wz). 1. The dot product is distributive over vector addition: ~ u·(~ v+ ~ w) = ~ u·~ v+~ u· ~ w Proof: Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz) and ~ w = (wx,wy,wz), then we have: ~ u·(~ v+ ~ w) = (ux,uy,uz)· (vx,vy,vz)+(wx,wy,wz) ~ u·(~ v+ ~ w) = (ux,uy,uz)·(vx,vy,vz) + (ux,uy,uz)·(wx,wy,wz) ~ u·(~ v+ ~ w) = ux ·vx +uy ·vy +uz ·vz +ux ·wx +uy ·wy +uz ·wz ~ u·(~ v+ ~ w) = ux ·vx +uy ·vy +uz ·vz + ux ·wx +uy ·wy +uz ·wz . ~ u·~ v+~ u· ~ w = ux ·vx +uy ·vy +uz ·vz + ux ·wx +uy ·wy +uz ·wz . ~ u·(~ v+ ~ w) = ~ u·~ v+~ u· ~ w (1) 2. The dot product is commutative: ~ v· ~ w = ~ w·~ v Proof: Assuming that the vectors are represented by ~ v = (vx,vy,vz) and ~ w = (wx,wy,wz), then we have: ~ v· ~ w = (vx,vy,vz)·(wx,wy,wz) = vx ·wx +vy ·wy +vz ·wz = wx ·vx +wy ·vy +wz ·vz . ~ w·~ v = (wx,wy,wz)·(vx,vy,vz) = wx ·vx +wy ·vy +wz ·vz . ~ v· ~ w = ~ w·~ v (2) 3. The formula for the Euclidean length of the vector is: ~ v·~ v = k~ vk2 1
  • 3. Proof: Assuming that the vector ~ v is represented by ~ v = (vx,vy,vz) , then we have: ~ v·~ v = (vx,vy,vz)·(vx,vy,vz) = vx ·vx +vy ·vy +vz ·vz = (vx)2 +(vy)2 +(vz)2 . k~ vk2 = k~ vk k~ vk = q (vx)2 +(vy)2 +(vz)2 q (vx)2 +(vy)2 +(vz)2 = (vx)2 +(vy)2 +(vz)2 ~ v·~ v = k~ vk2 (3) 4. Distributive property for scalar multiplication: (c~ v)· ~ w =~ v·(c~ w) = c(~ v· ~ w) Proof: Assuming that the vectors~ v and ~ w are represented by~ v = (vx,vy,vz), ~ w = (wx,wy,wz) and c ∈ R, then we have: (c~ v)· ~ w = (c(vx,vy,vz))·(wx,wy,wz) = (cvx,cvy,cvz)·(wx,wy,wz) = cvxwx +cvywy +cvzwz = (cvxwx +cvywy +cvzwz) = cvxwx +cvywy +cvzwz . ~ v·(c~ w) = (vx,vy,vz)·(c(wx,wy,wz)) = (vx,vy,vz)·(cwx,cwy,cwz) = vxcwx +vycwy +vzcwz = (vxcwx +vycwy +vzcwz) = cvxwx +cvywy +cvzwz . c(~ v· ~ w) = c((vx,vy,vz)·(wx,wy,wz)) = c(vxwx +vywy +vzwz) = cvxwx +cvywy +cvzwz = (cvxwx +cvywy +cvzwz) = cvxwx +cvywy +cvzwz . (c~ v)· ~ w =~ v·(c~ w) = c(~ v· ~ w) (4) 5. Dot product between a vector different of zero and the zero vector: ~ v·~ 0 = 0 Proof: Assuming that the vectors~ v different of zero and~ 0 are represented by~ v = (vx,vy,vz) and~ 0 = (0x,0y,0z), then we have: ~ v·~ 0 = (vx,vy,vz)·(0x,0y,0z) = vx ·0x +vy ·0y +vz ·0z = 0+0+0 = 0 ~ v·~ 0 = 0 (5) 2
