SlideShare uma empresa Scribd logo
1 de 61
Baixar para ler offline
LuaVM
                1 2       L u a V M




2010   2   24
blog:
                         hatena: Isoparametric
                         twitter: isoparametric
                            name:
                  (http://d.hatena.ne.jp/Isoparametric/)




2010   2   24
Lua?


                Lua




                 LL    ANSI C

2010   2   24
LuaVM
                                      Lua

                Lua C
                          if    for
                               Lua

                    Lua


                                VM

2010   2   24
Lua

                      VM   VM




2010   2   24
I think that one cannot completely grok a
                scripting language, or any complex system for
                that matter, without slitting the animal open
                and examining the entrails, organs and other
                yucky stuff that isn’t normally seen.




2010   2   24
LuaVM
                          VM(5.0   )




                Windows




2010   2   24
LuaVM




2010   2   24
VM              CPU
                        ……CPU
                        ……



                       ……




                PC……
2010   2   24
VM              CPU
                        ……CPU
                        ……



                       ……




                PC……
2010   2   24
/*----------------------------------------------------------------------

   38           (5.1.4     )   name	 	      args	 description
                               ------------------------------------------------------------------------*/
                               OP_MOVE,/*	 A B	 R(A) := R(B)		         	     	      	     */
                               OP_LOADK,/*	 A Bx	 R(A) := Kst(Bx)	     	     	      	     	     */
                               OP_LOADBOOL,/*	     A B C	 R(A) := (Bool)B; if (C) pc++	   	     	      */

       R(X)     X              OP_LOADNIL,/*	      A B	 R(A) := ... := R(B) := nil	       	     	      */
                               OP_GETUPVAL,/*	     A B	 R(A) := UpValue[B]	 	       	     	     */
                               OP_GETGLOBAL,/*	    A Bx	 R(A) := Gbl[Kst(Bx)]	      	     	     	      */
                               OP_GETTABLE,/*	     A B C	 R(A) := R(B)[RK(C)]	
                                                                             	      	     	     */
                               OP_SETGLOBAL,/*	    A Bx	 Gbl[Kst(Bx)] := R(A)	      	     	     	      */
                               OP_SETUPVAL,/*	     A B	 UpValue[B] := R(A)	 	       	     	     */
                               OP_SETTABLE,/*	     A B C	 R(A)[RK(B)] := RK(C)	     	     	     	      */
                               OP_NEWTABLE,/*	     A B C	 R(A) := {} (size = B,C)	 	      	     	      */
                               OP_SELF,/*	 A B C	 R(A+1) := R(B); R(A) := R(B)[RK(C)]	 	        */
                               OP_ADD,/*	   A B C	 R(A) := RK(B) + RK(C)	    	      	     	     */
       K(X)     X              OP_SUB,/*	
                               OP_MUL,/*	
                                            A B C	 R(A) := RK(B) - RK(C)	
                                            A B C	 R(A) := RK(B) * RK(C)	
                                                                             	
                                                                             	
                                                                                    	
                                                                                    	
                                                                                          	
                                                                                          	
                                                                                                */
                                                                                                */
                               OP_DIV,/*	   A B C	 R(A) := RK(B) / RK(C)	    	      	     	     */
                               OP_MOD,/*	   A B C	 R(A) := RK(B) % RK(C)	    	      	     	     */
                               OP_POW,/*	   A B C	 R(A) := RK(B) ^ RK(C)	    	      	     	     */
                               OP_UNM,/*	   A B	 R(A) := -R(B)	        	     	      	     	     */
                               OP_NOT,/*	   A B	 R(A) := not R(B)	 	         	      	     */
                               OP_LEN,/*	   A B	 R(A) := length of R(B)	     	      	     	     */
                               OP_CONCAT,/*	A B C	 R(A) := R(B).. ... ..R(C)		      	     */

       RK(X)        R(X)       OP_JMP,/*	
                               OP_EQ,/*	
                               OP_LT,/*	
                                            sBx	 pc+=sBx	       	      	     	      	
                                            A B C	 if ((RK(B) == RK(C)) ~= A) then pc++	 	
                                            A B C	 if ((RK(B) < RK(C)) ~= A) then pc++ 	
                                                                                          */

                                                                                          	
                                                                                                */
                                                                                                */
                               OP_LE,/*	    A B C	 if ((RK(B) <= RK(C)) ~= A) then pc++ 	 	     */

       K(X-k)                  OP_TEST,/*	 A C	 if not (R(A) <=> C) then pc++	 	
                               OP_TESTSET,/*	
                                                                                          	     */
                                                   A B C	 if (R(B) <=> C) then R(A) := R(B) else pc++	 */
                               OP_CALL,/*	 A B C	 R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
                               OP_TAILCALL,/*	     A B C	 return R(A)(R(A+1), ... ,R(A+B-1))	   	      */
                               OP_RETURN,/*	A B	 return R(A), ... ,R(A+B-2)	        (see note)	 */
                               OP_FORLOOP,/*	      A sBx	 R(A)+=R(A+2);
                               	     	      	      if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
                               OP_FORPREP,/*	      A sBx	 R(A)-=R(A+2); pc+=sBx	    	     	     	      */
                               OP_TFORLOOP,/*	     A C	 R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
                                                        if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++	 */
                               OP_SETLIST,/*	      A B C	 R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B	    */
                               OP_CLOSE,/*	 A 	    close all variables in the stack up to (>=) R(A)*/
                               OP_CLOSURE,/*	      A Bx	 R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))	    */
                               OP_VARARG/*	 A B	 R(A), R(A+1), ..., R(A+B-1) = vararg	 	        */

2010   2   24
/*----------------------------------------------------------------------

   38           (5.1.4     )   name	 	      args	 description
                               ------------------------------------------------------------------------*/
                               OP_MOVE,/*	 A B	 R(A) := R(B)		         	     	      	     */
                               OP_LOADK,/*	 A Bx	 R(A) := Kst(Bx)	     	     	      	     	     */
                               OP_LOADBOOL,/*	     A B C	 R(A) := (Bool)B; if (C) pc++	   	     	      */

