SlideShare uma empresa Scribd logo
1 de 5
Baixar para ler offline
GBH Enterprises, Ltd.

VULCAN VSG-C111/ C112

Low Temperature Shift Catalyst
Reduction Procedure

Process Information Disclaimer
Information contained in this publication or as otherwise supplied to Users is
believed to be accurate and correct at time of going to press, and is given in
good faith, but it is for the User to satisfy itself of the suitability of the Product for
its own particular purpose. GBHE gives no warranty as to the fitness of the
Product for any particular purpose and any implied warranty or condition
(statutory or otherwise) is excluded except to the extent that exclusion is
prevented by law. GBHE accepts no liability for loss, damage or personnel injury
caused or resulting from reliance on this information. Freedom under Patent,
Copyright and Designs cannot be assumed.
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
VULCAN Series VSG-C111 / C112 “Low Temperature Shift Catalyst”
REDUCTION PROCEDURE
VSG-C111 as supplied contains copper oxide; it is activated for the low
temperature shift duty by reducing the copper oxide component to metallic
copper with hydrogen. The reaction is highly exothermic. In order to achieve
maximum activity, good performance and long life, it is essential that the
reduction is conducted under correctly controlled conditions. Great care must be
taken to avoid thermal damage during this critical operation.
RECOMMENDED PROCEDURE
1.

Purge the converter free of oxygen with an inert gas. If natural gas is to
be used as the carrier gas, then normal safety procedures for gas/air
systems should be followed.

2.

Check all associated pipework is free of water, and then establish a flow of
carrier gas (nitrogen or natural gas) at a space velocity of 200-800 hrs-1.
The reduction is more quickly completed at higher space velocities.

3.

On most plants the reduction may be carried out at any convenient
pressure. To ensure adequate flow distribution, it is recommended that
the pressure be such that the superficial linear velocity is at least 0.2
ft/sec.

4.

Heat the catalyst at a rate of not greater than 150oF/hour. During the heat
up, while the bed temperatures are below 250oF, the hydrogen injection
valve should be checked and calculated over the range 0.5% - 2%
hydrogen inlet the converter. This should be done as swiftly as possible
and the valve isolated between injections.

5.

When at least one-third of the bed is at 330-350oF establish a hydrogen
flow, aiming for not greater than 1% H2 at this stage. When gas analysis
confirms the hydrogen concentration and the exotherm is stable, the
hydrogen concentration may be raised to approximately 2% in stages.
THIS MUST BE DONE WITH CAUTION AND ONLY IF THE CATALYST
TEMPERATURES ARE AT A SAFE LEVEL AND THE ENTIRE SYSTEM
IS STABLE.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
With VSG-C111 the maximum bed temperature during reduction should
be limited to 450-455oF. In any situation, if a bed temperature reaches
480oF then the inlet hydrogen should be reduced to less than 1%.
6.

When an elevated hydrogen concentration consistent with a safe
temperature is established, the reduction should be allowed to continue
until the exit gas analysis indicates a rising hydrogen concentration.
When the inlet and exit hydrogen concentrations differ by less than 0.5%,
the inlet hydrogen should be raised above 5% in stages. The bed
temperatures should be watched closely after each hydrogen adjustment.

7.

The entire bed should be raised to 400-420oF.

8.

The reduction can be considered complete when the entire bed is at
400oF or greater and the inlet and exit hydrogen concentrations differ by
no more than 0.2%.

9.

The catalyst can now be put into service.

POINTS TO NOTE
A) EQUIPMENT/UTILITIES
I)

Carrier Gas

Desulfurized natural gas and nitrogen are acceptable. Ideally the carrier gas is
free of hydrogen and oxygen. In the event of contamination, levels should be:
Hydrogen not greater than 0.5%
Oxygen
not greater than 0.1%
(Note: 0.01% oxygen consumes 0.2% hydrogen and produces an exotherm of
30oF in nitrogen.)

II)

Hydrogen Source

The hydrogen should be free of sulfur and chlorides. Carbon monoxide in the
hydrogen is acceptable but the additional associated temperature rise must be
allowed for.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
III)

Temperature Control

There must be an adequate mechanism for inlet gas temperature control and as
an absolute minimum thermocouples at the inlet and exit of the catalyst bed.
Preferably, for use not only during the reduction but for performance monitoring
throughout the life of the catalyst, thermocouples should be spaced throughout
the catalyst bed.

IV)

Sample Points

Gas samples points must be available inlet and exit the bed.