  • 4. 6. If ~ v·~ v = 0 , then ~ v =~ 0 Proof: Assuming that the vector ~ v is represented by ~ v = (vx,vy,vz) and that the vector ~ 0 = (0x,0y,0z), then we have: ~ v·~ v = (vx,vy,vz)·(vx,vy,vz) = vx ·vx +vy ·vy +vz ·vz = (vx)2 +(vy)2 +(vz)2 = 0 = q (vx)2 +(vy)2 +(vz)2 2 = 0 . k~ vk2 = q (vx)2 +(vy)2 +(vz)2 2 = q (0)2 +(0)2 +(0)2 2 = 0 ~ v = (0x,0y,0z) (6) Part II Cross product 2 Cross product properties 1. If θ is the angle between the vectors ~ u and ~ v then, the length of the cross product of two vector is: k~ u×~ vk = kukkvksinθ Proof:Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), ~ w = (wx,wy,wz), then we have: (a) The cross product between the vectors ~ u and ~ v is calculated: ~ u×~ v = î ĵ k̂ ux uy uz vx vy vz ~ u×~ v = (uy)(vz)−(vy)(uz) î− (ux)(vz)−(vx)(uz) ĵ+ (ux)(vy)−(vx)(uy) k̂ (b) The length of the cross product between the vectors ~ u and ~ v is calculated: k~ u×~ vk = q (uy)(vz)−(vy)(uz) 2 + (ux)(vz)−(vx)(uz) 2 + (ux)(vy)−(vx)(uy) 2 (c) The square of the length of the cross product between the vectors ~ u and ~ v is calculated: k~ u×~ vk2 = (uy)(vz)−(vy)(uz) 2 | {z } part 1 + (ux)(vz)−(vx)(uz) 2 | {z } part 2 + (ux)(vy)−(vx)(uy) 2 | {z } part 3 3
  • 5. (d) The squared binomials that appear within the radical are calculated separately: (uy)(vz)−(vy)(uz) 2 | {z } part 1 = (uy)(vz) 2 −2 (uy)(vz)(vy)(uz) + (vy)(uz) 2 = (uy)2 (vz)2 −2 (uy)(uz)(vy)(vz) +(vy)2 (uz)2 = (uy)2 (vz)2 −2(uy)(uz)(vy)(vz)+(vy)2 (uz)2 = (uy)2 (vz)2 +(vy)2 (uz)2 −2(uy)(uz)(vy)(vz) (ux)(vz)−(vx)(uz) 2 | {z } part 2 = (ux)(vz) 2 −2 (ux)(vz)(vx)(uz) + (vx)(uz) 2 = (ux)2 (vz)2 −2 (ux)(vz)(vx)(uz) +(vx)2 (uz)2 = (ux)2 (vz)2 −2(ux)(vz)(vx)(uz)+(vx)2 (uz)2 = (ux)2 (vz)2 +(vx)2 (uz)2 −2(ux)(uz)(vx)(vz) (ux)(vy)−(vx)(uy) 2 | {z } part 3 = (ux)(vy) 2 −2 (ux)(vy)(vx)(uy) + (vx)(uy) 2 = (ux)2 (vy)2 −2 (ux)(vy)(vx)(uy) +(vx)2 (uy)2 = (ux)2 (vy)2 −2(ux)(uy)(vx)(vy)+(vx)2 (uy)2 = (ux)2 (vy)2 +(vx)2 (uy)2 −2(ux)(uy)(vx)(vy) (e) The square of the length of the cross product between the vectors ~ u and ~ v is calculated by replacing the calculations of the item (d) and simplifying: k~ u×~ vk2 = (uy)2 (vz)2 +(vy)2 (uz)2 −2(uy)(uz)(vy)(vz) + + (ux)2 (vz)2 +(vx)2 (uz)2 −2(ux)(uz)(vx)(vz) + + (ux)2 (vy)2 +(vx)2 (uy)2 −2(ux)(uy)(vx)(vy) k~ u×~ vk2 = (uy)2 (vz)2 +(vy)2 (uz)2 +(ux)2 (vz)2 +(vx)2 (uz)2 +(ux)2 (vy)2 +(vx)2 (uy)2 −2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) (f) Now it can be verified by comparing components that: k~ u×~ vk2 = k~ uk2 k~ vk2 −(~ u·~ v)2 (7) k~ u×~ vk2 = (uy)2 (vz)2 +(vy)2 (uz)2 +(ux)2 (vz)2 +(vx)2 (uz)2 +(ux)2 (vy)2 +(vx)2 (uy)2 −2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) k~ uk2 = (ux)2 +(uy)2 +(uz)2 4
