SlideShare uma empresa Scribd logo
1 de 32
MIXED PHASE IN NEUTRON
        STARS
   G.B.Alaverdyan, Yu.L.Vartanyan

   Yerevan State University, Armenia
            1919 – 2009
                   E




                                       Yerevan 2009
Introduction

Neutron Star Hydrostatic Equilibrium Equations of Tolman, Oppenheimer, and Volkov


           dP (r )    G[ε (r ) + P (r )][m(r ) + 4π r 3 P(r )]
                   =−
            dr                 r 2 [1 − 2Gm(r ) / r ]
           dm(r )
                  = 4π r 2ε (r )
            dr
                                                     Equation of State ?



                        ε (P )
            Pc                            m(r ), P(r ), ε (r )

            P( R) = 0              R, m( R ) = M
Introduction

                                                                                   Scalar     Vector

RMF-theory:                                                           Isoscalar       σ           ω

              J. D. Wale cka, Ann.Phys. 87, 4951, 1974                 Isovector      δ           ρ
 σω ρ
              BD. Se ro t, J. D. Wale cka, Int.J.Mod.Phys. E6, 515, 1997.
                .
Low density asymmetric nuclear matter:

              S. Kubis, MKutsche ra, Phys. Lett., B399,191,1997.
                         .
 σω ρ δ       BLiu, V. Gre co , V. B
                .                   aran, MCo lo nna, MDi To ro , Phys. Rev. C65, 045201, 2002.
                                           .           .

Heavy ion collisions at intermediate energies:
              V. Gre co , MCo lo nna, MDi To ro , F. M ra , Phys. Rev. C67, 015203, 2003
                           .           .              ate
 σω ρ δ       T. Gaitano s, MCo lo nna, MDi To ro , H. H. Wo lte r, Phys.Lett. B
                             .           .                                      595, 209, 2004.

Neutron stars with quark deconfinement phase transitions:

 σω ρ δ     G. B A rdyan, Astrophysics, 52, 132 , 2009.
                 . lave
            G. B A rdyan, Gravitation and Cosmology, 15, 5, 2009.
                 . lave
      .     G. B A rdyan, in Proc.of 8th Int.Conf. " Quark Co nfine me nt and the Hadro n
                 . lave
            Spe ctrum" , Mainz, Germany, 1-6 sept. 2008, PoS (Confinement8)} 171, 2009.
Lagrangian density of many-particle system of p,n.σ,ω,ρ,δ




         µ                                                           r r        
         
                                 1 r r
                                 2               
                                                                 (
L = ψ N γ  i∂ µ − gωωµ ( x) − g ρτ N ×ρ µ ( x) ÷− mN − gσ σ ( x) − gδ τ N × ( x)  ψ N +
                                                                             δ
                                                                                   
                                                                                               )
       1                                              1 2                    1
       2
         (                     2
                                                )
     + ∂ µσ ( x) ∂ µσ ( x) − mσ σ ( x)2 − U (σ ( x)) + mω ω µ ( x)ωµ ( x) − Ω µν ( x)Ω µν ( x) +
                                                      2                      4
            r        r           r 2 1 2 rµ
       1
         (                                     )       r      1
     + ∂ µ δ ( x) ∂ δ ( x) − mδ δ ( x) + mρ ρ ( x) ρ µ ( x) − Rµν ( x) R µν ( x) ,
       2
                   µ           2

                                          2                    4

                                                                r      r              ψ p 
             x = xµ = (t , x, y , z )        σ ( x), ωµ ( x ), δ ( x), ρ µ ( x)   ψN = ÷
                                                                                      ψ n 

                        b               c
             U (σ ) =     mN ( gσ σ )3 + ( gσ σ ) 4 ,
                        3               4

             Ω µν ( x ) = ∂ µ ων ( x) − ∂ν ωµ ( x),
             ℜ µν ( x ) = ∂ µ ρν ( x) − ∂ν ρ µ ( x).
Relativistic mean-field approach

