SlideShare uma empresa Scribd logo
1 de 49
Baixar para ler offline
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 1
CE 370
REINFORCED CONCRETE-I
Prof. Abdelhamid Charif
Analysis and Design of
Doubly Reinforced Beams
Definitions
• The steel that is occasionally used on the compression side of
beams is called compression steel.
• Beams with both tensile and compressive steel are also
referred to as doubly reinforced beams.
• Depth of compression steel is d’ = cover + ds + db’/2
2
d
b
sA
N.A.
'
d
'
sA
c
CE370 : Prof. Abdelhamid Charif
• Bending contribution of steel increases
with lever arm
• For tension steel a high value of depth d
is desirable and for compression steel a
low value of depth d’ is desirable.
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 2
Why use compression steel ?
• Compression steel is not normally required in beams because
high compressive strength of concrete decreases the need for
such reinforcement.
• Occasionally, however, space or aesthetic requirements limit
beams to such sizes that compression steel is needed in addition
to tensile steel.
• A beam designed with tension steel only but not satisfying
tension-control condition (εt < 0.005) must either have
compression reinforcement or increased dimensions.
• Compression steel may also be provided for practical reasons only
(to fix stirrups and prevent their movement during casting and
vibration)
3CE370 : Prof. Abdelhamid Charif
Why use compression steel ? (cont.)
• Compressive steel increases moment capacity of RC sections as
well as their ductility (higher ultimate curvature).
• Though expensive, compression steel makes beams tough and
ductile, enabling them to withstand large moments,
deformations, and stress reversals such as might occur during
earthquakes.
• Many codes for earthquake zones require that certain minimum
amounts of compression steel be included in flexural members.
• Compression steel reduces long-term deflections due to
shrinkage and plastic flow.
• Tests of doubly reinforced concrete beams have shown that
even if the compression concrete crushes, the beam may very
well not collapse if the compression steel is enclosed by stirrups.
4CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 3
5
Effect of compression steel
on sustained load deflection
bd
A'
s
ratiosteelnCompressio' 
CE370 : Prof. Abdelhamid Charif
6
Effect of compression steel on ductility
Limited effect on strength
CE370 : Prof. Abdelhamid Charif
Sometimes the neutral axis is close to the compression steel, the
strain and stress are therefore very small. Thus compression
steel adds little moment capacity to the beam. It can, however,
increase beam ductility and reduce long term deflections.
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 4
CE 370
REINFORCED CONCRETE-I
Prof. Abdelhamid Charif
Analysis of RC Beams with
Compression Steel
Analysis of RC beams
with compression steel
• In beams with compression steel (doubly reinforced),
the amount of tension steel is high (almost maximum).
There is normally no need to check minimum steel
• Flanges in T-beams provide extra compression
capacity. T-beams do not usually require compression
steel
• Analysis and design of doubly reinforced beams is
therefore limited to rectangular sections.
8CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 5
Strain Compatibility in
Doubly Reinforced Beams
Tension steel in one layer or more.
Compression steel in one layer.
Tensile steel assumed yielding but in
analysis problems, this may be untrue
Compression steel may yield or not.
Strain expressions are derived from
strain compatibility of plane
sections (use of similar triangles).
9
d
b
sA
N.A.
003.0
t
'
s'd
'
sA
c
td
s
mind
min
• As , d , εs = Area, depth and strain at tension steel centroid
• dt , εt = Depth and strain at bottom tension layer (max. depth)
• dmin , εmin = Depth and strain at minimum depth tension layer
• A’s , d’ , ε’s = Area, depth and strain at compression steel
CE370 : Prof. Abdelhamid Charif
Strain Compatibility in
Doubly Reinforced Beams
10
Strain expressions are derived
using similar triangles :















ysy
ysss
s
s
t
t
s
f
E
f
c
dc
c
cd
c
cd
c
cd






'
''
'
'
min
min
if
if
:stresssteelnCompressio
'
003.0:nCompressio
003.0:iondepth tensMin.
003.0:tensionBottom
003.0:tensionCentroid
d
b
sA
N.A.
003.0
t
'
s'd
'
sA
c
td
s
mind
min
CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 6
11
(a) Section
a
abfC cc
'
85.0
'
85.0 cf
ys fAT 
(*)'''
sss fAC 
d
b
sA
N.A.
003.0
'
s'd
'
sA
c
s
(b) Strains (c) Forces
Forces in Doubly Reinforced Beams
 '''
''
'
85.0:concretedisplacedforaccountTo
concrete)displacedconsider(modify to:forcencompressioSteel
85.0:forcencompressioConcrete
assumed)yielding(tensile:forcetensionSteel
csss
sss
cc
ys
ffAC
fAC
abfC
fAT




(*) Compression steel
area displaces same
area of concrete
CE370 : Prof. Abdelhamid Charif
Displaced Concrete
• Compression steel bars displace an equal amount (area) of
compression concrete.
• The concrete compression force is therefore slightly
reduced
12
 '''
''''''
''
85.0
85.0
:forceecompressivsteelthecorrectingbyaccountintoit
taketoconvenientmorethereforeisItarm.leversametheehasand
levelsteelncompressioat thelocatedisconcretedisplacedThis
85.0reductionForce
csss
scssssss
sc
ffAC
AfAfCAfC
Af



CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 7
13
(a) Section
a
abfC cc
'
85.0
'
85.0 cf
ys fAT 
 ''''
85.0 csss ffAC 
d
b
sA
N.A.
003.0
'
s'd
'
sA
c
s
(b) Strains (c) Forces
Moment in Doubly Reinforced Beams
 
  '''''
''''
85.0
2
85.0
steelileabout tensforcesncompressioofMomentmomentNominal
85.085.0:mequilibriuForce
ddffA
a
dabfM
ffAabffACCT
csscn
csscyssc









CE370 : Prof. Abdelhamid Charif
14
Nominal Moment in
Doubly Reinforced Beams
   eq.(b)'''''
85.0
2
85.0momentNominal ddffA
a
dabfM csscn 






 
  eq.(a)
bf
ffAfA
a
ffAabffACCT
c
csys
csscyssc
s
'
'''
''''
85.0
85.0
:thusisdepthblockStress
85.085.0:mequilibriuForce










ysy
ysss
s
f
E
f


'
''
'
if
if
:stresssteelnCompressio
notoryieldedhassteelncompressiowhetherisdifficultymainThe
CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 8
Analysis of Doubly Reinforced Beams
• Assume tension steel has yielded
• Assume compression steel has yielded
• Compute stress block depth a and neutral axis depth c
• Compute compression and tension steel strains
• If compression and tension steel have yielded, OK continue,
perform strain checks and compute nominal moment
• If compression steel has not yielded, express unknown stress
block depth and compression steel stress in terms of neutral
axis depth c and solve resulting quadratic equation. Perform
strain checks and compute nominal moment.
• If tension steel has not yielded, use adapted method
15CE370 : Prof. Abdelhamid Charif
Analysis of Doubly Reinforced Beams
(Compression steel has yielded)
16
   
c
cd
c
dc
a
c
bf
ffAfA
bf
ffAfA
a
fff
ss
c
cysys
c
csys
yss
s










003.0,003.0:strainsSteel
85.0
85.0
85.0
85.0
:eq.(a)fromdepthblockstressCompute
:yieldedhavesteeltensionandncompressioAssume
'
'
1
'
''
'
'''
'


  ''''
85.0
2
85.0
:eq.(b)hmoment witnominalcompute
:thenassumed,as,yieldedhavesteeltensionandncompressioIf
ddffA
a
dabfM cyscn 






CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 9
Analysis of Doubly Reinforced Beams
(Compression steel has not yielded) (1)
17
 ''''
''
''
'''
85.085.0
:equationmequilibriuforceBack to
600003.0200000
:yieldednothassteelncompressioIf
csscyssc
ysss
sssys
ffAabffACCT
f
c
dc
c
dc
Ef
Ef









085.060085.0
85.060085.0
''
'
'
1
'
'
'
'
1
'












ysscsc
cscys
fAAf
c
dc
Acbf
f
c
dc
AcbffA


Substituting the stress block depth (a = β1c) and the compression
steel stress in terms of neutral axis depth gives:
CE370 : Prof. Abdelhamid Charif
Analysis of Doubly Reinforced Beams
(Compression steel has not yielded) (2)
18CE370 : Prof. Abdelhamid Charif
Multiplying all terms by c and assembling leads to a quadratic
equation with respect to the neutral axis depth c :
 
 
 
   eq.(b)'''''
2''
''''
1
'
'
1
'
'
'
1
'
''''2
85.0
2
85.0:OKIf
yieldncompressionoandyieldioncheck tensandstrainssteelCompute
1
4
1
2
:issolutionpositiveThe
85.0
600
85.0
with
0
ddffA
a
dabfM
RPP
dPRPP
c
b
A
R
bf
A
P
bf
fA
P
dPcRPPc
csscn
s
c
s
c
ys























03-Mar-13
CE 370 : Prof. Abdelhamid Charif 10
19
Analysis Problem-1
MPa20andMPa420
shownbeamtheofcapacitymomentdesigntheDetermine
 '
cy ff
All dimensions in mm
750
350
60'
d
202
324
624
66
684d
mm
d
dd
mm
d
dhd
b
s
b
s
60
2
20
1004
2
cover'
68466750
2
32
1004750
2
cover
'














2
2
'
2
2
3.628
4
20
2
0.3217
4
32
4
mmA
mmA
s
s








CE370 : Prof. Abdelhamid Charif
20
ysys ff  ''
:yieldedhassteelncompressioAssume 
 
  mma
bf
ffAfA
a
c
cysys
527.184
3502085.0
2085.04203.6284200.3217
85.0
85.0
:depthblockstressCompute '
''






yieldingassumedOK0021.000217.0
09.217
6009.217
003.0003.0:strainsteelnCompressio
09.217
85.0
527.184
:depthN.A.
''
'
'
1






yss
s
c
dc
mm
a
c



Solution 1
control-OK tension005.000645.0
09.217
09.217684
003.0003.0:strainTension





tt
t
t
c
cd


CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 11
21
  
  
mkNM
mkNmmNM
M
ddffA
a
dabfM
n
n
n
csscn
.9.7267.80790.0momentDesign
.7.807.107.807
606842085.04203.628
2
527.184
684350527.1842085.0
85.0
2
85.0
:eq.(b)usingmomentNominal
6
'''''


















Solution 1 – Cont.
CE370 : Prof. Abdelhamid Charif
22
Analysis Problem-2
Analysis of a rectangular section 300 x 600 mm with six 20-mm bars
in two layers as tension steel and three 20-mm bars as compression
reinforcement. Net spacing between steel layers is 30 mm.
Stirrups have 10-mm diameter
MPafMPaf yc 42025'

2'
2
21
2min
12
1
48.942
96.1884
515
2
490
4905054020
54060
60101040'
mmA
mmA
mm
dd
d
mmdd
mmSdd
mmhdd
mmd
s
s
l
t









d
300
206
'd
203
td 600mind
CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 12
23
ysys ff  ''
:yieldedhassteelncompressioAssume 
 
  mma
bf
ffAfA
a
c
cysys
09.62
3002585.0
2585.042048.94242096.1884
85.0
85.0
:depthblockstressCompute '
''






yieldingNot0021.0000536.0
05.73
6005.73
003.0003.0:strainsteelnCompressio
05.73
85.0
09.62
:depthN.A.
''
'
'
1






yss
s
c
dc
mm
a
c



Solution 2
CE370 : Prof. Abdelhamid Charif
Solution 2 – Cont.
(Compression steel has not yielded)
24CE370 : Prof. Abdelhamid Charif
Neutral axis depth is the solution of a quadratic equation :
 
 
 
 
mmc
c
P
RP
b
A
R
bf
A
P
bf
fA
P
RPP
dPRPP
c
s
c
s
c
ys
046.105
1
696.335765.1041007.146
6035765.1044
1
2
696.335765.1041007.146
35765.104
85.03002585.0
48.942600
696.3
85.0300
48.942
1007.146
85.03002585.0
42096.1884
85.0
600
85.0
with
1
4
1
2
2
'
'
1
'
'
1
'
'
'
1
'
2''
''''








































03-Mar-13
CE 370 : Prof. Abdelhamid Charif 13
Solution 2 – Cont.
(Compression steel has not yielded old)
25
control-OK tensionandyieldOK005.0and
011.0
046.105
046.105490
003.0
003.0:depthminimumatstrainTension
)420(293.257
046.105
60046.105
600600
yieldingnotOK0021.000129.0
046.105
60046.105
003.0003.0:strainsteelnCompressio
mm105.046c
minmin
min
min
min
'
'
s
''
'
'






















y
y
yss
s
c
cd
MPafMPa
c
dc
f
c
dc
CE370 : Prof. Abdelhamid Charif
Solution 2 – Cont.
(Compression steel has not yielded)
26
  
  
mkNM
mkNmmNM
M
mmcaMPaf
ddffA
a
dabfM
n
n
n
csscn
.06.33295.36890.0:momentDesign
.95.368.1095.368
605152585.0293.25748.942
2
289.89
515300289.892585.0
289.89046.10585.0and293.257:with
85.0
2
85.0:eq.(b)frommomentNominal
6
1
'
s
'''''




















CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 14
27
Observations about effect of compression steel :
• Three compression steel bars (50% of tension steel) have added
9.36 kN.m (2.9%) only to the beam flexural capacity, because of
the reduced stress (61 % of yield value).
• Little advantage in strength from compression steel
• Main advantage of compression steel is in increasing ductility
and reducing long term deflections
mkNM
mkNM
n
n
.06.33295.36890.0:momentDesign
.95.368:momentNominal



Discussion – Effect of compression steel
mkNM
mkNM
n
n
.70.322559.35890.0:momentDesign
.559.358:momentNominal
:steelncompressiowithoutbeamSame



CE370 : Prof. Abdelhamid Charif
28
Analysis Problem-3
Analysis of a rectangular section 250 x 600 mm with six 28-mm bars
in two layers as tension steel and two 20-mm bars as compression
reinforcement. Net spacing between steel layers is 28 mm.
Stirrups have 10-mm diameter
MPafMPaf yc 42018'

2'
2
21
12min
1
3.628202
5.3694286
508
2
4805653628
536141040
60101040'
mmA
mmA
mm
dd
d
mmSddd
mmhdd
mmd
s
s
l
t








CE370 : Prof. Abdelhamid Charif
d
250
286
'd
202
td 600mind
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 15
29
 
 
yielding)notlayersboth(yieldingnotsteelTension00103.0
05.399
05.399536
003.0003.0:strainsteelTension
yieldingncompressioOK0021.000255.0
05.399
6005.399
003.0003.0:strainsteelnCompressio
05.399
85.0
19.339
:depthN.A.
19.339
2501885.0
1885.04203.6284205.3694
85.0
85.0
:depthblockstressCompute
:yieldedhassteelncompressioAssume
1
1
''
'
'
1
'
''
''


















yt
t
yss
s
c
cysys
ysys
c
cd
c
dc
mm
a
c
mma
bf
ffAfA
a
ff






Solution 3
CE370 : Prof. Abdelhamid Charif
Analysis of Doubly Reinforced Beams
Tension steel has not yielded
30CE370 : Prof. Abdelhamid Charif
As shown in the previous problem 3, tension steel does not yield
when the neutral axis depth is rather large, which usually leads to
yielding of the compression steel. We therefore assume initially that
compression steel has yielded.
d
b
1
2
s
s
A
A
'd
'
sA
1d2d
Lumping of tension layers cannot be
used since there is no yielding.
We treat the case of problem 3 with
two tension layers in a general way
using strain compatibility.
Both tension layers are not yielding.
2
21 25.1847283 mmAA ss 
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 16
CE370 : Prof. Abdelhamid Charif 31
yss
ssss
ss
ff
c
dc
c
cd
f
c
cd
Ef
c
cd
c
cd