V)

Pressure Control

The system must have an adequate mechanism for pressure control. Wild
pressure fluctuations might otherwise result in unacceptable surges of hydrogen
flow to the catalyst.

VI)

Cooling/Condensing/Catchpot

Recirculating systems must have a mechanism for controlled removal of the
water reduction.

B)

CONTINGENCIES

I) with natural gas as the carrier in the event of an excessively high temperature
(above 550oF), additional hydrogen can be produced by the thermal cracking of
the gas. Should, for whatever reason, an excessive temperature rise occurs, the
natural gas must be isolated and the contents of the reactor purged and cooled
with nitrogen.
II) In the event of a temperature runaway, the vessel pressure should be
reduced to minimize any chance of vessel damage.
III) Again, in the event of thermal runaway, if possible the heat should be vented
by reverse flow to avoid damage to hitherto unaffected catalyst.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com

Mais conteúdo relacionado

Mais procurados

Ammonia Plant - Secondary Reforming
Ammonia Plant - Secondary ReformingAmmonia Plant - Secondary Reforming
Ammonia Plant - Secondary ReformingGerard B. Hawkins
 
Steam Reforming - Practical Operations
Steam Reforming - Practical OperationsSteam Reforming - Practical Operations
Steam Reforming - Practical OperationsGerard B. Hawkins
 
Methanol Synthesis Loop Troubleshooting
Methanol Synthesis Loop TroubleshootingMethanol Synthesis Loop Troubleshooting
Methanol Synthesis Loop TroubleshootingGerard B. Hawkins
 
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev OverviewGerard B. Hawkins
 
Pre-reformer Operations Technical Supplement
Pre-reformer Operations Technical SupplementPre-reformer Operations Technical Supplement
Pre-reformer Operations Technical SupplementGerard B. Hawkins
 
Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Gerard B. Hawkins
 
A presentation on reformer new
A presentation on reformer newA presentation on reformer new
A presentation on reformer newGowri Shankar
 
Normal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsNormal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsGerard B. Hawkins
 
Reduction and Start-Up of Steam Reforming Catalyst
Reduction and Start-Up of Steam Reforming CatalystReduction and Start-Up of Steam Reforming Catalyst
Reduction and Start-Up of Steam Reforming CatalystGerard B. Hawkins
 
Hydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer TroubleshootingHydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer TroubleshootingGerard B. Hawkins
 
Introduction to Pre-reformer Flowsheet Options
Introduction to Pre-reformer Flowsheet OptionsIntroduction to Pre-reformer Flowsheet Options
Introduction to Pre-reformer Flowsheet OptionsGerard B. Hawkins
 
Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Gerard B. Hawkins
 
Primary Reforming Flowsheets
Primary Reforming FlowsheetsPrimary Reforming Flowsheets
Primary Reforming FlowsheetsGerard B. Hawkins
 
Feedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsFeedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsGerard B. Hawkins
 
The Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam ReformingThe Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam ReformingGerard B. Hawkins
 
Steam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive ReviewSteam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive ReviewGerard B. Hawkins
 
Principles of Pre-reforming Technology
Principles of Pre-reforming TechnologyPrinciples of Pre-reforming Technology
Principles of Pre-reforming TechnologyGerard B. Hawkins
 

Mais procurados (20)

Ammonia Plant - Secondary Reforming
Ammonia Plant - Secondary ReformingAmmonia Plant - Secondary Reforming
Ammonia Plant - Secondary Reforming
 
Steam Reforming - Practical Operations
Steam Reforming - Practical OperationsSteam Reforming - Practical Operations
Steam Reforming - Practical Operations
 
Methanol Synthesis Loop Troubleshooting
Methanol Synthesis Loop TroubleshootingMethanol Synthesis Loop Troubleshooting
Methanol Synthesis Loop Troubleshooting
 
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
 
Pre-reformer Operations Technical Supplement
Pre-reformer Operations Technical SupplementPre-reformer Operations Technical Supplement
Pre-reformer Operations Technical Supplement
 
Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers -
 
Methanol Reformer Designs
Methanol Reformer DesignsMethanol Reformer Designs
Methanol Reformer Designs
 
A presentation on reformer new
A presentation on reformer newA presentation on reformer new
A presentation on reformer new
 
Normal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsNormal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen Plants
 
Reduction and Start-Up of Steam Reforming Catalyst
Reduction and Start-Up of Steam Reforming CatalystReduction and Start-Up of Steam Reforming Catalyst
Reduction and Start-Up of Steam Reforming Catalyst
 
