SlideShare uma empresa Scribd logo
1 de 37
Baixar para ler offline
08/10/10 University of Dublin, Trinity College 1/35
Simulations of Jets in Star Forming Regions
Gareth Murphy
08/10/10 Laboratoire d'AstrOphysique de Grenoble 2/35
Collaborators
• F. Bacciotti
• L. Drury
• T. Lery
• C. Combet
• R. Curran
• S. O’Sullivan
• D. Spicer
• T. Ray
• E.T. Whelan
08/10/10 Laboratoire d'AstrOphysique de Grenoble 3/35
Outline
1. Introduction
2. Numerical Code: Atlas
3. Simulations of Jets from Binary Sources
4. Jets in Evacuated Ambient Media
5. Conclusions
08/10/10 Laboratoire d'AstrOphysique de Grenoble 4/35
1. Introduction
08/10/10 Laboratoire d'AstrOphysique de Grenoble 5/35
Low Mass Star Formation
• Stars form inside collapsing
molecular cores
• Centrifugal forces flatten the
envelope in thin accretion
disks
• Orbiting matter decays toward
the central object - increasing
tangential velocity thanks to
the conservation of angular
momentum
• Charged particles drag frozen
magnetic field lines towards
the centre
• Approximately 10% of the
material is ejected from the
disk and travels along open B
field lines in bipolar direction.
Class 0
Class I/II Class III
08/10/10 Laboratoire d'AstrOphysique de Grenoble 6/35
Jets and Magnetic field
• Wind velocity is ~ escape velocity close to the central object
• Magnetic field is necessary for collimation and to accelerate wind to the high
velocities associated with protostellar jets.
• Mechanism may be either a disk wind (Blandford & Payne 82, Ferreira 97) or
an X-Wind (Shu 94) or both
08/10/10 Laboratoire d'AstrOphysique de Grenoble 7/35
Binary Jets
• Large numbers of young binaries exist in
Taurus, Ophichus clouds.
• Binary TTS frequency is 60% in Taurus-
Auriga (Ghez et al 93)
• Most forming stars have bipolar outflows
• Can a young binary produce a binary
outflow?
• Only ~10 candidate binary jets out of ~ 800
HH objects
• Is there a BINARY JET DESERT?
• What affects direction of jets?
• What is the effect of the circumbinary disk (if
any)?
• Do the jets interact - collide - merge - can
interaction be observed?
• What sort of jets interact? What is the role of
the magnetic field?
08/10/10 Laboratoire d'AstrOphysique de Grenoble 8/35
Why Simulate Jets?
• Jets are important tracers of star
formation process.
• Forbidden line emission from jets is
easier to observe than the central object.
• Jet probes the central launching engine.
• We can try to explain morphology and
emission produced by nonlinear physical
processes.
• We can try to explain and predict
observations.
• We can test theory, produce synthetic
observations (emission maps etc) which
can be useful for observers.
• Simulations provide a laboratory in which
we can include effects of ambient
environment, magnetic fields, radiative
cooling, turbulence.
• Jets from low-mass YSOs have long
lifetimes ~10 kyr
08/10/10 Laboratoire d'AstrOphysique de Grenoble 9/35
3. Numerical Code: Atlas
08/10/10 Laboratoire d'AstrOphysique de Grenoble 10/35
Numerical Simulations
Fluid equations
+ Maxwell’s Laws
+ Assumptions
= Ideal MHD Equations
• Time-integrate the partial differential
equations
• Solve for B, E, u and rho
numerically.
∂ ρ
∂t
∇⋅ρu=0
∂ ρu
∂t
∇⋅ρuup IBB=0
∂B
∂t
∇⋅uB−Bu=0
∂ E
∂t
∇⋅[ Ep∗u−u.B B]−Lcooling=0
E=
1
2
ρu2

p
γ−1

1
2
B2
p∗¿ p
1
2
B2
08/10/10 Laboratoire d'AstrOphysique de Grenoble 11/35
AMR MHD Code: Atlas
• Written by D.S. Spicer, Stephen O’Sullivan - NASA GSFC
• 3D Parallel AMR MHD Godunov code
• Roe-Balsara Riemann solver
• Corner transport upwind method – unsplit scheme so can use the
• Staggered Mesh (Constrained Transport scheme) to maintain div B=0
• Piecewise parabolic method for reconstruction of the fluxes
• Paramesh v3.3 - Parallel Structured AMR with face-centred fields
• Optically thin radiative cooling
08/10/10 Laboratoire d'AstrOphysique de Grenoble 12/35
Adaptive Mesh Refinement
• The grid adapts
itself to the physical
changes within,
tracking the
features of the
result as the
computation
progresses
• Richardson
Truncation Error
Estimation
08/10/10 Laboratoire d'AstrOphysique de Grenoble 13/35
Numerical Test Problems
Hydro Shock – Mach Reflection MHD Orszag-Tang Vortex
MHD
Blast
Wave
08/10/10 Laboratoire d'AstrOphysique de Grenoble 14/35
2. Simulations of Jets from Binary
Sources
08/10/10 Laboratoire d'AstrOphysique de Grenoble 15/35
Binary Protostars Make Binary Jets
08/10/10 Laboratoire d'AstrOphysique de Grenoble 16/35
Binary Protostars Don’t Make Binary Jets
• DG Tau (Coffey et al 2005),
• T Tau (triple) (Schwartz 1975)
• L1642-2 (Reipurth et al 1990),
• Z Cma (Millan-Gabet & Monnier 2002),
• Sz 68 (Reipurth & Zinnecker 1993),
• SR 24 (Struve and Rudkjobing 1949),
• XZ Tau (Haas, Leinert, Zinnecker 1990)
• CoKu Tau/1 (Movsesyan 1989)
• DO Tau (Tessier et al 1994)
There are plenty of multiple sources which only drive one bipolar jet
08/10/10 Laboratoire d'AstrOphysique de Grenoble 17/35
Jet Binaries, HH1, HH111, HH154
08/10/10 Laboratoire d'AstrOphysique de Grenoble 18/35
Jets from L1551
IRS 5
• L1551 IRS 5 system
• Observations of binary disks and
bipolar binary jets from L1551 IRS 5
• Unlikely to be a cavity in the jet –
velocity difference too great + bipolar
+binary source all point towards 2
jets.