''
2
2
1
11
2
2
1
1
'
003.0:stressstrain /nCompressio
600600:stressesTension
003.0003.0:strainsTension



Analysis of Doubly Reinforced Beams
Tension steel has not yielded – Cont.
a
abfC cc
'
85.0
'
85.0 cf
111 ss fAT 
 '''
85.0 cyss ffAC 
2d
b
1
2
s
s
A
A
N.A.
003.0
'
s'd
'
sA
c
1
2
s
s


1d
222 ss fAT 
CE370 : Prof. Abdelhamid Charif 32
c
cd
A
c
cd
AffAcbf
TTCC
h
dT
h
dTd
h
C
ah
CM
sscysc
sc
scn






























2
2
1
1
''
1
'
21
2211
600600)85.0(85.0
:mequilibriuForce
22
'
222
:centroidsectionaboutcomputedmomentNominal

Analysis of Doubly Reinforced Beams
Tension steel has not yielded – Cont.
a
abfC cc
'
85.0
'
85.0 cf
111 ss fAT 
 '''
85.0 cyss ffAC 
2d
b
1
2
s
s
A
A
N.A.
003.0
'
s'd
'
sA
c
1
2
s
s


1d
222 ss fAT 
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 17
CE370 : Prof. Abdelhamid Charif 33
 






















1
)(
)(4
1
2
:issolutionpositiveThe
85.0
)85.0(
85.0
600
85.0
600
0)(
:asexpressed-rebecanhichequation wQuadratic
0)(600)(600)85.0(85.0
600600)85.0(85.0
2
21
221121
1
'
''
1
'
2
2
1
'
1
1
221121
2
221121
''2
1
'
2
2
1
1
''
1
'
QPP
dPdPQPP
c
bf
ffA
Q
bf
A
P
bf
A
P
dPdPcQPPc
dAdAcAAffAcbf
c
cd
A
c
cd
AffAcbf
c
cys
c
s
c
s
sssscysc
sscysc



Analysis of Doubly Reinforced Beams
Tension steel has not yielded – Cont.
CE370 : Prof. Abdelhamid Charif 34
mmc
c
QPP
dPdPQPP
c
bf
ffA
Q
bf
A
bf
A
PP
c
cys
c
s
c
s
54.320
1
)21.789.3409.340(
)4809.3405369.340(4
1
2
21.789.3409.340
1
)(
)(4
1
2
:issolutionpositiveThe
21.78
85.02501885.0
)1885.0420(3.628
85.0
)85.0(
9.340
85.02501885.0
25.1847600
85.0
600
85.0
600
:3problemfornapplicatioNumerical
2
2
21
221121
1
'
''
1
'
2
1
'
1
21









































Analysis of Doubly Reinforced Beams
Tension steel has not yielded – Solution 3 - Cont.
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 18
CE370 : Prof. Abdelhamid Charif 35
kN
c
cd
ATkN
c
cd
AT
kNffACkNcbfC
MPaffMPaEfMPaEf
c
dc
c
cd
c
cd
mmc
ss
cysscc
ysssssss
ys
ys
ys
37.55160001.745600
27.254)85.0(16.104285.0
420,48.298,3.403
OK00244.0
54.320
6054.320
003.0
'
003.0
OK0014924.0
54.320
54.320480
003.0003.0
OK0020165.0
54.320
54.320536
003.0003.0
:forcesandstressesstrains,variousCompute54.320
2
22
1
11
''
1
'
'
2211
'
2
2
1
1




























Analysis of Doubly Reinforced Beams
Tension steel has not yielded – Solution 3 - Cont.
CE370 : Prof. Abdelhamid Charif 36
mkNM
mkNM
h
dT
h
dTd
h
C
ah
CM
n
n
scn
.40.32978.50665.0
yielding)(No65.0
.78.506:obtainon wesubstitutiAfter
22
'
222
:momentNominal 2211






























a
16.1042cC
'
85.0 cf
01.7451 T
27.254sC
2d
b
1
2
s
s
A
A
N.A.
003.0
'
s'd
'
sA
c
1
2
s
s


1d
37.5512 T
Analysis of Doubly Reinforced Beams
Tension steel has not yielded – Solution 3 - Cont.
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 19
CE 370
REINFORCED CONCRETE-I
Prof. Abdelhamid Charif
Design of doubly reinforced beams
according to ACI and SBC 304
RC design of beams with compression steel
according to ACI and SBC 304
• If a section, designed with tension steel only, is not tension-
controlled, compression steel is then required.
• The solution is to set tension steel strain equal to minimum
value of 0.005 and then design accordingly.
• The neutral axis depth and strains become therefore all known.
• With many tension layers, satisfying tension-control at the
bottom layer will in general satisfy yield condition at the
tension steel layers.
• If however it is suspected that this might not be true, then the
neutral axis depth will be chosen to satisfy both conditions.
38CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 20
39







y
yy
d
cc


10003
3
:depthminimumsteelatYield
min
min




 t
t
tt d
d
cc 375.0
8
3
005.0
:layerbottomatcontrol-Tension











y
t dd
c
10003
3
,
8
3
Min
:conditionsbothSatisfying
min
RC design of beams with compression steel
according to ACI and SBC 304
d
b
sA
N.A.
003.0
005.0t
'
s
'
sA
c
td
s
mind
y min
CE370 : Prof. Abdelhamid Charif
40
RC design of beams with compression steel
Design steps
cβa
dd
c
y
t
1
min
knownthusisblockstressecompressivconcreteofDepth
steeltensilemaximumProviding
10003
3
,
8
3
Min
conditionsstrainsteelnsionsatisfy tetoaxisneutralSet the2/
layersofnumberexpectedtoaccordingdepthsvariousEstimate1/













continuerequired,steelnCompressioIf
onlysteelh tensionDesign wit
required,notsteelnCompressioIf
2
85.0
:steelncompressiohoutmoment witnominalCompute3/
0
0
'
0









un
un
cn
MM
MM
a
dabfM


CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 21
41
RC design of beams with compression steel
Design steps – Cont.
  
  '''
'
'
'''''
85.0
2
85.0
:areasteelncompressioRequired
85.0
2
85.0
settingbyareasteelncompressiorequiredDetermine5/
ddff
a
dabf
M
A
ddffA
a
dabf
M
M
MM
cs
c
u
s
cssc
u
n
un




















MPaEf
ff
c
dc
ssssys
ysys
s
''''
''
'
200000If
If
'
003.0
:stressandstrainsteelnCompressio4/







CE370 : Prof. Abdelhamid Charif
42
RC design of beams with compression steel
Design steps – Cont.
 
 
y
cssc
s
csscyssc
f
ffAabf
A
ffAabffACCT
''''
''''
85.085.0
:areasteeltensionRequired
85.085.0
mequilibriuforceusingareasteeltensionrequiredDetermine6/



CE370 : Prof. Abdelhamid Charif
Although the tension control condition is enforced from the start,
the actually provided steel areas (when choosing bar numbers) may
violate this condition and strain checks are therefore required.
The provided tension steel area must not be excessive as compared
to the required value. This topic will be elaborated later.
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 22
43
Design Problem-1
85.0MPa30andMPa420
kN.m510andkN.m753
1 

'
cy
LD
ff
MM
mmd
mmdd
mmdd
mmhd
t
70'
67030
73030
700100
min




CE370 : Prof. Abdelhamid Charif
800
375
'd
'
sA
sA
d
Expecting two tension steel layers, the
various steel depths are estimated as :
Design the shown 375 x 800 mm rectangular beam subjected to
the following dead and live moments :
kN.mM
MMM
u
LDu
0.1392
)510(7.1)375(4.17.14.1:momentUltimate


44
Solution 1
 
mmca
mmc
dd
c
y
t
6875.23275.27385.0
75.27312.394,75.273Min
0021.010003
6703
,
8
7303
Min
10003
3
,
8
3
Min
conditionssteelnsionsatisfy tetoaxisneutralSet the
1
min























requiredsteelnCompressio).1392(
.8.11687.12989.0
.7.1298.107.1298
2
6875.232
7003756875.2323085.0
2
85.0
:steelncompressiohoutmoment witNominal
0
0
6
0
'
0
















mkNMM
mkNM
mkNmNM
a
dabfM
un
n
n
cn


CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 23
45
Solution 1 – Cont.
MPaff
c
dc
ysys
s
420)0021.0(
00223.0
75.273
7075.273
003.0
'
003.0
:stressandstrainsteelnCompressio
''
'








  
  
)4.1140223(8.997
707003085.0420
2
6875.232
7003756875.2323085.0
90.0
101392
85.0
2
85.0
:areasteelncompressioRequired
22'
6
'
'''
'
'
mmmmA
A
ddff
a
dabf
M
A
s
s
cs
c
u
s





















CE370 : Prof. Abdelhamid Charif
Solution 1 – Cont.
46
 
 
)0.6434328(0.6235
420
3085.04208.9973756875.2323085.0
85.085.0
:areasteeltensionRequired
22
''''
mmmmA
A
f
ffAabf
A
s
s
y
cssc
s





CE370 : Prof. Abdelhamid Charif
4.1140223/8.997
:)(steelncompressioActual/Required
0.6434328/0.6235
:)(steeltensionActual/Required
'
2
2


s
s
A
mm
A
mm
800
375
'd
223
328
d
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 24
Using 32 mm for bar spacing (not less than bar diameter), and
10 mm stirrups, the maximum number of 32-mm bars in one layer is:
4
67.4
3232
0423210632375
cover26
max 







n
n
Sd
ddSb
n
bb
bsb
47
Two layers are therefore required as assumed (4+4).
For layer spacing, we use 30 mm.
Solution 1 – Cont.
800
375
'd
223
328
d
CE370 : Prof. Abdelhamid Charif 48
Solution 1 – Cont.
375
'd
223
328
d
4.1140223/8.997:)(steelncompressioActual/Required
0.6434328/0.6235:)(steeltensionActual/Required
'2
2


s
s
Amm
Amm
mm
d
dd
mm
dd
d
mmdSddd
mmdd
d
dhdd
b
s
bl
t
b
st
61111040
2
cover'
703
2
6723230734
734161040800
2
cover
'
21
1min2
1
1







The difference between the required and provided values of steel
areas may lead to violation of the tension control condition. Strain
checks are therefore required using actual steel areas and depths .
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 25
CE370 : Prof. Abdelhamid Charif 49
Solution 1 – Cont.
375
'd
223
328
d
mmd
mm
dd
d
mmdd
mmdd t
61'
703
2
672
734
21
min2
1






The actual tension steel depths are slightly greater than was
initially safely assumed.
The actual compression steel depth is less than was assumed and
this also is on the safe side.
The steel strain checks are however still required because of the
excess in the provided steel areas.
50
ysys ff  ''
:yieldedhassteelncompressiothatbeforefoundwasasAssume

 
 
yieldingassumedOK0021.000234.0
11.277
6111.277
003.0003.0:strainsteelnCompressio
11.277
85.0
54.235
:depthN.A.
54.235
3753085.0
3085.04204.11404200.6434
85.0
85.0
:depthblockstressactualCompute
''
'
'
1
'
''












yss
s
c
cysys
c
dc
mm
a
c
mma
bf
ffAfA
a



CE370 : Prof. Abdelhamid Charif
Solution 1 – Cont.
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 26
51
Solution 1 – Cont.
CE370 : Prof. Abdelhamid Charif
control-tensionOKNOT005.000495.0
00495.0
11.277
11.277734
003.0003.0
:layer)(bottomdepthmaximumatcheckcontrolTension
yieldOK0043.0
11.277
11.277672
003.0003.0
:depthminimumatcheckYield
min
min











t
t
t
y
c
cd
c
cd



The section turns out to be not tension controlled because in the
provided steel areas, there was more excess in the tension steel:
2'
2
6.1428.9974.1140:nCompressio
0.19900.62350.6434:Tension
:Required-ProvidedareasteelExcess
mmA
mmA
s
s



CE370 : Prof. Abdelhamid Charif 52
Solution 1 – Cont.
375
'd
282
328
d
2'
2
'2
2
7.2338.9975.1231:nCompressio
0.19900.62350.6434:Tension
5.1231282/8.997:)(steelncompressioActual/Required
0.6434328/0.6235:)(steeltensionActual/Required
mmA
mmA
Amm
Amm
s
s
s
s




mm
d
dd
mmddd
mmddmmdd
b
s
t
64141040
2
cover'
:depthsteelncempressioNew
7032/)(
672734
:beforeasaredepthssteelTension
'
21
min21



Let us now try another solution with more excess in compression
steel (keeping the same bar reinforcement in tension):
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 27
53
ysys ff  ''
:yieldedhassteelncompressioagain thatAssume 
 
 
yieldingassumedOK0021.00023.0
689.272
64689.272
003.0003.0:strainsteelnCompressio
689.272
85.0
786.231
:depthN.A.
786.231
3753085.0
3085.04205.12314200.6434
85.0
85.0
:depthblockstressactualCompute
''
'
'
1
'
''












yss
s
c
cysys
c
dc
mm
a
c
mma
bf
ffAfA
a



CE370 : Prof. Abdelhamid Charif
Solution 1 – Cont.
54
Solution 1 – Cont.
CE370 : Prof. Abdelhamid Charif
control-tensionOK005.000508.0
689.272
689.272734
003.0
003.0:layer)(bottomdepthmaximumatcheckcontrolTension
yieldOK00439.0
689.272
689.272672
003.0003.0
:depthminimumatcheckYield
min
min










t
t
t
y
c
cd
c
cd



  
  
OKmkNMM
mkNmmNM
M
ddffA
a
dabfM
un
n
n
csscn

















.0.13923.148974.16549.0momentDesign
.74.1654.1074.1654
647033085.04205.1231
2
786.231
703375786.2313085.0
85.0
2
85.0:(optional)checkMoment
6
'''''