       R(X)     X              OP_LOADNIL,/*	      A B	 R(A) := ... := R(B) := nil	       	     	      */
                               OP_GETUPVAL,/*	     A B	 R(A) := UpValue[B]	 	       	     	     */
                               OP_GETGLOBAL,/*	    A Bx	 R(A) := Gbl[Kst(Bx)]	      	     	     	      */
                               OP_GETTABLE,/*	     A B C	 R(A) := R(B)[RK(C)]	
                                                                             	      	     	     */
                               OP_SETGLOBAL,/*	    A Bx	 Gbl[Kst(Bx)] := R(A)	      	     	     	      */
                               OP_SETUPVAL,/*	     A B	 UpValue[B] := R(A)	 	       	     	     */
                               OP_SETTABLE,/*	     A B C	 R(A)[RK(B)] := RK(C)	     	     	     	      */
                               OP_NEWTABLE,/*	     A B C	 R(A) := {} (size = B,C)	 	      	     	      */
                               OP_SELF,/*	 A B C	 R(A+1) := R(B); R(A) := R(B)[RK(C)]	 	        */
                               OP_ADD,/*	   A B C	 R(A) := RK(B) + RK(C)	    	      	     	     */
       K(X)     X              OP_SUB,/*	
                               OP_MUL,/*	
                                            A B C	 R(A) := RK(B) - RK(C)	
                                            A B C	 R(A) := RK(B) * RK(C)	
                                                                             	
                                                                             	
                                                                                    	
                                                                                    	
                                                                                          	
                                                                                          	
                                                                                                */
                                                                                                */
                               OP_DIV,/*	   A B C	 R(A) := RK(B) / RK(C)	    	      	     	     */
                               OP_MOD,/*	   A B C	 R(A) := RK(B) % RK(C)	    	      	     	     */
                               OP_POW,/*	   A B C	 R(A) := RK(B) ^ RK(C)	    	      	     	     */
                               OP_UNM,/*	   A B	 R(A) := -R(B)	        	     	      	     	     */
                               OP_NOT,/*	   A B	 R(A) := not R(B)	 	         	      	     */
                               OP_LEN,/*	   A B	 R(A) := length of R(B)	     	      	     	     */
                               OP_CONCAT,/*	A B C	 R(A) := R(B).. ... ..R(C)		      	     */

       RK(X)        R(X)       OP_JMP,/*	
                               OP_EQ,/*	
                               OP_LT,/*	
                                            sBx	 pc+=sBx	       	      	     	      	
                                            A B C	 if ((RK(B) == RK(C)) ~= A) then pc++	 	
                                            A B C	 if ((RK(B) < RK(C)) ~= A) then pc++ 	
                                                                                          */

                                                                                          	
                                                                                                */
                                                                                                */
                               OP_LE,/*	    A B C	 if ((RK(B) <= RK(C)) ~= A) then pc++ 	 	     */

       K(X-k)                  OP_TEST,/*	 A C	 if not (R(A) <=> C) then pc++	 	
                               OP_TESTSET,/*	
                                                                                          	     */
                                                   A B C	 if (R(B) <=> C) then R(A) := R(B) else pc++	 */
                               OP_CALL,/*	 A B C	 R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
                               OP_TAILCALL,/*	     A B C	 return R(A)(R(A+1), ... ,R(A+B-1))	   	      */
                               OP_RETURN,/*	A B	 return R(A), ... ,R(A+B-2)	        (see note)	 */
                               OP_FORLOOP,/*	      A sBx	 R(A)+=R(A+2);
                               	     	      	      if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
                               OP_FORPREP,/*	      A sBx	 R(A)-=R(A+2); pc+=sBx	    	     	     	      */
                               OP_TFORLOOP,/*	     A C	 R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
                                                        if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++	 */
                               OP_SETLIST,/*	      A B C	 R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B	    */
                               OP_CLOSE,/*	 A 	    close all variables in the stack up to (>=) R(A)*/
                               OP_CLOSURE,/*	      A Bx	 R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))	    */
                               OP_VARARG/*	 A B	 R(A), R(A+1), ..., R(A+B-1) = vararg	 	        */

2010   2   24
MOVE

                 LOADK

                LOADBOOL

                 LOADNIL    nil

                GETUPVAL

                GETGLOBAL

                GETTABLE

                SETGLOBAL

                SETUPVAL

                SETTABLE
2010   2   24
NEWTABLE

                  SELF

                  ADD

                  SUB

                  MUL

                  DIV

                  MOD

                  POW

                  UNM

                  NOT
2010   2   24
LEN

                CONCAT

                  JMP

                  EQ

                   LT

                  LE

                 TEST

                TESTSET

                 CALL

                TAILCALL
2010   2   24
RETURN

                FORLOOP    for         FORPREP

                FORPREP          for

                TFORLOOP                  for

                 SETLIST

                 CLOSE

                CLOSURE

                 VARARG




2010   2   24
0   1   2   3   4   5   6   7   8    9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

                                 OP                            A                         B                         C
                                 OP                            A                                    Bx
                                 OP                            A                                   sBx

                                                             Figure 6: Instruction layout
                                                         OP                                  6bit
                function max (a,b)
                  local m = a                                      1   MOVE          2   0 0        ;   R(2) = R(0)
                  if b > a then                                    2   LT            0   0 1        ;   R(0) < R(1) ?
                    m = b
                  end
                                                                   3
                                                                   4
                                                                        A
                                                                       JMP
                                                                       MOVE
                                                                                     1
                                                                                     2   1 0
                                                                                                    ;
                                                                                                    ;
                                                                                                               8bit
                                                                                                        to 5 (4+1)
                                                                                                        R(2) = R(1)
                  return m                                         5   RETURN        2   2 0        ;   return R(2)
                end                                                6    B C 9bit
                                                                       RETURN        0   1 0        ;   return

                                         18bit 7: Bytecode for a Lua function
                                           Figure

                                     Bx(unsigned) or sBx(signed)
                a register or a constant (using the representation RK(X) explained above). With
                this format, several typical operations in Lua can be coded in a single instruction.
2010   2   24
OP             A                          Bx
                             OP             A                          sBx

                                          Figure 6: Instruction layout

                function max (a,b)
                  local m = a                   1   MOVE     2   0 0   ;   R(2) = R(0)
                  if b > a then                 2   LT       0   0 1   ;   R(0) < R(1) ?
                    m = b                       3   JMP      1         ;   to 5 (4+1)
                  end                           4   MOVE     2   1 0   ;   R(2) = R(1)
                  return m                      5   RETURN   2   2 0   ;   return R(2)
                end                             6   RETURN   0   1 0   ;   return


                                     Figure 7: Bytecode for a Lua function


                a register or a constant (using the representation RK(X) explained above). With
                this format, several typical operations in Lua can be coded in a single instruction.
                For instance, the increment of a local variable, such as a = a + 1, is coded
                as ADD x x y, where x represents the register holding the local variable and y
                represents the constant 1. An assignment like a = b.f, when both a and b are
                local variables, is also coded as the single instruction GETTABLE x y z, where x
                is the register for a, y is the register for b, and z is the index of the string
                constant "f". (In Lua, the syntax b.f is syntactic sugar for b["f"], that is, b
2010   2   24   indexed by the string "f".)
OP             A                          Bx
                             OP             A                          sBx