Steam Reforming - Poisons
Steam Reforming - PoisonsSteam Reforming - Poisons
Steam Reforming - Poisons
 
Hydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer TroubleshootingHydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
 
Secondary Reforming Burners
Secondary Reforming BurnersSecondary Reforming Burners
Secondary Reforming Burners
 
Introduction to Pre-reformer Flowsheet Options
Introduction to Pre-reformer Flowsheet OptionsIntroduction to Pre-reformer Flowsheet Options
Introduction to Pre-reformer Flowsheet Options
 
Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming
 
Primary Reforming Flowsheets
Primary Reforming FlowsheetsPrimary Reforming Flowsheets
Primary Reforming Flowsheets
 
Feedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsFeedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen Plants
 
The Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam ReformingThe Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam Reforming
 
Steam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive ReviewSteam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive Review
 
Principles of Pre-reforming Technology
Principles of Pre-reforming TechnologyPrinciples of Pre-reforming Technology
Principles of Pre-reforming Technology
 

Destaque

Water Gas Shift Reactor Design
Water Gas Shift Reactor DesignWater Gas Shift Reactor Design
Water Gas Shift Reactor Designl16cn
 
Water-Gas-Shift Reactor Loading & Unloading Considerations
Water-Gas-Shift Reactor Loading & Unloading ConsiderationsWater-Gas-Shift Reactor Loading & Unloading Considerations
Water-Gas-Shift Reactor Loading & Unloading ConsiderationsGerard B. Hawkins
 
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...Gerard B. Hawkins
 
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS Gerard B. Hawkins
 
Water Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section FlowsheetWater Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section FlowsheetGerard B. Hawkins
 
Discharge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation CatalystDischarge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation CatalystGerard B. Hawkins
 
Key Operational Guidelines - Low Temperature Shift Catalyst Reduction
Key Operational Guidelines - Low Temperature Shift Catalyst Reduction Key Operational Guidelines - Low Temperature Shift Catalyst Reduction
Key Operational Guidelines - Low Temperature Shift Catalyst Reduction Gerard B. Hawkins
 
Naphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with MethanolNaphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with MethanolGerard B. Hawkins
 
Pumps for Sodium Hydroxide Service
Pumps for Sodium Hydroxide ServicePumps for Sodium Hydroxide Service
Pumps for Sodium Hydroxide ServiceGerard B. Hawkins
 
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 CrackingNaphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 CrackingGerard B. Hawkins
 
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...Gerard B. Hawkins
 
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENTGerard B. Hawkins
 
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...Gerard B. Hawkins
 
Catalyst Breakage in Reformer Tubes
Catalyst Breakage in Reformer TubesCatalyst Breakage in Reformer Tubes
Catalyst Breakage in Reformer TubesGerard B. Hawkins
 
Steam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG FeedSteam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG FeedGerard B. Hawkins
 
SMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case StudySMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case StudyGerard B. Hawkins
 
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDSSYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDSGerard B. Hawkins
 
Study 3: Detailed Design Hazards
Study 3: Detailed Design Hazards Study 3: Detailed Design Hazards
Study 3: Detailed Design Hazards Gerard B. Hawkins
 

Destaque (20)

Water Gas Shift Reactor Design
Water Gas Shift Reactor DesignWater Gas Shift Reactor Design
Water Gas Shift Reactor Design
 
Water-Gas-Shift Reactor Loading & Unloading Considerations
Water-Gas-Shift Reactor Loading & Unloading ConsiderationsWater-Gas-Shift Reactor Loading & Unloading Considerations
Water-Gas-Shift Reactor Loading & Unloading Considerations
 
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
 
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
 
Water Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section FlowsheetWater Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section Flowsheet
 
Reactor and Catalyst Design
Reactor and Catalyst DesignReactor and Catalyst Design
Reactor and Catalyst Design
 
Discharge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation CatalystDischarge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation Catalyst
 
Key Operational Guidelines - Low Temperature Shift Catalyst Reduction
Key Operational Guidelines - Low Temperature Shift Catalyst Reduction Key Operational Guidelines - Low Temperature Shift Catalyst Reduction
Key Operational Guidelines - Low Temperature Shift Catalyst Reduction
 
Naphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with MethanolNaphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with Methanol
 
Pumps for Sodium Hydroxide Service
Pumps for Sodium Hydroxide ServicePumps for Sodium Hydroxide Service
Pumps for Sodium Hydroxide Service
 
