SlideShare uma empresa Scribd logo
1 de 49
Baixar para ler offline
MOTTO:
The difficult we do immediately,
The impossible takes a little longer

Ames Research Center, Space Portal/Emerging Space Office

Microgravity:
The future of innovation
Ioana Cozmuta
Science and Technology
Corporation
Space Portal, NASA Ames
Research Center
For further inquiries including citation or
distribution of material contained herein please
contact: Ioana.cozmuta AT nasa.gov

STC
The value of ISS/microgravity research
Ames Research Center, Space Portal/Emerging Space Office

STC

ISS-US taxpayers investment ~$70 billion spent over 30 years
What is the ISS’s Return on Investment ? Return on Innovation?
Reformulate question:
What is the cost of NOT innovating and NOT exploring in
microgravity?
Resources, capabilities
Yes
Ground
Desired outcome

State of the art
No

Disruptive innovation
and technologies

Space
otherwise-not-accessible-knowledge

Keep track of:

Publications

Patents

Spin-offs

Comprehensive, searchable, public microg database
International Space Station Truss
Ames Research Center, Space Portal/Emerging Space Office

STC

Challenged by the extreme environment, severe mass limitations
and the innate desire to explore the Universe in which we live,
humanity has developed many innovative space technologies
and acquired unique knowledge with great ancillary benefits here
on Earth.
3
Ames Research Center, Space Portal/Emerging Space Office

STC

1. Connecting the dots: products in our daily lives emerged
out of microgravity research
–

Microgravity impact for basic science

2. Capabilities
3. Cultural Adjustments
opportunities

for

improved

outcomes

and
PRODUCT:
Metallic
Glass
hardware/Liquidmetal
Technologies & Materion (mass scale manufacturing)
Ames Research Center, Space Portal/Emerging Space Office

STC

Adopting this technology are products manufactured by Motorola,
5
Samsung and LG Electronics, Sandisk, Apple
Microgravity research:
Viscous Liquid Foam-Bulk Metallic Glass
Ames Research Center, Space Portal/Emerging Space Office

STC

Bulk Metallic Glasses are a new family of glasses obtained by
undercooling an alloy (Zr, Ti, Cu, Ni, Be) and forming a solid,
non-crystalline structure under precise conditions (STS 1990’s)
Properties:
-low surface roughness: <0.05mm (Cu, steel, Fe=5-150)
-high yield strength: 1900 MPa (alumina, aluminum, boron
carbide ~100-300 MPa)
-high corrosion and wear resistance (>336 hours)
-unique acoustical properties
- lightweight with considerably reduced thermal conductivity.
Caltech has an Electrostatic Levitation (ESL) facility for
containerless materials processing. It is used to manufacture
glass-forming alloys and measure thermal properties of
materials

SPINOFF: http://liquidmetal.com/

6
PRODUCT: Optical fibers for telecommunications, optical
computers, etc
Ames Research Center, Space Portal/Emerging Space Office

STC

IBM –integrates optical computing onto standard (90 nm) silicon
7
chips
ISS: ZBLAN-fluoride glass fiber/Physical Optics
Corporation

Ames Research Center, Space Portal/Emerging Space Office

STC

Fluoride Glass Fibers (blend of zirconium, barium,
lanthanum, aluminum and sodium) uniquely manufactured in
space. On Earth gravity causes convection or mixing in a
melt thus the melt becomes more fluid/less viscous and
tends to crystallize before glass can form.
-attenuation rate ~0.0001dB/km (current Si-based fibers
have an attenuation rate of 0.2dB/km)
-ensure wide spectral band optical transmission for satellite
track systems
-enable expansion of the detection range from UV to midinfrared wavelengths (for satellite spectral identification)
ZBLAN-prepares superior infrared transmitting optical fibers
with applications to both optical and quantum computers
Payload is selfcontained and automated

(left) a defect-free ZBLAN fiber
pulled during a low-g arc aboard
the KC-135; (right) a crystallized
fiber pulled from the same
apparatus under 1-g.

8
PRODUCT: cosmetics, household items, packaging
Ames Research Center, Space Portal/Emerging Space Office

P&G studies systems in space that we will all benefit from in 9
everyday life: improved shelf life, enhanced product quality and

STC
ISS: binary colloids and phase diagrams
Ames Research Center, Space Portal/Emerging Space Office

STC

With gravity turned on, a binary mixture prepared with a composition between the binodal and the spinodal curves
spontaneously decomposes, quickly driving the composition to the coexistence curve. Microgravity can 'fixate'
unstable regions in the phase diagram.
The spinodal is the limit of stability of a solution, denoting the boundary of absolute instability of a solution to
decomposition into multiple phases. Below this curve, "infinitesimally small fluctuations in composition and density
will lead to phase separation via spinodal decomposition. Outside of the curve, but below the binodal
10
(coexistence) curve, the solution is metastable with respect to fluctuations. It is in this region where microgravity
experiments can afford new materials with new properties.
ISS: binary colloids and phase diagrams
Courtesy: NASA/Peter Lu et al., Harvard University

Ames Research Center, Space Portal/Emerging Space Office

STC

BCAT–3 critical point samples evolving in microgravity. Colloidal/polymer mixtures that are near the critical point
are already starting to phase separate into two components: a colloid-rich phase (blue areas) and a colloid-poor
phase (black areas). The quickly changing dynamic data captured in these photographs will help determine the
11
boundary conditions for future models of critical behavior. The long-term observation of which samples phase
separate will allow to precisely determine the critical point of this colloidal mixture. (Colloidal engineering)
ISS: binary colloids and surface crystallization
Courtesy: NASA/Arjun Yodh and Jiang Zhang, Penn State

Ames Research Center, Space Portal/Emerging Space Office

STC

BCAT–3 two months following mixing. The pink region is the phase separation region showing possible indication
of surface crystallization. The black asterisk indicates possible bulk crystal nucleation. Results help scientists
develop fundamental physics concepts previously unobserved due to the effects of gravity. Ordered arrays of
12
these micron-sized particles may be ideal for the development of next generation optical devices.
PRODUCT: ZEOLITE CRYSTALS
Ames Research Center, Space Portal/Emerging Space Office

STC

Honda hydrogen
storage tanks
Lanfax Labs:
Phosphate free
detergents
• The reversible physisorption of hydrogen on
porous solid state materials is important for
storing hydrogen and scales with the surface
area
• Reduction
of
by-products,
increased
cleaning/detoxification efficacy

13
ISS: ZEOLITES CRYSTAL GROWTH
Ames Research Center, Space Portal/Emerging Space Office
STC
Zeolites are microporous, aluminosilicate minerals with pore diameters less than 2nm. The pores make zeolites
highly adsorbent; materials are attracted to the zeolite and adhere to the surface without changing state.
Production challenges for synthetically produced zeolites are:
1.Elucidation of the nucleation and growth mechanism of zeolites
2.Controlling zeolite crystal size and growth
3.Preparation of extra-large pore zeolites and layered zeolites
4.Synthesis of zeolitized mesoporous materials and chiral zeolites
5.Preparation of true molecular sieve membranes
The ZCG investigations examined how subtle changes in the chemical formulation affected nucleation and
growth of zeolite crystals. The microgravity environment allowed researchers to grow larger (average >10%) and
higher-quality crystals. The nutrients have to be added to the solution at a precise moment after onset of
crystallization to result in larger crystals. These crystals have a number of useful commercial applications as
catalysts and absorbents, chemical sensors.
SUSTAINABILITY: Everywhere we go today we come across pollutionZEOLITES =“nature’s detoxifier