                                          Figure 6: Instruction layout

                function max (a,b)
                  local m = a                   1   MOVE     2   0 0   ;   R(2) = R(0)
                  if b > a then                 2   LT       0   0 1   ;   R(0) < R(1) ?
                    m = b                       3   JMP      1         ;   to 5 (4+1)
                  end                           4   MOVE     2   1 0   ;   R(2) = R(1)
                  return m                      5   RETURN   2   2 0   ;   return R(2)
                end                             6   RETURN   0   1 0   ;   return


                                     Figure 7: Bytecode for a Lua function



                                                    R(0) == a, R(1) == b
                a register or a constant (using the representation RK(X) explained above). With
                this format, several typical operations in Lua can be coded in a single instruction.
       LT       For instance, the increment of a local variable, such as a = a + 1, is coded
                as ADD x x y, where x represents the register holding the local variable and y
                           PC++                                   JMP
                represents the constant 1. An assignment like a = b.f, when both a and b are
                local variables, is also coded as the single instruction GETTABLE x y z, where x

       OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++
                is the register for a, y is the register for b, and z is the index of the string
                constant "f". (In Lua, the syntax b.f is syntactic sugar for b["f"], that is, b
                                                                                                   */
2010   2   24   indexed by the string "f".)
256
                        B/C 9bit==1bit

                Lua


                18bit               (131071   )
2010   2   24
VM         Lua


                     VM
                          lua -l
2010   2   24
Lua
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                constructors                        •     •     •     •     •     •     •     •     •     •     •     •
                garbage collection                  •     •     •     •     •     •     •     •     •     •     •     •
                extensible semantics                ◦     ◦     •     •     •     •     •     •     •     •     •     •
                support for OOP                     ◦     ◦     •     •     •     •     •     •     •     •     •     •
                long strings                        ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                debug API                           ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                external compiler                   ◦     ◦     ◦     ◦     •     •     •     •     •     •     •     •
                vararg functions                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                pattern matching                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                conditional compilation             ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     ◦     ◦     ◦
                anonymous functions, closures       ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •     •
                debug library                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •
                multi-state API                     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                for statement                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                long comments                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                full lexical scoping                ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                booleans                            ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                coroutines                          ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                incremental garbage collection      ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                module system                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                libraries                           4     4     4     4     4     4     4       4    5     6     8     9
                built-in functions                  5     7    11    11    13    14    25      27   35     0     0     0
                API functions                      30    30    30    30    32    32    33      47   41    60    76    79
                vm type (stack × register)          S     S     S     S     S     S     S      S     S     S     R     R
                vm instructions                    64    65    69    67    67    68    69     128   64    49    35    38
                keywords                           16    16    16    16    16    16    16      16   16    18    21    21
                other tokens                       21    21    23    23    23    23    24      25   25    25    24    26
                                                 Table 1. The evolution of features in Lua.
2010   2   24
Lua
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                constructors                        •     •     •     •     •     •     •     •     •     •     •     •
                garbage collection                  •     •     •     •     •     •     •     •     •     •     •     •
                extensible semantics                ◦     ◦     •     •     •     •     •     •     •     •     •     •
                support for OOP                     ◦     ◦     •     •     •     •     •     •     •     •     •     •
                long strings                        ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                debug API                           ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                external compiler                   ◦     ◦     ◦     ◦     •     •     •     •     •     •     •     •
                vararg functions                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                pattern matching                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                conditional compilation             ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     ◦     ◦     ◦
                anonymous functions, closures       ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •     •
                debug library                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •
                multi-state API                     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                for statement                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                long comments                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                full lexical scoping                ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                booleans                            ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                coroutines                          ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                incremental garbage collection      ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                module system                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                libraries                           4     4     4     4     4     4     4       4    5     6     8     9
                built-in functions                  5     7    11    11    13    14    25      27   35     0     0     0
                API functions                      30    30    30    30    32    32    33      47   41    60    76    79
                vm type (stack × register)          S     S     S     S     S     S     S      S     S     S     R     R
                vm instructions                    64    65    69    67    67    68    69     128   64    49    35    38
                keywords                           16    16    16    16    16    16    16      16   16    18    21    21
                other tokens                       21    21    23    23    23    23    24      25   25    25    24    26
                                                 Table 1. The evolution of features in Lua.
2010   2   24
Lua
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                constructors                        •     •     •     •     •     •     •     •     •     •     •     •
                garbage collection                  •     •     •     •     •     •     •     •     •     •     •     •
                extensible semantics                ◦     ◦     •     •     •     •     •     •     •     •     •     •
                support for OOP                     ◦     ◦     •     •     •     •     •     •     •     •     •     •
                long strings                        ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                debug API                           ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                external compiler                   ◦     ◦     ◦     ◦     •     •     •     •     •     •     •     •
                vararg functions                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                pattern matching                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                conditional compilation             ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     ◦     ◦     ◦
                anonymous functions, closures       ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •     •
                debug library                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •
                multi-state API                     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                for statement                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                long comments                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                full lexical scoping                ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                booleans                            ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                coroutines                          ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                incremental garbage collection      ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                module system                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                libraries                           4     4     4     4     4     4     4       4    5     6     8     9
                built-in functions                  5     7    11    11    13    14    25      27   35     0     0     0
                API functions                      30    30    30    30    32    32    33      47   41    60    76    79
                vm type (stack × register)          S     S     S     S     S     S     S      S     S     S     R     R
                vm instructions                    64    65    69    67    67    68    69     128   64    49    35    38
                keywords                           16    16    16    16    16    16    16      16   16    18    21    21
                other tokens                       21    21    23    23    23    23    24      25   25    25    24    26
                                                 Table 1. The evolution of features in Lua.
2010   2   24
VM
                V S   V M




2010   2   24
VM
                        VM
                 push




                VM            VM
2010   2   24
VM
                Lua
                VM Lua


                            local



                 push/pop


2010   2   24
LuaVM
                Lua




2010   2   24
==   ==




2010   2   24
==   ==
                Lua        VM        ……




                                VM
2010   2   24
2010   2   24
LuaVM
                         4byte           Lua
                1byte   2byte




2010   2   24
ADD
                ADD
                          ADD




                ADD
                      +
2010   2   24
JavaVM   goto   2byte)




                2byte
2010   2   24
Lua   4byte   Lua   1 or 2byte




2010   2   24
local a,t,i
                a=a+i
                a=a+100       YO

                a=t[i]




2010   2   24
local a,t,i
                a=a+i
                a=a+100                      YO

                a=t[i]