 ∂L              ∂L
        − ∂µ               =0
∂φ ( x)      ∂ (∂ µφ ( x))
                                                                                            m* = mN − g σ σ − g δ δ (3) ,
                                                                                             p
                                       1
   e p (k ) = k 2 + m* 2 + g ω ω0 +
                     p                   g ρ ρ0 ,
                                              (3)
                                                                                            mn = mN − gσ σ + gδ δ (3) .
                                                                                             *
                                       2
                                       1
   e n ( k ) = k 2 + m* 2
                      n      + g ω ω0 − g ρ ρ0 ,
                                              (3)

                                       2                                                                k Fp 3               k Fn3
                                                                                                 np =            ,       nn = 2 ,
                               dU (σ)                                                                 3 π2                 3π
   mσ 2 σ = g σ  ns p + ns n −        ÷,
                                 dσ 
                                                                                                        kF p
                                                                                                  1                 m*
                                                                                                         ∫
                                                                                                                      p
                                                                                          ns p   = 2                            k 2 dk ,
                                                                                                  π
   mω ω = g ω ( n p + nn ) ,
      2                                                                                                  0       k 2 + m* 2
                                                                                                                        p

                                                                                                         kF n
                                                                                                                     m*
   mδ δ
      2   (3)
                     (            )
                = g δ ns p − ns n ,
                                                                                                  1
                                                                                           ns n = 2
                                                                                                 π        ∫
                                                                                                          0      k +m2
                                                                                                                      n
                                                                                                                           *2
                                                                                                                                 k 2 dk .
                                                                                                                           n

                  1
   mρ 2 ρ0 =
         (3)
                    g ρ ( n p − nn ) ,
                  2

                                                                                          1
                                         µ p = e p (k F p ) = k F p 2 + m* 2 + g ω ω0 +
                                                                         p                  g ρ ρ0 ,
                                                                                                 (3)

                                                                                          2
                                                                                          1
                                         µ n = e n ( k F n ) = k F n 2 + m* 2
                                                                          n     + g ω ω0 − gρ ρ0 .
                                                                                                 (3)

                                                                                          2
Parametric EOS for nuclear matter

gσ σ ≡ σ , gω ω0 ≡ ω , gδ δ (3) ≡ δ ,                                   g ρ ρ (3) ≡ ρ ,
     2                      2                                      2              2
 gσ         g          g          g                                                      nn − n p
    ÷ ≡ aσ ,  ω ÷ ≡ aω ,  δ ÷ ≡ aδ ,  ρ ÷ ≡ aρ
                                        m ÷                                                α=              , the asymmetry parameter
 mσ          mω         mδ         ρ                                                        n
                                            1
                  kF ( n )(1−α )                3

             1                                                        2                                          
P ( n, α ) = 2
            π               ∫
                            0
                                                    
                                                    
                                                      k F (n) 2 (1 − α) 3 + (mN − σ − δ) 2 − k 2 + (mN − σ − δ) 2 ÷ k 2 dk +
                                                                                                                  
                            1
          k F ( n )(1+α )       3

      1                                                2                                          
    + 2
     π            ∫
                  0
                                    
                                    
                                      k F ( n) 2 (1 + α) 3 + (mN − σ + δ) 2 − k 2 + (mN − σ + δ) 2 ÷ k 2 dk −
                                                                                                   

       %      1  σ 2 ω2 δ 2 ρ 2 
    − U ( σ) +  −   +  −   + ÷.
              2  aσ aω aδ aρ ÷
                                
                                                    1
                      k F ( n )(1−α )                   3

             1
ε(n, α) =
             π2                     ∫
                                    0
                                                                k 2 + (mN − σ − δ) 2 k 2 dk +
                                    1
            k F ( n )(1+α )             3