  • 6. k~ vk2 = (vx)2 +(vy)2 +(vz)2 k~ uk2 k~ vk2 = (ux)2 +(uy)2 +(uz)2 (vx)2 +(vy)2 +(vz)2 = (ux)2 (vx)2 +(ux)2 (vy)2 +(ux)2 (vz)2 +(uy)2 (vx)2 +(uy)2 (vy)2 +(uy)2 (vz)2 +(uz)2 (vx)2 +(uz)2 (vy)2 +(uz)2 (vz)2 k~ uk2 k~ vk2 = (ux)2 (vx)2 +(ux)2 (vy)2 +(ux)2 (vz)2 +(uy)2 (vx)2 +(uy)2 (vy)2 +(uy)2 (vz)2 +(uz)2 (vx)2 +(uz)2 (vy)2 +(uz)2 (vz)2 k~ uk2 k~ vk2 = (ux)2 (vx)2 +(ux)2 (vy)2 +(ux)2 (vz)2 +(uy)2 (vx)2 +(uy)2 (vy)2 +(uy)2 (vz)2 + (uz)2 (vx)2 +(uz)2 (vy)2 +(uz)2 (vz)2 −(~ u·~ v)2 = − h (ux,uy,uz)·(vx,vy,vz) i2 = − h (ux)(vx)+(uy)(vy)+(uz)(vz) i2 = − h (ux)(vx)+(uy)(vy)+(uz)(vz) (ux)(vx)+(uy)(vy)+(uz)(vz) i = − h (ux)(vx)(ux)(vx)+(ux)(vx)(uy)(vy)+(ux)(vx)(uz)(vz) + + (uy)(vy)(ux)(vx)+(uy)(vy)(uy)(vy)+(uy)(vy)(uz)(vz) + + (uz)(vz)(ux)(vx)+(uz)(vz)(uy)(vy)+(uz)(vz)(uz)(vz) i = −(ux)2 (vx)2 −(uy)2 (vy)2 −(uz)2 (vz)2 −2 (ux)(uy)(vx)(vy) −2 (ux)(uz)(vx)(vz) −2 (uy)(uz)(vy)(vz) (g) Expressing equality k~ u×~ vk2 = k~ uk2 k~ vk2 −(~ u·~ v)2 and simplifying, we have: (uy)2 (vz)2 +(vy)2 (uz)2 +(ux)2 (vz)2 +(vx)2 (uz)2 +(ux)2 (vy)2 +(vx)2 (uy)2 − 2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) = (ux)2 (vx)2 +(ux)2 (vy)2 +(ux)2 (vz)2 +(uy)2 (vx)2 +(uy)2 (vy)2 +(uy)2 (vz)2 +(uz)2 (vx)2 + (uz)2 (vy)2 +(uz)2 (vz)2 −(ux)2 (vx)2 −(uy)2 (vy)2 −(uz)2 (vz)2 −2(ux)(uy)(vx)(vy)− 2(ux)(uz)(vx)(vz)−2(uy)(uz)(vy)(vz) (uy)2 (vz)2 +(uz)2 (vy)2 +(ux)2 (vz)2 +(uz)2 (vx)2 +(ux)2 (vy)2 +(uy)2 (vx)2 − 2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) = (uy)2 (vz)2 +(uz)2 (vy)2 +(ux)2 (vz)2 +(uz)2 (vx)2 +(ux)2 (vy)2 +(uy)2 (vx)2 − 2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)+(ux)2 (vx)2 −(ux)2 (vx)2 + (uy)2 (vy)2 −(uy)2 (vy)2 +(uz)2 (vz)2 −(uz)2 (vz)2 5
  • 7. (uy)2 (vz)2 −(uy)2 (vz)2 +(uz)2 (vy)2 −(uz)2 (vy)2 +(ux)2 (vz)2 −(ux)2 (vz)2 +(uz)2 (vx)2 − (uz)2 (vx)2 +(ux)2 (vy)2 −(ux)2 (vy)2 +(uy)2 (vx)2 −(uy)2 (vx)2 −2(uy)(uz)(vy)(vz)+ 2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)+2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)+ 2(ux)(uy)(vx)(vy)−(ux)2 (vx)2 +(ux)2 (vx)2 −(uy)2 (vy)2 +(uy)2 (vy)2 −(uz)2 (vz)2 + (uz)2 (vz)2 0 = 0 k~ u×~ vk2 = k~ uk2 k~ vk2 −(~ u·~ v)2 (h) So, as (~ u·~ v)2 = k~ uk2 k~ vk2 cos2 θ from the definition of dot product, we have: k~ u×~ vk2 = k~ uk2 k~ vk2 −k~ uk2 k~ vk2 cos2 θ = k~ uk2 k~ vk2 1−cos2 θ k~ u×~ vk2 = k~ uk2 k~ vk2 sin2 θ q k~ u×~ vk2 = q k~ uk2 k~ vk2 sin2 θ . k~ u×~ vk = k~ uk k~ vk sinθ (8) 2. The length of the cross product of two vectors is equal to the area of the parallelogram determined by the two vectors (see figure below). Proof: Assuming that the vectors ~ u and ~ v are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), and the angle θ between the vectors ~ u and ~ v, then we have for example: 6
  • 8. (a) After verifying that the length of the cross product of two vectors is equal to area of parallelogram determined by two vectors. The formula will be applied given the following vectors: ~ u = (3,1,−2), ~ v = (1,3,−4) (b) The dot product between the vectors ~ u and ~ v is calculated: ~ u·~ v = (3,1,−2)·(1,3,−4) = 3·1+1·3+(−2)·(−4) = 3+3+8 = 14 ~ u·~ v = 14 (c) The length of the vectors ~ u and ~ v is calculated: k~ uk = √ 14, k~ vk = √ 26 (d) So, as (~ u·~ v) = k~ uk k~ vkcosθ and θ the angle between the vectors ~ u and ~ v from the definition of dot product, we have: cosθ = ~ u·~ v k~ uk k~ vk , θ = arccos ~ u·~ v k~ uk k~ vk = arccos 14 √ 14 √ 26 = arccos 14 √ 364 θ = 42.79◦ (e) The cross product between the vectors ~ u = (3,1,−2) and ~ v = (1,3,−4) is calculated: ~ u×~ v = î ĵ k̂ 3 1 −2 1 3 −4 = (1)(−4)−(3)(−2) î− (3)(−4)−(1)(−2) ĵ+ (3)(3)−(1)(1) k̂ ~ u×~ v = 2î+10ĵ+8k̂ (f) The length of cross product between the vectors ~ u = (3,1,−2) and ~ v = (1,3,−4) is calculated: k~ u×~ vk = q (2)2 +(10)2 +(8)2 = √ 4+100+64 = √ 168 k~ u×~ vk = √ 168 = 12.96 (g) (Previously verified property in literal 1). If θ is the angle between the vectors ~ u and ~ v then, the length of the cross product of two vector is: k~ u×~ vk = kukkvksinθ (h) Replacing the values in the literal (g), we have: k~ u×~ vk = √ 168 = 12.96 k~ u×~ vk = 12.96 k~ uk k~ vk sinθ = √ 14 √ 26 sin(42.79◦ ) = √ 364 sin(42.79◦ ) = 12.96 k~ uk k~ vk sinθ = 12.96 12.96 = 12.96 k~ u×~ vk = k~ uk k~ vk sinθ 7
