SlideShare uma empresa Scribd logo
1 de 7
SSD: A ROBUST RF LOCATION FINGERPRINT ADDRESSING
MOBILE DEVICES’ HETEROGENEITY
ABSTRACT:
Fingerprint-based methods are widely adopted for indoor localization purpose because of their cost-
effectiveness compared to other infrastructure-based positioning systems. However, the popular location
fingerprint, Received Signal Strength (RSS), is observed to differ significantly across different devices’
hardware even under the same wireless conditions.
We derive analytically a robust location fingerprint definition, the Signal Strength Difference (SSD), and verify
its performance experimentally using a number of different mobile devices with heterogeneous hardware. Our
experiments have also considered both Wi-Fi and Bluetooth devices, as well as both Access-Point (AP)-based
localization and Mobile-Node (MN)-assisted localization.
We present the results of two well-known localization algorithms (K Nearest Neighbor and Bayesian Inference)
our proposed fingerprint is used, and demonstrate its robustness when the testing device differs from the
training device.
We also compare these SSD-based localization algorithms’ performance against that of two other approaches in
the literature that are designed to mitigate the effects of mobile node hardware variations, and show that SSD-
based algorithms have better accuracy.
GLOBALSOFT TECHNOLOGIES
IEEE PROJECTS & SOFTWARE DEVELOPMENTS
IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE
BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS
CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401
Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
EXISTING SYSTEM:
Existing in signal strength among wireless network cards, phones and tags are a fundamental problem for
location finger printing. Current solutions require manual and error-prone calibration for each new client to
address this problem. This paper proposes hyperbolic location finger printing, which records fingerprints as
signal strength ratios between pairs of base stations instead of absolute signal-strength values has been
evaluated by extending two well-known location fingerprinting techniques to hyperbolic location finger
printing. The extended techniques have been tested on ten hour-long signal-strength traces collected network
cards. The evaluation shows that the proposed solution solves the signal-strength difference problem without
requiring extra manual calibration and provides a performance equal to that of existing manual solutions.
Hyperbolic Location Fingerprinting (HLF) to solve the signal-strength difference problem. The key idea behind
HLF is that fingerprints are recorded as signal-strength ratios between pairs of base stations instead of as
absolute signal strength. A client’s location can be estimated from the fingerprinted ratios by comparing these
with ratios computed from currently measured signal-strength values.
Existing of HLF is that it can solve the signal-strength difference problem without requiring any extra
calibration. The idea of HLF is inspired from hyperbolic positioning, used to find position estimates from time-
difference measurements. The method is named hyperbolic because the position estimates are found as the
intersection of a number of hyperbolas each describing the ratio difference between unique pairs of base
stations.
HLF by extending two well-known LF techniques to use signal-strength ratios: Nearest Neighbor and Bayesian
Inference in the HLF-extended techniques have been evaluated on ten-hour-long signal-strength traces collected
with five different IEEE 802.11 clients. The traces have been collected over a period of two months in a multi-
floored building in evaluation the HLF-extended techniques are compared to LF versions and LF versions
extended with a manual solution for signal-strength differences.
PROPOSED SYSTEM:
We proposed a robust location fingerprint, namely, Signal Strength Difference (SSD), which was shown to
outperform the traditional RSS fingerprint in terms of robustness across heterogeneous mobile devices, both
analytically and experimentally. We analyze the robustness of SSD more elaborately, using several off-the-shelf
Wi-Fi and Bluetooth devices.
Our approaches to collect the signal strength samples, namely, AP-based, where the RSS is measured at the AP,
and MN-assisted, where the RSS is actually measured at the MN itself. In order to verify SSD’s robustness, we
need to consider both of these scenarios. However, we have only considered the AP-based analysis and
experiments.
In this paper, we show that, regardless of whether the signal strength samples are collected at the APs or at the
MN, SSD is a more robust location fingerprint compared to the traditional RSS experimental test beds for Wi-Fi
and Bluetooth. The Bluetooth test bed follows the AP based approach while the Wi-Fi test bed follows the MN
assisted approach.
In this paper, we also considered two different test beds for Wi-Fi and Bluetooth which emulate MN-assisted