       1                                                                           1  σ 2 ω2 δ 2 ρ 2 
     + 2               ∫                                                     %
                                                    k + (mN − σ + δ) k dk + U (σ) +      +  +   +
                                                            2                     2   2
                                                                                      aσ aω aδ aρ ÷
                                                                                                        ,
      π                                                                            2                 ÷
                       0                                                                              
Parameters of RMF theory


aσ , aω , aδ , aρ , b, c

Symmetric nuclear matter (α                   =0)              Saturation density ( n = n0 )

m* = γ mN ,
 N                       σ 0 = (1 − γ ) mN

 d ε(n, α)      ε(n0 , 0)                                         B
              =           = mN + f 0 ,                     f0 =     ,     Binding energy per baryon
    dn n = n0     n0                                              A
             α= 0



aω =
       1
       n0
         (mN + f 0 − k F (n0 ) 2 + (mN − σ0 ) 2               )
ω0 = aωn0 = mN + f 0 − k F (n0 ) 2 + (mN − σ 0 ) 2

         k F ( n0 )
σ0   2                  ( mN − σ 0 )
   = 2
aσ π          ∫
              0       k 2 + ( mN − σ 0 ) 2
                                             k 2 dk − bmN σ 0 2 − cσ 03
Parameters of RMF theory

                                 k F ( n0 )
                      2                                            b       c 4 1  σ0 2           
ε0 = n0 (mN + f 0 ) = 2             ∫         k + (mN − σ0 ) k dk + mN σ0 + σ 0 +      + n0 2 aω ÷
                                               2                 2   2   3

                     π               0
                                                                   3       4     2  aσ           
               d 2 ε(n, α)
     K = 9 n0 2 2 (        )        compressibility module
               dn     n      n = n0
                                              α= 0

                       ε sym                                                               1 d 2 ε(n, α)
                               = Esym (n) α          2
                                                                               Esym ( n) =
                        n                                                                  2n d α 2 α=0
                                                                                           Symmetry energy
   mN = 938,93 MeV
    n0 = 0,153 fm −3
        m*
     γ = N = 0, 78
        mN                                                0              0,5     1       1,5       2       2.5       3
     K = 300 MeV
     f 0 = −16,3 MeV                                     4,794       6,569      8,340   10,104   11,865   13,621   15,372

    Esym = 32,5 MeV
     (0)
Parameters of RMF theory




            Parameters         σωρ            σωρδ

               aσ , fm2    9.154        9.154

               aω , fm2    4.828        4.828

               aδ , fm2    0            2.5

               aρ, fm2     4.794        13.621

               b , fm-1    1.654 10-2   1.654 10-2

                 c         1.319 10-2   1.319 10-2
Properties of asymmetric nuclear matter
Properties of asymmetric nuclear matter
Characteristics of β-equilibrium npe- plasma


 ε NM (n, α, µ e ) = ε(n, α ) + ε e (µ e ),
                                  1
 PNM (n, α, µ e ) = P (n, α) +       µ e (µ e 2 − me 2 )3/ 2 − ε e (µ e )
                                 3π2
                                                                            n p − ne       1           n
                                                                    q=                 =     (1 − α ) − e
                                                                               n           2            n
Characteristics of charge neutral and β-stable npe- plasma
Symmetry energy
EOS of neutron star matter in nucleonic phase
Two types of deconfinement quark phase transitions




Maxwell’s construction

(Local electroneutrality)




                                         μQ

 Glendenning’s mixed phase               μN
                                                   a,b         B
                                    μ0
 (Global electroneutrality)
                                              A
  ρ = (1 − χ) ρN + χ ρQ
  n = (1 − χ) nN + χ nQ
                                              PN     P0   PQ       P
  χ = VQ / V
Parameters of Maxwellian phase transition

MFTσωρδ + MIT-bag

  µ NM ( P0 ) = µQM ( P0 )
Maxwell’s construction                       B - bag parameter
Parameters of Maxwellian phase transition




                                                    εQ
                                              λ=
                                                 ε N + P0