03-Mar-13
CE 370 : Prof. Abdelhamid Charif 28
Over Design and Tension Control Condition
• Recall the maximum tensile steel ratio which corresponds to a
tensile strain of 0.005 (Figure a).
• To maintain force equilibrium, any further increase in the
tensile steel area would require a longer compression block
and thus a shift downwards for the neutral axis (Figure b).
• This reduces the steel strain below the limit of 0.005 and
violates the tension control condition of SBC code.
CE370 : Prof. Abdelhamid Charif 55
d
areasteelMaximum:(a)
max,sA
003.0
005.0t
maxc
d
steelmax.thanMore:(b)
max,sA
003.0
005.0t
maxc
Over Design and Tension Control Condition
• In the design of beams with tension steel only, the risk of over
design, generating non-tension-controlled beams, is avoided by
imposing a steel strain check using the actual provided steel
area and depth (equivalent to satisfying maximum steel limit).
• The over design risk is higher in beams requiring compression
steel, as the design is based on the limit condition.
• Excess in provided tensile steel area will also shift the neutral
axis downwards and violate the tension control condition.
CE370 : Prof. Abdelhamid Charif 56
d
steelRequired:(a)
sA
003.0
005.0t
maxc
d
in tensionexcessmorewithsteelProvided:(b)
psA ,
003.0
005.0t
maxc'
sA '
, psA
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 29
CE370 : Prof. Abdelhamid Charif 57
Over Design and Tension Control Condition
• Excess in tensile steel must be balanced by corresponding
excess in compression steel.
• Thus in order to avoid violation of the tension control condition,
the required compression steel area must be re-determined
using the actual tension steel area (after setting bar diameter
and bar number for tension steel).
• The new compression steel area is determined using force
equilibrium and using the actual provided tension steel area:
 
 ''
'
,'
2,
''''
,
85.0
85.0
:isareasteelncompressiorequiredNew
85.085.0
cs
cyps
s
csscypssc
ff
abffA
A
ffAabffACCT




Design Summary (if compression steel required
1. Assume initial steel depths according to expected layers (do not
overestimate tension depth / underestimate compression depth)
2. Set neutral axis depth to satisfy tension steel strain conditions
and deduce compression steel strain and stress.
3. Compute required compression steel using force equilibrium.
4. Deduce required tension steel using moment equilibrium.
5. Select bar diameter, find required bar number for tension steel,
and then determine the actual provided area.
6. Deduce the new required compression steel using force
equilibrium and the actual provided tension steel area.
7. Select bar diameter, find required bar number for compression
steel, and then determine the actual provided area
8. Determine final values of steel depths, and perform moment
check if required.
CE370 : Prof. Abdelhamid Charif 58
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 30
59
  
 
y
cssc
s
cs
c
u
s
ssssys
ysys
s
y
t
f
ffAabf
A
ddff
a
dabf
M
A
MPaEf
ff
c
dc
cβa
dd
c
''''
'''
'
'
''''
''
'
1
min
85.085.0
:areasteeltensionRequired/4
85.0
2
85.0
:areasteelncompressioRequired3/
200000If
If
'
003.0and
10003
3
,
8
3
Min
conditionsstrainsteelnsionsatisfy tetoaxisneutralSet the2/
layersofnumberexpectedtoaccordingdepthsvariousEstimate1/






























CE370 : Prof. Abdelhamid Charif
RC design steps for beams with compression steel
60
RC design steps for beams with compression steel – Cont.
 
design-rethen),(unsafestillifand
checkmomentperformunsafeifdepths,steelfinalDeduce/8
4
withSelect/7
85.0
85.0
:areasteelncompressiorequiredNew6/
4
withSelect/5
'''
,
2'
'
'
'
2,''
''
'
,'
2,
,
2
b
b
un
bbps
b
b
b
s
bb
cs
cyps
s
bbpsb
b
s
b
MM
ANA
d
A
A
A
Nd
ff
abffA
A
ANA
d
A
A
A
Nd









CE370 : Prof. Abdelhamid Charif
• With this strategy, the tension control condition is
always satisfied.
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 31
61
Re - Solve Design Problem-1
85.0MPa30andMPa420 1  '
cy ff
mmd
mmdd
mmdd
mmhd
t
70'
67030
73030
700100
min




CE370 : Prof. Abdelhamid Charif
800
375
'd
'
sA
sA
d
No need to show again that compression
steel is required. We use the same initial
steel depths:
Design the shown 375 x 800 mm rectangular beam subjected to
an ultimate moment of 1392 kN.m:
62
Re-Solution 1
 
mmca
mmc
dd
c
y
t
6875.23275.27385.0
75.27312.394,75.273Min
0021.010003
6703
,
8
7303
Min
10003
3
,
8
3
Min
conditionssteelnsionsatisfy tetoaxisneutralSet the
1
min























CE370 : Prof. Abdelhamid Charif
MPaff
c
dc
ysys
s
420)0021.0(
00223.0
75.273
7075.273
003.0
'
003.0
:stressandstrainsteelnCompressio
''
'








03-Mar-13
CE 370 : Prof. Abdelhamid Charif 32
63
Re-Solution 1 – Cont.
  
  
2'
6
'
'''
'
'
8.997
707003085.0420
2
6875.232
7003756875.2323085.0
90.0
101392
85.0
2
85.0
:areasteelncompressioRequired
mmA
A
ddff
a
dabf
M
A
s
s
cs
c
u
s





















CE370 : Prof. Abdelhamid Charif
 
 
2
,
2
''''
0.6434Φ3288:barsΦ32Using
0.6235
420
3085.04208.9973756875.2323085.0
85.085.0
:areasteeltensionRequired
mmAN
mmA
f
ffAabf
A
psb
s
y
cssc
s






Re-Solution 1 – Cont.
64CE370 : Prof. Abdelhamid Charif
 
 
2'
,
2'
2,
'
2,
''
'
,'
2,
5.1231282Use65.1200
3085.0420
3756875.2323085.04200.6434
85.0
85.0
:areasteelncompressiorequiredNew
mmAmmA
A
ff
abffA
A
pss
s
cs
cyps
s







375
'd
282
328
d
The required compression steel area
jumped from 997.8 to 1200.65 mm2
because of the provided tension steel.
This time, we find directly the second
solution which was checked before.
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 33
65
Design Problem-2
0.85MPa30andMPa420 1  '
cy ff
CE370 : Prof. Abdelhamid Charif
600
375
'd
'
sA
sA
d
Design the shown 375 x 600 mm rectangular beam for an ultimate
moment of 780 kN.m and with the following data:
mmd
mmdd
mmdd
mmhd
t
60'
47030
53030
500100
min




Expecting two tension steel layers, the
various steel depths are estimated as :
66
Solution 2
 
mmca
mmc
dd
c
y
t
9375.16875.19885.0
75.19847.276,75.198Min
0021.010003
4703
,
8
5303
Min
10003
3
,
8
3
Min
1
min























requiredsteelnCompressio).780(
.15.60428.67190.0
.28.671.1028.671
2
9375.168
5003759375.1683085.0
2
85.0
0
0
6
0
'
0
















mkNMM
mkNM
mkNmNM
a
dabfM
un
n
n
cn


CE370 : Prof. Abdelhamid Charif
Set the N.A. depth to satisfy tension steel conditions:
Nominal moment without compression steel :
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 34
67
Solution 2 – Cont.
MPaEf
c
dc
sss
ys
s
8.418002094.0200000
yieldedNot)0021.0(
002094.0
75.198
6075.198
003.0
'
003.0
:stressandstrainsteelnCompressio
''
'
'










  
  
2'
6
'
'''
'
'
09.1129
605003085.08.418
2
9375.168
5003759375.1683085.0
90.0
10780
85.0
2
85.0
:areasteelncompressioRequired
mmA
A
ddff
a
dabf
M
A
s
s
cs
c
u
s





















CE370 : Prof. Abdelhamid Charif
Solution 2 – Cont.
68
 
 
   
2'
,
2'
2,
''
'
,'
2,
2
,
2
''''
64.1256204Use95.1152
3085.08.418
3759375.1683085.04200.4926
85.0
85.0
:areasteelncompressiorequiredNew
4)(4layersOK two0.4926288:bars28Using
66.4903
420
3085.08.41809.11293759375.1683085.0
85.085.0
:areasteeltensionRequired
mmAmmA
ff
abffA
A
mmA
mmA
A
f
ffAabf
A
pss
cs
cyps
s
ps
s
s
y
cssc
s













CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 35
CE370 : Prof. Abdelhamid Charif 69
mm
d
dd
mm
dd
d
mmdSddd
mmdd
d
dhdd
b
s
bl
t
b
st
60101040
2
cover'
507
2
4782830536
536141040600
2
cover
'
21
1min2
1
1







375
'd
204
288
d600
Solution 2 – Cont.
Actual steel depths are :
The actual compression steel depth is unchanged whereas the
tension steel depths are slightly greater than was initially safely
assumed. No moment check is therefore required.
CE370 : Prof. Abdelhamid Charif 70
Solution 2 – Strain Check – Optional only
Assume as was found that compression steel has not yielded. The
neutral axis depth is thus the solution of a quadratic equation :
 
 
 
 
mmcammc
c
P
RP
b
A
R
bf
A
P
bf
fA
P
RPP
dPRPP
c
s
c
s
c
ys
20.165357.19485.0357.194
1
9423.37594.925384.254
607594.924
1
2
9423.37594.925384.254
7594.92
85.03753085.0
6.1256600
9423.3
85.0375
6.1256
5384.254
85.03753085.0
4200.4926
85.0
600
85.0
with
1
4
1
2
1
2
'
'
1
'
'
1
'
'
'
1
'
2''
''''









































03-Mar-13
CE 370 : Prof. Abdelhamid Charif 36
71
)420(8.414002074.0200000
yieldingnotOK0021.0002074.0
357.194
60357.194
003.0003.0:strainsteelnCompressio
''
s
''
'
'
MPafMPaEf
c
dc
yss
yss
s









CE370 : Prof. Abdelhamid Charif
Solution 2 – Cont.
controlTensionOK005.000527.0
357.194
357.194536
003.0003.0
:layer)(bottomdepthmaximumatcheckcontrolTension
yieldOK0044.0
357.194
357.194478
003.0003.0
:depthminimumatcheckYield
min
min
min










t
t
t
y
c
cd
c
cd




72
  
  
surprise)(No.0.780
.196.800105.88990.0:momentDesign
.105.889.10105.889
605073085.08.4146.1256
2
2.165
5073752.1653085.0
85.0
2
85.0
6
'''''
OKmkNMM
mkNM
mkNmmNM
M
ddffA
a
dabfM
un
n
n
n
csscn



















CE370 : Prof. Abdelhamid Charif
Solution 2 – Cont.
Moment check (not required)
Since the tensile steel strain conditions are satisfied and the
actual steel depths are safer than assumed, the moment check is
not required. We still perform it.
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 37
Design of doubly reinforced beams
Final observations
• It is important in the final design stage to comply with the design
results. Any excess in the tensile steel area may result in
violation of tension-control condition.
• Excess in tensile steel must be balanced by corresponding excess
in compression steel.
• Excess of steel may increase moment capacity but may change
the type of beam behavior and failure
• Over-design is not only uneconomical, it may also affect
structural safety
• The design method described previously avoids systematically
over design leading to violation of tension control condition.
73CE370 : Prof. Abdelhamid Charif
CE370 : Prof. Abdelhamid Charif 74
Effect of tension steel ratio
These moment curvature
relationships, produced by
RC-TOOL software, show
the ductility of under
reinforced beams.
Despite their improved
strength, over reinforced
beams have little energy
absorption capacity, which
is the main factor in seismic
design.
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 38
CE370 : Prof. Abdelhamid Charif 75
Effect of compression steel ratio
These moment curvature
relationships, produced by
RC-TOOL software, show
that adequate compression
steel can recover the
ductility of a brittle beam.
A measure of ductility
(energy absorption
capacity) is given by the
area under the curve.
Maximum compression steel ?
• SBC and ACI codes do not fix any maximum limit to a beam total
steel reinforcement.
• The maximum tension steel ratio is satisfied through the tension
control condition.
• If the tension control check is not satisfied, then either the section
is increased or compression steel must be provided.
• There is a risk that the second option will be abusively used
resulting in excessive compression steel.
• Should not there be a limit on the compression steel ?
• The deficiency in the section may be such that the required
compression steel may be too large and even exceed tension steel.
• This strange situation is more likely in shallow beams which are
used for architectural reasons (popular in KSA).
CE370 : Prof. Abdelhamid Charif 76
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 39
CE370 : Prof. Abdelhamid Charif 77
Design Problem 3
Design of a shallow beam (depth less than width) 1000 x 320 mm.
In order to hide the beam, its thickness was limited to that of the
slab (320 mm).
This “hiding” architectural constraint is mechanically obsolete and
must be restrained by the structural community.
We design this beam for four different values of the ultimate
moment (300, 400, 500, 600 kN.m).
1000
320
MPa420MPa20  y
'
c ff
For simplification, we consider
the same steel depths in all
cases based on one layer in both
tension and compression steel.
d = h – 60 = 260 mm, d’ = 60 mm
78
Solution 3
mmca
mm
d
c
875.825.9785.0
5.97
8
2603
8
3
layer)tension(oneconditionssteelnsionsatisfy tetoaxisneutralSet the
1 




cases.allinrequiredsteelnCompressio
.1.2779.30790.0
.9.307.109.307
2
875.82
2601000875.822085.0
2
85.0
:steelncompressiohoutmoment witNominal
0
0
6
0
'
0
















un
n
n
cn
MM
mkNM
mkNmNM
a
dabfM


CE370 : Prof. Abdelhamid Charif
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 40
79
Solution 3 – Cont.
ys
y
s
sssys
s
ff
f
f
MPaEf
c
dc
of%5555.0
8.230001154.0200000
001154.0
5.97
605.97
003.0
'
003.0
:stressandstrainsteelnCompressio
'
'
'''
'









  
 
y
cssc
s
cs
c
u
s
f
ffAabf
A
ddff
a
dabf
M
A
''''
'''
'
'
85.085.0
:areasteeltensionRequired
85.0
2
85.0
:areasteelncompressioRequired












CE370 : Prof. Abdelhamid Charif
Solution 3 – Cont.
80CE370 : Prof. Abdelhamid Charif
300 594.2 3656.9 0.16 0.013
400 3193.1 4979.7 0.64 0.026
500 5792.0 6302.4 0.92 0.038
600 8390.8 6525.2 1.29 0.047
mkN
Mu
. bh
AA ss
'

2
'
mm
As
2
mm
As
s
s
A
A'
The following table presents the various results of required
tension and compression steel areas for the four ultimate
moment values. Comparison ratios are also given.
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 41
Maximum compression steel ?
• We can observe the rapid increase in the compression
steel area, until it exceeds the tension steel value.
• To avoid such nonsense situations, a limit must be set.
• Despite the “silence” of SBC and ACI codes on this
issue, it is recommended to limit compression steel
amount to a fraction of tension steel area (say 20 to
40%) or to fix a limit on the total steel ratio.
CE370 : Prof. Abdelhamid Charif 81
Analysis of a general multi-layer RC section
using strain compatibility method - 1
• Many problems were previously solved using strain compatibility.
• A general RC section with many steel layers is now considered
with partial yielding. The most strained layers are yielding
whereas the remaining layers are in the elastic stage.
• This allows tuning to any possible case.
• The steel area, depth and strain at each layer are :
CE370 : Prof. Abdelhamid Charif 82
• Asi , di , εsi = At
tension layer i
• εt = At bottom layer
(tension control, Ф)
• A’
sj , d’
j , ε’
sj = At
compression layer j
0.003
di
a =
β1c
Depths Strains Forces
c
'
jd
si
t
abfc
'
85.0
'
85.0 cf
'
sj
 '''
85.0 csjsj ffA 
sisi fA
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 42
CE370 : Prof. Abdelhamid Charif 83
Analysis of a general multi-layer RC section
using strain compatibility method - 2
• Steel stresses are :
















c
dc
Ef
ff
c
cd
Ef
ff
j
sjssjysj
ysjysj
i
sissiysi
ysiysi
'
'''
''
600:If
:If
600:If
:If