and AP-based localization, respectively. The settings and surroundings of both test beds represent an indoor
environment more practically compared to our initial lecture theater test bed of which only considered an AP-
based localization approach.
HARDWARE & SOFTWARE REQUIREMENTS:
HARDWARE REQUIREMENT:
 Processor - Pentium –IV
 Speed - 1.1 GHz
 RAM - 256 MB (min)
 Hard Disk - 20 GB
 Floppy Drive - 1.44 MB
 Key Board - Standard Windows Keyboard
 Mouse - Two or Three Button Mouse
 Monitor - SVGA
SOFTWARE REQUIREMENTS:
 Operating System : Windows XP
 Front End : Visual Studio 2008 .NET
 Scripts : C# Script.
 Database : SQL Server 2005
CONCLUSION:
In this paper, we define a robust location fingerprint, the SSD, which provides a more robust location signature
compared to the traditional RSS in the presence of mobile node hardware heterogeneity. Both our theoretical
analysis and experimental studies have shown that, regardless of whether the signal strength samples are
collected at the APs (AP-based localization) or at the MN (MN-assisted localization), SSD-based localization
algorithms outperform those based on the traditional RSS fingerprints, as well as several other techniques that
are designed to mitigate the effects of MNs’ hardware variations.
Our work in AP-based analysis was carried out two different test beds for Wi-Fi and Bluetooth which emulate
MN-assisted and AP-based localization, respectively. The settings and surroundings of both test beds represent
an indoor environment more practically compared to our initial lecture theater test bed of which only considered
an AP-based localization approach.
We point out two future directions:
First, although previous works on Bluetooth-based localization have largely provided discouraging results or
required the aid of additional wireless technologies our experience with Bluetooth shows that it is a promising
technology as well that requires more investigation.
Second, more experiments could be conducted in testbeds with different setup and size to explore SSD’s
viability across different settings. Moreover, investigating the impact of testbed’s grid size, and the sample
collection procedure’s effects (e.g., fewer samples at each grid) on our SSD-based algorithms could certainly
provide interesting future work directions.
REFERENCES:
[1] M. Hossain, H. Nguyen Van, Y. Jin, and W.-S. Soh, “Indoor Localization Using Multiple Wireless
Technologies,” Proc. IEEE Int’l Conf. Mobile Adhoc and Sensor Systems (MASS), http://
www.ece.nus.edu.sg/stfpage/elesohws/mass07.pdf, Oct. 2007.
[2] H. Krim and M. Viberg, “Two Decades of Array Signal Processing Research: The Parametric Approach,”
IEEE Signal Processing Magazine, vol. 13, pp. 67-94, 1996.
[3] P. Tao, A. Rudys, A.M. Ladd, and D.S. Wallach, “Wireless LAN Location-Sensing for Security
Applications,” Proc. Second ACM Workshop Wireless security (WiSe ’03), pp. 11-20, Sept. 2003.
[4] A. Haeberlen, E. Flannery, A.M. Ladd, A. Rudys, D.S. Wallach, and L.E. Kavraki, “Practical Robust
Localization over Large-Scale 802.11 Wireless Networks,” Proc. ACM MobiCom, pp. 70-84, 2004.
[5] M.B. Kjærgaard and C.V. Munk, “Hyperbolic Location Fingerprinting: A Calibration-Free Solution for
Handling Differences in Signal Strength,” Proc. IEEE Sixth Ann. Int’l Conf. Pervasive Computing and Comm.
(PerCom ’08), Mar. 2008.
[6] K. Yedavalli, B. Krishnamachari, S. Ravula, and B. Srinivasan, “Ecolocation: A Sequence Based Technique
for RF Localization in Wireless Sensor Networks,” Proc. Fourth Int’l Symp. Information Processing in Sensor
Networks (ISPN ’05), Apr. 2005.
[7] P. Bahl and V.N. Padmanabhan, “RADAR: An In-Building RFBased User Location and Tracking System,”
Proc. IEEE INFOCOM, pp. 775-784, Mar. 2000.
[8] J. Bardwell, “A Discussion Clarifying Often-Misused 802.11 WLAN Terminologies,”
http://www.connect802.com/ download/techpubs/2004/you_believe_D100201.pdf, 2011.
[9] M. Hossain and W.S. Soh, “A Comprehensive Study of Bluetooth Signal Parameters for Localization,”
Proc. IEEE 18th Int’l Symp. Personal, Indoor and Mobile Radio Comm. (PIMRC), http://www.
ece.nus.edu.sg/stfpage/elesohws/pimrc07.pdf, Sept. 2007.
[10] T.S. Rappaport, Wireless Communication - Principles and Practice. Prentice Hall, 1996.
[11] K. Kaemarungsi and P. Krishnamurthy, “Modeling of Indoor Positioning Systems Based on Location
Fingerprinting,” Proc. IEEE INFOCOM, pp. 1012-1022, Mar. 2004.
[12] C. Chang and A. Sahai, “Estimation Bounds for Localization,” Proc. IEEE First Ann. Comm. Soc. Conf.
Sensor and Ad Hoc Comm. and Networks (SECON ’04), pp. 415-424, Oct. 2004.
[13] S.R. Saunders, Antennas and Propagation for Wireless Communication Systems. John Wiley & Sons,
1999.
[14] M.S. Gast, 802.11 Wireless Networks: The Definitive Guide. O’Reilly & Assoc., 2002.
[15] R. Want, A. Hopper, V. Falco, and J. Gibbons, “The Active Badge Location System,” ACM Trans.
Information Systems, vol. 10, no. 1, pp. 91-102, Jan. 1992.