                                                λcr = 3 / 2

                                            Seidov criterium

                                            Z Seidov, Ast.Zh., 15, 347,1971
EOS with Maxwellian phase transition
EOS with Mixed phase transition

                    P(μb, μel)
                                                  Q

                                              b



                                                      μb
                                     QH

                         a       N
                                          0
              μel
Mixed Phase Structure




    Nuclear matter      Quark matter
Mixed Phase Structure




                                                                                               -3
                         3                                                                                                                                    3
           Mix B=60 MeV/fm + MFTσωρδ                                                                                                       B=60 MeV/fm + MFTσ
                                                                                                                                                            ω
                                                                                                                                                            ρδ
    1.00                                                                                                                              0




                                                                                               Constituents number density, fm
                                                                                                                                 10
                                                                                                                                                d                 u
    0.75                                                                                                                          -1
                                                                                                                                 10                       s           n

                                                                                                                                                    p                     1.15

    0.50
χ




                                                                                                                                  -2
                                                                                                                                 10                                       1.10                         s



    0.25                                                                                                                          -3
                                                                                                                                                                          1.05



                                                                                                                                 10                                       1.00
                                                                                                                                                                                 d          u

                                                                                                                                                                      e              1.05       1.10        1.15


    0.00                                                                                                                                   0.077                                                           1.083
                                                                                                                                  -4
                                                                                                                                 10
       0           400           800     1200                            1600                                                         0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
                                       3                                                                                                                 -3
                             ε, MeV/fm                                                                                                            n , fm


                                                           1000                  3
                                                                       B=60 MeV/fm + MFTσωρδ
                                                                                                                                                ω0
                                       Meson fields, MeV




                                                            800

                                                            600
                                                                                                                                                σ0

                                                            400

                                                            200

                                                              0   δ0
                                                                  ρ0
                                                           -200
                                                              0.0       0.2     0.4 0.6 0.8                                               1.0           1.2
                                                                                             3
                                                                                  n , MeV/fm
EOS’ s with Quark Deconfinement Phase transitions


                     3
                10                  3
                          B=60 MeV/fm + MFTσωρδ

                     2
                10
   3
    P, MeV/fm




                     1
                10

                     0
                10

                     -1
                10                      2                     3
                                   10                    3
                                                             10
                                            ε , MeV/fm
Neutron stars with mixed quark matter (Hybrid Stars)


                  2.5


                  2.0                           RMF σωρδ


                  1.5
         M , M




                  1.0

                                   Maxw B60
                  0.5


                  0.0
                                              Mix B60
                        -2    -1        0       1          2        3
                    10       10    10         10        10     10
                                                    3
                                   Pc , MeV/fm
Neutron stars with mixed quark matter (Hybrid Stars)


               0.25

                                 Maxw B60

               0.20
      M , M




               0.15
                                 RMF σ
                                     ω
                                     ρ
                                     δ
                       Mix B60
               0.10

                           1                  2
                      10                    10
                                 R , km
Neutron stars with mixed quark matter (Hybrid Stars)




              0.5



              0.4



              0.3

                                     Mix B60
         zs




                                                     RMFσωρδ
              0.2



              0.1      Maxw B60


              0.0
                 0.0          0.5   1.0        1.5      2.0

                                    M , M
Neutron stars with quark core


TOV equations
Neutron stars with quark core




                                λ > 3/ 2          B < 69,3 MeV/fm3

                                λcr = 3 / 2       B ≈ 69,3 MeV/fm3

                                 λ ≤ 3/ 2         69,3 ≤ B ≤ 90 MeV/fm3



                                 B > 90       MeV/fm3     Unstable QP
Catastrophic conversion due to deconfined phase transition




    M core ≈ 0.24 M sun       M core ≈ 0.087 M sun
                              Rcore ≈ 4,38 km        Econv ≈ 4 ⋅1050 erg
    R ≈ 16, 77 km
                              R ≈ 13,95 km
Catastrophic conversion due to deconfined phase transition
Summary



   The account of δ-meson field results in reduction of phase
     transition parameters,

   The density jamp parameter λ , that has important significance
    from the point of view of infinitisimal quark core stability in neutron
    star, is increased.