Zeolite Crystals grown on the
ground (left) are smaller than
the ones grown in space (right)

Scanning Electron Microscopy image of flight (a)
and Earth (b) control zeolite crystals
PRODUCT: SE-FIT SOFTWARE; Advanced Wicking
Ames Research Center, Space Portal/Emerging Space Office

STC

• Software design of fluid systems for
spacecraft life support, thermal
control, cryogen and liquid propellant
management (bubbles, droplets and
unexpected wetting have significant
effect on system performance, crew
activity and comfort)
• Complex interface design for
microfluidic devices
• Capillary action and fluid surface
tension in small scale devices

15
ISS: Capillarity and bubble migration in mg
Ames Research Center, Space Portal/Emerging Space Office
STC
Single and multi-bubble migration and phase separation are
driven passively by specific control of container shape. A
taper in a polygonal sectioned conduit leads to capillary
pumping of liquid from right to left driving bubble left to
right. Application: fluid systems aboard spacecraft to
separate and store fluids by phase without moving parts
SUSTAINABILITY: Use knowledge from
Microgravity to design better tools that on earth are
used for microfluidic applications for energy and
sustainability:
• enzymatic conversion of biofuels
• rapid microfluidic analysis of cellular processes
in species with significant impact on the global
carbon cycle
• biohydrogen generation
Various container shapes change transition in
fluid location. As a central vane is rotated in the
elliptic cylinder container, critical wetting
geometries are established leading to wicking
along the vane-wall gap and/or a shift of fluid from
right to left
SPINOFF

16
ISS: Advanced Environmental Monitoring and Control
Ames Research Center, Space Portal/Emerging Space Office

STC

The JPL Electronic Nose (ENose) is a full-time, continuously operating event monitor designed to detect air
contamination from spills and leaks in the crew habitat in the International Space Station. It fills the longstanding gap between onboard alarms and complex analytical instruments. ENose provides rapid, early
identification and quantification of atmospheric changes caused by chemical species to which it has been
trained.
•
•

Use the electronic nose for dangerous airborne chemicals, monitor cleanup
processes after a leak or a spill, etc
Sniffer for lung and brain cancer detection (City of Hope, World Brain Mapping)

17
PRODUCT: Photodynamic therapy
Ames Research Center, Space Portal/Emerging Space Office

STC

SpectraLife-custom fabricated monochromatic array of
GaAiAs light emitting diodes to emit diffused
monochromatic light
Prof. Harry T Whelan (Medical College of Wisconsin)
uses photodynamic therapy as an unprecedented,
unique treatment of brain tumors in children and adults
(Clinical Trials.gov identifier: NCT01682746)
Photodynamic therapy uses light mediated activation of
a photosensitizer (Photofrin) that is selectively
accumulated in the target tissue causing tumor cell
destruction through singlet oxygen production
CERES-solid state modular LED lighting system for life
science applications (JSC use for small-scale food plant
production)
18

Quantum Devices, Inc: www.quantumdev.com/
Ames Research Center, Space Portal/Emerging Space Office
ISS INVESTIGATION:Advanced Astroculture (ADVASC)

STC

Objectives: To understand the effects of gravity on plant life by:
1. Determine if plants can complete their seed-to-seed life cycle in microgravity
3. Determine the effects of microgravity on gene expression levels

Secondary objective:
Develop a plant growth chamber w controlled environmental parameters
Light source used to simulate photosynthesis in the growth chamber needs to:
1. Deliver high intensity light energy with specific peak photon wavelengths
2. Should not heat/overheat chamber

SUSTAINABILITY:
Light source (light
emitting diode) used for
mimicking natural light
indoors?

SPINOFF: Quantum Devices Inc/QBMI PhotoMedicine
1. PDT (Photodynamic Therapy) for cancer treatment: intravenous injection of a
photosensitizer that accumulates preferentially in cancer cells. Activated by the light
source the photosensitizer results in free radical generation and cell death
2. Increased effectiveness of wound healing upon exposure to the light

SPINOFF:
http://www.quantumdev.co
m/

Second Phase of Clinical Trials in the US and foreign hospitals with extremely good results from the
first round of tests (healing of bone marrow transplant patients, mucositis, pediatric brain cancer)
PRODUCT: BrightMark Tissue Site Marker/NuVue Chemo
Ames Research Center, Space Portal/Emerging Space Office

STC

Diagnostic: Microcapsule for biopsy site marker
lodged in the interstitial space of tissue without
migration for ultrasound monitoring via repeat
biopsies, or for marking the site before and/or after
surgery.
Current tissue site markers typically
consist of metal clips that tend to migrate within
tissue, and so do not reliably mark the targeted
tissue with accuracy over the long term.
Therapy: Encapsulated FDA approved generic chemotherapy drugs
for the deposition, retention and imaging of the drug in the tissue;
microcapsules designed for release in a specific time desired
timeframe

SPIN-OFF: http://www.nuvuetherapeutics.com/

20
PRODUCT: CHI hair styling products/Farouk
Ames Research Center, Space Portal/Emerging Space Office

STC

1. Nanoceramic materials used in the CHI hair iron,
brushes, curling irons, nail lacquers and hair dryers
2. Liquid formulation line for hair color protection,
nutrition and conditioning
The combination of (1) and (2) improves moisture
retention during the styling process
1. Incorporation of nanosiliver particles inhibits
microbial growth
2. Scalp healing and stimulation of growth phase of
hair follicles that have become dormant
Microgravity finding:
-liquid filled microballoons formed an outer membrane in space
-ceramic nanoparticles containing unique mixture of metal oxides for
controlled delivery
-efficiency of microencapsulation of three antioxidants
-application of near-infrared light for improved skin healing and bone cell
replacement in astronauts
Farouk Systems: http://www.farouk.com/ official hair care sponsor of Miss
21
Universe-first experiments sent in outer space by a hair care company
ISS: microencapsulation

Courtesy: NASA/Denis Morrison

Ames Research Center, Space Portal/Emerging Space Office

Microencapsulation containing anti-tumor drugs
made on ISS

STC

Single cell microencapsulation

The Microencapsulation Electrostatic Processing System-II experiment (MEPS-II), included innovative
encapsulation of several different anti-cancer drugs, magnetic triggering particles, and encapsulation of genetically
engineered DNA. The experiment system improved on existing microencapsulation technology by using
microgravity to modify the fluid mechanics, interfacial behavior, and biological processing methods as compared to
the way the microcapsules would be formed in gravity. Two immiscible liquids were combined in such a way that
surface tension forces (rather than fluid shear) dominated at the interface of the fluids. The significant performance
of the space-produced microcapsules as a cancer treatment delivery system (Le Pivert et al. 2004) motivated the
development of the Pulse Flow Microencapsulation System (PFMS), which is an Earth-based system that can
replicate the quality of the microcapsules created in space.
22
SPIN-OFF: http://www.nuvuetherapeutics.com/
PRODUCT: ZEN perfume by Shiseido
Ames Research Center, Space Portal/Emerging Space Office

STC

23
The most romantic space experiment?
Ames Research Center, Space Portal/Emerging Space Office

STC

A lab technician demonstrates the use of a
silicon fiber to collect scent-molecules from a
rose. Credit: International Flavors & Fragrances.
How do roses smell in space? Overnight
Scentsation cultivated by International Flavors
and Fragrances.
In microgravity the rose produced fever volatiles than it did on Earth but the fragrance that it did generate was
critically altered. Scents were collected using a tiny silicon fiber coated with a special liquid to which molecules
around the flower petal adhere. The fragrance was analyzed on ground and it is made up of nearly 200 different
compounds. Every sampling of the rose was different and the average of those samplings resulted in a new
fragrance incorporated in ZEN
24
PRODUCT: Perfume ZEN by Shiseido
PRODUCT:
engineering