Mais conteúdo relacionado

Mais procurados

A review on distributed beam forming techniques an approach in wireless rela...
A review on distributed beam forming techniques  an approach in wireless rela...A review on distributed beam forming techniques  an approach in wireless rela...
A review on distributed beam forming techniques an approach in wireless rela...
eSAT Journals
 
Vasserman-TMC13-slide
Vasserman-TMC13-slideVasserman-TMC13-slide
Vasserman-TMC13-slide
manoj kumar s
 
6. security in wireless sensor netwoks
6. security in wireless sensor netwoks6. security in wireless sensor netwoks
6. security in wireless sensor netwoks
Rushin Shah
 
security in wireless sensor networks
security in wireless sensor networkssecurity in wireless sensor networks
security in wireless sensor networks
Vishnu Kudumula
 
An Adaptive Mobility Based Attack Detection Mechanism to Detect Selective For...
An Adaptive Mobility Based Attack Detection Mechanism to Detect Selective For...An Adaptive Mobility Based Attack Detection Mechanism to Detect Selective For...
An Adaptive Mobility Based Attack Detection Mechanism to Detect Selective For...
paperpublications3
 

Mais procurados (20)

Vampire attacks
Vampire attacksVampire attacks
Vampire attacks
 
Security in wireless sensor network
Security in wireless sensor networkSecurity in wireless sensor network
Security in wireless sensor network
 
IMPLEMENTATION OF SECURITY PROTOCOL FOR WIRELESS SENSOR
IMPLEMENTATION OF SECURITY PROTOCOL FOR WIRELESS SENSORIMPLEMENTATION OF SECURITY PROTOCOL FOR WIRELESS SENSOR
IMPLEMENTATION OF SECURITY PROTOCOL FOR WIRELESS SENSOR
 
Vampire attacks draining life from wireless ad hoc sensor networks
Vampire attacks draining life from wireless ad hoc sensor networksVampire attacks draining life from wireless ad hoc sensor networks
Vampire attacks draining life from wireless ad hoc sensor networks
 
Source location privacy in wireless sensor networks using data mules.
Source location privacy in wireless sensor networks using data mules.Source location privacy in wireless sensor networks using data mules.
Source location privacy in wireless sensor networks using data mules.
 
A review on distributed beam forming techniques an approach in wireless rela...
A review on distributed beam forming techniques  an approach in wireless rela...A review on distributed beam forming techniques  an approach in wireless rela...
A review on distributed beam forming techniques an approach in wireless rela...
 
Vasserman-TMC13-slide
Vasserman-TMC13-slideVasserman-TMC13-slide
Vasserman-TMC13-slide
 
DATA TRANSMISSION IN WIRELESS SENSOR NETWORKS FOR EFFECTIVE AND SECURE COMMUN...
DATA TRANSMISSION IN WIRELESS SENSOR NETWORKS FOR EFFECTIVE AND SECURE COMMUN...DATA TRANSMISSION IN WIRELESS SENSOR NETWORKS FOR EFFECTIVE AND SECURE COMMUN...
DATA TRANSMISSION IN WIRELESS SENSOR NETWORKS FOR EFFECTIVE AND SECURE COMMUN...
 