0.003
di
a =
β1c
Depths Strains Forces
c
'
jd
si
t
abfc
'
85.0
'
85.0 cf
'
sj
 '''
85.0 csjsj ffA 
sisi fA
c
dc
c
cd
j
sj
i
si
'
'
003.0
003.0






• Steel strains are :
   ''''
85.085.0 csjsjcsisisjcsi ffAabffACCT
• Force equilibrium:
CE370 : Prof. Abdelhamid Charif 84
Analysis of a general multi-layer RC section
using strain compatibility method - 3
Starting from an initial guess, steel layers are split in yielding (y) and
elastic (e) parts, and using a = β1c, equilibrium equation becomes:
      '''''
1
'
85.0
600
85.0
600
sjcejsejsyjyceiseisyiy AfcdA
c
AfcbfcdA
c
Af 
   ''''
85.085.0 csjsjcsisi ffAabffA
Multiplying by c and grouping leads to a general quadratic equation :






''
0
1
'
'
1
'
'
'
1
'
'
'
1
'
1
'
'''
0
''2
0If:caseSpecial
85.0
600
85.085.0
600
85.0
with0
ejejeiei
sj
c
sej
ej
c
yysj
yj
c
esi
ei
c
ysyi
yi
eiyiejyjejejeieio
dPdPcP
b
A
R
bf
A
P
bf
fA
P
bf
A
P
bf
fA
P
RPPPPPdPdPcPc

03-Mar-13
CE 370 : Prof. Abdelhamid Charif 43
CE370 : Prof. Abdelhamid Charif 85
Analysis of a general multi-layer RC section
using strain compatibility method - 4
The positive solution of this quadratic equation is :
1
'
'
1
'
'
'
1
'
'
'
1
'
1
'
'''
0
''2
85.0
600
85.085.0
600
85.0
with0
 b
A
R
bf
A
P
bf
fA
P
bf
A
P
bf
fA
P
RPPPPPdPdPcPc
sj
c
sej
ej
c
yysj
yj
c
esi
ei
c
ysyi
yi
eiyiejyjejejeieio




 











 1
4
1
2 2
0
''
0
P
dPdPP
c
ejejeiei
Depending on the layers and their yielding state, the term P0 may
be positive or negative. The expression of the solution is sign
dependent. The absolute value and (±) are required for generality.
(+) sign is used if the term P0 is negative and (-) is used otherwise.
CE370 : Prof. Abdelhamid Charif 86
Analysis of a general multi-layer RC section
using strain compatibility method - 5
All strains are deduced
and if the assumed
yielding is violated in
any layer, a new
iteration must be
carried out using the
last yielding state.
  

















  22
85.0
22
85.0 ''''' h
dfAd
h
ffA
ah
abfM isisijcsjsjcn
Bottom tensile layer strain εt is used to check tension control and
obtain the strength reduction factor leading to design moment ФMn
The nominal moment is obtained about the section centroid as :
0.003
di
a =
β1c
Depths Strains Forces
'
jd
si
t
abfc
'
85.0
'
85.0 cf
'
sj
 '''
85.0 csjsj ffA 
sisi fA
h/2
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 44
CE370 : Prof. Abdelhamid Charif 87
Example of multi layer general section
Strain compatibility method - 1
Analyze the 600 x 1500 shown
section with the following
material and layer spacing data :
mmS
.εMPaf
.βMPaf
l
yy
'
c
30
00260520
85022 1



mm600
1000
204
2883 
375
1500
208
162
162
There are two skin layers with two Φ16
bars each. Top skin layer (d =375mm)
is considered part of the compression
steel and the second layer (d =1000mm)
is part of tension steel.
CE370 : Prof. Abdelhamid Charif 88
mmd
mmdSdd
mm
d
dd
mmd
mmdSdd
mmdSdd
mmd
d
dhdd
bl
b
s
bl
bl
b
st
375
110203060
60101040
2
cover
1000
1320581378
1378581436
14361410401500
2
cover
'
3
''
1
'
2
'
'
1
4
23
12
1
1








Example of multi layer general section
Strain compatibility method - 2
mm600
1000
204
2883 
375
1500
208
162
162
There are four tension layers and
three compression layers and the
depths are :
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 45
CE370 : Prof. Abdelhamid Charif 89
2
2
'
3
2
2
'
1
2
2
'
1
2
2
4
2
2
321
1.402
4
16
2
6.1256
4
20
4
2.2513
4
20
8
1.402
4
16
2
0.4926
4
28
8
mmA
mmA
mmA
mmA
mmAAA
s
s
s
s
sss










Example of multi layer general section
Strain compatibility method - 3
mm600
1000
204
2883 
375
1500
208
162
162
The various areas are :
CE370 : Prof. Abdelhamid Charif 90
Example of multi layer general section
Strain compatibility method - 4
We start by assuming that all steel has yielded except the skin
layers which are closer to the neutral axis. All layers in the yield
parts (y) except tension layer 4 and compression layer 3 which are
in the elastic parts (e).
The neutral axis depth is given by :
 
1
'
'
1
'
'
'
1
'
'
'
1
'
1
'
'''
02
0
''
0
85.0
600
85.085.0
600
85.0
with1
4
1
2
 b
A
R
bf
A
P
bf
fA
P
bf
A
P
bf
fA
P
RPPPPP
P
dPdPP
c
sj
c
sej
ej
c
yysj
yj
c
esi
ei
c
ysyi
yi
eiyiejyj
ejejeiei
















03-Mar-13
CE 370 : Prof. Abdelhamid Charif 46
CE370 : Prof. Abdelhamid Charif 91
The various parameters are :
1802.8
85.0600
1.4026.12562.2513
2973.25
85.06002285.0
1.402600
85.0
600
5155.68
85.06002285.0
5206.1256
85.0
0309.137
85.06002285.0
5202.2513
85.0
2973.25
85.06002285.0
1.402600
85.0
600
5876.268
85.06002285.0
5200.4926
85.0
1
'
3
'
2
'
1
1
'
'
11
'
'
3'
3
1
'
'
2'
2
1
'
'
1'
1
11
'
4
4
1
'
1
321

































b
AAA
b
A
R
bf
A
P
bf
fA
P
bf
fA
P
bf
A
P
bf
fA
PPP
ssssj
c
s
e
c
ys
y
c
ys
y
c
s
e
c
ys
yyy
Example of multi layer general section
Strain compatibility method - 5
CE370 : Prof. Abdelhamid Charif 92
 
   
mmc
dPdP
c
P
dPdPP
cP
P
P
RPPPPPPPRPPPPP
RPPP
PPPP
eeee
ejejeiei
eyyyeyyeiyiejyj
eyy
eyyy
415.614
1
802.557
37510002973.254
1
2
802.557
1
802.557
4
1
2
802.557
1
4
1
2
0
802.557
1802.82973.255876.26832973.255155.680309.137
1802.82973.255155.680309.137
2973.255876.268
22
'
3
'
344
2
0
''
0
0
0
0
'
4321
'
3
'
2
'
1
'''
0
''
3
'
2
'
1
4321









































Example of multi layer general section
Strain compatibility method - 6
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 47
CE370 : Prof. Abdelhamid Charif 93
Example of multi layer general section
Strain compatibility method - 7
OK:00117.0
415.614
375415.614
003.0
OKNOT:00246.0
415.614
110415.614
003.0
OK:0027.0
415.614
60415.614
003.0
OK:001883.0
415.614
415.6141000
003.0
OK:00345.0
415.614
415.6141320
003.0
OK:0037.0
415.614
415.6141378
003.0
OK:0040.0
415.614
415.6141436
003.0
003.0003.0
'
3
'
2
'
1
4
3
2
1
'
'
ys
ys
ys
ys
ys
ys
ys
j
sj
i
si
c
dc
c
cd

































c = 614.415 mm
Steel layer strains are :
The initial assumed
yielding state is violated
at the compressive layer 2
A second round of
calculations is therefore
required using the last
yielding state.
CE370 : Prof. Abdelhamid Charif 94
All tension parameters and some of the compression
parameters remain unchanged. The new values are :
 
  mmc
dPdPdP
c
P
RPPPPPPPRPPPPP
bf
A
P
b
A
RPP
PPPP
eeeeee
eyyyeeyeiyiejyj
c
s
e
sj
ey
eyyy
656.6171
261.547
3752973.251100563.7910002973.254
1
2
261.547
1
261.547
4
1
2
261.547
261.5471802.82973.255876.26832973.250563.790309.137
0563.79
85.06002285.0
6.1256600
85.0
600
1802.82973.250309.137
2973.255876.268
2
2
'
3
'
3
'
2
'
244
0
'
4321
'
3
'
2
'
1
'''
0
1
'
'
2'
2
1
'
''
3
'
1
4321


































Example of multi layer general section
Strain compatibility method - 8
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 48
CE370 : Prof. Abdelhamid Charif 95
Example of multi layer general section
Strain compatibility method - 9
OK:0011786.0
656.617
375656.617
003.0
OK:0024657.0
656.617
110656.617
003.0
OK:00271.0
656.617
60656.617
003.0
OK:001857.0
656.617
656.6171000
003.0
OK:00341.0
656.617
656.6171320
003.0
OK:00369.0
656.617
656.6171378
003.0
OK:003975.0
656.617
656.6171436
003.0
003.0003.0
'
3
'
2
'
1
4
3
2
1
'
'
ys
ys
ys
ys
ys
ys
ys
j
sj
i
si
c
dc
c
cd

































c = 617.656 mm
Steel layer strains are :
The assumed yielding
state is now confirmed in
all layers.
The stresses are :
ssssys
ysys
Ef
MPaff




200000
520
CE370 : Prof. Abdelhamid Charif 96
Compute the various forces to check equilibrium :
 
 
 
OKkNT
NfAT
NfATTT
NffAC
NffAC
NffAC
NabfC
MPafmmca
sss
yssss
csss
csss
csss
cc
c








 9.7833C:checkmequilibriuForce
0.1493404.3711.402
0.25615205204926
7.87255)7.187.235(1.40285.0
3.596181)7.1814.493(6.125685.0
2.1259867)7.18520(2.251385.0
2.589061260001.5252285.085.0
7.1885.001.525656.61785.0
444
1321
''
3
'
32
''
2
'
22
''
1
'
11
'
'
1
Example of multi layer general section
Strain compatibility method - 10
03-Mar-13
CE 370 : Prof. Abdelhamid Charif 49
CE370 : Prof. Abdelhamid Charif 97
The nominal moment is obtained about the section centroid as :
 




























































































2
1500
10004.3711.402
2
1500
13205204926
2
1500
13785204926
2
1500
14365204926
375
2
1500
)7.187.235(1.402110
2
1500
)7.1814.493(6.1256
60
2
1500
)7.18520(2.2513
2
01.525
2
1500
60001.5252585.0
22
85.0
22
85.0
2222
'''''
'
n
isisijcsjsjcn
isijsjcn
M
h
dfAd
h
ffA
ah
abfM
h
dTd
h
C
ah
CM
Example of multi layer general section
Strain compatibility method - 11
CE370 : Prof. Abdelhamid Charif 98
The nominal moment is :
The bottom tensile layer strain εt is used to check tension control
and obtain the strength reduction factor.
Example of multi layer general section
Strain compatibility method - 11
mkNMn
y
yt
st
.45.715347.90187932.0
7932.0
0026.0005.0
0026.0003975.0
0.250.65
005.0
0.250.65
ionIn transit003975.01














mkNmmNMn .47.9018.1047.9018 6


Mais conteúdo relacionado

Mais procurados

Analysis of T-Beam
Analysis of T-BeamAnalysis of T-Beam
Analysis of T-Beam01008828934
 
Lecture notes in flexural analysis & design of singly reinforced beams and on...
Lecture notes in flexural analysis & design of singly reinforced beams and on...Lecture notes in flexural analysis & design of singly reinforced beams and on...
Lecture notes in flexural analysis & design of singly reinforced beams and on...PUP Lopez College of Civil Engg.
 
Design of R.C.C Beam
Design of R.C.C BeamDesign of R.C.C Beam
Design of R.C.C BeamAr. Aakansha
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution MethodBhavik A Shah
 
Column Interaction Diagram construction
Column Interaction Diagram constructionColumn Interaction Diagram construction
Column Interaction Diagram constructionPritesh Parmar
 
Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Malika khalil
 
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...Hossam Shafiq II
 
Steel design-examples
Steel design-examplesSteel design-examples
Steel design-examplesFaisal Amin
 
Beams design and analysis
Beams design and analysisBeams design and analysis
Beams design and analysisAman Adam
 
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Hossam Shafiq II
 
Calculation of dead load
Calculation of dead loadCalculation of dead load
Calculation of dead loadRidhdhi Gandhi
 
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Hossam Shafiq II
 
L- beams or flanged beams
L- beams or flanged beamsL- beams or flanged beams
L- beams or flanged beamshoneysid
 
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Hossam Shafiq II
 

Mais procurados (20)

Analysis of T-Beam
Analysis of T-BeamAnalysis of T-Beam
Analysis of T-Beam
 
Beam design
Beam designBeam design
Beam design
 
Lecture notes in flexural analysis & design of singly reinforced beams and on...
Lecture notes in flexural analysis & design of singly reinforced beams and on...Lecture notes in flexural analysis & design of singly reinforced beams and on...
Lecture notes in flexural analysis & design of singly reinforced beams and on...
 
