SlideShare uma empresa Scribd logo
1 de 30
Baixar para ler offline
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
Numerical Fourier Transform Based on
Hyperfunction Theory
Hidenori Ogata
Dept. Computer and Network Engineering,
The Graduate School of Informatics and Engineering,
The Univerisity of Electro-Communications, Tokyo, Japan
21 June, 2018
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
Aim of the study
Aim of the study
Numerical Fourier transform based on hyperfunction theory
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
Aim of the study
Aim of the study
Numerical Fourier transform based on hyperfunction theory
Fourier transform
F[f ](ξ) =
∞
−∞
f (x) exp(−2πiξx) dx.
It is very familiar in science and engineering.
But, it is difficult to compute it by conventional methods,
especially, if f (x) decays slowly as x → ±∞.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
Fourier transforms are difficult to compute!
Numerical integration by the DE rule.
(1)
∞
0
dx
1 + x2
, (2)
∞
0
cos x
1 + x2
dx.
-16
-14
-12
-10
-8
-6
-4
-2
0
0 10 20 30 40 50 60 70
log10(error)
N
(1)
(2)
vertical axis: log10(error)
horizontal axis: number
of sampling points N
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
Aim of the study
Aim of the study
Numerical Fourier transform based on hyperfunction theory
Fourier transform
F[f ](ξ) =
∞
−∞
f (x) exp(−2πiξx) dx.
It is very familiar in science and engineering.
But, it is difficult to compute it by conventional methods,
especially, if f (x) decays slowly as x → ±∞.
It is easy to compute it using hyperfunction theory.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
Contents
Contents
1 Basis of hyperfunction theory
2 Fourier transform in hyperfunction theory
3 Numerical Fourier transform
4 Numerical examples
5 Summary
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
1. Hyperfunction theory
M. Sato, 1958
a theory of generalized functions
based on complex function theory
Hyperfunction
the difference between the boundary values
of an analytic function F(z)
f (x) = [F(z)] ≡ F(x + i0) − F(x − i0).
F(z) : defining function of the hyperfunction f (x)
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
1. Hyperfunction: f (x) = F(x + i0) − F(x − i0)
Examples
δ(x) = −
1
2πi
1
x + i0
−
1
x − i0
= lim
ǫ↓0
1
π
ǫ
x2 + ǫ2
,
χ(−1,1)(x) =
1 x ∈ (−1, 1)
0 x ∈ [−1, 1]
= −
1
2πi
log
(x + i0) + 1
(x + i0) − 1
− log
(x − i0) + 1
(x − i0) − 1
.
log z: the principal value, i.e., log x ∈ R for x > 0.
-1 -0.5 0 0.5 1Re z -1
-0.5
0
0.5
1
Im z
-6
-4
-2
0
2
4
6
Re F(z)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2Re z -2-1.5-1-0.500.511.52
Im z
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
Re F(z)
defining function F(z) of δ(x) defining function F(z) of χ(−1,1)(x)
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
2. Fourier transform in hyperfunction theory
How to treat Fourier transforms in hyperfunction theory.
F[f ](ξ) =
∞
−∞
f (x)e−2πiξx
dx.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
2. Fourier transform in hyperfunction theory
How to treat Fourier transforms in hyperfunction theory.
F[f ](ξ) =
0
−∞
f (x)e−2πi(ξ+i0)x
dx +
+∞
0
f (x)e−2πi(ξ−i0)x
dx .
We can define F[f ](ξ) thanks to e−2πǫ|x|
even if the integral is not convergent in the conventional sense.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
2. Fourier transform in hyperfunction theory
How to treat Fourier transforms in hyperfunction theory.
F[f ](ξ) =
0
−∞
f (x)e−2πi(ξ+i0)x
dx +
+∞
0
f (x)e−2πi(ξ−i0)x
dx .
We can define F[f ](ξ) thanks to e−2πǫ|x|