The three tier security scheme in wireless
The three tier security scheme in wirelessThe three tier security scheme in wireless
The three tier security scheme in wireless
 
O010528791
O010528791O010528791
O010528791
 
6. security in wireless sensor netwoks
6. security in wireless sensor netwoks6. security in wireless sensor netwoks
6. security in wireless sensor netwoks
 
Wireless Sensor Network Security
Wireless Sensor Network  Security Wireless Sensor Network  Security
Wireless Sensor Network Security
 
security in wireless sensor networks
security in wireless sensor networkssecurity in wireless sensor networks
security in wireless sensor networks
 
Node-Level Trust Evaluation in Wireless Sensor Networks
Node-Level Trust Evaluation in Wireless Sensor NetworksNode-Level Trust Evaluation in Wireless Sensor Networks
Node-Level Trust Evaluation in Wireless Sensor Networks
 
ENSEIRB - Advanced Project
ENSEIRB - Advanced ProjectENSEIRB - Advanced Project
ENSEIRB - Advanced Project
 
Channel Aware Detection of Forwarding Attacks in WSN with Malicious Node Dete...
Channel Aware Detection of Forwarding Attacks in WSN with Malicious Node Dete...Channel Aware Detection of Forwarding Attacks in WSN with Malicious Node Dete...
Channel Aware Detection of Forwarding Attacks in WSN with Malicious Node Dete...
 
Efficient distributed detection of node replication attacks in mobile sensor ...
Efficient distributed detection of node replication attacks in mobile sensor ...Efficient distributed detection of node replication attacks in mobile sensor ...
Efficient distributed detection of node replication attacks in mobile sensor ...
 
An Adaptive Mobility Based Attack Detection Mechanism to Detect Selective For...
An Adaptive Mobility Based Attack Detection Mechanism to Detect Selective For...An Adaptive Mobility Based Attack Detection Mechanism to Detect Selective For...
An Adaptive Mobility Based Attack Detection Mechanism to Detect Selective For...
 
Malicious attack detection and prevention in ad hoc network based on real tim...
Malicious attack detection and prevention in ad hoc network based on real tim...Malicious attack detection and prevention in ad hoc network based on real tim...
Malicious attack detection and prevention in ad hoc network based on real tim...
 
Node detection technique for node replication attack in mobile sensor network
Node detection technique for node replication attack in mobile sensor networkNode detection technique for node replication attack in mobile sensor network
Node detection technique for node replication attack in mobile sensor network
 

Semelhante a DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint addressing mobile devices heterogeneity

Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
ecway
 
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneity
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneitySsd a robust rf location fingerprint addressing mobile devices’ heterogeneity
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneity
Ecway Technologies
 
Java ssd a robust rf location fingerprint addressing mobile devices’ heterog...
Java  ssd a robust rf location fingerprint addressing mobile devices’ heterog...Java  ssd a robust rf location fingerprint addressing mobile devices’ heterog...
Java ssd a robust rf location fingerprint addressing mobile devices’ heterog...
ecwayerode
 
Ncct Ieee Software Abstract Collection Volume 2 50+ Abst
Ncct   Ieee Software Abstract Collection Volume 2   50+ AbstNcct   Ieee Software Abstract Collection Volume 2   50+ Abst
Ncct Ieee Software Abstract Collection Volume 2 50+ Abst
ncct
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Ecway2004
 
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneity
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneitySsd a robust rf location fingerprint addressing mobile devices’ heterogeneity
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneity
Ecwayt
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Ecwayt
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Ecwaytech
 
Dotnet ssd a robust rf location fingerprint addressing mobile devices’ heter...
Dotnet  ssd a robust rf location fingerprint addressing mobile devices’ heter...Dotnet  ssd a robust rf location fingerprint addressing mobile devices’ heter...
Dotnet ssd a robust rf location fingerprint addressing mobile devices’ heter...
Ecwaytech
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Ecway2004
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Ecwaytechnoz
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Ecwaytechnoz
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Ecwaytechnoz
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Ecwayt
 
Final Year Engineering Projects
Final  Year  Engineering  ProjectsFinal  Year  Engineering  Projects
Final Year Engineering Projects
ncct
 