             1	
              [1]	
                 PUSHNIL      	   3
             2	
              [2]	
                 GETLOCAL     	   0	 ; a
             3	
              [2]	
                 GETLOCAL     	   2	 ; i
             4	
              [2]	
                 ADD          	
             5	
              [2]	
                 SETLOCAL     	   0	 ;   a
             6	
              [3]	
                 GETLOCAL     	   0	 ;   a
             7	
              [3]	
                 ADDI         	   100
             8	
              [3]	
                 SETLOCAL     	   0	 ;   a
             9	
              [4]	
                 GETLOCAL     	   1	 ;   t
            10	
              [4]	
                 GETINDEXED   	   2	 ;   i
            11	
              [4]	
                 SETLOCAL     	   0	 ;   a
            12	
              [4]	
                 END          	
2010   2   24
local a,t,i
                a=a+i
                a=a+100                                                   YO

                a=t[i]



             1	
              [1]	
                 PUSHNIL      	   3          1   [2]ADD        0   0 2
             2	
              [2]	
                 GETLOCAL     	   0	 ; a     2   [3]ADD        0   0 -1   ; - 100
             3	
              [2]	
                 GETLOCAL     	   2	 ; i     3   [4]GETTABLE   0   1 2
             4	
              [2]	
                 ADD          	              4   [4]RETURN     0   1
             5	
              [2]	
                 SETLOCAL     	   0	 ;   a
             6	
              [3]	
                 GETLOCAL     	   0	 ;   a
             7	
              [3]	
                 ADDI         	   100
             8	
              [3]	
                 SETLOCAL     	   0	 ;   a
             9	
              [4]	
                 GETLOCAL     	   1	 ;   t
            10	
              [4]	
                 GETINDEXED   	   2	 ;   i
            11	
              [4]	
                 SETLOCAL     	   0	 ;   a
            12	
              [4]	
                 END          	
2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	




2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3        local a,t,i
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	




2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3        local a,t,i
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i   a=a+i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	




2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3        local a,t,i
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i   a=a+i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
                                a=a+100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	




2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3        local a,t,i
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i   a=a+i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
                                a=a+100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i   a=t[i]
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	




2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3        local a,t,i
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i   a=a+i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
                                a=a+100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i   a=t[i]
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	
                                                      YO!
                ADD        ADDI
                                             ……
2010   2   24
Lua 5.1.4

  main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050)
  0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions
                1     [2]       ADD        0 0 2
                2     [3]       ADD        0 0 -1   ; - 100
                3     [4]       GETTABLE   0 1 2
                4     [4]       RETURN     0 1




2010   2   24
Lua 5.1.4

  main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050)
  0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions
                1     [2]       ADD        0 0 2              a=a+i
                2     [3]       ADD        0 0 -1   ; - 100
                3     [4]       GETTABLE   0 1 2
                4     [4]       RETURN     0 1




2010   2   24
Lua 5.1.4

  main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050)
  0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions
                1     [2]       ADD        0 0 2              a=a+i
                2     [3]       ADD        0 0 -1   ; - 100   a=a+100
                3     [4]       GETTABLE   0 1 2
                4     [4]       RETURN     0 1




2010   2   24
Lua 5.1.4

  main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050)
  0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions
                1     [2]       ADD        0 0 2              a=a+i
                2     [3]       ADD        0 0 -1   ; - 100   a=a+100
                3     [4]       GETTABLE   0 1 2              a=t[i]
                4     [4]       RETURN     0 1




2010   2   24
Lua 5.1.4

  main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050)
  0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions
                1         [2]     ADD        0 0 2              a=a+i
                2         [3]     ADD        0 0 -1   ; - 100   a=a+100
                3         [4]     GETTABLE   0 1 2              a=t[i]
                4         [4]     RETURN     0 1




                    local a,t,i                       ……



2010   2   24
2010   2   24
Lua   :-p




                            ……
2010   2   24
Lua


                Lua     12byte   tag+
                union




2010   2   24
ual machine with the new optimization for arrays can reduce the runnin
 up to 40%.
The complete code of Lua 5.0 is available for browsing at Lua’s web site
p://www.lua.org/source/5.0/.


                 program          Lua 4.0     Lua 5’       Lua 5.0
                 sum (2e7)         1.23     0.54   (44%) 0.54   (44%)
                 fibo (30)          0.95     0.68   (72%) 0.69   (73%)
                 ack (8)           1.00     0.86   (86%) 0.88   (88%)
                 random (1e6)      1.04     0.96   (92%) 0.96   (92%)
                 sieve (100)       0.93     0.82   (88%) 0.57   (61%)
                 heapsort (5e4)    1.08     1.05   (97%) 0.70   (65%)
                 matrix (50)       0.84     0.82   (98%) 0.59   (70%)

 re 10: Benchmarks (times in seconds; percentages are relative to Lua 4.0)
                      Lua


 2010   2   24
L u a V M




2010   2   24
Lua
                Lua



                              Lua
                      local




2010   2   24
Lua

2010   2   24
LuaVM
                Lua-Alchemy(Lua on Flash)

                kahlua(Lua on Java[J2ME])

                Yueliang(Lua on Lua)

                LuaCLR(Lua on .NET)

                Lua2js(Lua on JavaScript)

                        http://lua-users.org/wiki/
                LuaImplementations
2010   2   24
The Implementation of Lua 5.0

                The Evolution of Lua

                A No-Frills Introduction to Lua 5.1 VM
                Instructions

                Lua           lvm.c    lopcodes.h



2010   2   24
Lua




                Lua




2010   2   24
Lua
                              C



                Lua     JIT
                                  C



                VM
2010   2   24
2010   2   24

Mais conteúdo relacionado

Mais procurados

非同期処理の基礎
非同期処理の基礎非同期処理の基礎
非同期処理の基礎信之 岩永
 
暗号技術の実装と数学
暗号技術の実装と数学暗号技術の実装と数学
暗号技術の実装と数学MITSUNARI Shigeo
 
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないことNorishige Fukushima
 
定理証明支援系Coqについて
定理証明支援系Coqについて定理証明支援系Coqについて
定理証明支援系CoqについてYoshihiro Mizoguchi
 
今日からできる!簡単 .NET 高速化 Tips
今日からできる!簡単 .NET 高速化 Tips今日からできる!簡単 .NET 高速化 Tips
今日からできる!簡単 .NET 高速化 TipsTakaaki Suzuki
 
C++のビルド高速化について
C++のビルド高速化についてC++のビルド高速化について
C++のビルド高速化についてAimingStudy
 
Pythonによる黒魔術入門
Pythonによる黒魔術入門Pythonによる黒魔術入門
Pythonによる黒魔術入門大樹 小倉
 
C/C++プログラマのための開発ツール
C/C++プログラマのための開発ツールC/C++プログラマのための開発ツール
C/C++プログラマのための開発ツールMITSUNARI Shigeo
 