Microgravity-enhanced

genetic

plant

Ames Research Center, Space Portal/Emerging Space Office

STC

Agriculture and food production:
transgenic soybeans for more
appetizing taste, texture; pest
resistance; transfer of one plant
characteristic to another (cotton, corn)
Target market: $14 billions a year
(even 1% product improvement has
significant interest)
Microgravity finding:
• In the low gravity environment of space, the transfer
of genetic information from one kind of plat to
another is enhanced due to lack of gravity induced
buoyancy and convection effects
• Leads to improved or new agricultural products

25
PRODUCT: Low-lignin OR high-lignin trees
Ames Research Center, Space Portal/Emerging Space Office

STC

• Environmental friendly/less
expensive paper production: lowlignin trees would reduce the
necessity of chemically removing
lignin from trees
• Stronger wood products for the
lumber industry: high-lignin trees
Microgravity finding/BioServe
•Plants growing in space produce less lignin
•The reminder metabolic energy leads to production of
secondary metabolites used by the pharmaceutical industry ($50
billion/year)
Key to BioServe success was the development of a set of
generic space-flight hardware that can be shared by multiple life
26
science disciplines –increased/shared utilization
PRODUCT: Proleukin/Chiron and Alendronate/Merck
Ames Research Center, Space Portal/Emerging Space Office

STC

• Space was used to advance the
development of drugs
• Proleukin: used for treating metastatic
renal cell cancer, immune disorders,
influenza, some infections due to AIDS
• Biophosphonates/Alendronate: used
effectively to maintain bone mass, slow
down evolution of Paget disease,
osteoporosis

Microgravity finding:
• Space induced immune-system depression in mice was used
to test effectiveness of the drug resulting in a shortened
testing schedule for the drug
• Astronauts treated with Biophosphonates showed reduced
27
bone loss and reduced risk of renal stone formation
Microtumors to validate chemo-drugs efficacy
Ames Research Center, Space Portal/Emerging Space Office

STC

28
Tissue engineering
Ames Research Center, Space Portal/Emerging Space Office

STC

Cartilage growth-osteoporosis

29
Ames Research Center, Space Portal/Emerging Space Office

STC
Ames Research Center, Space Portal/Emerging Space Office

STC
Statements regarding microgravity
Ames Research Center, Space Portal/Emerging Space Office

•

•

When the force of gravity is present other forces are
lost in the noise OR when you remove the force of
gravity other forces become predominant and drive a
different system dynamics
Gravity is another physical parameter defining the
state and behavior of a system (similar to pressure or
temperature).
Similarly,
earlier
on,
major
breakthroughs and innovations were achieved when
systems were studied for example at low
temperatures.

STC
Microgravity benefits for material science
Ames Research Center, Space Portal/Emerging Space Office

1.
2.
3.
4.

STC

Defect free materials
Containerless processing
Avoidance of nucleation or single nucleation
No contribution from convective flow (purely diffusive transport
at L-S interface)
5. Free suspensions
6. Perfect spherical shape
7. Symmetric growth
8. Controlled growth (good success with dendritic systems)
9. Low undercooling
10. No solute buildup
11. No sedimentation
12. No wetting
13. Larger stable crystals with improved resolution vs ground
controls
14. More homogeneous materials
Microgravity benefits for life science
Ames Research Center, Space Portal/Emerging Space Office

STC

Contrary to earlier beliefs microgravity induces changes in single cells or
simple organisms not only in large, complex organisms
Response to gravity is complex:
•Cells affected by gravity/lack thereof: The molecular mechanisms by which
gravity affects biological systems are still largely unknown. A “gravity sensor”
has not yet been identified
•Cells respond to gravity/lack thereof: Adaptation to force of Earth’s gravity (updown asymmetry, structural strength, sensory systems) is encoded in genes.
An organism expects to experience the physical effects of unit gravity:
sedimentation, convection, transport processes, hydrostatic pressure,
boundary conditions, friction
1.
2.
3.
4.

Presence of pressure: cell structure, adhesion and signaling
Sedimentation and buoyancy (root growth)
Stirring/thermal convection-slower heat and nutrient exchange
Surface forces-important for “chemical communication”: development,
disease, function (different gene expression, activation/deactivation of
mechanisms for inflammation, immunity, bacterial growth)
Microgravity benefits for life science
Ames Research Center, Space Portal/Emerging Space Office

STC

1. SEM of 3D cultures in space more closely resembled natural tumor cells
found in cancer patients than ground controls grown on Earth
2. Cytoskeletal modifications affect cell proliferation in microgravity
3. Alteration in genes involved in the response of the microbe to the space
flight environment were observed. Increase virulence (Salmonella,
Pseudomonas aeruginosa, candida albicans)-vaccine resulted
4. Lymphocyte/monocyte system is most affected by space flight
5. Protein Crystal Growth-microgravity stimulates growth of structurally
superior crystals and polymers of biomolecules. Helps elucidate the
structure of hormones, enzymes, nucleic acids, other proteins –design of
more effective drugs
6. Tissue engineering: 3D tissue models of small intestine, placenta, lung,
bladder, neurons, prostate, ovarian, breast endocrine (NIH)
7. Human Research-developing and testing drug countermeasures (muscle,
bone loss, improved immune response )
8. Regenerative nanomedicine: BioNanoScaffolds
Ames Research Center, Space Portal/Emerging Space Office

•
•
•

The Game Changer
Commercial space services
Transportation infrastructure

STC
The Game Changer
Ames Research Center, Space Portal/Emerging Space Office

Commercial cargo and crew enables:
1. Increased frequency of flight
2. Sample return capability
3. New perspective on the commercial
value of ISS

1.
2.
3.
4.

How to engage key US ground technologies?
What are the customers needs?
What are the business/commercial opportunities that open up?
How do we appropriately communicate the value of ISS microgravity research?

STC
Dragon Lab
Ames Research Center, Space Portal/Emerging Space Office

STC

Dragon Lab is a free-flying microgravity laboratory, unmanned, designed for
research and testing in microgravity
6000 kg total bulk upmass capability
3000 kg bulk downmass-10m3 pressurized and 14m3 unpressurized payload
volume
Payload integration timeline: nominal: L-14 days; Late-load: T-9 hours
Payload return: nominal EOM+14 days; Early Access: EOM + 6hours

www.spacex.com/
Nanoracks
Ames Research Center, Space Portal/Emerging Space Office

Perform all aspects of space operations (testing, safety,
paperwork, manifesting on launch vehicle, astronaut services,
data retrieval) for affordable, low costs
NanoLabs-1U: 10cmx10cmx10cm with a circuit board that
activates the experiment
Centrifuge to simulate Earth, Moon and Mars gravity
Microplate reader-repeatable experiments; returnable samples
Microscope-operated by the astronauts
MixStix-24 per module, 3 levels of containment for biological
samples; fluid and biological research
External Platform Program: access to the extreme
environment of space (sensor development,
testing of materials and electronics)
Nanoracks.com

STC
BioServe
Ames Research Center, Space Portal/Emerging Space Office

Specialized in conducting microgravity life science research;
designing and developing space flight hardware to support it
Full service organization with its own full suite of space flight
certified hardware available to use:
1. Commercial Generic Bioprocessing Apparatus (CGBA) for life
and physical science
2. Fluid Processing Apparatus (FPA) for microorganisms, small
invertebrates, plants/seed germination, viruses, Protein crystal
growth, biomaterials
3. Group Activation Pack (GAP) for cell and tissue culture,
microbiology
4. Culture Habitat (CHAB) for cell and tissue culture,
microbiology, small and model organisms
http://www.colorado.edu/engineering/Bi
oServe/about.html