T beam TYPES
T beam TYPEST beam TYPES
T beam TYPES
 
Shear wall and its design guidelines
Shear wall and its design guidelinesShear wall and its design guidelines
Shear wall and its design guidelines
 
Two way slab
Two way slabTwo way slab
Two way slab
 
Design of R.C.C Beam
Design of R.C.C BeamDesign of R.C.C Beam
Design of R.C.C Beam
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution Method
 
Column Interaction Diagram construction
Column Interaction Diagram constructionColumn Interaction Diagram construction
Column Interaction Diagram construction
 
Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)
 
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
 
Steel design-examples
Steel design-examplesSteel design-examples
Steel design-examples
 
Beams design and analysis
Beams design and analysisBeams design and analysis
Beams design and analysis
 
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
 
Calculation of dead load
Calculation of dead loadCalculation of dead load
Calculation of dead load
 
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
 
Design of beam
Design of beamDesign of beam
Design of beam
 
L- beams or flanged beams
L- beams or flanged beamsL- beams or flanged beams
L- beams or flanged beams
 
Reinforce Concrete Design I - By Dr. Iftekhar Anam
Reinforce Concrete Design I - By Dr. Iftekhar AnamReinforce Concrete Design I - By Dr. Iftekhar Anam
Reinforce Concrete Design I - By Dr. Iftekhar Anam
 
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
 

Semelhante a Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Design I & Prof. Abdelhamid Charif)

Doubly reinforced beams...PRC-I
Doubly reinforced beams...PRC-IDoubly reinforced beams...PRC-I
Doubly reinforced beams...PRC-IIrfan Malik
 
10.01.03.043
10.01.03.04310.01.03.043
10.01.03.043Muurad
 
Lec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsLec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsCivil Zone
 
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...Hossam Shafiq II
 
design-of-singly-reinforced-beam.ppt
design-of-singly-reinforced-beam.pptdesign-of-singly-reinforced-beam.ppt
design-of-singly-reinforced-beam.pptProfKaushalParikh
 
Lec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsLec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsMUST,Mirpur AJK,Pakistan
 
Lec 17-flexural analysis and design of beamns1
Lec 17-flexural analysis and design of beamns1Lec 17-flexural analysis and design of beamns1
Lec 17-flexural analysis and design of beamns1MUST,Mirpur AJK,Pakistan
 
fdocuments.in_design-of-singly-reinforced-5681874f52c1b.ppt
fdocuments.in_design-of-singly-reinforced-5681874f52c1b.pptfdocuments.in_design-of-singly-reinforced-5681874f52c1b.ppt
fdocuments.in_design-of-singly-reinforced-5681874f52c1b.pptSuvenduMajumder
 
T-Beam Design by USD method-10.01.03.102
T-Beam Design by USD method-10.01.03.102T-Beam Design by USD method-10.01.03.102
T-Beam Design by USD method-10.01.03.102Sadia Mitu
 
chapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdfchapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdfAshrafZaman33
 
Design-Of-concrete-Structure MCQ.pdf
Design-Of-concrete-Structure MCQ.pdfDesign-Of-concrete-Structure MCQ.pdf
Design-Of-concrete-Structure MCQ.pdfAsifHameed33
 
Design of rectangular &amp; t beam using usd
Design of rectangular &amp; t beam using usdDesign of rectangular &amp; t beam using usd
Design of rectangular &amp; t beam using usdTipu Sultan
 
Div_Syd_detailing_of_reinforcement_in_concrete_structures.pdf
Div_Syd_detailing_of_reinforcement_in_concrete_structures.pdfDiv_Syd_detailing_of_reinforcement_in_concrete_structures.pdf
Div_Syd_detailing_of_reinforcement_in_concrete_structures.pdfLandelSmith1
 
Lec 17-flexural analysis and design of beamns1
Lec 17-flexural analysis and design of beamns1Lec 17-flexural analysis and design of beamns1
Lec 17-flexural analysis and design of beamns1Civil Zone
 

Semelhante a Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Design I & Prof. Abdelhamid Charif) (20)

Doubly reinforced beams...PRC-I
Doubly reinforced beams...PRC-IDoubly reinforced beams...PRC-I
Doubly reinforced beams...PRC-I
 
RCCDR_Beam
RCCDR_BeamRCCDR_Beam
RCCDR_Beam
 
10.01.03.043
10.01.03.04310.01.03.043
10.01.03.043
 
Lec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsLec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beams
 
Lec 11 12
Lec 11 12Lec 11 12
Lec 11 12
 
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
 
Rcc Beams
Rcc BeamsRcc Beams
Rcc Beams
 
design-of-singly-reinforced-beam.ppt
design-of-singly-reinforced-beam.pptdesign-of-singly-reinforced-beam.ppt
design-of-singly-reinforced-beam.ppt
 
Lec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsLec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beams
 
Lec 17-flexural analysis and design of beamns1
Lec 17-flexural analysis and design of beamns1Lec 17-flexural analysis and design of beamns1
Lec 17-flexural analysis and design of beamns1
 
Design of singly reinforced.
Design of singly reinforced.Design of singly reinforced.
Design of singly reinforced.
 
fdocuments.in_design-of-singly-reinforced-5681874f52c1b.ppt
fdocuments.in_design-of-singly-reinforced-5681874f52c1b.pptfdocuments.in_design-of-singly-reinforced-5681874f52c1b.ppt
fdocuments.in_design-of-singly-reinforced-5681874f52c1b.ppt
 
T-Beam Design by USD method-10.01.03.102
T-Beam Design by USD method-10.01.03.102T-Beam Design by USD method-10.01.03.102
T-Beam Design by USD method-10.01.03.102
 
chapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdfchapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdf
 
Design-Of-concrete-Structure MCQ.pdf
Design-Of-concrete-Structure MCQ.pdfDesign-Of-concrete-Structure MCQ.pdf
Design-Of-concrete-Structure MCQ.pdf
 
10.01.03.153
10.01.03.15310.01.03.153
10.01.03.153
 
Design of rectangular &amp; t beam using usd
Design of rectangular &amp; t beam using usdDesign of rectangular &amp; t beam using usd
Design of rectangular &amp; t beam using usd
 
Div_Syd_detailing_of_reinforcement_in_concrete_structures.pdf
Div_Syd_detailing_of_reinforcement_in_concrete_structures.pdfDiv_Syd_detailing_of_reinforcement_in_concrete_structures.pdf
Div_Syd_detailing_of_reinforcement_in_concrete_structures.pdf
 
Lec 17
Lec 17Lec 17
Lec 17
 
Lec 17-flexural analysis and design of beamns1
Lec 17-flexural analysis and design of beamns1Lec 17-flexural analysis and design of beamns1
Lec 17-flexural analysis and design of beamns1
 

Mais de Hossam Shafiq II

Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaBasics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaHossam Shafiq II
 
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Hossam Shafiq II
 
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Hossam Shafiq II
 
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Hossam Shafiq II
 
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Hossam Shafiq II
 
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Hossam Shafiq II
 
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Hossam Shafiq II
 
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Hossam Shafiq II
 
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Hossam Shafiq II
 
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Hossam Shafiq II
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Hossam Shafiq II
 
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Hossam Shafiq II
 
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Hossam Shafiq II
 
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Hossam Shafiq II
 
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Hossam Shafiq II
 
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Hossam Shafiq II
 
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Hossam Shafiq II
 
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...Hossam Shafiq II
 
Lec01 Introduction to RC, Codes and Limit States (Reinforced Concrete Design ...
Lec01 Introduction to RC, Codes and Limit States (Reinforced Concrete Design ...Lec01 Introduction to RC, Codes and Limit States (Reinforced Concrete Design ...
Lec01 Introduction to RC, Codes and Limit States (Reinforced Concrete Design ...Hossam Shafiq II
 
22-Design of Four Bolt Extended Endplate Connection (Steel Structural Design ...
22-Design of Four Bolt Extended Endplate Connection (Steel Structural Design ...22-Design of Four Bolt Extended Endplate Connection (Steel Structural Design ...
22-Design of Four Bolt Extended Endplate Connection (Steel Structural Design ...Hossam Shafiq II
 

Mais de Hossam Shafiq II (20)

Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaBasics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
 
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
 
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
 
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
 
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
 
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
 
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
 
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
 
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
 
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
 
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
 
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
 
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
 
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
 
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
 
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
 
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
 
Lec01 Introduction to RC, Codes and Limit States (Reinforced Concrete Design ...
Lec01 Introduction to RC, Codes and Limit States (Reinforced Concrete Design ...Lec01 Introduction to RC, Codes and Limit States (Reinforced Concrete Design ...
Lec01 Introduction to RC, Codes and Limit States (Reinforced Concrete Design ...
 
22-Design of Four Bolt Extended Endplate Connection (Steel Structural Design ...
22-Design of Four Bolt Extended Endplate Connection (Steel Structural Design ...22-Design of Four Bolt Extended Endplate Connection (Steel Structural Design ...
22-Design of Four Bolt Extended Endplate Connection (Steel Structural Design ...
 

Último

Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfrs7054576148
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 

Último (20)

Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 

Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Design I & Prof. Abdelhamid Charif)