Wireless Networks Projects, Network Security Projects, Networking Project
Wireless Networks Projects, Network Security Projects, Networking ProjectWireless Networks Projects, Network Security Projects, Networking Project
Wireless Networks Projects, Network Security Projects, Networking Project
ncct
 
Polytechnic Projects
Polytechnic ProjectsPolytechnic Projects
Polytechnic Projects
ncct
 

Semelhante a DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint addressing mobile devices heterogeneity (20)

Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
 
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneity
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneitySsd a robust rf location fingerprint addressing mobile devices’ heterogeneity
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneity
 
Java ssd a robust rf location fingerprint addressing mobile devices’ heterog...
Java  ssd a robust rf location fingerprint addressing mobile devices’ heterog...Java  ssd a robust rf location fingerprint addressing mobile devices’ heterog...
Java ssd a robust rf location fingerprint addressing mobile devices’ heterog...
 
Parallel and-distributed-system-ieee-2014-projects
Parallel and-distributed-system-ieee-2014-projectsParallel and-distributed-system-ieee-2014-projects
Parallel and-distributed-system-ieee-2014-projects
 
Parallel and Distributed System IEEE 2014 Projects
Parallel and Distributed System IEEE 2014 ProjectsParallel and Distributed System IEEE 2014 Projects
Parallel and Distributed System IEEE 2014 Projects
 
Ncct Ieee Software Abstract Collection Volume 2 50+ Abst
Ncct   Ieee Software Abstract Collection Volume 2   50+ AbstNcct   Ieee Software Abstract Collection Volume 2   50+ Abst
Ncct Ieee Software Abstract Collection Volume 2 50+ Abst
 
EFFECTIVE AND SECURE DATA COMMUNICATION IN WSNs CONSIDERING TRANSFER MODULE O...
EFFECTIVE AND SECURE DATA COMMUNICATION IN WSNs CONSIDERING TRANSFER MODULE O...EFFECTIVE AND SECURE DATA COMMUNICATION IN WSNs CONSIDERING TRANSFER MODULE O...
EFFECTIVE AND SECURE DATA COMMUNICATION IN WSNs CONSIDERING TRANSFER MODULE O...
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
 
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneity
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneitySsd a robust rf location fingerprint addressing mobile devices’ heterogeneity
Ssd a robust rf location fingerprint addressing mobile devices’ heterogeneity
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
 
Dotnet ssd a robust rf location fingerprint addressing mobile devices’ heter...
Dotnet  ssd a robust rf location fingerprint addressing mobile devices’ heter...Dotnet  ssd a robust rf location fingerprint addressing mobile devices’ heter...
Dotnet ssd a robust rf location fingerprint addressing mobile devices’ heter...
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
 
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...Android  ssd a robust rf location fingerprint addressing mobile devices’ hete...
Android ssd a robust rf location fingerprint addressing mobile devices’ hete...
 
Final Year Engineering Projects
Final  Year  Engineering  ProjectsFinal  Year  Engineering  Projects
Final Year Engineering Projects
 
Wireless Networks Projects, Network Security Projects, Networking Project
Wireless Networks Projects, Network Security Projects, Networking ProjectWireless Networks Projects, Network Security Projects, Networking Project
Wireless Networks Projects, Network Security Projects, Networking Project
 
Polytechnic Projects
Polytechnic ProjectsPolytechnic Projects
Polytechnic Projects
 

Mais de IEEEGLOBALSOFTTECHNOLOGIES

Mais de IEEEGLOBALSOFTTECHNOLOGIES (20)

DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...
 

DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint addressing mobile devices heterogeneity