STC
Current on-orbit transportation infrastructure
Ames Research Center, Space Portal/Emerging Space Office

UPMASS
CAPABILITY
ATV
ORBITAL
HTV
SPACE-X/DRAGON
CYGNUS/ORBITAL

STC

DOWNMASS/
LANDING
CAPABILITY
SPACE-X/DRAGON
Bulk mass return from ISS
1-3/year
Enhanced/customized transportation infrastructure
Ames Research Center, Space Portal/Emerging Space Office

STC

DOWNMASS CAPABILITY
BULK MASS
for supplies

CUSTOMIZED
/on-demand

Ballistic

L/D

Targeted
Not powered
Frequent: 1/week

Targeted
Controlled
Powered
Frequent: 2/month

MARKETS:
New materials; communication, next-gen computers;

Biotech; Genetic Engineering, etc
Ames Research Center, Space Portal/Emerging Space Office

STC
Changing Landscape
Ames Research Center, Space Portal/Emerging Space Office

STC

•

Billionaires have started their own space program and are driving down costs while
opening the door to a more diverse set of customers.

•

An increasingly space capable international community is developing

•

More customers want to fly smaller payloads so aggregation/integration of multiple
customers makes sense

•

NASA is an important -- but no longer primary! It is a customer of the space
industry.

•

Focus needs to be on developing new customers:
–
–

Payload Aggregation and Commitment to purchase multiple flights containing smaller
payloads opens new opportunities at lower costs
Important new opportunities emerge if you can return CUSTOMIZED ON-DEMAND payloads
from orbit

.

•

Future space industry advances and commercialization both on ground and in
space will rely on:
1.
2.
3.

a solid, reliable and frequent transportation infrastructure to (upmass) and from orbit (downmass,
customized on-demand)
identification of products that can be UNIQUELY manufactured in microgravity
identification of products that require microgravity research to ENABLE new terrestrial products or
breakthroughs
ISS, a learning platform in space: one facet oriented
towards the Earth, the other towards the depths of space
Ames Research Center, Space Portal/Emerging Space Office

STC

Different people can realize different kinds of possibilities.
Realizing these possibilities together makes the impossible possible.
Very different futures are available to those that thrive beyond their
planet of origin versus those whose destinies are constrained to a single
world.
Ames Research Center, Space Portal/Emerging Space Office

STC
Ames Research Center, Space Portal/Emerging Space Office

1.

STC

Proactively support national and commercial needs and track microgravity results
based on their relevance to key national technology needs and opportunities rather
than only ISS disciplines of origin to provide a more direct route of assessing their
true potential for commercialization and to better define the necessary infrastructure
(facilities, instrument, transportation, operations) improvements necessary to
support emerging markets.
• Determine where gravity limits or precludes advances in key US terrestrial
technology and public health arenas and assess the potential of microgravity to
provide unique solutions. Provide near term opportunities to validate most
promising areas in space.
• Increase the dialog between NASA and the external technical community.
Engage, learn from, educate and incentivize the private sector and nonaerospace sectors by supporting ISS scientists and technologists to regularly
attend key meetings and conferences of the external communities to understand
their needs and discuss opportunities offered by space flight. Provide an annual
process to recommend to ISS management and decision makers where there
are new opportunities for growth and development and how those serve the
general welfare of the United States.
Ames Research Center, Space Portal/Emerging Space Office

STC

2. Introduce new areas of microgravity research and new researchers annually to
ensure a steady stream of new ideas, discoveries and innovation and provide the
hardware improvements and operational practices to support them.
•

•
•
•

•

Seek and motivate new and unexpected areas of research to be added annually to the
current pool of ISS investigations through an open call for innovative and exploratory
research ideas in addition to current targeted NRAs. Keep the opportunity open for
multiple years so that researchers know it is available and can begin to develop wellconceived research ideas.
Institutionalize the process of obtaining feedback from the external community that
translates into new best practices that enable new discoveries and developments.
Provide sufficient government funds to explore a wider range of exploratory developments
to accelerate public benefits.
Provide guides, mentors, and investment support to help new entrants in the field craft
successful flight experiments and upgrade or develop new hardware to enable new
classes of research. No laboratory researcher on Earth conducts research as it must be
done in space.
Incentivize the research community at large by introducing a microgravity prize in their
field of research and microgravity sessions at major conferences in all the fields of
research. Microgravity results remain mostly unknown. It is not customary for scientists
and engineers without spaceflight experience to explore opportunities for solutions beyond
Earth.
Ames Research Center, Space Portal/Emerging Space Office

STC

3. Annually improve ISS access and operability and upgrade facilities and
capabilities, to support new science/technology endeavors. This will
enable the ISS to maintain the breadth of the existing investigations and
add the required depth (statistical aspects), and enable new discoveries,
increased synergies and growth in important areas. Some commonly
requested improvements include:
• Install a greater range of on-board analytical equipment for “on-site”
sample qualitative and quantitative analysis; allow ground teleoperation
of equipment; upgrade data downlink speed and amount; enable better
options for sample return.
• Enable and encourage scientist and technologists to conduct research
in person on-board the ISS.
• Synergize and increase flight research opportunities across platforms by
supporting research on multiple spacecraft, e.g. ISS-NL, DragonLab,
Bigelow Laboratory, robotic free-flying laboratories, etc.

Mais conteúdo relacionado

Semelhante a Microgravity4 innovation

Quantum dots - A potential elixir in the field of biology
Quantum dots - A potential elixir in the field of biologyQuantum dots - A potential elixir in the field of biology
Quantum dots - A potential elixir in the field of biology
Balaganesh Kuruba
 
Introduction to thin film growth and molecular beam epitaxy
Introduction to thin film growth and molecular beam epitaxyIntroduction to thin film growth and molecular beam epitaxy
Introduction to thin film growth and molecular beam epitaxy
Oleg Maksimov
 
The Use of Nanostructured Silicon in Photovoltaics
The Use of Nanostructured Silicon in PhotovoltaicsThe Use of Nanostructured Silicon in Photovoltaics
The Use of Nanostructured Silicon in Photovoltaics
James Allan
 
Surface Engineering Research for Bio-Medical & Medical Electronics Applicatio...
Surface Engineering Research for Bio-Medical & Medical Electronics Applicatio...Surface Engineering Research for Bio-Medical & Medical Electronics Applicatio...
Surface Engineering Research for Bio-Medical & Medical Electronics Applicatio...
Arizona State University, Department of Physics
 
Chabal Esteve Halls
Chabal Esteve HallsChabal Esteve Halls
Chabal Esteve Halls
Mat Halls
 
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_final
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_finalPhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_final
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_final
Radu Andrei Negrila
 

Semelhante a Microgravity4 innovation (20)

PellegrinoHonorsThesis
PellegrinoHonorsThesisPellegrinoHonorsThesis
PellegrinoHonorsThesis
 
IC design: Microelectronic Technology.pptx
IC design: Microelectronic Technology.pptxIC design: Microelectronic Technology.pptx
IC design: Microelectronic Technology.pptx
 
Quantum dots - A potential elixir in the field of biology
Quantum dots - A potential elixir in the field of biologyQuantum dots - A potential elixir in the field of biology
Quantum dots - A potential elixir in the field of biology
 