  • 1. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 1 CE 370 REINFORCED CONCRETE-I Prof. Abdelhamid Charif Analysis and Design of Doubly Reinforced Beams Definitions • The steel that is occasionally used on the compression side of beams is called compression steel. • Beams with both tensile and compressive steel are also referred to as doubly reinforced beams. • Depth of compression steel is d’ = cover + ds + db’/2 2 d b sA N.A. ' d ' sA c CE370 : Prof. Abdelhamid Charif • Bending contribution of steel increases with lever arm • For tension steel a high value of depth d is desirable and for compression steel a low value of depth d’ is desirable.
  • 2. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 2 Why use compression steel ? • Compression steel is not normally required in beams because high compressive strength of concrete decreases the need for such reinforcement. • Occasionally, however, space or aesthetic requirements limit beams to such sizes that compression steel is needed in addition to tensile steel. • A beam designed with tension steel only but not satisfying tension-control condition (εt < 0.005) must either have compression reinforcement or increased dimensions. • Compression steel may also be provided for practical reasons only (to fix stirrups and prevent their movement during casting and vibration) 3CE370 : Prof. Abdelhamid Charif Why use compression steel ? (cont.) • Compressive steel increases moment capacity of RC sections as well as their ductility (higher ultimate curvature). • Though expensive, compression steel makes beams tough and ductile, enabling them to withstand large moments, deformations, and stress reversals such as might occur during earthquakes. • Many codes for earthquake zones require that certain minimum amounts of compression steel be included in flexural members. • Compression steel reduces long-term deflections due to shrinkage and plastic flow. • Tests of doubly reinforced concrete beams have shown that even if the compression concrete crushes, the beam may very well not collapse if the compression steel is enclosed by stirrups. 4CE370 : Prof. Abdelhamid Charif
  • 3. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 3 5 Effect of compression steel on sustained load deflection bd A' s ratiosteelnCompressio'  CE370 : Prof. Abdelhamid Charif 6 Effect of compression steel on ductility Limited effect on strength CE370 : Prof. Abdelhamid Charif Sometimes the neutral axis is close to the compression steel, the strain and stress are therefore very small. Thus compression steel adds little moment capacity to the beam. It can, however, increase beam ductility and reduce long term deflections.
  • 4. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 4 CE 370 REINFORCED CONCRETE-I Prof. Abdelhamid Charif Analysis of RC Beams with Compression Steel Analysis of RC beams with compression steel • In beams with compression steel (doubly reinforced), the amount of tension steel is high (almost maximum). There is normally no need to check minimum steel • Flanges in T-beams provide extra compression capacity. T-beams do not usually require compression steel • Analysis and design of doubly reinforced beams is therefore limited to rectangular sections. 8CE370 : Prof. Abdelhamid Charif
  • 5. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 5 Strain Compatibility in Doubly Reinforced Beams Tension steel in one layer or more. Compression steel in one layer. Tensile steel assumed yielding but in analysis problems, this may be untrue Compression steel may yield or not. Strain expressions are derived from strain compatibility of plane sections (use of similar triangles). 9 d b sA N.A. 003.0 t ' s'd ' sA c td s mind min • As , d , εs = Area, depth and strain at tension steel centroid • dt , εt = Depth and strain at bottom tension layer (max. depth) • dmin , εmin = Depth and strain at minimum depth tension layer • A’s , d’ , ε’s = Area, depth and strain at compression steel CE370 : Prof. Abdelhamid Charif Strain Compatibility in Doubly Reinforced Beams 10 Strain expressions are derived using similar triangles :                ysy ysss s s t t s f E f c dc c cd c cd c cd       ' '' ' ' min min if if :stresssteelnCompressio ' 003.0:nCompressio 003.0:iondepth tensMin. 003.0:tensionBottom 003.0:tensionCentroid d b sA N.A. 003.0 t ' s'd ' sA c td s mind min CE370 : Prof. Abdelhamid Charif
  • 6. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 6 11 (a) Section a abfC cc ' 85.0 ' 85.0 cf ys fAT  (*)''' sss fAC  d b sA N.A. 003.0 ' s'd ' sA c s (b) Strains (c) Forces Forces in Doubly Reinforced Beams  ''' '' ' 85.0:concretedisplacedforaccountTo concrete)displacedconsider(modify to:forcencompressioSteel 85.0:forcencompressioConcrete assumed)yielding(tensile:forcetensionSteel csss sss cc ys ffAC fAC abfC fAT     (*) Compression steel area displaces same area of concrete CE370 : Prof. Abdelhamid Charif Displaced Concrete • Compression steel bars displace an equal amount (area) of compression concrete. • The concrete compression force is therefore slightly reduced 12  ''' '''''' '' 85.0 85.0 :forceecompressivsteelthecorrectingbyaccountintoit taketoconvenientmorethereforeisItarm.leversametheehasand levelsteelncompressioat thelocatedisconcretedisplacedThis 85.0reductionForce csss scssssss sc ffAC AfAfCAfC Af    CE370 : Prof. Abdelhamid Charif
  • 7. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 7 13 (a) Section a abfC cc ' 85.0 ' 85.0 cf ys fAT   '''' 85.0 csss ffAC  d b sA N.A. 003.0 ' s'd ' sA c s (b) Strains (c) Forces Moment in Doubly Reinforced Beams     ''''' '''' 85.0 2 85.0 steelileabout tensforcesncompressioofMomentmomentNominal 85.085.0:mequilibriuForce ddffA a dabfM ffAabffACCT csscn csscyssc          CE370 : Prof. Abdelhamid Charif 14 Nominal Moment in Doubly Reinforced Beams    eq.(b)''''' 85.0 2 85.0momentNominal ddffA a dabfM csscn            eq.(a) bf ffAfA a ffAabffACCT c csys csscyssc s ' ''' '''' 85.0 85.0 :thusisdepthblockStress 85.085.0:mequilibriuForce           ysy ysss s f E f   ' '' ' if if :stresssteelnCompressio notoryieldedhassteelncompressiowhetherisdifficultymainThe CE370 : Prof. Abdelhamid Charif
  • 8. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 8 Analysis of Doubly Reinforced Beams • Assume tension steel has yielded • Assume compression steel has yielded • Compute stress block depth a and neutral axis depth c • Compute compression and tension steel strains • If compression and tension steel have yielded, OK continue, perform strain checks and compute nominal moment • If compression steel has not yielded, express unknown stress block depth and compression steel stress in terms of neutral axis depth c and solve resulting quadratic equation. Perform strain checks and compute nominal moment. • If tension steel has not yielded, use adapted method 15CE370 : Prof. Abdelhamid Charif Analysis of Doubly Reinforced Beams (Compression steel has yielded) 16     c cd c dc a c bf ffAfA bf ffAfA a fff ss c cysys c csys yss s           003.0,003.0:strainsSteel 85.0 85.0 85.0 85.0 :eq.(a)fromdepthblockstressCompute :yieldedhavesteeltensionandncompressioAssume ' ' 1 ' '' ' ''' '     '''' 85.0 2 85.0 :eq.(b)hmoment witnominalcompute :thenassumed,as,yieldedhavesteeltensionandncompressioIf ddffA a dabfM cyscn        CE370 : Prof. Abdelhamid Charif
  • 9. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 9 Analysis of Doubly Reinforced Beams (Compression steel has not yielded) (1) 17  '''' '' '' ''' 85.085.0 :equationmequilibriuforceBack to 600003.0200000 :yieldednothassteelncompressioIf csscyssc ysss sssys ffAabffACCT f c dc c dc Ef Ef          085.060085.0 85.060085.0 '' ' ' 1 ' ' ' ' 1 '             ysscsc cscys fAAf c dc Acbf f c dc AcbffA   Substituting the stress block depth (a = β1c) and the compression steel stress in terms of neutral axis depth gives: CE370 : Prof. Abdelhamid Charif Analysis of Doubly Reinforced Beams (Compression steel has not yielded) (2) 18CE370 : Prof. Abdelhamid Charif Multiplying all terms by c and assembling leads to a quadratic equation with respect to the neutral axis depth c :          eq.(b)''''' 2'' '''' 1 ' ' 1 ' ' ' 1 ' ''''2 85.0 2 85.0:OKIf yieldncompressionoandyieldioncheck tensandstrainssteelCompute 1 4 1 2 :issolutionpositiveThe 85.0 600 85.0 with 0 ddffA a dabfM RPP dPRPP c b A R bf A P bf fA P dPcRPPc csscn s c s c ys                       
  • 10. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 10 19 Analysis Problem-1 MPa20andMPa420 shownbeamtheofcapacitymomentdesigntheDetermine  ' cy ff All dimensions in mm 750 350 60' d 202 324 624 66 684d mm d dd mm d dhd b s b s 60 2 20 1004 2 cover' 68466750 2 32 1004750 2 cover '               2 2 ' 2 2 3.628 4 20 2 0.3217 4 32 4 mmA mmA s s         CE370 : Prof. Abdelhamid Charif 20 ysys ff  '' :yieldedhassteelncompressioAssume      mma bf ffAfA a c cysys 527.184 3502085.0 2085.04203.6284200.3217 85.0 85.0 :depthblockstressCompute ' ''       yieldingassumedOK0021.000217.0 09.217 6009.217 003.0003.0:strainsteelnCompressio 09.217 85.0 527.184 :depthN.A. '' ' ' 1       yss s c dc mm a c    Solution 1 control-OK tension005.000645.0 09.217 09.217684 003.0003.0:strainTension      tt t t c cd   CE370 : Prof. Abdelhamid Charif
  • 11. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 11 21       mkNM mkNmmNM M ddffA a dabfM n n n csscn .9.7267.80790.0momentDesign .7.807.107.807 606842085.04203.628 2 527.184 684350527.1842085.0 85.0 2 85.0 :eq.(b)usingmomentNominal 6 '''''                   Solution 1 – Cont. CE370 : Prof. Abdelhamid Charif 22 Analysis Problem-2 Analysis of a rectangular section 300 x 600 mm with six 20-mm bars in two layers as tension steel and three 20-mm bars as compression reinforcement. Net spacing between steel layers is 30 mm. Stirrups have 10-mm diameter MPafMPaf yc 42025'  2' 2 21 2min 12 1 48.942 96.1884 515 2 490 4905054020 54060 60101040' mmA mmA mm dd d mmdd mmSdd mmhdd mmd s s l t          d 300 206 'd 203 td 600mind CE370 : Prof. Abdelhamid Charif
  • 12. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 12 23 ysys ff  '' :yieldedhassteelncompressioAssume      mma bf ffAfA a c cysys 09.62 3002585.0 2585.042048.94242096.1884 85.0 85.0 :depthblockstressCompute ' ''       yieldingNot0021.0000536.0 05.73 6005.73 003.0003.0:strainsteelnCompressio 05.73 85.0 09.62 :depthN.A. '' ' ' 1       yss s c dc mm a c    Solution 2 CE370 : Prof. Abdelhamid Charif Solution 2 – Cont. (Compression steel has not yielded) 24CE370 : Prof. Abdelhamid Charif Neutral axis depth is the solution of a quadratic equation :         mmc c P RP b A R bf A P bf fA P RPP dPRPP c s c s c ys 046.105 1 696.335765.1041007.146 6035765.1044 1 2 696.335765.1041007.146 35765.104 85.03002585.0 48.942600 696.3 85.0300 48.942 1007.146 85.03002585.0 42096.1884 85.0 600 85.0 with 1 4 1 2 2 ' ' 1 ' ' 1 ' ' ' 1 ' 2'' ''''                                        
  • 13. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 13 Solution 2 – Cont. (Compression steel has not yielded old) 25 control-OK tensionandyieldOK005.0and 011.0 046.105 046.105490 003.0 003.0:depthminimumatstrainTension )420(293.257 046.105 60046.105 600600 yieldingnotOK0021.000129.0 046.105 60046.105 003.0003.0:strainsteelnCompressio mm105.046c minmin min min min ' ' s '' ' '                       y y yss s c cd MPafMPa c dc f c dc CE370 : Prof. Abdelhamid Charif Solution 2 – Cont. (Compression steel has not yielded) 26       mkNM mkNmmNM M mmcaMPaf ddffA a dabfM n n n csscn .06.33295.36890.0:momentDesign .95.368.1095.368 605152585.0293.25748.942 2 289.89 515300289.892585.0 289.89046.10585.0and293.257:with 85.0 2 85.0:eq.(b)frommomentNominal 6 1 ' s '''''                     CE370 : Prof. Abdelhamid Charif
  • 14. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 14 27 Observations about effect of compression steel : • Three compression steel bars (50% of tension steel) have added 9.36 kN.m (2.9%) only to the beam flexural capacity, because of the reduced stress (61 % of yield value). • Little advantage in strength from compression steel • Main advantage of compression steel is in increasing ductility and reducing long term deflections mkNM mkNM n n .06.33295.36890.0:momentDesign .95.368:momentNominal    Discussion – Effect of compression steel mkNM mkNM n n .70.322559.35890.0:momentDesign .559.358:momentNominal :steelncompressiowithoutbeamSame    CE370 : Prof. Abdelhamid Charif 28 Analysis Problem-3 Analysis of a rectangular section 250 x 600 mm with six 28-mm bars in two layers as tension steel and two 20-mm bars as compression reinforcement. Net spacing between steel layers is 28 mm. Stirrups have 10-mm diameter MPafMPaf yc 42018'  2' 2 21 12min 1 3.628202 5.3694286 508 2 4805653628 536141040 60101040' mmA mmA mm dd d mmSddd mmhdd mmd s s l t         CE370 : Prof. Abdelhamid Charif d 250 286 'd 202 td 600mind
  • 15. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 15 29     yielding)notlayersboth(yieldingnotsteelTension00103.0 05.399 05.399536 003.0003.0:strainsteelTension yieldingncompressioOK0021.000255.0 05.399 6005.399 003.0003.0:strainsteelnCompressio 05.399 85.0 19.339 :depthN.A. 19.339 2501885.0 1885.04203.6284205.3694 85.0 85.0 :depthblockstressCompute :yieldedhassteelncompressioAssume 1 1 '' ' ' 1 ' '' ''                   yt t yss s c cysys ysys c cd c dc mm a c mma bf ffAfA a ff       Solution 3 CE370 : Prof. Abdelhamid Charif Analysis of Doubly Reinforced Beams Tension steel has not yielded 30CE370 : Prof. Abdelhamid Charif As shown in the previous problem 3, tension steel does not yield when the neutral axis depth is rather large, which usually leads to yielding of the compression steel. We therefore assume initially that compression steel has yielded. d b 1 2 s s A A 'd ' sA 1d2d Lumping of tension layers cannot be used since there is no yielding. We treat the case of problem 3 with two tension layers in a general way using strain compatibility. Both tension layers are not yielding. 2 21 25.1847283 mmAA ss 
  • 16. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 16 CE370 : Prof. Abdelhamid Charif 31 yss ssss ss ff c dc c cd f c cd Ef c cd c cd            '' 2 2 1 11 2 2 1 1 ' 003.0:stressstrain /nCompressio 600600:stressesTension 003.0003.0:strainsTension    Analysis of Doubly Reinforced Beams Tension steel has not yielded – Cont. a abfC cc ' 85.0 ' 85.0 cf 111 ss fAT   ''' 85.0 cyss ffAC  2d b 1 2 s s A A N.A. 003.0 ' s'd ' sA c 1 2 s s   1d 222 ss fAT  CE370 : Prof. Abdelhamid Charif 32 c cd A c cd AffAcbf TTCC h dT h dTd h C ah CM sscysc sc scn                               2 2 1 1 '' 1 ' 21 2211 600600)85.0(85.0 :mequilibriuForce 22 ' 222 :centroidsectionaboutcomputedmomentNominal  Analysis of Doubly Reinforced Beams Tension steel has not yielded – Cont. a abfC cc ' 85.0 ' 85.0 cf 111 ss fAT   ''' 85.0 cyss ffAC  2d b 1 2 s s A A N.A. 003.0 ' s'd ' sA c 1 2 s s   1d 222 ss fAT 
  • 17. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 17 CE370 : Prof. Abdelhamid Charif 33                         1 )( )(4 1 2 :issolutionpositiveThe 85.0 )85.0( 85.0 600 85.0 600 0)( :asexpressed-rebecanhichequation wQuadratic 0)(600)(600)85.0(85.0 600600)85.0(85.0 2 21 221121 1 ' '' 1 ' 2 2 1 ' 1 1 221121 2 221121 ''2 1 ' 2 2 1 1 '' 1 ' QPP dPdPQPP c bf ffA Q bf A P bf A P dPdPcQPPc dAdAcAAffAcbf c cd A c cd AffAcbf c cys c s c s sssscysc sscysc    Analysis of Doubly Reinforced Beams Tension steel has not yielded – Cont. CE370 : Prof. Abdelhamid Charif 34 mmc c QPP dPdPQPP c bf ffA Q bf A bf A PP c cys c s c s 54.320 1 )21.789.3409.340( )4809.3405369.340(4 1 2 21.789.3409.340 1 )( )(4 1 2 :issolutionpositiveThe 21.78 85.02501885.0 )1885.0420(3.628 85.0 )85.0( 9.340 85.02501885.0 25.1847600 85.0 600 85.0 600 :3problemfornapplicatioNumerical 2 2 21 221121 1 ' '' 1 ' 2 1 ' 1 21                                          Analysis of Doubly Reinforced Beams Tension steel has not yielded – Solution 3 - Cont.