LR parsing
LR parsingLR parsing
LR parsingichikaz3
 
KiCadで雑に基板を作る チュートリアル
KiCadで雑に基板を作る チュートリアルKiCadで雑に基板を作る チュートリアル
KiCadで雑に基板を作る チュートリアル裕士 常田
 
BoostAsioで可読性を求めるのは間違っているだろうか
BoostAsioで可読性を求めるのは間違っているだろうかBoostAsioで可読性を求めるのは間違っているだろうか
BoostAsioで可読性を求めるのは間違っているだろうかYuki Miyatake
 
目grep入門 +解説
目grep入門 +解説目grep入門 +解説
目grep入門 +解説murachue
 
すごい constexpr たのしくレイトレ!
すごい constexpr たのしくレイトレ!すごい constexpr たのしくレイトレ!
すごい constexpr たのしくレイトレ!Genya Murakami
 
ARM CPUにおけるSIMDを用いた高速計算入門
ARM CPUにおけるSIMDを用いた高速計算入門ARM CPUにおけるSIMDを用いた高速計算入門
ARM CPUにおけるSIMDを用いた高速計算入門Fixstars Corporation
 
Wiresharkの解析プラグインを作る ssmjp 201409
Wiresharkの解析プラグインを作る ssmjp 201409Wiresharkの解析プラグインを作る ssmjp 201409
Wiresharkの解析プラグインを作る ssmjp 201409稔 小林
 
何となく勉強した気分になれるパーサ入門
何となく勉強した気分になれるパーサ入門何となく勉強した気分になれるパーサ入門
何となく勉強した気分になれるパーサ入門masayoshi takahashi
 
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日Kitsukawa Yuki
 
イベント駆動プログラミングとI/O多重化
イベント駆動プログラミングとI/O多重化イベント駆動プログラミングとI/O多重化
イベント駆動プログラミングとI/O多重化Gosuke Miyashita
 

Mais procurados (20)

非同期処理の基礎
非同期処理の基礎非同期処理の基礎
非同期処理の基礎
 
暗号技術の実装と数学
暗号技術の実装と数学暗号技術の実装と数学
暗号技術の実装と数学
 
Marp Tutorial
Marp TutorialMarp Tutorial
Marp Tutorial
 
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
 
定理証明支援系Coqについて
定理証明支援系Coqについて定理証明支援系Coqについて
定理証明支援系Coqについて
 
今日からできる!簡単 .NET 高速化 Tips
今日からできる!簡単 .NET 高速化 Tips今日からできる!簡単 .NET 高速化 Tips
今日からできる!簡単 .NET 高速化 Tips
 
C++のビルド高速化について
C++のビルド高速化についてC++のビルド高速化について
C++のビルド高速化について
 
Pythonによる黒魔術入門
Pythonによる黒魔術入門Pythonによる黒魔術入門
Pythonによる黒魔術入門
 
C/C++プログラマのための開発ツール
C/C++プログラマのための開発ツールC/C++プログラマのための開発ツール
C/C++プログラマのための開発ツール
 
LR parsing
LR parsingLR parsing
LR parsing
 
KiCadで雑に基板を作る チュートリアル
KiCadで雑に基板を作る チュートリアルKiCadで雑に基板を作る チュートリアル
KiCadで雑に基板を作る チュートリアル
 
BoostAsioで可読性を求めるのは間違っているだろうか
BoostAsioで可読性を求めるのは間違っているだろうかBoostAsioで可読性を求めるのは間違っているだろうか
BoostAsioで可読性を求めるのは間違っているだろうか
 
目grep入門 +解説
目grep入門 +解説目grep入門 +解説
目grep入門 +解説
 
すごい constexpr たのしくレイトレ!
すごい constexpr たのしくレイトレ!すごい constexpr たのしくレイトレ!
すごい constexpr たのしくレイトレ!
 
GitLab から GitLab に移行したときの思い出
GitLab から GitLab に移行したときの思い出GitLab から GitLab に移行したときの思い出
GitLab から GitLab に移行したときの思い出
 
ARM CPUにおけるSIMDを用いた高速計算入門
ARM CPUにおけるSIMDを用いた高速計算入門ARM CPUにおけるSIMDを用いた高速計算入門
ARM CPUにおけるSIMDを用いた高速計算入門
 
Wiresharkの解析プラグインを作る ssmjp 201409
Wiresharkの解析プラグインを作る ssmjp 201409Wiresharkの解析プラグインを作る ssmjp 201409
Wiresharkの解析プラグインを作る ssmjp 201409
 
何となく勉強した気分になれるパーサ入門
何となく勉強した気分になれるパーサ入門何となく勉強した気分になれるパーサ入門
何となく勉強した気分になれるパーサ入門
 
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
 
イベント駆動プログラミングとI/O多重化
イベント駆動プログラミングとI/O多重化イベント駆動プログラミングとI/O多重化
イベント駆動プログラミングとI/O多重化
 

Semelhante a 12 分くらいで知るLuaVM

Lab08Lab08.cppLab08Lab08.cpp.docx
Lab08Lab08.cppLab08Lab08.cpp.docxLab08Lab08.cppLab08Lab08.cpp.docx
Lab08Lab08.cppLab08Lab08.cpp.docxDIPESH30
 
Data structuresUsing java language and develop a prot.pdf
Data structuresUsing java language and develop a prot.pdfData structuresUsing java language and develop a prot.pdf
Data structuresUsing java language and develop a prot.pdfarmyshoes
 
Lab11.cppLab11.cpp.docx
Lab11.cppLab11.cpp.docxLab11.cppLab11.cpp.docx
Lab11.cppLab11.cpp.docxDIPESH30
 
Michal Malohlava presents: Open Source H2O and Scala
Michal Malohlava presents: Open Source H2O and Scala Michal Malohlava presents: Open Source H2O and Scala
Michal Malohlava presents: Open Source H2O and Scala Sri Ambati
 
Codigo fuente
Codigo fuenteCodigo fuente
Codigo fuenteBlackD10
 
create_FinalDB.sql ---------------------------------------.docx
create_FinalDB.sql ---------------------------------------.docxcreate_FinalDB.sql ---------------------------------------.docx
create_FinalDB.sql ---------------------------------------.docxfaithxdunce63732
 
Please fix my errors class Iterator public Construc.pdf
Please fix my errors   class Iterator  public  Construc.pdfPlease fix my errors   class Iterator  public  Construc.pdf
Please fix my errors class Iterator public Construc.pdfkitty811
 

Semelhante a 12 分くらいで知るLuaVM (11)

Lab08Lab08.cppLab08Lab08.cpp.docx
Lab08Lab08.cppLab08Lab08.cpp.docxLab08Lab08.cppLab08Lab08.cpp.docx
Lab08Lab08.cppLab08Lab08.cpp.docx
 