even if the integral is not convergent in the conventional sense.
(Example)
F[1](ξ) =
0
−∞
e−2πi(ξ+i0)x
dx +
∞
0
e−2πi(ξ−i0)x
dx
= −
1
2πi
1
ξ + i0
−
1
ξ − i0
= δ(ξ).
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
2. Fourier transform in hyperfunction theory
How to treat Fourier transforms in hyperfunction theory.
F[f ](ξ) =
0
−∞
f (x)e−2πi(ξ+i0)x
dx +
+∞
0
f (x)e−2πi(ξ−i0)x
dx .
We can define F[f ](ξ) thanks to e−2πǫ|x|
even if the integral is not convergent in the conventional sense.
Fourier transform F[f ](ξ)
Hyperfunction with the defining functions F±(ζ)
F[f ](ξ) = F+(ξ + i0) − F−(ξ − i0),
F+(ζ) =
0
−∞
f (x)e−2πiζx
dx ( Im ζ > 0 ),
F−(ζ) = −
∞
0
f (x)e−2πiζx
dx ( Im ζ < 0 ).
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
3. Numerical Fourier transform: strategy
We use the definition of Fourier transforms in hyperfunction theory
for numerical Fourier transforms.
F[f ](ξ) =
∞
−∞
f (x)e−2πiξx
dx = F+(ξ + i0) − F−(ξ − i0),
where F+(ζ) =
0
−∞
f (x)e−2πiζx
dx ( Im ζ > 0 ),
F−(ζ) = −
∞
0
f (x)e−2πiζx
dx ( Im ζ < 0 ).
We can compute F±(ζ) in C because the integrands include
the exponentially decaying factor exp(−2π| Im ζ||x|).
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
3. Numerical Fourier transform: strategy
We use the definition of Fourier transforms in hyperfunction theory
for numerical Fourier transforms.
F[f ](ξ) =
∞
−∞
f (x)e−2πiξx
dx = F+(ξ + i0) − F−(ξ − i0),
where F+(ζ) =
0
−∞
f (x)e−2πiζx
dx ( Im ζ > 0 ),
F−(ζ) = −
∞
0
f (x)e−2πiζx
dx ( Im ζ < 0 ).
Strategy
1 Get F±(ζ) in { ζ ∈ C | ± Im ζ > 0 }.
2 Get F±(ξ ± i0) on R by analytic continuation.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
3. Numerical Fourier transform: strategy 1/2
1. Get F±(ζ) in { ζ ∈ C | ± Im ζ > 0 }.
F+(ζ) =
0
−∞
f (x)e−2πiζx
dx ( Im ζ > 0 ),
F−(ζ) = −
∞
0
f (x)e−2πiζx
dx ( Im ζ < 0 ).
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
3. Numerical Fourier transform: strategy 1/2
1. Get F±(ζ) in { ζ ∈ C | ± Im ζ > 0 }.
F±(ζ) = ±
∞
0
f (∓x)e±2πiζx
dx ( ± Im ζ > 0 ).
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
3. Numerical Fourier transform: strategy 1/2
1. Get F±(ζ) in { ζ ∈ C | ± Im ζ > 0 }.
F±(ζ) = ±
∞
0
f (∓x)e±2πiζx
dx ( ± Im ζ > 0 ).
We get F±(ζ) in Taylor series.
F±(ζ) =
∞
n=0
c
(±)
n (ζ − ζ
(±)
0 )n
( ± Im ζ
(±)
0 > 0 ),
c
(±)
n =
1
n!
F
(n)
± (ζ
(±)
0 ) = ±
1
n!
∞
0
(±2πix)n
f (∓x)e±2πiζ
(±)
0 x
exponential decay
dx.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
3. Numerical Fourier transform: strategy 2/2
2. Get F±(ξ ± i0) on R by analytic continuation.
Taylor series → continued fraction
F±(ζ) =
∞
n=0
cn(ζ − ζ
(±)
0 )n
=
a
(±)
0
1 +
a
(±)
1 (ζ − ζ
(±)
0 )
1 +
a
(±)
2 (ζ − ζ
(±)
0 )
1 +
...
R
R
ζ
(±)
0
convergence region
c
(±)
n → a
(±)
n by quotient difference (QD) algorithm
The QD algorithm is unstable. → multiple precision arithmetic
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
3. Numerical Fourier transform: strategy 2/2
2. Get F±(ξ ± i0) on R by analytic continuation.
Taylor series → continued fraction
F±(ζ) =
∞
n=0
cn(ζ − ζ
(±)
0 )n
=
a
(±)
0
1 +
a
(±)
1 (ζ − ζ
(±)
0 )
1 +
a
(±)
2 (ζ − ζ
(±)
0 )
1 +
...
R
R
ζ
(±)
0
convergence region
F[f ](ξ) = F+(ξ + i0) − F−(ξ − i0).
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
4. Numerical examples
(1) F[tanh(πx)](ξ) = −i cosech(πξ),
(2) F[(1 + x2
)−ν−1/2
] =
2πν+1/2
Γ(ν + 1/2)
|ξ|ν
Kν(2π|ξ|) ( ν = 1.5 ),
(3) F[log |x|](ξ) = −γδ(ξ) −
1
2|ξ|
.
The center of the Taylor series of F±(ζ): ζ
(±)
0 = ±i.
C++ programs,
multiple precision arithmetic (100 decimal digits).