  • 9. 3. Anticommutative property: ~ u×~ v = −(~ v×~ u) Proof: Assuming that the vectors ~ u and~ v are represented by ~ u = (ux,uy,uz) and~ v = (vx,vy,vz), then we have: (a) The cross product between the vectors ~ u and ~ v is calculated: ~ u×~ v = î ĵ k̂ ux uy uz vx vy vz ~ u×~ v = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ (b) The cross product between the vectors ~ v and ~ u is calculated: ~ v×~ u = î ĵ k̂ vx vy vz ux uy uz ~ v×~ u = (uz)(vy)−(uy)(vz) î− (uz)(vx)−(ux)(vz) ĵ+ (uy)(vx)−(ux)(vy) k̂ (c) The cross product between the vectors ~ v and ~ u multiplying by (-1) is calculated: − ~ v×~ u = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ (d) Comparing the expressions in the literals (a) and (c) we have: ~ u×~ v = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ − ~ v×~ u = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ ~ u×~ v = −(~ v×~ u) (9) 4. Distributive property for Multiplication by a constant: (c~ u)×~ v = c(~ u×~ v) = ~ u×(c~ v) Proof: Assuming that the vectors ~ u and ~ v are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz) and c ∈ R, then we have: (a) The cross product between the vectors c~ u and ~ v is calculated: (c~ u)×~ v = î ĵ k̂ cux cuy cuz vx vy vz (c~ u)×~ v = (cuy)(vz)−(cuz)(vy) î− (cux)(vz)−(cuz)(vx) ĵ+ (cux)(vy)−(cuy)(vx) k̂ 8
  • 10. (b) The multiplication by c of the cross product between the vectors ~ u and ~ v is calculated: c(~ u×~ v) = î ĵ k̂ ux uy uz vx vy vz c(~ u×~ v) = c h (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ i c(~ u×~ v) = (cuy)(vz)−(cuz)(vy) î− (cux)(vz)−(cuz)(vx) ĵ+ (cux)(vy)−(cuy)(vx) k̂ (c) The cross product between the vectors ~ u and c~ v is calculated: ~ u×(c~ v) = î ĵ k̂ ux uy uz cvx cvy cvz ~ u×(c~ v) = (uy)(cvz)−(uz)(cvy) î− (ux)(cvz)−(uz)(cvx) ĵ+ (ux)(cvy)−(uy)(cvx) k̂ ~ u×(c~ v) = (cuy)(vz)−(cuz)(vy) î− (cux)(vz)−(cuz)(vx) ĵ+ (cux)(vy)−(cuy)(vx) k̂ (d) Comparing the results of the cross product in the literals a, b and c, it is verified that: (c~ u)×~ v = c(~ u×~ v) = ~ u×(c~ v) (10) 5. Distributive property: ~ u×(~ v+ ~ w) = ~ u×~ v+~ u× ~ w Proof:Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), ~ w = (wx,wy,wz), then we have: (a) The cross product between the vectors ~ u and ~ v+ ~ w is calculated: ~ u×(~ v+ ~ w) = î ĵ k̂ ux uy uz vx +wx vy +wy vz +wz ~ u×(~ v+ ~ w) = (uy)(vz +wz)−(uz)(vy +wy) î − (ux)(vz +wz)−(uz)(vx +wx) ĵ + (ux)(vy +wy)−(uy)(vx +wx) k̂ (b) The cross product between the vectors ~ u and ~ v is calculated: ~ u×~ v = î ĵ k̂ ux uy uz vx vy vz ~ u×~ v = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ 9