Data structuresUsing java language and develop a prot.pdf
Data structuresUsing java language and develop a prot.pdfData structuresUsing java language and develop a prot.pdf
Data structuresUsing java language and develop a prot.pdf
 
Lab11.cppLab11.cpp.docx
Lab11.cppLab11.cpp.docxLab11.cppLab11.cpp.docx
Lab11.cppLab11.cpp.docx
 
Permute
PermutePermute
Permute
 
ES6 - Level up your JavaScript Skills
ES6 - Level up your JavaScript SkillsES6 - Level up your JavaScript Skills
ES6 - Level up your JavaScript Skills
 
Quiz using C++
Quiz using C++Quiz using C++
Quiz using C++
 
About Go
About GoAbout Go
About Go
 
Michal Malohlava presents: Open Source H2O and Scala
Michal Malohlava presents: Open Source H2O and Scala Michal Malohlava presents: Open Source H2O and Scala
Michal Malohlava presents: Open Source H2O and Scala
 
Codigo fuente
Codigo fuenteCodigo fuente
Codigo fuente
 
create_FinalDB.sql ---------------------------------------.docx
create_FinalDB.sql ---------------------------------------.docxcreate_FinalDB.sql ---------------------------------------.docx
create_FinalDB.sql ---------------------------------------.docx
 
Please fix my errors class Iterator public Construc.pdf
Please fix my errors   class Iterator  public  Construc.pdfPlease fix my errors   class Iterator  public  Construc.pdf
Please fix my errors class Iterator public Construc.pdf
 

Mais de Yuki Tamura

失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)
失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)
失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)Yuki Tamura
 
ネイティブ開発アンチパターン
ネイティブ開発アンチパターンネイティブ開発アンチパターン
ネイティブ開発アンチパターンYuki Tamura
 
デザインパターンとは何か?
デザインパターンとは何か?デザインパターンとは何か?
デザインパターンとは何か?Yuki Tamura
 
ソーシャルアプリ開発におけるチーム開発戦略後半
ソーシャルアプリ開発におけるチーム開発戦略後半ソーシャルアプリ開発におけるチーム開発戦略後半
ソーシャルアプリ開発におけるチーム開発戦略後半Yuki Tamura
 
ソーシャルアプリ開発におけるチーム開発戦略前半
ソーシャルアプリ開発におけるチーム開発戦略前半ソーシャルアプリ開発におけるチーム開発戦略前半
ソーシャルアプリ開発におけるチーム開発戦略前半Yuki Tamura
 
C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)Yuki Tamura
 
最速の言語Lua ~Python Hack-a-thon #3~
最速の言語Lua ~Python Hack-a-thon #3~最速の言語Lua ~Python Hack-a-thon #3~
最速の言語Lua ~Python Hack-a-thon #3~Yuki Tamura
 

Mais de Yuki Tamura (9)

失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)
失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)
失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)
 
ネイティブ開発アンチパターン
ネイティブ開発アンチパターンネイティブ開発アンチパターン
ネイティブ開発アンチパターン
 
デザインパターンとは何か?
デザインパターンとは何か?デザインパターンとは何か?
デザインパターンとは何か?
 
ソーシャルアプリ開発におけるチーム開発戦略後半
ソーシャルアプリ開発におけるチーム開発戦略後半ソーシャルアプリ開発におけるチーム開発戦略後半
ソーシャルアプリ開発におけるチーム開発戦略後半
 
ソーシャルアプリ開発におけるチーム開発戦略前半
ソーシャルアプリ開発におけるチーム開発戦略前半ソーシャルアプリ開発におけるチーム開発戦略前半
ソーシャルアプリ開発におけるチーム開発戦略前半
 
Boost study#4
Boost study#4Boost study#4
Boost study#4
 
Djangoの話
Djangoの話Djangoの話
Djangoの話
 
C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)
 
最速の言語Lua ~Python Hack-a-thon #3~
最速の言語Lua ~Python Hack-a-thon #3~最速の言語Lua ~Python Hack-a-thon #3~
最速の言語Lua ~Python Hack-a-thon #3~
 

Último

presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesBoston Institute of Analytics
 

Último (20)

presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 

12 分くらいで知るLuaVM

  • 1. LuaVM 1 2 L u a V M 2010 2 24
  • 2. blog: hatena: Isoparametric twitter: isoparametric name: (http://d.hatena.ne.jp/Isoparametric/) 2010 2 24
  • 3. Lua? Lua LL ANSI C 2010 2 24
  • 4. LuaVM Lua Lua C if for Lua Lua VM 2010 2 24
  • 5. Lua VM VM 2010 2 24
  • 6. I think that one cannot completely grok a scripting language, or any complex system for that matter, without slitting the animal open and examining the entrails, organs and other yucky stuff that isn’t normally seen. 2010 2 24
  • 7. LuaVM VM(5.0 ) Windows 2010 2 24
  • 8. LuaVM 2010 2 24
  • 9. VM CPU ……CPU …… …… PC…… 2010 2 24
  • 10. VM CPU ……CPU …… …… PC…… 2010 2 24
  • 11. /*---------------------------------------------------------------------- 38 (5.1.4 ) name args description ------------------------------------------------------------------------*/ OP_MOVE,/* A B R(A) := R(B) */ OP_LOADK,/* A Bx R(A) := Kst(Bx) */ OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ R(X) X OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ OP_GETUPVAL,/* A B R(A) := UpValue[B] */ OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */ OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */ OP_SETUPVAL,/* A B UpValue[B] := R(A) */ OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ K(X) X OP_SUB,/* OP_MUL,/* A B C R(A) := RK(B) - RK(C) A B C R(A) := RK(B) * RK(C) */ */ OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ OP_UNM,/* A B R(A) := -R(B) */ OP_NOT,/* A B R(A) := not R(B) */ OP_LEN,/* A B R(A) := length of R(B) */ OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ RK(X) R(X) OP_JMP,/* OP_EQ,/* OP_LT,/* sBx pc+=sBx A B C if ((RK(B) == RK(C)) ~= A) then pc++ A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ */ */ OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ K(X-k) OP_TEST,/* A C if not (R(A) <=> C) then pc++ OP_TESTSET,/* */ A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ OP_FORLOOP,/* A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/ OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ 2010 2 24
  • 12. /*---------------------------------------------------------------------- 38 (5.1.4 ) name args description ------------------------------------------------------------------------*/ OP_MOVE,/* A B R(A) := R(B) */ OP_LOADK,/* A Bx R(A) := Kst(Bx) */ OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ R(X) X OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ OP_GETUPVAL,/* A B R(A) := UpValue[B] */ OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */ OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */ OP_SETUPVAL,/* A B UpValue[B] := R(A) */ OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ K(X) X OP_SUB,/* OP_MUL,/* A B C R(A) := RK(B) - RK(C) A B C R(A) := RK(B) * RK(C) */ */ OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ OP_UNM,/* A B R(A) := -R(B) */ OP_NOT,/* A B R(A) := not R(B) */ OP_LEN,/* A B R(A) := length of R(B) */ OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ RK(X) R(X) OP_JMP,/* OP_EQ,/* OP_LT,/* sBx pc+=sBx A B C if ((RK(B) == RK(C)) ~= A) then pc++ A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ */ */ OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ K(X-k) OP_TEST,/* A C if not (R(A) <=> C) then pc++ OP_TESTSET,/* */ A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ OP_FORLOOP,/* A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/ OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ 2010 2 24
  • 13. MOVE LOADK LOADBOOL LOADNIL nil GETUPVAL GETGLOBAL GETTABLE SETGLOBAL SETUPVAL SETTABLE 2010 2 24
  • 14. NEWTABLE SELF ADD SUB MUL DIV MOD POW UNM NOT 2010 2 24
  • 15. LEN CONCAT JMP EQ LT LE TEST TESTSET CALL TAILCALL 2010 2 24
  • 16. RETURN FORLOOP for FORPREP FORPREP for TFORLOOP for SETLIST CLOSE CLOSURE VARARG 2010 2 24
  • 17. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 OP A B C OP A Bx OP A sBx Figure 6: Instruction layout OP 6bit function max (a,b) local m = a 1 MOVE 2 0 0 ; R(2) = R(0) if b > a then 2 LT 0 0 1 ; R(0) < R(1) ? m = b end 3 4 A JMP MOVE 1 2 1 0 ; ; 8bit to 5 (4+1) R(2) = R(1) return m 5 RETURN 2 2 0 ; return R(2) end 6 B C 9bit RETURN 0 1 0 ; return 18bit 7: Bytecode for a Lua function Figure Bx(unsigned) or sBx(signed) a register or a constant (using the representation RK(X) explained above). With this format, several typical operations in Lua can be coded in a single instruction. 2010 2 24
  • 18. OP A Bx OP A sBx Figure 6: Instruction layout function max (a,b) local m = a 1 MOVE 2 0 0 ; R(2) = R(0) if b > a then 2 LT 0 0 1 ; R(0) < R(1) ? m = b 3 JMP 1 ; to 5 (4+1) end 4 MOVE 2 1 0 ; R(2) = R(1) return m 5 RETURN 2 2 0 ; return R(2) end 6 RETURN 0 1 0 ; return Figure 7: Bytecode for a Lua function a register or a constant (using the representation RK(X) explained above). With this format, several typical operations in Lua can be coded in a single instruction. For instance, the increment of a local variable, such as a = a + 1, is coded as ADD x x y, where x represents the register holding the local variable and y represents the constant 1. An assignment like a = b.f, when both a and b are local variables, is also coded as the single instruction GETTABLE x y z, where x is the register for a, y is the register for b, and z is the index of the string constant "f". (In Lua, the syntax b.f is syntactic sugar for b["f"], that is, b 2010 2 24 indexed by the string "f".)
  • 19. OP A Bx OP A sBx Figure 6: Instruction layout function max (a,b) local m = a 1 MOVE 2 0 0 ; R(2) = R(0) if b > a then 2 LT 0 0 1 ; R(0) < R(1) ? m = b 3 JMP 1 ; to 5 (4+1) end 4 MOVE 2 1 0 ; R(2) = R(1) return m 5 RETURN 2 2 0 ; return R(2) end 6 RETURN 0 1 0 ; return Figure 7: Bytecode for a Lua function R(0) == a, R(1) == b a register or a constant (using the representation RK(X) explained above). With this format, several typical operations in Lua can be coded in a single instruction. LT For instance, the increment of a local variable, such as a = a + 1, is coded as ADD x x y, where x represents the register holding the local variable and y PC++ JMP represents the constant 1. An assignment like a = b.f, when both a and b are local variables, is also coded as the single instruction GETTABLE x y z, where x OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ is the register for a, y is the register for b, and z is the index of the string constant "f". (In Lua, the syntax b.f is syntactic sugar for b["f"], that is, b */ 2010 2 24 indexed by the string "f".)
  • 20. 256 B/C 9bit==1bit Lua 18bit (131071 ) 2010 2 24
  • 21. VM Lua VM lua -l 2010 2 24
  • 22. Lua 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 constructors • • • • • • • • • • • • garbage collection • • • • • • • • • • • • extensible semantics ◦ ◦ • • • • • • • • • • support for OOP ◦ ◦ • • • • • • • • • • long strings ◦ ◦ ◦ • • • • • • • • • debug API ◦ ◦ ◦ • • • • • • • • • external compiler ◦ ◦ ◦ ◦ • • • • • • • • vararg functions ◦ ◦ ◦ ◦ ◦ • • • • • • • pattern matching ◦ ◦ ◦ ◦ ◦ • • • • • • • conditional compilation ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ anonymous functions, closures ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • debug library ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • multi-state API ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • for statement ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • long comments ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • full lexical scoping ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • booleans ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • coroutines ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • incremental garbage collection ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • module system ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 libraries 4 4 4 4 4 4 4 4 5 6 8 9 built-in functions 5 7 11 11 13 14 25 27 35 0 0 0 API functions 30 30 30 30 32 32 33 47 41 60 76 79 vm type (stack × register) S S S S S S S S S S R R vm instructions 64 65 69 67 67 68 69 128 64 49 35 38 keywords 16 16 16 16 16 16 16 16 16 18 21 21 other tokens 21 21 23 23 23 23 24 25 25 25 24 26 Table 1. The evolution of features in Lua. 2010 2 24