  • 18. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 18 CE370 : Prof. Abdelhamid Charif 35 kN c cd ATkN c cd AT kNffACkNcbfC MPaffMPaEfMPaEf c dc c cd c cd mmc ss cysscc ysssssss ys ys ys 37.55160001.745600 27.254)85.0(16.104285.0 420,48.298,3.403 OK00244.0 54.320 6054.320 003.0 ' 003.0 OK0014924.0 54.320 54.320480 003.0003.0 OK0020165.0 54.320 54.320536 003.0003.0 :forcesandstressesstrains,variousCompute54.320 2 22 1 11 '' 1 ' ' 2211 ' 2 2 1 1                             Analysis of Doubly Reinforced Beams Tension steel has not yielded – Solution 3 - Cont. CE370 : Prof. Abdelhamid Charif 36 mkNM mkNM h dT h dTd h C ah CM n n scn .40.32978.50665.0 yielding)(No65.0 .78.506:obtainon wesubstitutiAfter 22 ' 222 :momentNominal 2211                               a 16.1042cC ' 85.0 cf 01.7451 T 27.254sC 2d b 1 2 s s A A N.A. 003.0 ' s'd ' sA c 1 2 s s   1d 37.5512 T Analysis of Doubly Reinforced Beams Tension steel has not yielded – Solution 3 - Cont.
  • 19. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 19 CE 370 REINFORCED CONCRETE-I Prof. Abdelhamid Charif Design of doubly reinforced beams according to ACI and SBC 304 RC design of beams with compression steel according to ACI and SBC 304 • If a section, designed with tension steel only, is not tension- controlled, compression steel is then required. • The solution is to set tension steel strain equal to minimum value of 0.005 and then design accordingly. • The neutral axis depth and strains become therefore all known. • With many tension layers, satisfying tension-control at the bottom layer will in general satisfy yield condition at the tension steel layers. • If however it is suspected that this might not be true, then the neutral axis depth will be chosen to satisfy both conditions. 38CE370 : Prof. Abdelhamid Charif
  • 20. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 20 39        y yy d cc   10003 3 :depthminimumsteelatYield min min      t t tt d d cc 375.0 8 3 005.0 :layerbottomatcontrol-Tension            y t dd c 10003 3 , 8 3 Min :conditionsbothSatisfying min RC design of beams with compression steel according to ACI and SBC 304 d b sA N.A. 003.0 005.0t ' s ' sA c td s mind y min CE370 : Prof. Abdelhamid Charif 40 RC design of beams with compression steel Design steps cβa dd c y t 1 min knownthusisblockstressecompressivconcreteofDepth steeltensilemaximumProviding 10003 3 , 8 3 Min conditionsstrainsteelnsionsatisfy tetoaxisneutralSet the2/ layersofnumberexpectedtoaccordingdepthsvariousEstimate1/              continuerequired,steelnCompressioIf onlysteelh tensionDesign wit required,notsteelnCompressioIf 2 85.0 :steelncompressiohoutmoment witnominalCompute3/ 0 0 ' 0          un un cn MM MM a dabfM   CE370 : Prof. Abdelhamid Charif
  • 21. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 21 41 RC design of beams with compression steel Design steps – Cont.      ''' ' ' ''''' 85.0 2 85.0 :areasteelncompressioRequired 85.0 2 85.0 settingbyareasteelncompressiorequiredDetermine5/ ddff a dabf M A ddffA a dabf M M MM cs c u s cssc u n un                     MPaEf ff c dc ssssys ysys s '''' '' ' 200000If If ' 003.0 :stressandstrainsteelnCompressio4/        CE370 : Prof. Abdelhamid Charif 42 RC design of beams with compression steel Design steps – Cont.     y cssc s csscyssc f ffAabf A ffAabffACCT '''' '''' 85.085.0 :areasteeltensionRequired 85.085.0 mequilibriuforceusingareasteeltensionrequiredDetermine6/    CE370 : Prof. Abdelhamid Charif Although the tension control condition is enforced from the start, the actually provided steel areas (when choosing bar numbers) may violate this condition and strain checks are therefore required. The provided tension steel area must not be excessive as compared to the required value. This topic will be elaborated later.
  • 22. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 22 43 Design Problem-1 85.0MPa30andMPa420 kN.m510andkN.m753 1   ' cy LD ff MM mmd mmdd mmdd mmhd t 70' 67030 73030 700100 min     CE370 : Prof. Abdelhamid Charif 800 375 'd ' sA sA d Expecting two tension steel layers, the various steel depths are estimated as : Design the shown 375 x 800 mm rectangular beam subjected to the following dead and live moments : kN.mM MMM u LDu 0.1392 )510(7.1)375(4.17.14.1:momentUltimate   44 Solution 1   mmca mmc dd c y t 6875.23275.27385.0 75.27312.394,75.273Min 0021.010003 6703 , 8 7303 Min 10003 3 , 8 3 Min conditionssteelnsionsatisfy tetoaxisneutralSet the 1 min                        requiredsteelnCompressio).1392( .8.11687.12989.0 .7.1298.107.1298 2 6875.232 7003756875.2323085.0 2 85.0 :steelncompressiohoutmoment witNominal 0 0 6 0 ' 0                 mkNMM mkNM mkNmNM a dabfM un n n cn   CE370 : Prof. Abdelhamid Charif
  • 23. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 23 45 Solution 1 – Cont. MPaff c dc ysys s 420)0021.0( 00223.0 75.273 7075.273 003.0 ' 003.0 :stressandstrainsteelnCompressio '' '               )4.1140223(8.997 707003085.0420 2 6875.232 7003756875.2323085.0 90.0 101392 85.0 2 85.0 :areasteelncompressioRequired 22' 6 ' ''' ' ' mmmmA A ddff a dabf M A s s cs c u s                      CE370 : Prof. Abdelhamid Charif Solution 1 – Cont. 46     )0.6434328(0.6235 420 3085.04208.9973756875.2323085.0 85.085.0 :areasteeltensionRequired 22 '''' mmmmA A f ffAabf A s s y cssc s      CE370 : Prof. Abdelhamid Charif 4.1140223/8.997 :)(steelncompressioActual/Required 0.6434328/0.6235 :)(steeltensionActual/Required ' 2 2   s s A mm A mm 800 375 'd 223 328 d
  • 24. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 24 Using 32 mm for bar spacing (not less than bar diameter), and 10 mm stirrups, the maximum number of 32-mm bars in one layer is: 4 67.4 3232 0423210632375 cover26 max         n n Sd ddSb n bb bsb 47 Two layers are therefore required as assumed (4+4). For layer spacing, we use 30 mm. Solution 1 – Cont. 800 375 'd 223 328 d CE370 : Prof. Abdelhamid Charif 48 Solution 1 – Cont. 375 'd 223 328 d 4.1140223/8.997:)(steelncompressioActual/Required 0.6434328/0.6235:)(steeltensionActual/Required '2 2   s s Amm Amm mm d dd mm dd d mmdSddd mmdd d dhdd b s bl t b st 61111040 2 cover' 703 2 6723230734 734161040800 2 cover ' 21 1min2 1 1        The difference between the required and provided values of steel areas may lead to violation of the tension control condition. Strain checks are therefore required using actual steel areas and depths .
  • 25. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 25 CE370 : Prof. Abdelhamid Charif 49 Solution 1 – Cont. 375 'd 223 328 d mmd mm dd d mmdd mmdd t 61' 703 2 672 734 21 min2 1       The actual tension steel depths are slightly greater than was initially safely assumed. The actual compression steel depth is less than was assumed and this also is on the safe side. The steel strain checks are however still required because of the excess in the provided steel areas. 50 ysys ff  '' :yieldedhassteelncompressiothatbeforefoundwasasAssume      yieldingassumedOK0021.000234.0 11.277 6111.277 003.0003.0:strainsteelnCompressio 11.277 85.0 54.235 :depthN.A. 54.235 3753085.0 3085.04204.11404200.6434 85.0 85.0 :depthblockstressactualCompute '' ' ' 1 ' ''             yss s c cysys c dc mm a c mma bf ffAfA a    CE370 : Prof. Abdelhamid Charif Solution 1 – Cont.
  • 26. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 26 51 Solution 1 – Cont. CE370 : Prof. Abdelhamid Charif control-tensionOKNOT005.000495.0 00495.0 11.277 11.277734 003.0003.0 :layer)(bottomdepthmaximumatcheckcontrolTension yieldOK0043.0 11.277 11.277672 003.0003.0 :depthminimumatcheckYield min min            t t t y c cd c cd    The section turns out to be not tension controlled because in the provided steel areas, there was more excess in the tension steel: 2' 2 6.1428.9974.1140:nCompressio 0.19900.62350.6434:Tension :Required-ProvidedareasteelExcess mmA mmA s s    CE370 : Prof. Abdelhamid Charif 52 Solution 1 – Cont. 375 'd 282 328 d 2' 2 '2 2 7.2338.9975.1231:nCompressio 0.19900.62350.6434:Tension 5.1231282/8.997:)(steelncompressioActual/Required 0.6434328/0.6235:)(steeltensionActual/Required mmA mmA Amm Amm s s s s     mm d dd mmddd mmddmmdd b s t 64141040 2 cover' :depthsteelncempressioNew 7032/)( 672734 :beforeasaredepthssteelTension ' 21 min21    Let us now try another solution with more excess in compression steel (keeping the same bar reinforcement in tension):
  • 27. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 27 53 ysys ff  '' :yieldedhassteelncompressioagain thatAssume      yieldingassumedOK0021.00023.0 689.272 64689.272 003.0003.0:strainsteelnCompressio 689.272 85.0 786.231 :depthN.A. 786.231 3753085.0 3085.04205.12314200.6434 85.0 85.0 :depthblockstressactualCompute '' ' ' 1 ' ''             yss s c cysys c dc mm a c mma bf ffAfA a    CE370 : Prof. Abdelhamid Charif Solution 1 – Cont. 54 Solution 1 – Cont. CE370 : Prof. Abdelhamid Charif control-tensionOK005.000508.0 689.272 689.272734 003.0 003.0:layer)(bottomdepthmaximumatcheckcontrolTension yieldOK00439.0 689.272 689.272672 003.0003.0 :depthminimumatcheckYield min min           t t t y c cd c cd          OKmkNMM mkNmmNM M ddffA a dabfM un n n csscn                  .0.13923.148974.16549.0momentDesign .74.1654.1074.1654 647033085.04205.1231 2 786.231 703375786.2313085.0 85.0 2 85.0:(optional)checkMoment 6 ''''' 
  • 28. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 28 Over Design and Tension Control Condition • Recall the maximum tensile steel ratio which corresponds to a tensile strain of 0.005 (Figure a). • To maintain force equilibrium, any further increase in the tensile steel area would require a longer compression block and thus a shift downwards for the neutral axis (Figure b). • This reduces the steel strain below the limit of 0.005 and violates the tension control condition of SBC code. CE370 : Prof. Abdelhamid Charif 55 d areasteelMaximum:(a) max,sA 003.0 005.0t maxc d steelmax.thanMore:(b) max,sA 003.0 005.0t maxc Over Design and Tension Control Condition • In the design of beams with tension steel only, the risk of over design, generating non-tension-controlled beams, is avoided by imposing a steel strain check using the actual provided steel area and depth (equivalent to satisfying maximum steel limit). • The over design risk is higher in beams requiring compression steel, as the design is based on the limit condition. • Excess in provided tensile steel area will also shift the neutral axis downwards and violate the tension control condition. CE370 : Prof. Abdelhamid Charif 56 d steelRequired:(a) sA 003.0 005.0t maxc d in tensionexcessmorewithsteelProvided:(b) psA , 003.0 005.0t maxc' sA ' , psA
  • 29. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 29 CE370 : Prof. Abdelhamid Charif 57 Over Design and Tension Control Condition • Excess in tensile steel must be balanced by corresponding excess in compression steel. • Thus in order to avoid violation of the tension control condition, the required compression steel area must be re-determined using the actual tension steel area (after setting bar diameter and bar number for tension steel). • The new compression steel area is determined using force equilibrium and using the actual provided tension steel area:    '' ' ,' 2, '''' , 85.0 85.0 :isareasteelncompressiorequiredNew 85.085.0 cs cyps s csscypssc ff abffA A ffAabffACCT     Design Summary (if compression steel required 1. Assume initial steel depths according to expected layers (do not overestimate tension depth / underestimate compression depth) 2. Set neutral axis depth to satisfy tension steel strain conditions and deduce compression steel strain and stress. 3. Compute required compression steel using force equilibrium. 4. Deduce required tension steel using moment equilibrium. 5. Select bar diameter, find required bar number for tension steel, and then determine the actual provided area. 6. Deduce the new required compression steel using force equilibrium and the actual provided tension steel area. 7. Select bar diameter, find required bar number for compression steel, and then determine the actual provided area 8. Determine final values of steel depths, and perform moment check if required. CE370 : Prof. Abdelhamid Charif 58
  • 30. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 30 59      y cssc s cs c u s ssssys ysys s y t f ffAabf A ddff a dabf M A MPaEf ff c dc cβa dd c '''' ''' ' ' '''' '' ' 1 min 85.085.0 :areasteeltensionRequired/4 85.0 2 85.0 :areasteelncompressioRequired3/ 200000If If ' 003.0and 10003 3 , 8 3 Min conditionsstrainsteelnsionsatisfy tetoaxisneutralSet the2/ layersofnumberexpectedtoaccordingdepthsvariousEstimate1/                               CE370 : Prof. Abdelhamid Charif RC design steps for beams with compression steel 60 RC design steps for beams with compression steel – Cont.   design-rethen),(unsafestillifand checkmomentperformunsafeifdepths,steelfinalDeduce/8 4 withSelect/7 85.0 85.0 :areasteelncompressiorequiredNew6/ 4 withSelect/5 ''' , 2' ' ' ' 2,'' '' ' ,' 2, , 2 b b un bbps b b b s bb cs cyps s bbpsb b s b MM ANA d A A A Nd ff abffA A ANA d A A A Nd          CE370 : Prof. Abdelhamid Charif • With this strategy, the tension control condition is always satisfied.
  • 31. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 31 61 Re - Solve Design Problem-1 85.0MPa30andMPa420 1  ' cy ff mmd mmdd mmdd mmhd t 70' 67030 73030 700100 min     CE370 : Prof. Abdelhamid Charif 800 375 'd ' sA sA d No need to show again that compression steel is required. We use the same initial steel depths: Design the shown 375 x 800 mm rectangular beam subjected to an ultimate moment of 1392 kN.m: 62 Re-Solution 1   mmca mmc dd c y t 6875.23275.27385.0 75.27312.394,75.273Min 0021.010003 6703 , 8 7303 Min 10003 3 , 8 3 Min conditionssteelnsionsatisfy tetoaxisneutralSet the 1 min                        CE370 : Prof. Abdelhamid Charif MPaff c dc ysys s 420)0021.0( 00223.0 75.273 7075.273 003.0 ' 003.0 :stressandstrainsteelnCompressio '' '        
  • 32. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 32 63 Re-Solution 1 – Cont.       2' 6 ' ''' ' ' 8.997 707003085.0420 2 6875.232 7003756875.2323085.0 90.0 101392 85.0 2 85.0 :areasteelncompressioRequired mmA A ddff a dabf M A s s cs c u s                      CE370 : Prof. Abdelhamid Charif     2 , 2 '''' 0.6434Φ3288:barsΦ32Using 0.6235 420 3085.04208.9973756875.2323085.0 85.085.0 :areasteeltensionRequired mmAN mmA f ffAabf A psb s y cssc s       Re-Solution 1 – Cont. 64CE370 : Prof. Abdelhamid Charif     2' , 2' 2, ' 2, '' ' ,' 2, 5.1231282Use65.1200 3085.0420 3756875.2323085.04200.6434 85.0 85.0 :areasteelncompressiorequiredNew mmAmmA A ff abffA A pss s cs cyps s        375 'd 282 328 d The required compression steel area jumped from 997.8 to 1200.65 mm2 because of the provided tension steel. This time, we find directly the second solution which was checked before.
  • 33. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 33 65 Design Problem-2 0.85MPa30andMPa420 1  ' cy ff CE370 : Prof. Abdelhamid Charif 600 375 'd ' sA sA d Design the shown 375 x 600 mm rectangular beam for an ultimate moment of 780 kN.m and with the following data: mmd mmdd mmdd mmhd t 60' 47030 53030 500100 min     Expecting two tension steel layers, the various steel depths are estimated as : 66 Solution 2   mmca mmc dd c y t 9375.16875.19885.0 75.19847.276,75.198Min 0021.010003 4703 , 8 5303 Min 10003 3 , 8 3 Min 1 min                        requiredsteelnCompressio).780( .15.60428.67190.0 .28.671.1028.671 2 9375.168 5003759375.1683085.0 2 85.0 0 0 6 0 ' 0                 mkNMM mkNM mkNmNM a dabfM un n n cn   CE370 : Prof. Abdelhamid Charif Set the N.A. depth to satisfy tension steel conditions: Nominal moment without compression steel :
  • 34. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 34 67 Solution 2 – Cont. MPaEf c dc sss ys s 8.418002094.0200000 yieldedNot)0021.0( 002094.0 75.198 6075.198 003.0 ' 003.0 :stressandstrainsteelnCompressio '' ' '                 2' 6 ' ''' ' ' 09.1129 605003085.08.418 2 9375.168 5003759375.1683085.0 90.0 10780 85.0 2 85.0 :areasteelncompressioRequired mmA A ddff a dabf M A s s cs c u s                      CE370 : Prof. Abdelhamid Charif Solution 2 – Cont. 68         2' , 2' 2, '' ' ,' 2, 2 , 2 '''' 64.1256204Use95.1152 3085.08.418 3759375.1683085.04200.4926 85.0 85.0 :areasteelncompressiorequiredNew 4)(4layersOK two0.4926288:bars28Using 66.4903 420 3085.08.41809.11293759375.1683085.0 85.085.0 :areasteeltensionRequired mmAmmA ff abffA A mmA mmA A f ffAabf A pss cs cyps s ps s s y cssc s              CE370 : Prof. Abdelhamid Charif