  • 11. (c) The cross product between the vectors ~ u and ~ w is calculated: ~ u× ~ w = î ĵ k̂ ux uy uz wx wy wz ~ u× ~ w = (uy)(wz)−(uz)(wy) î− (ux)(wz)−(uz)(wx) ĵ+ (ux)(wy)−(uy)(wx) k̂ (d) The sum of the cross product between the vectors ~ u, ~ v and ~ u, ~ w is calculated: ~ u×~ v+~ u× ~ w = (uy)(vz)−(uz)(vy) + (uy)(wz)−(uz)(wy) î − (ux)(vz)−(uz)(vx) + (ux)(wz)−(uz)(wx) ĵ + (ux)(vy)−(uy)(vx) + (ux)(wy)−(uy)(wx) k̂ Simplifying we have: ~ u×~ v+~ u× ~ w = (uy)(vz +wz)−(uz)(vy +wy) î − (ux)(vz +wz)−(uz)(vx +wx) ĵ + (ux)(vy +wy)−(uy)(vx +wx) k̂ (e) Comparing the results in the literals (a) and (d) we have: ~ u×(~ v+ ~ w) = (uy)(vz +wz)−(uz)(vy +wy) î − (ux)(vz +wz)−(uz)(vx +wx) ĵ + (ux)(vy +wy)−(uy)(vx +wx) k̂ ~ u×~ v+~ u× ~ w = (uy)(vz +wz)−(uz)(vy +wy) î − (ux)(vz +wz)−(uz)(vx +wx) ĵ + (ux)(vy +wy)−(uy)(vx +wx) k̂ (f) Equating the right side of the two previous equations component by component we have: (uy)(vz +wz)−(uz)(vy +wy) î = (uy)(vz +wz)−(uz)(vy +wy) î − (ux)(vz +wz)−(uz)(vx +wx) ĵ = − (ux)(vz +wz)−(uz)(vx +wx) ĵ (ux)(vy +wy)−(uy)(vx +wx) k̂ = (ux)(vy +wy)−(uy)(vx +wx) k̂ (g) With the above it was possible to verify the distributive property of the cross product: ~ u×(~ v+ ~ w) = ~ u×~ v+~ u× ~ w (11) 6. The scalar triple product of the vectors ~ u, ~ v, and ~ w: ~ u·(~ v× ~ w) = (~ u×~ v)· ~ w Proof:Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), ~ w = (wx,wy,wz), then we have: 10
  • 12. (a) The cross product between the vectors ~ v and ~ w is calculated: ~ v× ~ w = î ĵ k̂ vx vy vz wx wy wz ~ v× ~ w = (vy)(wz)−(vz)(wy) î− (vx)(wz)−(vz)(wx) ĵ+ (vx)(wy)−(vy)(wx) k̂ (b) The cross product between the vectors ~ u and ~ v is calculated: ~ u×~ v = î ĵ k̂ ux uy uz vx vy vz ~ u×~ v = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ (c) The scalar triple product of the vectors ~ u·(~ v× ~ w) is calculated: ~ u·(~ v× ~ w) = (ux,uy,uz)· · h (vy)(wz)−(vz)(wy) î − (vx)(wz)−(vz)(wx) ĵ + (vx)(wy)−(vy)(wx) k̂ i . ~ u·(~ v× ~ w) = +ux · (vy)(wz)−(vz)(wy) î −uy · (vx)(wz)−(vz)(wx) ĵ +uz · (vx)(wy)−(vy)(wx) k̂. ~ u·(~ v× ~ w) = + (ux)(vy)(wz)−(ux)(vz)(wy) î − (uy)(vx)(wz)−(uy)(vz)(wx) ĵ + (uz)(vx)(wy)−(uz)(vy)(wx) k̂ (12) (d) The scalar triple product of the vectors (~ u×~ v)· ~ w is calculated: (~ u×~ v)· ~ w = h (uy)(vz)−(uz)(vy) î − (ux)(vz)−(uz)(vx) ĵ + (ux)(vy)−(uy)(vx) k̂ i ·(wx,wy,wz). (~ u×~ v)· ~ w = + (uy)(vz)−(uz)(vy) ·(wx)î − (ux)(vz)−(uz)(vx) ·(wy)ĵ + (ux)(vy)−(uy)(vx) ·(wz)k̂. (~ u×~ v)· ~ w = + (uy)(vz)(wx)−(uz)(vy)(wx) î − (ux)(vz)(wy)−(uz)(vx)(wy) ĵ + (ux)(vy)(wz)−(uy)(vx)(wz) k̂ (13) 11