  • 1. SSD: A ROBUST RF LOCATION FINGERPRINT ADDRESSING MOBILE DEVICES’ HETEROGENEITY ABSTRACT: Fingerprint-based methods are widely adopted for indoor localization purpose because of their cost- effectiveness compared to other infrastructure-based positioning systems. However, the popular location fingerprint, Received Signal Strength (RSS), is observed to differ significantly across different devices’ hardware even under the same wireless conditions. We derive analytically a robust location fingerprint definition, the Signal Strength Difference (SSD), and verify its performance experimentally using a number of different mobile devices with heterogeneous hardware. Our experiments have also considered both Wi-Fi and Bluetooth devices, as well as both Access-Point (AP)-based localization and Mobile-Node (MN)-assisted localization. We present the results of two well-known localization algorithms (K Nearest Neighbor and Bayesian Inference) our proposed fingerprint is used, and demonstrate its robustness when the testing device differs from the training device. We also compare these SSD-based localization algorithms’ performance against that of two other approaches in the literature that are designed to mitigate the effects of mobile node hardware variations, and show that SSD- based algorithms have better accuracy. GLOBALSOFT TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
  • 2. EXISTING SYSTEM: Existing in signal strength among wireless network cards, phones and tags are a fundamental problem for location finger printing. Current solutions require manual and error-prone calibration for each new client to address this problem. This paper proposes hyperbolic location finger printing, which records fingerprints as signal strength ratios between pairs of base stations instead of absolute signal-strength values has been evaluated by extending two well-known location fingerprinting techniques to hyperbolic location finger printing. The extended techniques have been tested on ten hour-long signal-strength traces collected network cards. The evaluation shows that the proposed solution solves the signal-strength difference problem without requiring extra manual calibration and provides a performance equal to that of existing manual solutions. Hyperbolic Location Fingerprinting (HLF) to solve the signal-strength difference problem. The key idea behind HLF is that fingerprints are recorded as signal-strength ratios between pairs of base stations instead of as absolute signal strength. A client’s location can be estimated from the fingerprinted ratios by comparing these with ratios computed from currently measured signal-strength values. Existing of HLF is that it can solve the signal-strength difference problem without requiring any extra calibration. The idea of HLF is inspired from hyperbolic positioning, used to find position estimates from time- difference measurements. The method is named hyperbolic because the position estimates are found as the intersection of a number of hyperbolas each describing the ratio difference between unique pairs of base stations. HLF by extending two well-known LF techniques to use signal-strength ratios: Nearest Neighbor and Bayesian Inference in the HLF-extended techniques have been evaluated on ten-hour-long signal-strength traces collected with five different IEEE 802.11 clients. The traces have been collected over a period of two months in a multi- floored building in evaluation the HLF-extended techniques are compared to LF versions and LF versions extended with a manual solution for signal-strength differences.
  • 3. PROPOSED SYSTEM: We proposed a robust location fingerprint, namely, Signal Strength Difference (SSD), which was shown to outperform the traditional RSS fingerprint in terms of robustness across heterogeneous mobile devices, both analytically and experimentally. We analyze the robustness of SSD more elaborately, using several off-the-shelf Wi-Fi and Bluetooth devices. Our approaches to collect the signal strength samples, namely, AP-based, where the RSS is measured at the AP, and MN-assisted, where the RSS is actually measured at the MN itself. In order to verify SSD’s robustness, we need to consider both of these scenarios. However, we have only considered the AP-based analysis and experiments. In this paper, we show that, regardless of whether the signal strength samples are collected at the APs or at the MN, SSD is a more robust location fingerprint compared to the traditional RSS experimental test beds for Wi-Fi and Bluetooth. The Bluetooth test bed follows the AP based approach while the Wi-Fi test bed follows the MN assisted approach. In this paper, we also considered two different test beds for Wi-Fi and Bluetooth which emulate MN-assisted and AP-based localization, respectively. The settings and surroundings of both test beds represent an indoor environment more practically compared to our initial lecture theater test bed of which only considered an AP- based localization approach.