   In case of bag parameter values                          the condition
    λ>3/2 is satisfied, and infinitisimal quark core is unstable.

   For                       the quark phase is unstable.
ÞÜàðвβÈàôÂÚàôÜ
                            THANK YOU




April 8, Yerevan, 2009

Mais conteúdo relacionado

Mais procurados

Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
kazuhase2011
 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
Cemal Ardil
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codes
Springer
 

Mais procurados (20)

Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
On the stability and accuracy of finite difference method for options pricing
On the stability and accuracy of finite difference method for options pricingOn the stability and accuracy of finite difference method for options pricing
On the stability and accuracy of finite difference method for options pricing
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
 
Coincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionCoincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contraction
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
 
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codes
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilations
 
Functions, Graphs, & Curves
Functions, Graphs, & CurvesFunctions, Graphs, & Curves
Functions, Graphs, & Curves
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
 
Prml
PrmlPrml
Prml
 

Destaque (8)

How to minimize attrition challenges white paper revised 10.16.09
How to minimize attrition challenges white paper revised 10.16.09How to minimize attrition challenges white paper revised 10.16.09
How to minimize attrition challenges white paper revised 10.16.09
 
Our commision
Our commisionOur commision
Our commision
 
презентац я
презентац япрезентац я
презентац я
 
Trending video marketing 11_april2014
Trending video marketing 11_april2014Trending video marketing 11_april2014
Trending video marketing 11_april2014
 
Ptt
PttPtt
Ptt
 
Pp
PpPp
Pp
 
Şubat - Mart Broşürü
Şubat - Mart BroşürüŞubat - Mart Broşürü
Şubat - Mart Broşürü
 
Kt1
Kt1Kt1
Kt1
 

Semelhante a Ysu conference presentation alaverdyan

Semelhante a Ysu conference presentation alaverdyan (20)

R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
 
A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
Math report
Math reportMath report
Math report
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
 
H function and a problem related to a string
H function and a problem related to a stringH function and a problem related to a string
H function and a problem related to a string
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
Dsp3
Dsp3Dsp3
Dsp3
 
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Many electrons atoms_2012.12.04 (PDF with links
Many electrons atoms_2012.12.04 (PDF with linksMany electrons atoms_2012.12.04 (PDF with links
Many electrons atoms_2012.12.04 (PDF with links
 
The Probability that a Matrix of Integers Is Diagonalizable
The Probability that a Matrix of Integers Is DiagonalizableThe Probability that a Matrix of Integers Is Diagonalizable
The Probability that a Matrix of Integers Is Diagonalizable
 
Fluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationFluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregation
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
test
testtest
test
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
 