exflib: multiple precision arithmetic library.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
4. Numerical examples: errors of our method
-60
-50
-40
-30
-20
-10
0
-4 -2 0 2 4
log10(error)
xi
(1)
(2)
(3)
vertical axis: log10(error)
horizontal axis: ξ
(1) F[tanh(πx)](ξ), (2) F[(1+x2
)−ν−1/2
](ξ), (3) F[log |x|].
The number of sampling points for numerical integration (the DE rule)
(1) 1330 (2) 1416 (3) 1430.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
4. Numerical examples: an interesting fact
We do not need to compute oscillatory integrals
for Fourier transforms.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
4. Numerical examples: an interesting fact
We do not need to compute oscillatory integrals
for Fourier transforms.
The defining function ( F[f ](ξ) = F+(ξ + i0) − F−(ξ − i0) )
F±(ζ) = ±
∞
0
f (∓x)e±2πiζx
dx
=
∞
n=0
c
(±)
n (ζ ∓ i)n
( ± Im ζ > 0 ),
c
(±)
n = ±
1
n!
∞
0
(±2πix)n
f (∓x) exp(−2πx)dx.
including no oscillatory function.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
4. Numerical examples: comparisons
Comparison with the previous methods
1 DE rule & Richardson extrapolation
M. Sugihara, J. Comp. Appl. Math., 17 (1987) 47–68.
F[f ](ξ) = lim
n→∞
∞
−∞
f (x) exp(−2πiξx)exp(−2−n
x2
)dx.
2 DE-type rule for oscillatory integrals
T. Ooura & M. Mori,
J. Comp. Appl. Math., 38 (1991) 353–360.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
4. Numerical examples: comparisons
F[tanh(πx)](ξ) = −i cosech(πξ), ξ = 1.
multiple precision arithmetic (100 decimal digits, exflib)
the center of the Taylor series ζ
(±)
0 = 1 ± i.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
4. Numerical examples: comparisons
F[tanh(πx)](ξ) = −i cosech(πξ), ξ = 1.
multiple precision arithmetic (100 decimal digits, exflib)
the center of the Taylor series ζ
(±)
0 = 1 ± i.
number of sampling points
for integration error
our method 2610 2.8 × 10−28
DE & Richardson 10060 9.1 × 10−20
DE for
oscillatory integrals 948 5.0 × 10−25
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
4. Numerical examples: comparisons
number of sampling points
for integration error
our method 2610 2.8 × 10−28
DE & Richardson 10060 9.1 × 10−20
DE for
oscillatory integrals 948 5.0 × 10−25
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
4. Numerical examples: comparisons
number of sampling points
for integration error
our method 2610 2.8 × 10−28
DE & Richardson 10060 9.1 × 10−20
DE for
oscillatory integrals 948 5.0 × 10−25
Our method > DE & Richardson
Our method < DE for oscillatory integrals
Our method computes F[f ](ξ) as a function, i.e.,
once we obtain the coefficients a
(±)
n of the continued fraction,
we can compute F[f ](ξ)’s for many ξ’s.
The conventional methods compute F[f ](ξ) as an integrals.
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
Summary
1 Numerical Fourier transform based on hyperfunction theory
2 Fourier transform as a hyperfunction
F[f ](ξ) =
0
−∞
f (x)e−2πi(ξ+i0)x
dx +
∞
0
f (x)e−2πi(ξ−i0)x
dx.
defining functions F±(ζ)
Get F±(ζ) in { ζ ∈ C | ± Im ζ > 0 }.
Get F±(ξ ± i0) on R by analytic continuation
(by the continued fraction).
3 Numerical examples shows the effectiveness of our method.
Problems for future studies
1 Theoretical error estimate
2 Analytic continuation by continued fractions
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
Hyperfunction theory
Fourier transform in hyperfunction theory
Numerical Fourier transform
Numerical examples
Summary
Thank you very much!
Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory

Mais conteúdo relacionado

Mais procurados

fourier series and fourier transform
fourier series and fourier transformfourier series and fourier transform
fourier series and fourier transform
Vikas Rathod
 
Unit vii
Unit viiUnit vii
Unit vii
mrecedu
 
Machine learning (9)
Machine learning (9)Machine learning (9)
Machine learning (9)
NYversity
 
PaperNo18-habibiIMF9-12-2013-IMF
PaperNo18-habibiIMF9-12-2013-IMFPaperNo18-habibiIMF9-12-2013-IMF
PaperNo18-habibiIMF9-12-2013-IMF
Mezban Habibi
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier Transforms
Arvind Devaraj
 

Mais procurados (20)

fourier series and fourier transform
fourier series and fourier transformfourier series and fourier transform
fourier series and fourier transform
 
Unit vii
Unit viiUnit vii
Unit vii
 
Lec09- AI
Lec09- AILec09- AI
Lec09- AI
 
GJMA-4664
GJMA-4664GJMA-4664
GJMA-4664
 
Ada boost brown boost performance with noisy data
Ada boost brown boost performance with noisy dataAda boost brown boost performance with noisy data
Ada boost brown boost performance with noisy data
 
Ada boosting2
Ada boosting2Ada boosting2
Ada boosting2
 
Influence of the sampling on Functional Data Analysis
Influence of the sampling on Functional Data AnalysisInfluence of the sampling on Functional Data Analysis
Influence of the sampling on Functional Data Analysis
 
Machine learning (9)
Machine learning (9)Machine learning (9)
Machine learning (9)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
PaperNo18-habibiIMF9-12-2013-IMF
PaperNo18-habibiIMF9-12-2013-IMFPaperNo18-habibiIMF9-12-2013-IMF
PaperNo18-habibiIMF9-12-2013-IMF
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier Transforms
 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
 
Convex Analysis and Duality (based on "Functional Analysis and Optimization" ...
Convex Analysis and Duality (based on "Functional Analysis and Optimization" ...Convex Analysis and Duality (based on "Functional Analysis and Optimization" ...
Convex Analysis and Duality (based on "Functional Analysis and Optimization" ...
 
On fixed point theorems in fuzzy metric spaces in integral type
On fixed point theorems in fuzzy metric spaces in integral typeOn fixed point theorems in fuzzy metric spaces in integral type
On fixed point theorems in fuzzy metric spaces in integral type
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Channel coding
Channel codingChannel coding
Channel coding
 
ma112011id535
ma112011id535ma112011id535
ma112011id535
 
Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)
 
Prml
PrmlPrml
Prml
 

Semelhante a Numerical Fourier transform based on hyperfunction theory

Extension principle
Extension principleExtension principle
Extension principle
Savo Delić
 

Semelhante a Numerical Fourier transform based on hyperfunction theory (20)

Ft3 new
Ft3 newFt3 new
Ft3 new
 
An application of the hyperfunction theory to numerical integration
An application of the hyperfunction theory to numerical integrationAn application of the hyperfunction theory to numerical integration
An application of the hyperfunction theory to numerical integration
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
 
Signal lexture
Signal lextureSignal lexture
Signal lexture
 
A Numerical Analytic Continuation and Its Application to Fourier Transform
A Numerical Analytic Continuation and Its Application to Fourier TransformA Numerical Analytic Continuation and Its Application to Fourier Transform
A Numerical Analytic Continuation and Its Application to Fourier Transform
 
Numerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theoryNumerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theory
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Seismic data processing lecture 4
Seismic data processing lecture 4Seismic data processing lecture 4
Seismic data processing lecture 4
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
Limits and Continuity of Functions
Limits and Continuity of Functions Limits and Continuity of Functions
Limits and Continuity of Functions
 
Admission in india
Admission  in indiaAdmission  in india
Admission in india
 
Admmission in India
Admmission in IndiaAdmmission in India
Admmission in India
 
Extension principle
Extension principleExtension principle
Extension principle
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Time Series Analysis
Time Series AnalysisTime Series Analysis
Time Series Analysis
 
Website designing company in delhi ncr
Website designing company in delhi ncrWebsite designing company in delhi ncr
Website designing company in delhi ncr
 
Website designing company in delhi ncr
Website designing company in delhi ncrWebsite designing company in delhi ncr
Website designing company in delhi ncr
 
Signal Processing Homework Help
Signal Processing Homework HelpSignal Processing Homework Help
Signal Processing Homework Help
 