  • 13. (e) Comparing the results in the literals (c) and (d) we have: ~ u·(~ v× ~ w) = + (ux)(vy)(wz)−(ux)(vz)(wy) î − (uy)(vx)(wz)−(uy)(vz)(wx) ĵ + (uz)(vx)(wy)−(uz)(vy)(wx) k̂ (~ u×~ v)· ~ w = + (uy)(vz)(wx)−(uz)(vy)(wx) î − (ux)(vz)(wy)−(uz)(vx)(wy) ĵ + (ux)(vy)(wz)−(uy)(vx)(wz) k̂ (f) With the above it was possible to verify the scalar triple product of the vectors property of the cross product: ~ u·(~ v× ~ w) = (~ u×~ v)· ~ w (14) 7. The volume of the parallelepiped determined by the vectors ~ u, ~ v and ~ w is the magnitude of their scalar triple product. |~ w·(~ u×~ v)| = volume of the parallelepiped Proof:Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), ~ w = (wx,wy,wz), then we have: (a) The scalar triple product of the vectors ~ w·(~ u×~ v) is: ~ w·(~ u×~ v) = wx wy wz ux uy uz vx vy vz ~ w·(~ u×~ v) = (uy)(vz)−(uz)(vy) (wx)− (ux)(vz)−(uz)(vx) (wy)+ (ux)(vy)−(uy)(vx) (wz) ~ w·(~ u×~ v) = (uy)(vz)(wx)−(uz)(vy)(wx)−(ux)(vz)(wy) +(uz)(vx)(wy)+(ux)(vy)(wz)−(uy)(vx)(wz) ~ w·(~ u×~ v) = (ux)(vy)(wz)+(uy)(vz)(wx)+(uz)(vx)(wy) −(ux)(vz)(wy)−(uy)(vx)(wz)−(uz)(vy)(wx) (b) The magnitude of their scalar triple product is determinate by: ~ w·(~ u×~ v) = (ux)(vy)(wz)+(uy)(vz)(wx)+(uz)(vx)(wy) −(ux)(vz)(wy)−(uy)(vx)(wz)−(uz)(vy)(wx) (c) After verifying that the volume of the parallelepiped determined by the vectors ~ u, ~ v and ~ w = ~ u×~ v is the magnitude of their scalar triple. The formula will be applied given the following vectors: ~ u = (3,1,−2), ~ v = (1,3,−4), ~ w = (2,10,8) 12
  • 14. (d) Replacing the values in the literal (b), we have: ~ w·(~ u×~ v) = (3)(3)(8)+(1)(−4)(2)+(−2)(1)(10)−(3)(−4)(10)−(1)(1)(8)−(−2)(3)(2) 72−8−20+120−8+12 = 168 = 168 8. The vector triple product of the vectors ~ u, ~ v, and ~ w is: ~ u×(~ v× ~ w) = (~ u· ~ w)~ v−(~ u·~ v)~ w Proof: Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), ~ w = (wx,wy,wz), then we have: (a) The cross product between the vectors ~ v and ~ w is calculated: ~ v× ~ w = î ĵ k̂ vx vy vz wx wy wz ~ v× ~ w = (vy)(wz)−(vz)(wy) î− (vx)(wz)−(vz)(wx) ĵ+ (vx)(wy)−(vy)(wx) k̂ (b) The vector triple product of the vectors ~ u, ~ v, and ~ w is calculated: ~ u×(~ v× ~ w) = î ĵ k̂ ux uy uz (vy)(wz)−(vz)(wy) − (vx)(wz)−(vz)(wx) (vx)(wy)−(vy)(wx) ~ u×(~ v× ~ w) = + h (uy) (vx)(wy)−(vy)(wx) +(uz) (vx)(wz)−(vz)(wx) i î − h (ux) (vx)(wy)−(vy)(wx) −(uz) (vy)(wz)−(vz)(wy) i ĵ + h −(ux) (vx)(wz)−(vz)(wx) −(uy) (vy)(wz)−(vz)(wy) i k̂ 13