Ysu conference presentation alaverdyan

  • 1. MIXED PHASE IN NEUTRON STARS G.B.Alaverdyan, Yu.L.Vartanyan Yerevan State University, Armenia 1919 – 2009 E Yerevan 2009
  • 2. Introduction Neutron Star Hydrostatic Equilibrium Equations of Tolman, Oppenheimer, and Volkov dP (r ) G[ε (r ) + P (r )][m(r ) + 4π r 3 P(r )] =− dr r 2 [1 − 2Gm(r ) / r ] dm(r ) = 4π r 2ε (r ) dr Equation of State ? ε (P ) Pc m(r ), P(r ), ε (r ) P( R) = 0 R, m( R ) = M
  • 3. Introduction Scalar Vector RMF-theory: Isoscalar σ ω J. D. Wale cka, Ann.Phys. 87, 4951, 1974 Isovector δ ρ σω ρ BD. Se ro t, J. D. Wale cka, Int.J.Mod.Phys. E6, 515, 1997. . Low density asymmetric nuclear matter: S. Kubis, MKutsche ra, Phys. Lett., B399,191,1997. . σω ρ δ BLiu, V. Gre co , V. B . aran, MCo lo nna, MDi To ro , Phys. Rev. C65, 045201, 2002. . . Heavy ion collisions at intermediate energies: V. Gre co , MCo lo nna, MDi To ro , F. M ra , Phys. Rev. C67, 015203, 2003 . . ate σω ρ δ T. Gaitano s, MCo lo nna, MDi To ro , H. H. Wo lte r, Phys.Lett. B . . 595, 209, 2004. Neutron stars with quark deconfinement phase transitions: σω ρ δ G. B A rdyan, Astrophysics, 52, 132 , 2009. . lave G. B A rdyan, Gravitation and Cosmology, 15, 5, 2009. . lave . G. B A rdyan, in Proc.of 8th Int.Conf. " Quark Co nfine me nt and the Hadro n . lave Spe ctrum" , Mainz, Germany, 1-6 sept. 2008, PoS (Confinement8)} 171, 2009.
  • 4. Lagrangian density of many-particle system of p,n.σ,ω,ρ,δ  µ  r r    1 r r 2  ( L = ψ N γ  i∂ µ − gωωµ ( x) − g ρτ N ×ρ µ ( x) ÷− mN − gσ σ ( x) − gδ τ N × ( x)  ψ N + δ  ) 1 1 2 1 2 ( 2 ) + ∂ µσ ( x) ∂ µσ ( x) − mσ σ ( x)2 − U (σ ( x)) + mω ω µ ( x)ωµ ( x) − Ω µν ( x)Ω µν ( x) + 2 4 r r r 2 1 2 rµ 1 ( ) r 1 + ∂ µ δ ( x) ∂ δ ( x) − mδ δ ( x) + mρ ρ ( x) ρ µ ( x) − Rµν ( x) R µν ( x) , 2 µ 2 2 4 r r ψ p  x = xµ = (t , x, y , z ) σ ( x), ωµ ( x ), δ ( x), ρ µ ( x) ψN = ÷ ψ n  b c U (σ ) = mN ( gσ σ )3 + ( gσ σ ) 4 , 3 4 Ω µν ( x ) = ∂ µ ων ( x) − ∂ν ωµ ( x), ℜ µν ( x ) = ∂ µ ρν ( x) − ∂ν ρ µ ( x).
  • 5. Relativistic mean-field approach ∂L ∂L − ∂µ =0 ∂φ ( x) ∂ (∂ µφ ( x)) m* = mN − g σ σ − g δ δ (3) , p 1 e p (k ) = k 2 + m* 2 + g ω ω0 + p g ρ ρ0 , (3) mn = mN − gσ σ + gδ δ (3) . * 2 1 e n ( k ) = k 2 + m* 2 n + g ω ω0 − g ρ ρ0 , (3) 2 k Fp 3 k Fn3 np = , nn = 2 ,  dU (σ)  3 π2 3π mσ 2 σ = g σ  ns p + ns n − ÷, dσ  kF p  1 m* ∫ p ns p = 2 k 2 dk , π mω ω = g ω ( n p + nn ) , 2 0 k 2 + m* 2 p kF n m* mδ δ 2 (3) ( ) = g δ ns p − ns n , 1 ns n = 2 π ∫ 0 k +m2 n *2 k 2 dk . n 1 mρ 2 ρ0 = (3) g ρ ( n p − nn ) , 2 1 µ p = e p (k F p ) = k F p 2 + m* 2 + g ω ω0 + p g ρ ρ0 , (3) 2 1 µ n = e n ( k F n ) = k F n 2 + m* 2 n + g ω ω0 − gρ ρ0 . (3) 2