Introduction to thin film growth and molecular beam epitaxy
Introduction to thin film growth and molecular beam epitaxyIntroduction to thin film growth and molecular beam epitaxy
Introduction to thin film growth and molecular beam epitaxy
 
remrsec poster
remrsec posterremrsec poster
remrsec poster
 
Solar power new cheap tech
Solar power new cheap techSolar power new cheap tech
Solar power new cheap tech
 
EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...
EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...
EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...
 
epitaxy deposition.ppt
epitaxy deposition.pptepitaxy deposition.ppt
epitaxy deposition.ppt
 
Grafeno (4)
Grafeno (4)Grafeno (4)
Grafeno (4)
 
ENERGY GAP INVESTIGATION AND CHARACTERIZATION OF KESTERITE CU2ZNSNS4 THIN FIL...
ENERGY GAP INVESTIGATION AND CHARACTERIZATION OF KESTERITE CU2ZNSNS4 THIN FIL...ENERGY GAP INVESTIGATION AND CHARACTERIZATION OF KESTERITE CU2ZNSNS4 THIN FIL...
ENERGY GAP INVESTIGATION AND CHARACTERIZATION OF KESTERITE CU2ZNSNS4 THIN FIL...
 
Molecular Beam Epitaxy-MBE---ABU SYED KUET
Molecular Beam Epitaxy-MBE---ABU SYED KUETMolecular Beam Epitaxy-MBE---ABU SYED KUET
Molecular Beam Epitaxy-MBE---ABU SYED KUET
 
The Use of Nanostructured Silicon in Photovoltaics
The Use of Nanostructured Silicon in PhotovoltaicsThe Use of Nanostructured Silicon in Photovoltaics
The Use of Nanostructured Silicon in Photovoltaics
 
Biomimicry-Sea Urchins
Biomimicry-Sea UrchinsBiomimicry-Sea Urchins
Biomimicry-Sea Urchins
 
Introduction to Nanoparticals
Introduction to NanoparticalsIntroduction to Nanoparticals
Introduction to Nanoparticals
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
Surface Engineering Research for Bio-Medical & Medical Electronics Applicatio...
Surface Engineering Research for Bio-Medical & Medical Electronics Applicatio...Surface Engineering Research for Bio-Medical & Medical Electronics Applicatio...
Surface Engineering Research for Bio-Medical & Medical Electronics Applicatio...
 
Chabal Esteve Halls
Chabal Esteve HallsChabal Esteve Halls
Chabal Esteve Halls
 
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_final
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_finalPhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_final
PhD_Thesis_Radu_Andrei_Negrila_EMF_stirring_final
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic DeviceAnalysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
 
Epitaxy, Epitaxial Growth--ABU SYED KUET
Epitaxy, Epitaxial Growth--ABU SYED KUETEpitaxy, Epitaxial Growth--ABU SYED KUET
Epitaxy, Epitaxial Growth--ABU SYED KUET
 

Último

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Último (20)

GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 

Microgravity4 innovation

  • 1. MOTTO: The difficult we do immediately, The impossible takes a little longer Ames Research Center, Space Portal/Emerging Space Office Microgravity: The future of innovation Ioana Cozmuta Science and Technology Corporation Space Portal, NASA Ames Research Center For further inquiries including citation or distribution of material contained herein please contact: Ioana.cozmuta AT nasa.gov STC
  • 2. The value of ISS/microgravity research Ames Research Center, Space Portal/Emerging Space Office STC ISS-US taxpayers investment ~$70 billion spent over 30 years What is the ISS’s Return on Investment ? Return on Innovation? Reformulate question: What is the cost of NOT innovating and NOT exploring in microgravity? Resources, capabilities Yes Ground Desired outcome State of the art No Disruptive innovation and technologies Space otherwise-not-accessible-knowledge Keep track of: Publications Patents Spin-offs Comprehensive, searchable, public microg database
  • 3. International Space Station Truss Ames Research Center, Space Portal/Emerging Space Office STC Challenged by the extreme environment, severe mass limitations and the innate desire to explore the Universe in which we live, humanity has developed many innovative space technologies and acquired unique knowledge with great ancillary benefits here on Earth. 3
  • 4. Ames Research Center, Space Portal/Emerging Space Office STC 1. Connecting the dots: products in our daily lives emerged out of microgravity research – Microgravity impact for basic science 2. Capabilities 3. Cultural Adjustments opportunities for improved outcomes and
  • 5. PRODUCT: Metallic Glass hardware/Liquidmetal Technologies & Materion (mass scale manufacturing) Ames Research Center, Space Portal/Emerging Space Office STC Adopting this technology are products manufactured by Motorola, 5 Samsung and LG Electronics, Sandisk, Apple
  • 6. Microgravity research: Viscous Liquid Foam-Bulk Metallic Glass Ames Research Center, Space Portal/Emerging Space Office STC Bulk Metallic Glasses are a new family of glasses obtained by undercooling an alloy (Zr, Ti, Cu, Ni, Be) and forming a solid, non-crystalline structure under precise conditions (STS 1990’s) Properties: -low surface roughness: <0.05mm (Cu, steel, Fe=5-150) -high yield strength: 1900 MPa (alumina, aluminum, boron carbide ~100-300 MPa) -high corrosion and wear resistance (>336 hours) -unique acoustical properties - lightweight with considerably reduced thermal conductivity. Caltech has an Electrostatic Levitation (ESL) facility for containerless materials processing. It is used to manufacture glass-forming alloys and measure thermal properties of materials SPINOFF: http://liquidmetal.com/ 6
  • 7. PRODUCT: Optical fibers for telecommunications, optical computers, etc Ames Research Center, Space Portal/Emerging Space Office STC IBM –integrates optical computing onto standard (90 nm) silicon 7 chips
  • 8. ISS: ZBLAN-fluoride glass fiber/Physical Optics Corporation Ames Research Center, Space Portal/Emerging Space Office STC Fluoride Glass Fibers (blend of zirconium, barium, lanthanum, aluminum and sodium) uniquely manufactured in space. On Earth gravity causes convection or mixing in a melt thus the melt becomes more fluid/less viscous and tends to crystallize before glass can form. -attenuation rate ~0.0001dB/km (current Si-based fibers have an attenuation rate of 0.2dB/km) -ensure wide spectral band optical transmission for satellite track systems -enable expansion of the detection range from UV to midinfrared wavelengths (for satellite spectral identification) ZBLAN-prepares superior infrared transmitting optical fibers with applications to both optical and quantum computers Payload is selfcontained and automated (left) a defect-free ZBLAN fiber pulled during a low-g arc aboard the KC-135; (right) a crystallized fiber pulled from the same apparatus under 1-g. 8
  • 9. PRODUCT: cosmetics, household items, packaging Ames Research Center, Space Portal/Emerging Space Office P&G studies systems in space that we will all benefit from in 9 everyday life: improved shelf life, enhanced product quality and STC
  • 10. ISS: binary colloids and phase diagrams Ames Research Center, Space Portal/Emerging Space Office STC With gravity turned on, a binary mixture prepared with a composition between the binodal and the spinodal curves spontaneously decomposes, quickly driving the composition to the coexistence curve. Microgravity can 'fixate' unstable regions in the phase diagram. The spinodal is the limit of stability of a solution, denoting the boundary of absolute instability of a solution to decomposition into multiple phases. Below this curve, "infinitesimally small fluctuations in composition and density will lead to phase separation via spinodal decomposition. Outside of the curve, but below the binodal 10 (coexistence) curve, the solution is metastable with respect to fluctuations. It is in this region where microgravity experiments can afford new materials with new properties.
  • 11. ISS: binary colloids and phase diagrams Courtesy: NASA/Peter Lu et al., Harvard University Ames Research Center, Space Portal/Emerging Space Office STC BCAT–3 critical point samples evolving in microgravity. Colloidal/polymer mixtures that are near the critical point are already starting to phase separate into two components: a colloid-rich phase (blue areas) and a colloid-poor phase (black areas). The quickly changing dynamic data captured in these photographs will help determine the 11 boundary conditions for future models of critical behavior. The long-term observation of which samples phase separate will allow to precisely determine the critical point of this colloidal mixture. (Colloidal engineering)
  • 12. ISS: binary colloids and surface crystallization Courtesy: NASA/Arjun Yodh and Jiang Zhang, Penn State Ames Research Center, Space Portal/Emerging Space Office STC BCAT–3 two months following mixing. The pink region is the phase separation region showing possible indication of surface crystallization. The black asterisk indicates possible bulk crystal nucleation. Results help scientists develop fundamental physics concepts previously unobserved due to the effects of gravity. Ordered arrays of 12 these micron-sized particles may be ideal for the development of next generation optical devices.
  • 13. PRODUCT: ZEOLITE CRYSTALS Ames Research Center, Space Portal/Emerging Space Office STC Honda hydrogen storage tanks Lanfax Labs: Phosphate free detergents • The reversible physisorption of hydrogen on porous solid state materials is important for storing hydrogen and scales with the surface area • Reduction of by-products, increased cleaning/detoxification efficacy 13
  • 14. ISS: ZEOLITES CRYSTAL GROWTH Ames Research Center, Space Portal/Emerging Space Office STC Zeolites are microporous, aluminosilicate minerals with pore diameters less than 2nm. The pores make zeolites highly adsorbent; materials are attracted to the zeolite and adhere to the surface without changing state. Production challenges for synthetically produced zeolites are: 1.Elucidation of the nucleation and growth mechanism of zeolites 2.Controlling zeolite crystal size and growth 3.Preparation of extra-large pore zeolites and layered zeolites 4.Synthesis of zeolitized mesoporous materials and chiral zeolites 5.Preparation of true molecular sieve membranes The ZCG investigations examined how subtle changes in the chemical formulation affected nucleation and growth of zeolite crystals. The microgravity environment allowed researchers to grow larger (average >10%) and higher-quality crystals. The nutrients have to be added to the solution at a precise moment after onset of crystallization to result in larger crystals. These crystals have a number of useful commercial applications as catalysts and absorbents, chemical sensors. SUSTAINABILITY: Everywhere we go today we come across pollutionZEOLITES =“nature’s detoxifier Zeolite Crystals grown on the ground (left) are smaller than the ones grown in space (right) Scanning Electron Microscopy image of flight (a) and Earth (b) control zeolite crystals
  • 15. PRODUCT: SE-FIT SOFTWARE; Advanced Wicking Ames Research Center, Space Portal/Emerging Space Office STC • Software design of fluid systems for spacecraft life support, thermal control, cryogen and liquid propellant management (bubbles, droplets and unexpected wetting have significant effect on system performance, crew activity and comfort) • Complex interface design for microfluidic devices • Capillary action and fluid surface tension in small scale devices 15
  • 16. ISS: Capillarity and bubble migration in mg Ames Research Center, Space Portal/Emerging Space Office STC Single and multi-bubble migration and phase separation are driven passively by specific control of container shape. A taper in a polygonal sectioned conduit leads to capillary pumping of liquid from right to left driving bubble left to right. Application: fluid systems aboard spacecraft to separate and store fluids by phase without moving parts SUSTAINABILITY: Use knowledge from Microgravity to design better tools that on earth are used for microfluidic applications for energy and sustainability: • enzymatic conversion of biofuels • rapid microfluidic analysis of cellular processes in species with significant impact on the global carbon cycle • biohydrogen generation Various container shapes change transition in fluid location. As a central vane is rotated in the elliptic cylinder container, critical wetting geometries are established leading to wicking along the vane-wall gap and/or a shift of fluid from right to left SPINOFF 16
  • 17. ISS: Advanced Environmental Monitoring and Control Ames Research Center, Space Portal/Emerging Space Office STC The JPL Electronic Nose (ENose) is a full-time, continuously operating event monitor designed to detect air contamination from spills and leaks in the crew habitat in the International Space Station. It fills the longstanding gap between onboard alarms and complex analytical instruments. ENose provides rapid, early identification and quantification of atmospheric changes caused by chemical species to which it has been trained. • • Use the electronic nose for dangerous airborne chemicals, monitor cleanup processes after a leak or a spill, etc Sniffer for lung and brain cancer detection (City of Hope, World Brain Mapping) 17