  • 15. ~ u×(~ v× ~ w) = + h (uy)(vx)(wy)−(uy)(vy)(wx)+(uz)(vx)(wz)−(uz)(vz)(wx) i î − h (ux)(vx)(wy)−(ux)(vy)(wx)−(uz)(vy)(wz)+(uz)(vz)(wy) i ĵ + h −(ux)(vx)(wz)+(ux)(vz)(wx)−(uy)(vy)(wz)+(uy)(vz)(wy) i k̂ ~ u×(~ v× ~ w) = + h (uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx) i î + h (ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz) i k̂ (15) (c) The right side of the equation in the literal (a) is calculated: (~ u· ~ w)~ v−(~ u·~ v)~ w ~ u· ~ w = (ux,uy,uz)·(wx,wy,wz) = (ux)(wx)+(uy)(wy)+(uz)(wz) ~ u·~ v = (ux,uy,uz)·(vx,vy,vz) = (ux)(vx)+(uy)(vy)+(uz)(vz) (~ u· ~ w)~ v = (ux)(wx)+(uy)(wy)+(uz)(wz) (vx,vy,vz) + h (ux)(vx)(wx)+(uy)(vx)(wy)+(uz)(vx)(wz) i î + h (ux)(vy)(wx)+(uy)(vy)(wy)+(uz)(vy)(wz) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)+(uz)(vz)(wz) i k̂ (16) (~ u·~ v)~ w = (ux)(vx)+(uy)(vy)+(uz)(vz) (wx,wy,wz) + h (ux)(vx)(wx)+(uy)(vy)(wx)+(uz)(vz)(wx) i î + h (ux)(vx)(wy)+(uy)(vy)(wy)+(uz)(vz)(wy) i ĵ + h (ux)(vx)(wz)+(uy)(vy)(wz)+(uz)(vz)(wz) i k̂ (17) (~ u· ~ w)~ v−(~ u·~ v)~ w = + h (ux)(vx)(wx)+(uy)(vx)(wy)+(uz)(vx)(wz)−(ux)(vx)(wx)−(uy)(vy)(wx)−(uz)(vz)(wx) i î + h (ux)(vy)(wx)+(uy)(vy)(wy)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uy)(vy)(wy)−(uz)(vz)(wy) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)+(uz)(vz)(wz)−(ux)(vx)(wz)−(uy)(vy)(wz)−(uz)(vz)(wz) i k̂ (~ u· ~ w)~ v−(~ u·~ v)~ w = + h (uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx) i î + h (ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz) i k̂ (18) (d) Comparing the equations 15 and 18 literals (b) and (c) we have: ~ u×(~ v× ~ w) = + h (uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx) i î + h (ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz) i k̂ 14
  • 16. (~ u· ~ w)~ v−(~ u·~ v)~ w = + h (uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx) i î + h (ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz) i k̂ (e) With the above it was possible to verify the vector triple product of the vectors ~ u, ~ v, and ~ w is: ~ u×(~ v× ~ w) = (~ u· ~ w)~ v−(~ u·~ v)~ w 15