High Precision Gears
High Precision GearsHigh Precision Gears
High Precision Gears
 
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 CrackingNaphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
 
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
 
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
 
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
 
Catalyst Breakage in Reformer Tubes
Catalyst Breakage in Reformer TubesCatalyst Breakage in Reformer Tubes
Catalyst Breakage in Reformer Tubes
 
Steam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG FeedSteam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG Feed
 
SMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case StudySMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case Study
 
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDSSYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
 
Study 3: Detailed Design Hazards
Study 3: Detailed Design Hazards Study 3: Detailed Design Hazards
Study 3: Detailed Design Hazards
 

Semelhante a Low Temperature Shift Catalyst Reduction Procedure

STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSSTEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSGerard B. Hawkins
 
Air / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming CcatalystAir / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming CcatalystGerard B. Hawkins
 
Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures Gerard B. Hawkins
 
In-Situ Oxidation Procedure for High and Low Temperature Shift Catalysts
In-Situ Oxidation Procedure for High and Low Temperature Shift CatalystsIn-Situ Oxidation Procedure for High and Low Temperature Shift Catalysts
In-Situ Oxidation Procedure for High and Low Temperature Shift CatalystsGerard B. Hawkins
 
Guidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet MethodGuidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet MethodGerard B. Hawkins
 
Methanator Water Wash Procedures
Methanator Water Wash ProceduresMethanator Water Wash Procedures
Methanator Water Wash ProceduresGerard B. Hawkins
 
Hydrogenation Reactor Run Away Conditions
Hydrogenation Reactor Run Away ConditionsHydrogenation Reactor Run Away Conditions
Hydrogenation Reactor Run Away ConditionsGerard B. Hawkins
 
METHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENTMETHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENTGerard B. Hawkins
 
Integration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a ProcessIntegration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a ProcessGerard B. Hawkins
 
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...Gerard B. Hawkins
 
PRE-SULFIDING & ON-LINE SULFIDING of VULCAN Series CoMo and NiMo Catalyst in...
PRE-SULFIDING & ON-LINE SULFIDING of  VULCAN Series CoMo and NiMo Catalyst in...PRE-SULFIDING & ON-LINE SULFIDING of  VULCAN Series CoMo and NiMo Catalyst in...
PRE-SULFIDING & ON-LINE SULFIDING of VULCAN Series CoMo and NiMo Catalyst in...Gerard B. Hawkins
 
ACTIVATED CARBON- AIR-STEAM REGENERATION PROCEDURE
ACTIVATED CARBON-  AIR-STEAM REGENERATION PROCEDUREACTIVATED CARBON-  AIR-STEAM REGENERATION PROCEDURE
ACTIVATED CARBON- AIR-STEAM REGENERATION PROCEDUREGerard B. Hawkins
 
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...Gerard B. Hawkins
 
Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...Gerard B. Hawkins
 
Reciprocating Compressors - Protection against Crank Case Explosions
Reciprocating Compressors - Protection against Crank Case ExplosionsReciprocating Compressors - Protection against Crank Case Explosions
Reciprocating Compressors - Protection against Crank Case ExplosionsGerard B. Hawkins
 
Fixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesFixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesGerard B. Hawkins
 
Determination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous AmmoniaDetermination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous AmmoniaGerard B. Hawkins
 

Semelhante a Low Temperature Shift Catalyst Reduction Procedure (20)

STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSSTEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
 
Air / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming CcatalystAir / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming Ccatalyst
 
Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures
 
In-Situ Oxidation Procedure for High and Low Temperature Shift Catalysts
In-Situ Oxidation Procedure for High and Low Temperature Shift CatalystsIn-Situ Oxidation Procedure for High and Low Temperature Shift Catalysts
In-Situ Oxidation Procedure for High and Low Temperature Shift Catalysts
 
Guidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet MethodGuidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet Method
 
Methanator Water Wash Procedures
Methanator Water Wash ProceduresMethanator Water Wash Procedures
Methanator Water Wash Procedures
 
Hydrogenation Reactor Run Away Conditions
Hydrogenation Reactor Run Away ConditionsHydrogenation Reactor Run Away Conditions
Hydrogenation Reactor Run Away Conditions
 
METHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENTMETHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENT
 
Hot Hydrogen Stripping
Hot Hydrogen StrippingHot Hydrogen Stripping
Hot Hydrogen Stripping
 
Integration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a ProcessIntegration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a Process
 
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...
 