  • 18. PRODUCT: Photodynamic therapy Ames Research Center, Space Portal/Emerging Space Office STC SpectraLife-custom fabricated monochromatic array of GaAiAs light emitting diodes to emit diffused monochromatic light Prof. Harry T Whelan (Medical College of Wisconsin) uses photodynamic therapy as an unprecedented, unique treatment of brain tumors in children and adults (Clinical Trials.gov identifier: NCT01682746) Photodynamic therapy uses light mediated activation of a photosensitizer (Photofrin) that is selectively accumulated in the target tissue causing tumor cell destruction through singlet oxygen production CERES-solid state modular LED lighting system for life science applications (JSC use for small-scale food plant production) 18 Quantum Devices, Inc: www.quantumdev.com/
  • 19. Ames Research Center, Space Portal/Emerging Space Office ISS INVESTIGATION:Advanced Astroculture (ADVASC) STC Objectives: To understand the effects of gravity on plant life by: 1. Determine if plants can complete their seed-to-seed life cycle in microgravity 3. Determine the effects of microgravity on gene expression levels Secondary objective: Develop a plant growth chamber w controlled environmental parameters Light source used to simulate photosynthesis in the growth chamber needs to: 1. Deliver high intensity light energy with specific peak photon wavelengths 2. Should not heat/overheat chamber SUSTAINABILITY: Light source (light emitting diode) used for mimicking natural light indoors? SPINOFF: Quantum Devices Inc/QBMI PhotoMedicine 1. PDT (Photodynamic Therapy) for cancer treatment: intravenous injection of a photosensitizer that accumulates preferentially in cancer cells. Activated by the light source the photosensitizer results in free radical generation and cell death 2. Increased effectiveness of wound healing upon exposure to the light SPINOFF: http://www.quantumdev.co m/ Second Phase of Clinical Trials in the US and foreign hospitals with extremely good results from the first round of tests (healing of bone marrow transplant patients, mucositis, pediatric brain cancer)
  • 20. PRODUCT: BrightMark Tissue Site Marker/NuVue Chemo Ames Research Center, Space Portal/Emerging Space Office STC Diagnostic: Microcapsule for biopsy site marker lodged in the interstitial space of tissue without migration for ultrasound monitoring via repeat biopsies, or for marking the site before and/or after surgery. Current tissue site markers typically consist of metal clips that tend to migrate within tissue, and so do not reliably mark the targeted tissue with accuracy over the long term. Therapy: Encapsulated FDA approved generic chemotherapy drugs for the deposition, retention and imaging of the drug in the tissue; microcapsules designed for release in a specific time desired timeframe SPIN-OFF: http://www.nuvuetherapeutics.com/ 20
  • 21. PRODUCT: CHI hair styling products/Farouk Ames Research Center, Space Portal/Emerging Space Office STC 1. Nanoceramic materials used in the CHI hair iron, brushes, curling irons, nail lacquers and hair dryers 2. Liquid formulation line for hair color protection, nutrition and conditioning The combination of (1) and (2) improves moisture retention during the styling process 1. Incorporation of nanosiliver particles inhibits microbial growth 2. Scalp healing and stimulation of growth phase of hair follicles that have become dormant Microgravity finding: -liquid filled microballoons formed an outer membrane in space -ceramic nanoparticles containing unique mixture of metal oxides for controlled delivery -efficiency of microencapsulation of three antioxidants -application of near-infrared light for improved skin healing and bone cell replacement in astronauts Farouk Systems: http://www.farouk.com/ official hair care sponsor of Miss 21 Universe-first experiments sent in outer space by a hair care company
  • 22. ISS: microencapsulation Courtesy: NASA/Denis Morrison Ames Research Center, Space Portal/Emerging Space Office Microencapsulation containing anti-tumor drugs made on ISS STC Single cell microencapsulation The Microencapsulation Electrostatic Processing System-II experiment (MEPS-II), included innovative encapsulation of several different anti-cancer drugs, magnetic triggering particles, and encapsulation of genetically engineered DNA. The experiment system improved on existing microencapsulation technology by using microgravity to modify the fluid mechanics, interfacial behavior, and biological processing methods as compared to the way the microcapsules would be formed in gravity. Two immiscible liquids were combined in such a way that surface tension forces (rather than fluid shear) dominated at the interface of the fluids. The significant performance of the space-produced microcapsules as a cancer treatment delivery system (Le Pivert et al. 2004) motivated the development of the Pulse Flow Microencapsulation System (PFMS), which is an Earth-based system that can replicate the quality of the microcapsules created in space. 22 SPIN-OFF: http://www.nuvuetherapeutics.com/
  • 23. PRODUCT: ZEN perfume by Shiseido Ames Research Center, Space Portal/Emerging Space Office STC 23
  • 24. The most romantic space experiment? Ames Research Center, Space Portal/Emerging Space Office STC A lab technician demonstrates the use of a silicon fiber to collect scent-molecules from a rose. Credit: International Flavors & Fragrances. How do roses smell in space? Overnight Scentsation cultivated by International Flavors and Fragrances. In microgravity the rose produced fever volatiles than it did on Earth but the fragrance that it did generate was critically altered. Scents were collected using a tiny silicon fiber coated with a special liquid to which molecules around the flower petal adhere. The fragrance was analyzed on ground and it is made up of nearly 200 different compounds. Every sampling of the rose was different and the average of those samplings resulted in a new fragrance incorporated in ZEN 24 PRODUCT: Perfume ZEN by Shiseido
  • 25. PRODUCT: engineering Microgravity-enhanced genetic plant Ames Research Center, Space Portal/Emerging Space Office STC Agriculture and food production: transgenic soybeans for more appetizing taste, texture; pest resistance; transfer of one plant characteristic to another (cotton, corn) Target market: $14 billions a year (even 1% product improvement has significant interest) Microgravity finding: • In the low gravity environment of space, the transfer of genetic information from one kind of plat to another is enhanced due to lack of gravity induced buoyancy and convection effects • Leads to improved or new agricultural products 25
  • 26. PRODUCT: Low-lignin OR high-lignin trees Ames Research Center, Space Portal/Emerging Space Office STC • Environmental friendly/less expensive paper production: lowlignin trees would reduce the necessity of chemically removing lignin from trees • Stronger wood products for the lumber industry: high-lignin trees Microgravity finding/BioServe •Plants growing in space produce less lignin •The reminder metabolic energy leads to production of secondary metabolites used by the pharmaceutical industry ($50 billion/year) Key to BioServe success was the development of a set of generic space-flight hardware that can be shared by multiple life 26 science disciplines –increased/shared utilization
  • 27. PRODUCT: Proleukin/Chiron and Alendronate/Merck Ames Research Center, Space Portal/Emerging Space Office STC • Space was used to advance the development of drugs • Proleukin: used for treating metastatic renal cell cancer, immune disorders, influenza, some infections due to AIDS • Biophosphonates/Alendronate: used effectively to maintain bone mass, slow down evolution of Paget disease, osteoporosis Microgravity finding: • Space induced immune-system depression in mice was used to test effectiveness of the drug resulting in a shortened testing schedule for the drug • Astronauts treated with Biophosphonates showed reduced 27 bone loss and reduced risk of renal stone formation
  • 28. Microtumors to validate chemo-drugs efficacy Ames Research Center, Space Portal/Emerging Space Office STC 28
  • 29. Tissue engineering Ames Research Center, Space Portal/Emerging Space Office STC Cartilage growth-osteoporosis 29
  • 30. Ames Research Center, Space Portal/Emerging Space Office STC
  • 31. Ames Research Center, Space Portal/Emerging Space Office STC
  • 32. Statements regarding microgravity Ames Research Center, Space Portal/Emerging Space Office • • When the force of gravity is present other forces are lost in the noise OR when you remove the force of gravity other forces become predominant and drive a different system dynamics Gravity is another physical parameter defining the state and behavior of a system (similar to pressure or temperature). Similarly, earlier on, major breakthroughs and innovations were achieved when systems were studied for example at low temperatures. STC
  • 33. Microgravity benefits for material science Ames Research Center, Space Portal/Emerging Space Office 1. 2. 3. 4. STC Defect free materials Containerless processing Avoidance of nucleation or single nucleation No contribution from convective flow (purely diffusive transport at L-S interface) 5. Free suspensions 6. Perfect spherical shape 7. Symmetric growth 8. Controlled growth (good success with dendritic systems) 9. Low undercooling 10. No solute buildup 11. No sedimentation 12. No wetting 13. Larger stable crystals with improved resolution vs ground controls 14. More homogeneous materials
  • 34. Microgravity benefits for life science Ames Research Center, Space Portal/Emerging Space Office STC Contrary to earlier beliefs microgravity induces changes in single cells or simple organisms not only in large, complex organisms Response to gravity is complex: •Cells affected by gravity/lack thereof: The molecular mechanisms by which gravity affects biological systems are still largely unknown. A “gravity sensor” has not yet been identified •Cells respond to gravity/lack thereof: Adaptation to force of Earth’s gravity (updown asymmetry, structural strength, sensory systems) is encoded in genes. An organism expects to experience the physical effects of unit gravity: sedimentation, convection, transport processes, hydrostatic pressure, boundary conditions, friction 1. 2. 3. 4. Presence of pressure: cell structure, adhesion and signaling Sedimentation and buoyancy (root growth) Stirring/thermal convection-slower heat and nutrient exchange Surface forces-important for “chemical communication”: development, disease, function (different gene expression, activation/deactivation of mechanisms for inflammation, immunity, bacterial growth)