  • 35. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 35 CE370 : Prof. Abdelhamid Charif 69 mm d dd mm dd d mmdSddd mmdd d dhdd b s bl t b st 60101040 2 cover' 507 2 4782830536 536141040600 2 cover ' 21 1min2 1 1        375 'd 204 288 d600 Solution 2 – Cont. Actual steel depths are : The actual compression steel depth is unchanged whereas the tension steel depths are slightly greater than was initially safely assumed. No moment check is therefore required. CE370 : Prof. Abdelhamid Charif 70 Solution 2 – Strain Check – Optional only Assume as was found that compression steel has not yielded. The neutral axis depth is thus the solution of a quadratic equation :         mmcammc c P RP b A R bf A P bf fA P RPP dPRPP c s c s c ys 20.165357.19485.0357.194 1 9423.37594.925384.254 607594.924 1 2 9423.37594.925384.254 7594.92 85.03753085.0 6.1256600 9423.3 85.0375 6.1256 5384.254 85.03753085.0 4200.4926 85.0 600 85.0 with 1 4 1 2 1 2 ' ' 1 ' ' 1 ' ' ' 1 ' 2'' ''''                                         
  • 36. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 36 71 )420(8.414002074.0200000 yieldingnotOK0021.0002074.0 357.194 60357.194 003.0003.0:strainsteelnCompressio '' s '' ' ' MPafMPaEf c dc yss yss s          CE370 : Prof. Abdelhamid Charif Solution 2 – Cont. controlTensionOK005.000527.0 357.194 357.194536 003.0003.0 :layer)(bottomdepthmaximumatcheckcontrolTension yieldOK0044.0 357.194 357.194478 003.0003.0 :depthminimumatcheckYield min min min           t t t y c cd c cd     72       surprise)(No.0.780 .196.800105.88990.0:momentDesign .105.889.10105.889 605073085.08.4146.1256 2 2.165 5073752.1653085.0 85.0 2 85.0 6 ''''' OKmkNMM mkNM mkNmmNM M ddffA a dabfM un n n n csscn                    CE370 : Prof. Abdelhamid Charif Solution 2 – Cont. Moment check (not required) Since the tensile steel strain conditions are satisfied and the actual steel depths are safer than assumed, the moment check is not required. We still perform it.
  • 37. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 37 Design of doubly reinforced beams Final observations • It is important in the final design stage to comply with the design results. Any excess in the tensile steel area may result in violation of tension-control condition. • Excess in tensile steel must be balanced by corresponding excess in compression steel. • Excess of steel may increase moment capacity but may change the type of beam behavior and failure • Over-design is not only uneconomical, it may also affect structural safety • The design method described previously avoids systematically over design leading to violation of tension control condition. 73CE370 : Prof. Abdelhamid Charif CE370 : Prof. Abdelhamid Charif 74 Effect of tension steel ratio These moment curvature relationships, produced by RC-TOOL software, show the ductility of under reinforced beams. Despite their improved strength, over reinforced beams have little energy absorption capacity, which is the main factor in seismic design.
  • 38. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 38 CE370 : Prof. Abdelhamid Charif 75 Effect of compression steel ratio These moment curvature relationships, produced by RC-TOOL software, show that adequate compression steel can recover the ductility of a brittle beam. A measure of ductility (energy absorption capacity) is given by the area under the curve. Maximum compression steel ? • SBC and ACI codes do not fix any maximum limit to a beam total steel reinforcement. • The maximum tension steel ratio is satisfied through the tension control condition. • If the tension control check is not satisfied, then either the section is increased or compression steel must be provided. • There is a risk that the second option will be abusively used resulting in excessive compression steel. • Should not there be a limit on the compression steel ? • The deficiency in the section may be such that the required compression steel may be too large and even exceed tension steel. • This strange situation is more likely in shallow beams which are used for architectural reasons (popular in KSA). CE370 : Prof. Abdelhamid Charif 76
  • 39. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 39 CE370 : Prof. Abdelhamid Charif 77 Design Problem 3 Design of a shallow beam (depth less than width) 1000 x 320 mm. In order to hide the beam, its thickness was limited to that of the slab (320 mm). This “hiding” architectural constraint is mechanically obsolete and must be restrained by the structural community. We design this beam for four different values of the ultimate moment (300, 400, 500, 600 kN.m). 1000 320 MPa420MPa20  y ' c ff For simplification, we consider the same steel depths in all cases based on one layer in both tension and compression steel. d = h – 60 = 260 mm, d’ = 60 mm 78 Solution 3 mmca mm d c 875.825.9785.0 5.97 8 2603 8 3 layer)tension(oneconditionssteelnsionsatisfy tetoaxisneutralSet the 1      cases.allinrequiredsteelnCompressio .1.2779.30790.0 .9.307.109.307 2 875.82 2601000875.822085.0 2 85.0 :steelncompressiohoutmoment witNominal 0 0 6 0 ' 0                 un n n cn MM mkNM mkNmNM a dabfM   CE370 : Prof. Abdelhamid Charif
  • 40. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 40 79 Solution 3 – Cont. ys y s sssys s ff f f MPaEf c dc of%5555.0 8.230001154.0200000 001154.0 5.97 605.97 003.0 ' 003.0 :stressandstrainsteelnCompressio ' ' ''' '               y cssc s cs c u s f ffAabf A ddff a dabf M A '''' ''' ' ' 85.085.0 :areasteeltensionRequired 85.0 2 85.0 :areasteelncompressioRequired             CE370 : Prof. Abdelhamid Charif Solution 3 – Cont. 80CE370 : Prof. Abdelhamid Charif 300 594.2 3656.9 0.16 0.013 400 3193.1 4979.7 0.64 0.026 500 5792.0 6302.4 0.92 0.038 600 8390.8 6525.2 1.29 0.047 mkN Mu . bh AA ss '  2 ' mm As 2 mm As s s A A' The following table presents the various results of required tension and compression steel areas for the four ultimate moment values. Comparison ratios are also given.
  • 41. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 41 Maximum compression steel ? • We can observe the rapid increase in the compression steel area, until it exceeds the tension steel value. • To avoid such nonsense situations, a limit must be set. • Despite the “silence” of SBC and ACI codes on this issue, it is recommended to limit compression steel amount to a fraction of tension steel area (say 20 to 40%) or to fix a limit on the total steel ratio. CE370 : Prof. Abdelhamid Charif 81 Analysis of a general multi-layer RC section using strain compatibility method - 1 • Many problems were previously solved using strain compatibility. • A general RC section with many steel layers is now considered with partial yielding. The most strained layers are yielding whereas the remaining layers are in the elastic stage. • This allows tuning to any possible case. • The steel area, depth and strain at each layer are : CE370 : Prof. Abdelhamid Charif 82 • Asi , di , εsi = At tension layer i • εt = At bottom layer (tension control, Ф) • A’ sj , d’ j , ε’ sj = At compression layer j 0.003 di a = β1c Depths Strains Forces c ' jd si t abfc ' 85.0 ' 85.0 cf ' sj  ''' 85.0 csjsj ffA  sisi fA
  • 42. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 42 CE370 : Prof. Abdelhamid Charif 83 Analysis of a general multi-layer RC section using strain compatibility method - 2 • Steel stresses are :                 c dc Ef ff c cd Ef ff j sjssjysj ysjysj i sissiysi ysiysi ' ''' '' 600:If :If 600:If :If     0.003 di a = β1c Depths Strains Forces c ' jd si t abfc ' 85.0 ' 85.0 cf ' sj  ''' 85.0 csjsj ffA  sisi fA c dc c cd j sj i si ' ' 003.0 003.0       • Steel strains are :    '''' 85.085.0 csjsjcsisisjcsi ffAabffACCT • Force equilibrium: CE370 : Prof. Abdelhamid Charif 84 Analysis of a general multi-layer RC section using strain compatibility method - 3 Starting from an initial guess, steel layers are split in yielding (y) and elastic (e) parts, and using a = β1c, equilibrium equation becomes:       ''''' 1 ' 85.0 600 85.0 600 sjcejsejsyjyceiseisyiy AfcdA c AfcbfcdA c Af     '''' 85.085.0 csjsjcsisi ffAabffA Multiplying by c and grouping leads to a general quadratic equation :       '' 0 1 ' ' 1 ' ' ' 1 ' ' ' 1 ' 1 ' ''' 0 ''2 0If:caseSpecial 85.0 600 85.085.0 600 85.0 with0 ejejeiei sj c sej ej c yysj yj c esi ei c ysyi yi eiyiejyjejejeieio dPdPcP b A R bf A P bf fA P bf A P bf fA P RPPPPPdPdPcPc 
  • 43. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 43 CE370 : Prof. Abdelhamid Charif 85 Analysis of a general multi-layer RC section using strain compatibility method - 4 The positive solution of this quadratic equation is : 1 ' ' 1 ' ' ' 1 ' ' ' 1 ' 1 ' ''' 0 ''2 85.0 600 85.085.0 600 85.0 with0  b A R bf A P bf fA P bf A P bf fA P RPPPPPdPdPcPc sj c sej ej c yysj yj c esi ei c ysyi yi eiyiejyjejejeieio                   1 4 1 2 2 0 '' 0 P dPdPP c ejejeiei Depending on the layers and their yielding state, the term P0 may be positive or negative. The expression of the solution is sign dependent. The absolute value and (±) are required for generality. (+) sign is used if the term P0 is negative and (-) is used otherwise. CE370 : Prof. Abdelhamid Charif 86 Analysis of a general multi-layer RC section using strain compatibility method - 5 All strains are deduced and if the assumed yielding is violated in any layer, a new iteration must be carried out using the last yielding state.                       22 85.0 22 85.0 ''''' h dfAd h ffA ah abfM isisijcsjsjcn Bottom tensile layer strain εt is used to check tension control and obtain the strength reduction factor leading to design moment ФMn The nominal moment is obtained about the section centroid as : 0.003 di a = β1c Depths Strains Forces ' jd si t abfc ' 85.0 ' 85.0 cf ' sj  ''' 85.0 csjsj ffA  sisi fA h/2
  • 44. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 44 CE370 : Prof. Abdelhamid Charif 87 Example of multi layer general section Strain compatibility method - 1 Analyze the 600 x 1500 shown section with the following material and layer spacing data : mmS .εMPaf .βMPaf l yy ' c 30 00260520 85022 1    mm600 1000 204 2883  375 1500 208 162 162 There are two skin layers with two Φ16 bars each. Top skin layer (d =375mm) is considered part of the compression steel and the second layer (d =1000mm) is part of tension steel. CE370 : Prof. Abdelhamid Charif 88 mmd mmdSdd mm d dd mmd mmdSdd mmdSdd mmd d dhdd bl b s bl bl b st 375 110203060 60101040 2 cover 1000 1320581378 1378581436 14361410401500 2 cover ' 3 '' 1 ' 2 ' ' 1 4 23 12 1 1         Example of multi layer general section Strain compatibility method - 2 mm600 1000 204 2883  375 1500 208 162 162 There are four tension layers and three compression layers and the depths are :
  • 45. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 45 CE370 : Prof. Abdelhamid Charif 89 2 2 ' 3 2 2 ' 1 2 2 ' 1 2 2 4 2 2 321 1.402 4 16 2 6.1256 4 20 4 2.2513 4 20 8 1.402 4 16 2 0.4926 4 28 8 mmA mmA mmA mmA mmAAA s s s s sss           Example of multi layer general section Strain compatibility method - 3 mm600 1000 204 2883  375 1500 208 162 162 The various areas are : CE370 : Prof. Abdelhamid Charif 90 Example of multi layer general section Strain compatibility method - 4 We start by assuming that all steel has yielded except the skin layers which are closer to the neutral axis. All layers in the yield parts (y) except tension layer 4 and compression layer 3 which are in the elastic parts (e). The neutral axis depth is given by :   1 ' ' 1 ' ' ' 1 ' ' ' 1 ' 1 ' ''' 02 0 '' 0 85.0 600 85.085.0 600 85.0 with1 4 1 2  b A R bf A P bf fA P bf A P bf fA P RPPPPP P dPdPP c sj c sej ej c yysj yj c esi ei c ysyi yi eiyiejyj ejejeiei                
  • 46. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 46 CE370 : Prof. Abdelhamid Charif 91 The various parameters are : 1802.8 85.0600 1.4026.12562.2513 2973.25 85.06002285.0 1.402600 85.0 600 5155.68 85.06002285.0 5206.1256 85.0 0309.137 85.06002285.0 5202.2513 85.0 2973.25 85.06002285.0 1.402600 85.0 600 5876.268 85.06002285.0 5200.4926 85.0 1 ' 3 ' 2 ' 1 1 ' ' 11 ' ' 3' 3 1 ' ' 2' 2 1 ' ' 1' 1 11 ' 4 4 1 ' 1 321                                  b AAA b A R bf A P bf fA P bf fA P bf A P bf fA PPP ssssj c s e c ys y c ys y c s e c ys yyy Example of multi layer general section Strain compatibility method - 5 CE370 : Prof. Abdelhamid Charif 92       mmc dPdP c P dPdPP cP P P RPPPPPPPRPPPPP RPPP PPPP eeee ejejeiei eyyyeyyeiyiejyj eyy eyyy 415.614 1 802.557 37510002973.254 1 2 802.557 1 802.557 4 1 2 802.557 1 4 1 2 0 802.557 1802.82973.255876.26832973.255155.680309.137 1802.82973.255155.680309.137 2973.255876.268 22 ' 3 ' 344 2 0 '' 0 0 0 0 ' 4321 ' 3 ' 2 ' 1 ''' 0 '' 3 ' 2 ' 1 4321                                          Example of multi layer general section Strain compatibility method - 6
  • 47. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 47 CE370 : Prof. Abdelhamid Charif 93 Example of multi layer general section Strain compatibility method - 7 OK:00117.0 415.614 375415.614 003.0 OKNOT:00246.0 415.614 110415.614 003.0 OK:0027.0 415.614 60415.614 003.0 OK:001883.0 415.614 415.6141000 003.0 OK:00345.0 415.614 415.6141320 003.0 OK:0037.0 415.614 415.6141378 003.0 OK:0040.0 415.614 415.6141436 003.0 003.0003.0 ' 3 ' 2 ' 1 4 3 2 1 ' ' ys ys ys ys ys ys ys j sj i si c dc c cd                                  c = 614.415 mm Steel layer strains are : The initial assumed yielding state is violated at the compressive layer 2 A second round of calculations is therefore required using the last yielding state. CE370 : Prof. Abdelhamid Charif 94 All tension parameters and some of the compression parameters remain unchanged. The new values are :     mmc dPdPdP c P RPPPPPPPRPPPPP bf A P b A RPP PPPP eeeeee eyyyeeyeiyiejyj c s e sj ey eyyy 656.6171 261.547 3752973.251100563.7910002973.254 1 2 261.547 1 261.547 4 1 2 261.547 261.5471802.82973.255876.26832973.250563.790309.137 0563.79 85.06002285.0 6.1256600 85.0 600 1802.82973.250309.137 2973.255876.268 2 2 ' 3 ' 3 ' 2 ' 244 0 ' 4321 ' 3 ' 2 ' 1 ''' 0 1 ' ' 2' 2 1 ' '' 3 ' 1 4321                                   Example of multi layer general section Strain compatibility method - 8
  • 48. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 48 CE370 : Prof. Abdelhamid Charif 95 Example of multi layer general section Strain compatibility method - 9 OK:0011786.0 656.617 375656.617 003.0 OK:0024657.0 656.617 110656.617 003.0 OK:00271.0 656.617 60656.617 003.0 OK:001857.0 656.617 656.6171000 003.0 OK:00341.0 656.617 656.6171320 003.0 OK:00369.0 656.617 656.6171378 003.0 OK:003975.0 656.617 656.6171436 003.0 003.0003.0 ' 3 ' 2 ' 1 4 3 2 1 ' ' ys ys ys ys ys ys ys j sj i si c dc c cd                                  c = 617.656 mm Steel layer strains are : The assumed yielding state is now confirmed in all layers. The stresses are : ssssys ysys Ef MPaff     200000 520 CE370 : Prof. Abdelhamid Charif 96 Compute the various forces to check equilibrium :       OKkNT NfAT NfATTT NffAC NffAC NffAC NabfC MPafmmca sss yssss csss csss csss cc c          9.7833C:checkmequilibriuForce 0.1493404.3711.402 0.25615205204926 7.87255)7.187.235(1.40285.0 3.596181)7.1814.493(6.125685.0 2.1259867)7.18520(2.251385.0 2.589061260001.5252285.085.0 7.1885.001.525656.61785.0 444 1321 '' 3 ' 32 '' 2 ' 22 '' 1 ' 11 ' ' 1 Example of multi layer general section Strain compatibility method - 10
  • 49. 03-Mar-13 CE 370 : Prof. Abdelhamid Charif 49 CE370 : Prof. Abdelhamid Charif 97 The nominal moment is obtained about the section centroid as :                                                                                               2 1500 10004.3711.402 2 1500 13205204926 2 1500 13785204926 2 1500 14365204926 375 2 1500 )7.187.235(1.402110 2 1500 )7.1814.493(6.1256 60 2 1500 )7.18520(2.2513 2 01.525 2 1500 60001.5252585.0 22 85.0 22 85.0 2222 ''''' ' n isisijcsjsjcn isijsjcn M h dfAd h ffA ah abfM h dTd h C ah CM Example of multi layer general section Strain compatibility method - 11 CE370 : Prof. Abdelhamid Charif 98 The nominal moment is : The bottom tensile layer strain εt is used to check tension control and obtain the strength reduction factor. Example of multi layer general section Strain compatibility method - 11 mkNMn y yt st .45.715347.90187932.0 7932.0 0026.0005.0 0026.0003975.0 0.250.65 005.0 0.250.65 ionIn transit003975.01               mkNmmNMn .47.9018.1047.9018 6 