  • 6. Parametric EOS for nuclear matter gσ σ ≡ σ , gω ω0 ≡ ω , gδ δ (3) ≡ δ , g ρ ρ (3) ≡ ρ , 2 2 2 2  gσ  g  g  g  nn − n p  ÷ ≡ aσ ,  ω ÷ ≡ aω ,  δ ÷ ≡ aδ ,  ρ ÷ ≡ aρ m ÷ α= , the asymmetry parameter  mσ   mω   mδ   ρ n 1 kF ( n )(1−α ) 3 1  2  P ( n, α ) = 2 π ∫ 0   k F (n) 2 (1 − α) 3 + (mN − σ − δ) 2 − k 2 + (mN − σ − δ) 2 ÷ k 2 dk +  1 k F ( n )(1+α ) 3 1  2  + 2 π ∫ 0   k F ( n) 2 (1 + α) 3 + (mN − σ + δ) 2 − k 2 + (mN − σ + δ) 2 ÷ k 2 dk −  % 1  σ 2 ω2 δ 2 ρ 2  − U ( σ) +  − + − + ÷. 2  aσ aω aδ aρ ÷   1 k F ( n )(1−α ) 3 1 ε(n, α) = π2 ∫ 0 k 2 + (mN − σ − δ) 2 k 2 dk + 1 k F ( n )(1+α ) 3 1 1  σ 2 ω2 δ 2 ρ 2  + 2 ∫ % k + (mN − σ + δ) k dk + U (σ) +  + + + 2 2 2  aσ aω aδ aρ ÷ , π 2 ÷ 0 
  • 7. Parameters of RMF theory aσ , aω , aδ , aρ , b, c Symmetric nuclear matter (α =0) Saturation density ( n = n0 ) m* = γ mN , N σ 0 = (1 − γ ) mN d ε(n, α) ε(n0 , 0) B = = mN + f 0 , f0 = , Binding energy per baryon dn n = n0 n0 A α= 0 aω = 1 n0 (mN + f 0 − k F (n0 ) 2 + (mN − σ0 ) 2 ) ω0 = aωn0 = mN + f 0 − k F (n0 ) 2 + (mN − σ 0 ) 2 k F ( n0 ) σ0 2 ( mN − σ 0 ) = 2 aσ π ∫ 0 k 2 + ( mN − σ 0 ) 2 k 2 dk − bmN σ 0 2 − cσ 03
  • 8. Parameters of RMF theory k F ( n0 ) 2 b c 4 1  σ0 2  ε0 = n0 (mN + f 0 ) = 2 ∫ k + (mN − σ0 ) k dk + mN σ0 + σ 0 +  + n0 2 aω ÷ 2 2 2 3 π 0 3 4 2  aσ  d 2 ε(n, α) K = 9 n0 2 2 ( ) compressibility module dn n n = n0 α= 0 ε sym 1 d 2 ε(n, α) = Esym (n) α 2 Esym ( n) = n 2n d α 2 α=0 Symmetry energy mN = 938,93 MeV n0 = 0,153 fm −3 m* γ = N = 0, 78 mN 0 0,5 1 1,5 2 2.5 3 K = 300 MeV f 0 = −16,3 MeV 4,794 6,569 8,340 10,104 11,865 13,621 15,372 Esym = 32,5 MeV (0)
  • 9. Parameters of RMF theory Parameters σωρ σωρδ aσ , fm2 9.154 9.154 aω , fm2 4.828 4.828 aδ , fm2 0 2.5 aρ, fm2 4.794 13.621 b , fm-1 1.654 10-2 1.654 10-2 c 1.319 10-2 1.319 10-2
  • 10. Properties of asymmetric nuclear matter
  • 11. Properties of asymmetric nuclear matter
  • 12. Characteristics of β-equilibrium npe- plasma ε NM (n, α, µ e ) = ε(n, α ) + ε e (µ e ), 1 PNM (n, α, µ e ) = P (n, α) + µ e (µ e 2 − me 2 )3/ 2 − ε e (µ e ) 3π2 n p − ne 1 n q= = (1 − α ) − e n 2 n
  • 13. Characteristics of charge neutral and β-stable npe- plasma
  • 15. EOS of neutron star matter in nucleonic phase