  • 35. Microgravity benefits for life science Ames Research Center, Space Portal/Emerging Space Office STC 1. SEM of 3D cultures in space more closely resembled natural tumor cells found in cancer patients than ground controls grown on Earth 2. Cytoskeletal modifications affect cell proliferation in microgravity 3. Alteration in genes involved in the response of the microbe to the space flight environment were observed. Increase virulence (Salmonella, Pseudomonas aeruginosa, candida albicans)-vaccine resulted 4. Lymphocyte/monocyte system is most affected by space flight 5. Protein Crystal Growth-microgravity stimulates growth of structurally superior crystals and polymers of biomolecules. Helps elucidate the structure of hormones, enzymes, nucleic acids, other proteins –design of more effective drugs 6. Tissue engineering: 3D tissue models of small intestine, placenta, lung, bladder, neurons, prostate, ovarian, breast endocrine (NIH) 7. Human Research-developing and testing drug countermeasures (muscle, bone loss, improved immune response ) 8. Regenerative nanomedicine: BioNanoScaffolds
  • 36. Ames Research Center, Space Portal/Emerging Space Office • • • The Game Changer Commercial space services Transportation infrastructure STC
  • 37. The Game Changer Ames Research Center, Space Portal/Emerging Space Office Commercial cargo and crew enables: 1. Increased frequency of flight 2. Sample return capability 3. New perspective on the commercial value of ISS 1. 2. 3. 4. How to engage key US ground technologies? What are the customers needs? What are the business/commercial opportunities that open up? How do we appropriately communicate the value of ISS microgravity research? STC
  • 38. Dragon Lab Ames Research Center, Space Portal/Emerging Space Office STC Dragon Lab is a free-flying microgravity laboratory, unmanned, designed for research and testing in microgravity 6000 kg total bulk upmass capability 3000 kg bulk downmass-10m3 pressurized and 14m3 unpressurized payload volume Payload integration timeline: nominal: L-14 days; Late-load: T-9 hours Payload return: nominal EOM+14 days; Early Access: EOM + 6hours www.spacex.com/
  • 39. Nanoracks Ames Research Center, Space Portal/Emerging Space Office Perform all aspects of space operations (testing, safety, paperwork, manifesting on launch vehicle, astronaut services, data retrieval) for affordable, low costs NanoLabs-1U: 10cmx10cmx10cm with a circuit board that activates the experiment Centrifuge to simulate Earth, Moon and Mars gravity Microplate reader-repeatable experiments; returnable samples Microscope-operated by the astronauts MixStix-24 per module, 3 levels of containment for biological samples; fluid and biological research External Platform Program: access to the extreme environment of space (sensor development, testing of materials and electronics) Nanoracks.com STC
  • 40. BioServe Ames Research Center, Space Portal/Emerging Space Office Specialized in conducting microgravity life science research; designing and developing space flight hardware to support it Full service organization with its own full suite of space flight certified hardware available to use: 1. Commercial Generic Bioprocessing Apparatus (CGBA) for life and physical science 2. Fluid Processing Apparatus (FPA) for microorganisms, small invertebrates, plants/seed germination, viruses, Protein crystal growth, biomaterials 3. Group Activation Pack (GAP) for cell and tissue culture, microbiology 4. Culture Habitat (CHAB) for cell and tissue culture, microbiology, small and model organisms http://www.colorado.edu/engineering/Bi oServe/about.html STC
  • 41. Current on-orbit transportation infrastructure Ames Research Center, Space Portal/Emerging Space Office UPMASS CAPABILITY ATV ORBITAL HTV SPACE-X/DRAGON CYGNUS/ORBITAL STC DOWNMASS/ LANDING CAPABILITY SPACE-X/DRAGON Bulk mass return from ISS 1-3/year
  • 42. Enhanced/customized transportation infrastructure Ames Research Center, Space Portal/Emerging Space Office STC DOWNMASS CAPABILITY BULK MASS for supplies CUSTOMIZED /on-demand Ballistic L/D Targeted Not powered Frequent: 1/week Targeted Controlled Powered Frequent: 2/month MARKETS: New materials; communication, next-gen computers; Biotech; Genetic Engineering, etc
  • 43. Ames Research Center, Space Portal/Emerging Space Office STC
  • 44. Changing Landscape Ames Research Center, Space Portal/Emerging Space Office STC • Billionaires have started their own space program and are driving down costs while opening the door to a more diverse set of customers. • An increasingly space capable international community is developing • More customers want to fly smaller payloads so aggregation/integration of multiple customers makes sense • NASA is an important -- but no longer primary! It is a customer of the space industry. • Focus needs to be on developing new customers: – – Payload Aggregation and Commitment to purchase multiple flights containing smaller payloads opens new opportunities at lower costs Important new opportunities emerge if you can return CUSTOMIZED ON-DEMAND payloads from orbit . • Future space industry advances and commercialization both on ground and in space will rely on: 1. 2. 3. a solid, reliable and frequent transportation infrastructure to (upmass) and from orbit (downmass, customized on-demand) identification of products that can be UNIQUELY manufactured in microgravity identification of products that require microgravity research to ENABLE new terrestrial products or breakthroughs
  • 45. ISS, a learning platform in space: one facet oriented towards the Earth, the other towards the depths of space Ames Research Center, Space Portal/Emerging Space Office STC Different people can realize different kinds of possibilities. Realizing these possibilities together makes the impossible possible. Very different futures are available to those that thrive beyond their planet of origin versus those whose destinies are constrained to a single world.
  • 46. Ames Research Center, Space Portal/Emerging Space Office STC
  • 47. Ames Research Center, Space Portal/Emerging Space Office 1. STC Proactively support national and commercial needs and track microgravity results based on their relevance to key national technology needs and opportunities rather than only ISS disciplines of origin to provide a more direct route of assessing their true potential for commercialization and to better define the necessary infrastructure (facilities, instrument, transportation, operations) improvements necessary to support emerging markets. • Determine where gravity limits or precludes advances in key US terrestrial technology and public health arenas and assess the potential of microgravity to provide unique solutions. Provide near term opportunities to validate most promising areas in space. • Increase the dialog between NASA and the external technical community. Engage, learn from, educate and incentivize the private sector and nonaerospace sectors by supporting ISS scientists and technologists to regularly attend key meetings and conferences of the external communities to understand their needs and discuss opportunities offered by space flight. Provide an annual process to recommend to ISS management and decision makers where there are new opportunities for growth and development and how those serve the general welfare of the United States.
  • 48. Ames Research Center, Space Portal/Emerging Space Office STC 2. Introduce new areas of microgravity research and new researchers annually to ensure a steady stream of new ideas, discoveries and innovation and provide the hardware improvements and operational practices to support them. • • • • • Seek and motivate new and unexpected areas of research to be added annually to the current pool of ISS investigations through an open call for innovative and exploratory research ideas in addition to current targeted NRAs. Keep the opportunity open for multiple years so that researchers know it is available and can begin to develop wellconceived research ideas. Institutionalize the process of obtaining feedback from the external community that translates into new best practices that enable new discoveries and developments. Provide sufficient government funds to explore a wider range of exploratory developments to accelerate public benefits. Provide guides, mentors, and investment support to help new entrants in the field craft successful flight experiments and upgrade or develop new hardware to enable new classes of research. No laboratory researcher on Earth conducts research as it must be done in space. Incentivize the research community at large by introducing a microgravity prize in their field of research and microgravity sessions at major conferences in all the fields of research. Microgravity results remain mostly unknown. It is not customary for scientists and engineers without spaceflight experience to explore opportunities for solutions beyond Earth.
  • 49. Ames Research Center, Space Portal/Emerging Space Office STC 3. Annually improve ISS access and operability and upgrade facilities and capabilities, to support new science/technology endeavors. This will enable the ISS to maintain the breadth of the existing investigations and add the required depth (statistical aspects), and enable new discoveries, increased synergies and growth in important areas. Some commonly requested improvements include: • Install a greater range of on-board analytical equipment for “on-site” sample qualitative and quantitative analysis; allow ground teleoperation of equipment; upgrade data downlink speed and amount; enable better options for sample return. • Enable and encourage scientist and technologists to conduct research in person on-board the ISS. • Synergize and increase flight research opportunities across platforms by supporting research on multiple spacecraft, e.g. ISS-NL, DragonLab, Bigelow Laboratory, robotic free-flying laboratories, etc.