  • 23. Lua 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 constructors • • • • • • • • • • • • garbage collection • • • • • • • • • • • • extensible semantics ◦ ◦ • • • • • • • • • • support for OOP ◦ ◦ • • • • • • • • • • long strings ◦ ◦ ◦ • • • • • • • • • debug API ◦ ◦ ◦ • • • • • • • • • external compiler ◦ ◦ ◦ ◦ • • • • • • • • vararg functions ◦ ◦ ◦ ◦ ◦ • • • • • • • pattern matching ◦ ◦ ◦ ◦ ◦ • • • • • • • conditional compilation ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ anonymous functions, closures ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • debug library ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • multi-state API ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • for statement ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • long comments ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • full lexical scoping ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • booleans ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • coroutines ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • incremental garbage collection ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • module system ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 libraries 4 4 4 4 4 4 4 4 5 6 8 9 built-in functions 5 7 11 11 13 14 25 27 35 0 0 0 API functions 30 30 30 30 32 32 33 47 41 60 76 79 vm type (stack × register) S S S S S S S S S S R R vm instructions 64 65 69 67 67 68 69 128 64 49 35 38 keywords 16 16 16 16 16 16 16 16 16 18 21 21 other tokens 21 21 23 23 23 23 24 25 25 25 24 26 Table 1. The evolution of features in Lua. 2010 2 24
  • 24. Lua 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 constructors • • • • • • • • • • • • garbage collection • • • • • • • • • • • • extensible semantics ◦ ◦ • • • • • • • • • • support for OOP ◦ ◦ • • • • • • • • • • long strings ◦ ◦ ◦ • • • • • • • • • debug API ◦ ◦ ◦ • • • • • • • • • external compiler ◦ ◦ ◦ ◦ • • • • • • • • vararg functions ◦ ◦ ◦ ◦ ◦ • • • • • • • pattern matching ◦ ◦ ◦ ◦ ◦ • • • • • • • conditional compilation ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ anonymous functions, closures ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • debug library ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • multi-state API ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • for statement ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • long comments ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • full lexical scoping ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • booleans ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • coroutines ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • incremental garbage collection ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • module system ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 libraries 4 4 4 4 4 4 4 4 5 6 8 9 built-in functions 5 7 11 11 13 14 25 27 35 0 0 0 API functions 30 30 30 30 32 32 33 47 41 60 76 79 vm type (stack × register) S S S S S S S S S S R R vm instructions 64 65 69 67 67 68 69 128 64 49 35 38 keywords 16 16 16 16 16 16 16 16 16 18 21 21 other tokens 21 21 23 23 23 23 24 25 25 25 24 26 Table 1. The evolution of features in Lua. 2010 2 24
  • 25. VM V S V M 2010 2 24
  • 26. VM VM push VM VM 2010 2 24
  • 27. VM Lua VM Lua local push/pop 2010 2 24
  • 28. LuaVM Lua 2010 2 24
  • 29. == == 2010 2 24
  • 30. == == Lua VM …… VM 2010 2 24
  • 31. 2010 2 24
  • 32. LuaVM 4byte Lua 1byte 2byte 2010 2 24
  • 33. ADD ADD ADD ADD + 2010 2 24
  • 34. JavaVM goto 2byte) 2byte 2010 2 24
  • 35. Lua 4byte Lua 1 or 2byte 2010 2 24
  • 36. local a,t,i a=a+i a=a+100 YO a=t[i] 2010 2 24
  • 37. local a,t,i a=a+i a=a+100 YO a=t[i] 1 [1] PUSHNIL 3 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 38. local a,t,i a=a+i a=a+100 YO a=t[i] 1 [1] PUSHNIL 3 1 [2]ADD 0 0 2 2 [2] GETLOCAL 0 ; a 2 [3]ADD 0 0 -1 ; - 100 3 [2] GETLOCAL 2 ; i 3 [4]GETTABLE 0 1 2 4 [2] ADD 4 [4]RETURN 0 1 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 39. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 40. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 local a,t,i 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 41. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 local a,t,i 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i a=a+i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 42. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 local a,t,i 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i a=a+i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 a=a+100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 43. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 local a,t,i 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i a=a+i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 a=a+100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i a=t[i] 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 44. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 local a,t,i 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i a=a+i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 a=a+100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i a=t[i] 11 [4] SETLOCAL 0 ; a 12 [4] END YO! ADD ADDI …… 2010 2 24
  • 45. Lua 5.1.4 main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050) 0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions 1 [2] ADD 0 0 2 2 [3] ADD 0 0 -1 ; - 100 3 [4] GETTABLE 0 1 2 4 [4] RETURN 0 1 2010 2 24
  • 46. Lua 5.1.4 main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050) 0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions 1 [2] ADD 0 0 2 a=a+i 2 [3] ADD 0 0 -1 ; - 100 3 [4] GETTABLE 0 1 2 4 [4] RETURN 0 1 2010 2 24
  • 47. Lua 5.1.4 main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050) 0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions 1 [2] ADD 0 0 2 a=a+i 2 [3] ADD 0 0 -1 ; - 100 a=a+100 3 [4] GETTABLE 0 1 2 4 [4] RETURN 0 1 2010 2 24
  • 48. Lua 5.1.4 main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050) 0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions 1 [2] ADD 0 0 2 a=a+i 2 [3] ADD 0 0 -1 ; - 100 a=a+100 3 [4] GETTABLE 0 1 2 a=t[i] 4 [4] RETURN 0 1 2010 2 24
  • 49. Lua 5.1.4 main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050) 0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions 1 [2] ADD 0 0 2 a=a+i 2 [3] ADD 0 0 -1 ; - 100 a=a+100 3 [4] GETTABLE 0 1 2 a=t[i] 4 [4] RETURN 0 1 local a,t,i …… 2010 2 24
  • 50. 2010 2 24
  • 51. Lua :-p …… 2010 2 24
  • 52. Lua Lua 12byte tag+ union 2010 2 24
  • 53. ual machine with the new optimization for arrays can reduce the runnin up to 40%. The complete code of Lua 5.0 is available for browsing at Lua’s web site p://www.lua.org/source/5.0/. program Lua 4.0 Lua 5’ Lua 5.0 sum (2e7) 1.23 0.54 (44%) 0.54 (44%) fibo (30) 0.95 0.68 (72%) 0.69 (73%) ack (8) 1.00 0.86 (86%) 0.88 (88%) random (1e6) 1.04 0.96 (92%) 0.96 (92%) sieve (100) 0.93 0.82 (88%) 0.57 (61%) heapsort (5e4) 1.08 1.05 (97%) 0.70 (65%) matrix (50) 0.84 0.82 (98%) 0.59 (70%) re 10: Benchmarks (times in seconds; percentages are relative to Lua 4.0) Lua 2010 2 24
  • 54. L u a V M 2010 2 24
  • 55. Lua Lua Lua local 2010 2 24
  • 56. Lua 2010 2 24
  • 57. LuaVM Lua-Alchemy(Lua on Flash) kahlua(Lua on Java[J2ME]) Yueliang(Lua on Lua) LuaCLR(Lua on .NET) Lua2js(Lua on JavaScript) http://lua-users.org/wiki/ LuaImplementations 2010 2 24
  • 58. The Implementation of Lua 5.0 The Evolution of Lua A No-Frills Introduction to Lua 5.1 VM Instructions Lua lvm.c lopcodes.h 2010 2 24
  • 59. Lua Lua 2010 2 24
  • 60. Lua C Lua JIT C VM 2010 2 24
  • 61. 2010 2 24