  • 16. Two types of deconfinement quark phase transitions Maxwell’s construction (Local electroneutrality) μQ Glendenning’s mixed phase μN a,b B μ0 (Global electroneutrality) A ρ = (1 − χ) ρN + χ ρQ n = (1 − χ) nN + χ nQ PN P0 PQ P χ = VQ / V
  • 17. Parameters of Maxwellian phase transition MFTσωρδ + MIT-bag µ NM ( P0 ) = µQM ( P0 ) Maxwell’s construction B - bag parameter
  • 18. Parameters of Maxwellian phase transition εQ λ= ε N + P0 λcr = 3 / 2 Seidov criterium Z Seidov, Ast.Zh., 15, 347,1971
  • 19. EOS with Maxwellian phase transition
  • 20. EOS with Mixed phase transition P(μb, μel) Q b μb QH a N 0 μel
  • 21. Mixed Phase Structure Nuclear matter Quark matter
  • 22. Mixed Phase Structure -3 3 3 Mix B=60 MeV/fm + MFTσωρδ B=60 MeV/fm + MFTσ ω ρδ 1.00 0 Constituents number density, fm 10 d u 0.75 -1 10 s n p 1.15 0.50 χ -2 10 1.10 s 0.25 -3 1.05 10 1.00 d u e 1.05 1.10 1.15 0.00 0.077 1.083 -4 10 0 400 800 1200 1600 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 3 -3 ε, MeV/fm n , fm 1000 3 B=60 MeV/fm + MFTσωρδ ω0 Meson fields, MeV 800 600 σ0 400 200 0 δ0 ρ0 -200 0.0 0.2 0.4 0.6 0.8 1.0 1.2 3 n , MeV/fm
  • 23. EOS’ s with Quark Deconfinement Phase transitions 3 10 3 B=60 MeV/fm + MFTσωρδ 2 10 3 P, MeV/fm 1 10 0 10 -1 10 2 3 10 3 10 ε , MeV/fm
  • 24. Neutron stars with mixed quark matter (Hybrid Stars) 2.5 2.0 RMF σωρδ 1.5 M , M 1.0 Maxw B60 0.5 0.0 Mix B60 -2 -1 0 1 2 3 10 10 10 10 10 10 3 Pc , MeV/fm
  • 25. Neutron stars with mixed quark matter (Hybrid Stars) 0.25 Maxw B60 0.20 M , M 0.15 RMF σ ω ρ δ Mix B60 0.10 1 2 10 10 R , km
  • 26. Neutron stars with mixed quark matter (Hybrid Stars) 0.5 0.4 0.3 Mix B60 zs RMFσωρδ 0.2 0.1 Maxw B60 0.0 0.0 0.5 1.0 1.5 2.0 M , M
  • 27. Neutron stars with quark core TOV equations
  • 28. Neutron stars with quark core λ > 3/ 2 B < 69,3 MeV/fm3 λcr = 3 / 2 B ≈ 69,3 MeV/fm3 λ ≤ 3/ 2 69,3 ≤ B ≤ 90 MeV/fm3 B > 90 MeV/fm3 Unstable QP
  • 29. Catastrophic conversion due to deconfined phase transition M core ≈ 0.24 M sun M core ≈ 0.087 M sun Rcore ≈ 4,38 km Econv ≈ 4 ⋅1050 erg R ≈ 16, 77 km R ≈ 13,95 km
  • 30. Catastrophic conversion due to deconfined phase transition
  • 31. Summary  The account of δ-meson field results in reduction of phase transition parameters,  The density jamp parameter λ , that has important significance from the point of view of infinitisimal quark core stability in neutron star, is increased.  In case of bag parameter values the condition λ>3/2 is satisfied, and infinitisimal quark core is unstable.  For the quark phase is unstable.
  • 32. ÞÜàðвβÈàôÂÚàôÜ THANK YOU April 8, Yerevan, 2009