Hydrogen Compressors
Hydrogen CompressorsHydrogen Compressors
Hydrogen Compressors
 
PRE-SULFIDING & ON-LINE SULFIDING of VULCAN Series CoMo and NiMo Catalyst in...
PRE-SULFIDING & ON-LINE SULFIDING of  VULCAN Series CoMo and NiMo Catalyst in...PRE-SULFIDING & ON-LINE SULFIDING of  VULCAN Series CoMo and NiMo Catalyst in...
PRE-SULFIDING & ON-LINE SULFIDING of VULCAN Series CoMo and NiMo Catalyst in...
 
Pressure Systems
Pressure SystemsPressure Systems
Pressure Systems
 
ACTIVATED CARBON- AIR-STEAM REGENERATION PROCEDURE
ACTIVATED CARBON-  AIR-STEAM REGENERATION PROCEDUREACTIVATED CARBON-  AIR-STEAM REGENERATION PROCEDURE
ACTIVATED CARBON- AIR-STEAM REGENERATION PROCEDURE
 
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
 
Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...
 
Reciprocating Compressors - Protection against Crank Case Explosions
Reciprocating Compressors - Protection against Crank Case ExplosionsReciprocating Compressors - Protection against Crank Case Explosions
Reciprocating Compressors - Protection against Crank Case Explosions
 
Fixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesFixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design Guidelines
 
Determination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous AmmoniaDetermination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous Ammonia
 

Mais de Gerard B. Hawkins

Pressure Relief Systems Vol 2
Pressure Relief Systems   Vol 2Pressure Relief Systems   Vol 2
Pressure Relief Systems Vol 2Gerard B. Hawkins
 
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy GasesGAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy GasesGerard B. Hawkins
 
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...Gerard B. Hawkins
 
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...Gerard B. Hawkins
 
Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:  Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption: Gerard B. Hawkins
 
Calculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel GasCalculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel GasGerard B. Hawkins
 
Piping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedurePiping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedureGerard B. Hawkins
 
Getting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGetting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGerard B. Hawkins
 
EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS Gerard B. Hawkins
 
Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Gerard B. Hawkins
 
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide Gerard B. Hawkins
 
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Gerard B. Hawkins
 
GBHE Over View jan_13_español
GBHE Over View jan_13_españolGBHE Over View jan_13_español
GBHE Over View jan_13_españolGerard B. Hawkins
 
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...Gerard B. Hawkins
 
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...Gerard B. Hawkins
 
Burner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia PlantsBurner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia PlantsGerard B. Hawkins
 
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTS
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTSDEACTIVATION OF METHANOL SYNTHESIS CATALYSTS
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTSGerard B. Hawkins
 
Catalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IICatalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IIGerard B. Hawkins
 

Mais de Gerard B. Hawkins (20)

Pressure Relief Systems Vol 2
Pressure Relief Systems   Vol 2Pressure Relief Systems   Vol 2
Pressure Relief Systems Vol 2
 
Pressure Relief Systems
Pressure Relief Systems Pressure Relief Systems
Pressure Relief Systems
 
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy GasesGAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
 
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
 
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
 
Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:  Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:
 
Calculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel GasCalculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel Gas
 
Pickling & Passivation
Pickling & PassivationPickling & Passivation
Pickling & Passivation
 
Piping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedurePiping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning Procedure
 
Getting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGetting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen Plant
 
EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS
 
Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción
 
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
 
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
 
GBHE Over View jan_13_español
GBHE Over View jan_13_españolGBHE Over View jan_13_español
GBHE Over View jan_13_español
 
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
 
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
 
Burner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia PlantsBurner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia Plants
 
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTS
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTSDEACTIVATION OF METHANOL SYNTHESIS CATALYSTS
DEACTIVATION OF METHANOL SYNTHESIS CATALYSTS
 
Catalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IICatalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - II
 

Último

GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 

Último (20)

GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 

Low Temperature Shift Catalyst Reduction Procedure

  • 1. GBH Enterprises, Ltd. VULCAN VSG-C111/ C112 Low Temperature Shift Catalyst Reduction Procedure Process Information Disclaimer Information contained in this publication or as otherwise supplied to Users is believed to be accurate and correct at time of going to press, and is given in good faith, but it is for the User to satisfy itself of the suitability of the Product for its own particular purpose. GBHE gives no warranty as to the fitness of the Product for any particular purpose and any implied warranty or condition (statutory or otherwise) is excluded except to the extent that exclusion is prevented by law. GBHE accepts no liability for loss, damage or personnel injury caused or resulting from reliance on this information. Freedom under Patent, Copyright and Designs cannot be assumed. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 2. VULCAN Series VSG-C111 / C112 “Low Temperature Shift Catalyst” REDUCTION PROCEDURE VSG-C111 as supplied contains copper oxide; it is activated for the low temperature shift duty by reducing the copper oxide component to metallic copper with hydrogen. The reaction is highly exothermic. In order to achieve maximum activity, good performance and long life, it is essential that the reduction is conducted under correctly controlled conditions. Great care must be taken to avoid thermal damage during this critical operation. RECOMMENDED PROCEDURE 1. Purge the converter free of oxygen with an inert gas. If natural gas is to be used as the carrier gas, then normal safety procedures for gas/air systems should be followed. 2. Check all associated pipework is free of water, and then establish a flow of carrier gas (nitrogen or natural gas) at a space velocity of 200-800 hrs-1. The reduction is more quickly completed at higher space velocities. 3. On most plants the reduction may be carried out at any convenient pressure. To ensure adequate flow distribution, it is recommended that the pressure be such that the superficial linear velocity is at least 0.2 ft/sec. 4. Heat the catalyst at a rate of not greater than 150oF/hour. During the heat up, while the bed temperatures are below 250oF, the hydrogen injection valve should be checked and calculated over the range 0.5% - 2% hydrogen inlet the converter. This should be done as swiftly as possible and the valve isolated between injections. 5. When at least one-third of the bed is at 330-350oF establish a hydrogen flow, aiming for not greater than 1% H2 at this stage. When gas analysis confirms the hydrogen concentration and the exotherm is stable, the hydrogen concentration may be raised to approximately 2% in stages. THIS MUST BE DONE WITH CAUTION AND ONLY IF THE CATALYST TEMPERATURES ARE AT A SAFE LEVEL AND THE ENTIRE SYSTEM IS STABLE. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 3. With VSG-C111 the maximum bed temperature during reduction should be limited to 450-455oF. In any situation, if a bed temperature reaches 480oF then the inlet hydrogen should be reduced to less than 1%. 6. When an elevated hydrogen concentration consistent with a safe temperature is established, the reduction should be allowed to continue until the exit gas analysis indicates a rising hydrogen concentration. When the inlet and exit hydrogen concentrations differ by less than 0.5%, the inlet hydrogen should be raised above 5% in stages. The bed temperatures should be watched closely after each hydrogen adjustment. 7. The entire bed should be raised to 400-420oF. 8. The reduction can be considered complete when the entire bed is at 400oF or greater and the inlet and exit hydrogen concentrations differ by no more than 0.2%. 9. The catalyst can now be put into service. POINTS TO NOTE A) EQUIPMENT/UTILITIES I) Carrier Gas Desulfurized natural gas and nitrogen are acceptable. Ideally the carrier gas is free of hydrogen and oxygen. In the event of contamination, levels should be: Hydrogen not greater than 0.5% Oxygen not greater than 0.1% (Note: 0.01% oxygen consumes 0.2% hydrogen and produces an exotherm of 30oF in nitrogen.) II) Hydrogen Source The hydrogen should be free of sulfur and chlorides. Carbon monoxide in the hydrogen is acceptable but the additional associated temperature rise must be allowed for. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 4. III) Temperature Control There must be an adequate mechanism for inlet gas temperature control and as an absolute minimum thermocouples at the inlet and exit of the catalyst bed. Preferably, for use not only during the reduction but for performance monitoring throughout the life of the catalyst, thermocouples should be spaced throughout the catalyst bed. IV) Sample Points Gas samples points must be available inlet and exit the bed. V) Pressure Control The system must have an adequate mechanism for pressure control. Wild pressure fluctuations might otherwise result in unacceptable surges of hydrogen flow to the catalyst. VI) Cooling/Condensing/Catchpot Recirculating systems must have a mechanism for controlled removal of the water reduction. B) CONTINGENCIES I) with natural gas as the carrier in the event of an excessively high temperature (above 550oF), additional hydrogen can be produced by the thermal cracking of the gas. Should, for whatever reason, an excessive temperature rise occurs, the natural gas must be isolated and the contents of the reactor purged and cooled with nitrogen. II) In the event of a temperature runaway, the vessel pressure should be reduced to minimize any chance of vessel damage. III) Again, in the event of thermal runaway, if possible the heat should be vented by reverse flow to avoid damage to hitherto unaffected catalyst. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 5. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com