Lecture notes
Lecture notes Lecture notes
Lecture notes
 
Fourier slide
Fourier slideFourier slide
Fourier slide
 

Último

Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Último (20)

Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 

Numerical Fourier transform based on hyperfunction theory

  • 1. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary Numerical Fourier Transform Based on Hyperfunction Theory Hidenori Ogata Dept. Computer and Network Engineering, The Graduate School of Informatics and Engineering, The Univerisity of Electro-Communications, Tokyo, Japan 21 June, 2018 Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 2. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary Aim of the study Aim of the study Numerical Fourier transform based on hyperfunction theory Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 3. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary Aim of the study Aim of the study Numerical Fourier transform based on hyperfunction theory Fourier transform F[f ](ξ) = ∞ −∞ f (x) exp(−2πiξx) dx. It is very familiar in science and engineering. But, it is difficult to compute it by conventional methods, especially, if f (x) decays slowly as x → ±∞. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 4. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary Fourier transforms are difficult to compute! Numerical integration by the DE rule. (1) ∞ 0 dx 1 + x2 , (2) ∞ 0 cos x 1 + x2 dx. -16 -14 -12 -10 -8 -6 -4 -2 0 0 10 20 30 40 50 60 70 log10(error) N (1) (2) vertical axis: log10(error) horizontal axis: number of sampling points N Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 5. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary Aim of the study Aim of the study Numerical Fourier transform based on hyperfunction theory Fourier transform F[f ](ξ) = ∞ −∞ f (x) exp(−2πiξx) dx. It is very familiar in science and engineering. But, it is difficult to compute it by conventional methods, especially, if f (x) decays slowly as x → ±∞. It is easy to compute it using hyperfunction theory. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 6. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary Contents Contents 1 Basis of hyperfunction theory 2 Fourier transform in hyperfunction theory 3 Numerical Fourier transform 4 Numerical examples 5 Summary Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 7. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 1. Hyperfunction theory M. Sato, 1958 a theory of generalized functions based on complex function theory Hyperfunction the difference between the boundary values of an analytic function F(z) f (x) = [F(z)] ≡ F(x + i0) − F(x − i0). F(z) : defining function of the hyperfunction f (x) Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 8. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 1. Hyperfunction: f (x) = F(x + i0) − F(x − i0) Examples δ(x) = − 1 2πi 1 x + i0 − 1 x − i0 = lim ǫ↓0 1 π ǫ x2 + ǫ2 , χ(−1,1)(x) = 1 x ∈ (−1, 1) 0 x ∈ [−1, 1] = − 1 2πi log (x + i0) + 1 (x + i0) − 1 − log (x − i0) + 1 (x − i0) − 1 . log z: the principal value, i.e., log x ∈ R for x > 0. -1 -0.5 0 0.5 1Re z -1 -0.5 0 0.5 1 Im z -6 -4 -2 0 2 4 6 Re F(z) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2Re z -2-1.5-1-0.500.511.52 Im z -0.6 -0.4 -0.2 0 0.2 0.4 0.6 Re F(z) defining function F(z) of δ(x) defining function F(z) of χ(−1,1)(x) Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 9. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 2. Fourier transform in hyperfunction theory How to treat Fourier transforms in hyperfunction theory. F[f ](ξ) = ∞ −∞ f (x)e−2πiξx dx. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 10. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 2. Fourier transform in hyperfunction theory How to treat Fourier transforms in hyperfunction theory. F[f ](ξ) = 0 −∞ f (x)e−2πi(ξ+i0)x dx + +∞ 0 f (x)e−2πi(ξ−i0)x dx . We can define F[f ](ξ) thanks to e−2πǫ|x| even if the integral is not convergent in the conventional sense. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 11. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 2. Fourier transform in hyperfunction theory How to treat Fourier transforms in hyperfunction theory. F[f ](ξ) = 0 −∞ f (x)e−2πi(ξ+i0)x dx + +∞ 0 f (x)e−2πi(ξ−i0)x dx . We can define F[f ](ξ) thanks to e−2πǫ|x| even if the integral is not convergent in the conventional sense. (Example) F[1](ξ) = 0 −∞ e−2πi(ξ+i0)x dx + ∞ 0 e−2πi(ξ−i0)x dx = − 1 2πi 1 ξ + i0 − 1 ξ − i0 = δ(ξ). Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 12. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 2. Fourier transform in hyperfunction theory How to treat Fourier transforms in hyperfunction theory. F[f ](ξ) = 0 −∞ f (x)e−2πi(ξ+i0)x dx + +∞ 0 f (x)e−2πi(ξ−i0)x dx . We can define F[f ](ξ) thanks to e−2πǫ|x| even if the integral is not convergent in the conventional sense. Fourier transform F[f ](ξ) Hyperfunction with the defining functions F±(ζ) F[f ](ξ) = F+(ξ + i0) − F−(ξ − i0), F+(ζ) = 0 −∞ f (x)e−2πiζx dx ( Im ζ > 0 ), F−(ζ) = − ∞ 0 f (x)e−2πiζx dx ( Im ζ < 0 ). Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 13. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 3. Numerical Fourier transform: strategy We use the definition of Fourier transforms in hyperfunction theory for numerical Fourier transforms. F[f ](ξ) = ∞ −∞ f (x)e−2πiξx dx = F+(ξ + i0) − F−(ξ − i0), where F+(ζ) = 0 −∞ f (x)e−2πiζx dx ( Im ζ > 0 ), F−(ζ) = − ∞ 0 f (x)e−2πiζx dx ( Im ζ < 0 ). We can compute F±(ζ) in C because the integrands include the exponentially decaying factor exp(−2π| Im ζ||x|). Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 14. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 3. Numerical Fourier transform: strategy We use the definition of Fourier transforms in hyperfunction theory for numerical Fourier transforms. F[f ](ξ) = ∞ −∞ f (x)e−2πiξx dx = F+(ξ + i0) − F−(ξ − i0), where F+(ζ) = 0 −∞ f (x)e−2πiζx dx ( Im ζ > 0 ), F−(ζ) = − ∞ 0 f (x)e−2πiζx dx ( Im ζ < 0 ). Strategy 1 Get F±(ζ) in { ζ ∈ C | ± Im ζ > 0 }. 2 Get F±(ξ ± i0) on R by analytic continuation. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 15. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 3. Numerical Fourier transform: strategy 1/2 1. Get F±(ζ) in { ζ ∈ C | ± Im ζ > 0 }. F+(ζ) = 0 −∞ f (x)e−2πiζx dx ( Im ζ > 0 ), F−(ζ) = − ∞ 0 f (x)e−2πiζx dx ( Im ζ < 0 ). Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 16. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 3. Numerical Fourier transform: strategy 1/2 1. Get F±(ζ) in { ζ ∈ C | ± Im ζ > 0 }. F±(ζ) = ± ∞ 0 f (∓x)e±2πiζx dx ( ± Im ζ > 0 ). Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 17. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 3. Numerical Fourier transform: strategy 1/2 1. Get F±(ζ) in { ζ ∈ C | ± Im ζ > 0 }. F±(ζ) = ± ∞ 0 f (∓x)e±2πiζx dx ( ± Im ζ > 0 ). We get F±(ζ) in Taylor series. F±(ζ) = ∞ n=0 c (±) n (ζ − ζ (±) 0 )n ( ± Im ζ (±) 0 > 0 ), c (±) n = 1 n! F (n) ± (ζ (±) 0 ) = ± 1 n! ∞ 0 (±2πix)n f (∓x)e±2πiζ (±) 0 x exponential decay dx. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 18. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 3. Numerical Fourier transform: strategy 2/2 2. Get F±(ξ ± i0) on R by analytic continuation. Taylor series → continued fraction F±(ζ) = ∞ n=0 cn(ζ − ζ (±) 0 )n = a (±) 0 1 + a (±) 1 (ζ − ζ (±) 0 ) 1 + a (±) 2 (ζ − ζ (±) 0 ) 1 + ... R R ζ (±) 0 convergence region c (±) n → a (±) n by quotient difference (QD) algorithm The QD algorithm is unstable. → multiple precision arithmetic Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 19. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 3. Numerical Fourier transform: strategy 2/2 2. Get F±(ξ ± i0) on R by analytic continuation. Taylor series → continued fraction F±(ζ) = ∞ n=0 cn(ζ − ζ (±) 0 )n = a (±) 0 1 + a (±) 1 (ζ − ζ (±) 0 ) 1 + a (±) 2 (ζ − ζ (±) 0 ) 1 + ... R R ζ (±) 0 convergence region F[f ](ξ) = F+(ξ + i0) − F−(ξ − i0). Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 20. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 4. Numerical examples (1) F[tanh(πx)](ξ) = −i cosech(πξ), (2) F[(1 + x2 )−ν−1/2 ] = 2πν+1/2 Γ(ν + 1/2) |ξ|ν Kν(2π|ξ|) ( ν = 1.5 ), (3) F[log |x|](ξ) = −γδ(ξ) − 1 2|ξ| . The center of the Taylor series of F±(ζ): ζ (±) 0 = ±i. C++ programs, multiple precision arithmetic (100 decimal digits). exflib: multiple precision arithmetic library. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 21. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 4. Numerical examples: errors of our method -60 -50 -40 -30 -20 -10 0 -4 -2 0 2 4 log10(error) xi (1) (2) (3) vertical axis: log10(error) horizontal axis: ξ (1) F[tanh(πx)](ξ), (2) F[(1+x2 )−ν−1/2 ](ξ), (3) F[log |x|]. The number of sampling points for numerical integration (the DE rule) (1) 1330 (2) 1416 (3) 1430. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 22. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 4. Numerical examples: an interesting fact We do not need to compute oscillatory integrals for Fourier transforms. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 23. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 4. Numerical examples: an interesting fact We do not need to compute oscillatory integrals for Fourier transforms. The defining function ( F[f ](ξ) = F+(ξ + i0) − F−(ξ − i0) ) F±(ζ) = ± ∞ 0 f (∓x)e±2πiζx dx = ∞ n=0 c (±) n (ζ ∓ i)n ( ± Im ζ > 0 ), c (±) n = ± 1 n! ∞ 0 (±2πix)n f (∓x) exp(−2πx)dx. including no oscillatory function. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 24. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 4. Numerical examples: comparisons Comparison with the previous methods 1 DE rule & Richardson extrapolation M. Sugihara, J. Comp. Appl. Math., 17 (1987) 47–68. F[f ](ξ) = lim n→∞ ∞ −∞ f (x) exp(−2πiξx)exp(−2−n x2 )dx. 2 DE-type rule for oscillatory integrals T. Ooura & M. Mori, J. Comp. Appl. Math., 38 (1991) 353–360. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 25. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 4. Numerical examples: comparisons F[tanh(πx)](ξ) = −i cosech(πξ), ξ = 1. multiple precision arithmetic (100 decimal digits, exflib) the center of the Taylor series ζ (±) 0 = 1 ± i. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 26. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 4. Numerical examples: comparisons F[tanh(πx)](ξ) = −i cosech(πξ), ξ = 1. multiple precision arithmetic (100 decimal digits, exflib) the center of the Taylor series ζ (±) 0 = 1 ± i. number of sampling points for integration error our method 2610 2.8 × 10−28 DE & Richardson 10060 9.1 × 10−20 DE for oscillatory integrals 948 5.0 × 10−25 Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 27. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 4. Numerical examples: comparisons number of sampling points for integration error our method 2610 2.8 × 10−28 DE & Richardson 10060 9.1 × 10−20 DE for oscillatory integrals 948 5.0 × 10−25 Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 28. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary 4. Numerical examples: comparisons number of sampling points for integration error our method 2610 2.8 × 10−28 DE & Richardson 10060 9.1 × 10−20 DE for oscillatory integrals 948 5.0 × 10−25 Our method > DE & Richardson Our method < DE for oscillatory integrals Our method computes F[f ](ξ) as a function, i.e., once we obtain the coefficients a (±) n of the continued fraction, we can compute F[f ](ξ)’s for many ξ’s. The conventional methods compute F[f ](ξ) as an integrals. Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 29. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary Summary 1 Numerical Fourier transform based on hyperfunction theory 2 Fourier transform as a hyperfunction F[f ](ξ) = 0 −∞ f (x)e−2πi(ξ+i0)x dx + ∞ 0 f (x)e−2πi(ξ−i0)x dx. defining functions F±(ζ) Get F±(ζ) in { ζ ∈ C | ± Im ζ > 0 }. Get F±(ξ ± i0) on R by analytic continuation (by the continued fraction). 3 Numerical examples shows the effectiveness of our method. Problems for future studies 1 Theoretical error estimate 2 Analytic continuation by continued fractions Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory
  • 30. Hyperfunction theory Fourier transform in hyperfunction theory Numerical Fourier transform Numerical examples Summary Thank you very much! Hidenori Ogata Numerical Fourier Transform Based on Hyperfunction Theory