  • 4. HARDWARE & SOFTWARE REQUIREMENTS: HARDWARE REQUIREMENT:  Processor - Pentium –IV  Speed - 1.1 GHz  RAM - 256 MB (min)  Hard Disk - 20 GB  Floppy Drive - 1.44 MB  Key Board - Standard Windows Keyboard  Mouse - Two or Three Button Mouse  Monitor - SVGA SOFTWARE REQUIREMENTS:  Operating System : Windows XP  Front End : Visual Studio 2008 .NET  Scripts : C# Script.  Database : SQL Server 2005
  • 5. CONCLUSION: In this paper, we define a robust location fingerprint, the SSD, which provides a more robust location signature compared to the traditional RSS in the presence of mobile node hardware heterogeneity. Both our theoretical analysis and experimental studies have shown that, regardless of whether the signal strength samples are collected at the APs (AP-based localization) or at the MN (MN-assisted localization), SSD-based localization algorithms outperform those based on the traditional RSS fingerprints, as well as several other techniques that are designed to mitigate the effects of MNs’ hardware variations. Our work in AP-based analysis was carried out two different test beds for Wi-Fi and Bluetooth which emulate MN-assisted and AP-based localization, respectively. The settings and surroundings of both test beds represent an indoor environment more practically compared to our initial lecture theater test bed of which only considered an AP-based localization approach. We point out two future directions: First, although previous works on Bluetooth-based localization have largely provided discouraging results or required the aid of additional wireless technologies our experience with Bluetooth shows that it is a promising technology as well that requires more investigation. Second, more experiments could be conducted in testbeds with different setup and size to explore SSD’s viability across different settings. Moreover, investigating the impact of testbed’s grid size, and the sample collection procedure’s effects (e.g., fewer samples at each grid) on our SSD-based algorithms could certainly provide interesting future work directions.
  • 6. REFERENCES: [1] M. Hossain, H. Nguyen Van, Y. Jin, and W.-S. Soh, “Indoor Localization Using Multiple Wireless Technologies,” Proc. IEEE Int’l Conf. Mobile Adhoc and Sensor Systems (MASS), http:// www.ece.nus.edu.sg/stfpage/elesohws/mass07.pdf, Oct. 2007. [2] H. Krim and M. Viberg, “Two Decades of Array Signal Processing Research: The Parametric Approach,” IEEE Signal Processing Magazine, vol. 13, pp. 67-94, 1996. [3] P. Tao, A. Rudys, A.M. Ladd, and D.S. Wallach, “Wireless LAN Location-Sensing for Security Applications,” Proc. Second ACM Workshop Wireless security (WiSe ’03), pp. 11-20, Sept. 2003. [4] A. Haeberlen, E. Flannery, A.M. Ladd, A. Rudys, D.S. Wallach, and L.E. Kavraki, “Practical Robust Localization over Large-Scale 802.11 Wireless Networks,” Proc. ACM MobiCom, pp. 70-84, 2004. [5] M.B. Kjærgaard and C.V. Munk, “Hyperbolic Location Fingerprinting: A Calibration-Free Solution for Handling Differences in Signal Strength,” Proc. IEEE Sixth Ann. Int’l Conf. Pervasive Computing and Comm. (PerCom ’08), Mar. 2008. [6] K. Yedavalli, B. Krishnamachari, S. Ravula, and B. Srinivasan, “Ecolocation: A Sequence Based Technique for RF Localization in Wireless Sensor Networks,” Proc. Fourth Int’l Symp. Information Processing in Sensor Networks (ISPN ’05), Apr. 2005. [7] P. Bahl and V.N. Padmanabhan, “RADAR: An In-Building RFBased User Location and Tracking System,” Proc. IEEE INFOCOM, pp. 775-784, Mar. 2000. [8] J. Bardwell, “A Discussion Clarifying Often-Misused 802.11 WLAN Terminologies,” http://www.connect802.com/ download/techpubs/2004/you_believe_D100201.pdf, 2011. [9] M. Hossain and W.S. Soh, “A Comprehensive Study of Bluetooth Signal Parameters for Localization,” Proc. IEEE 18th Int’l Symp. Personal, Indoor and Mobile Radio Comm. (PIMRC), http://www. ece.nus.edu.sg/stfpage/elesohws/pimrc07.pdf, Sept. 2007. [10] T.S. Rappaport, Wireless Communication - Principles and Practice. Prentice Hall, 1996.
  • 7. [11] K. Kaemarungsi and P. Krishnamurthy, “Modeling of Indoor Positioning Systems Based on Location Fingerprinting,” Proc. IEEE INFOCOM, pp. 1012-1022, Mar. 2004. [12] C. Chang and A. Sahai, “Estimation Bounds for Localization,” Proc. IEEE First Ann. Comm. Soc. Conf. Sensor and Ad Hoc Comm. and Networks (SECON ’04), pp. 415-424, Oct. 2004. [13] S.R. Saunders, Antennas and Propagation for Wireless Communication Systems. John Wiley & Sons, 1999. [14] M.S. Gast, 802.11 Wireless Networks: The Definitive Guide. O’Reilly & Assoc., 2002. [15] R. Want, A. Hopper, V. Falco, and J. Gibbons, “The Active Badge Location System,” ACM Trans. Information Systems, vol. 10, no. 1, pp. 91-102, Jan. 1992.