• 2 jets - fast and slow jet
• 1 bow shock visible
• Wiggling along course of jets – South
jet appears to turn in direction of
north jet
08/10/10 Laboratoire d'AstrOphysique de Grenoble 19/35
Two Jets From LDN1551 IRS 5
(Fridlund and Liseau 98)
08/10/10 Laboratoire d'AstrOphysique de Grenoble 20/35
Initial Conditions
• Assumed distance of 140 parsecs
• Density=500 /cm^3, temperature=1000 K
• Velocities 300km/s (North Jet) and 100km/s (South Jet)
• Sinusoidal varying injection velocity (Raga et al. 1990), assuming an
amplitude of 30% in the velocity with a period of 8 years for each jet.
• The ambient medium is modelled with a uniform density (5000 /cm^3)
• Stagger launching of the two jets - faster northern jet is launched 150
years after the slower southern jet.
• The velocity profile is a positive cosine - with its maximum at centre and
its minimum (zero) at r_jet.
• Profile chosen based on the observations of Bacciotti et al. (2000),
where the highest velocities are thought to be located in the centre of
the jet.
08/10/10 Laboratoire d'AstrOphysique de Grenoble 21/35
Orbiting Jets
Density contours 3d hydro orbiting jet simulation. Orbital Period=250
years
08/10/10 Laboratoire d'AstrOphysique de Grenoble 22/35
Parallel Interacting Jets
3D midplane slice isopycnics for parallel
hydrodynamic interacting jets
08/10/10 Laboratoire d'AstrOphysique de Grenoble 23/35
Magnetic Field Configuration
• Polarimetry measurements of Scarrott (1988) (optical) , Lucas and Roche
(1997) (infra-red) and Curran (2006) (submm) all point towards a toroidal
magnetic field around the cloud.
• We use a 0.01 mG toroidal field in the ambient medium.
08/10/10 Laboratoire d'AstrOphysique de Grenoble 24/35
Magnetically Confined Interaction
3D midplane density
slice
08/10/10 Laboratoire d'AstrOphysique de Grenoble 25/35
Interacting Binary Jets
• Jet Interaction – kink in structure caused by bow shock impinging on
neighbour’s beam
• Ambient toroidal field – enhances interaction – collimates the jets
• Orbital motion has negligible effect (at this stage)
• X-rays from source probably just scattered out of protostars
• Murphy et al (PPV, 2005)
08/10/10 Laboratoire d'AstrOphysique de Grenoble 26/35
4. Jets collimated by environment
08/10/10 Laboratoire d'AstrOphysique de Grenoble 27/35
Motivation: Circulation Model
• Combet et al (2006)
• Solutions to the model present both
density and velocity gradients.
• The model also implies a prehistory
of jets and outflows.
• The model applies to both low and
massive star formation.
• Large-scale model far from launch
region
• We launch a jet into the medium
and see does the medium affect the
morphology and the dynamics of the
jet
08/10/10 Laboratoire d'AstrOphysique de Grenoble 28/35
Jets (Re)Collimated by Environment
• Prehistory of outflows – a previous outflow creates a channel or
cavity in the molecular cloud
• The cavity fills in on the order of 10^6 years (Quillen et al. 2005)
• The jet on entering a cavity is accelerated, and recollimated.
Direction may also be affected.
• Frank & Mellema (1996,1999) – 2.5D HD and MHD study of
WAW entering a cavity for PNe
• Opher et al (2004) - 3D MHD studies
• Our study - 2D and 3D HD and MHD collimated jet enters a
cavity
• Note: Model requires a coarse mesh at a high level of refinement
so models take longer to run.
08/10/10 Laboratoire d'AstrOphysique de Grenoble 29/35
2D Calculations –Effect of density
gradient
Density gradient
Constant density Medium
•2 main
effects
•Collimation
•Increased
structure in
the cocoon
08/10/10 Laboratoire d'AstrOphysique de Grenoble 30/35
3D jet in evac ambient medium
08/10/10 Laboratoire d'AstrOphysique de Grenoble 31/35
3D calculations - Intensity Maps
Evacuated Cavity Medium
Jet is accelerated and
collimated
Constant Density Medium
08/10/10 Laboratoire d'AstrOphysique de Grenoble 32/35
5. Conclusions
08/10/10 Laboratoire d'AstrOphysique de Grenoble 33/35
Conclusions: Binary Jets
• We show that the toroidal ambient magnetic field
helps to collimate and refocus the two jets, and
increases the interaction between the two jets
• The density ratio between the jet and ambient
medium controls the interaction, underdense jets
have larger cocoons and are much more likely to
interfere than more ballistic jets
• Bow shock temperatures are high enough to produce
some weak X-rays, but the interacting region does
not produce X-rays by thermal means (implies either
scattering or some non-thermal process).
• SMBBH?
08/10/10 Laboratoire d'AstrOphysique de Grenoble 34/35
Super Massive Binary Black Hole Merger
08/10/10 Laboratoire d'AstrOphysique de Grenoble 35/35
Conclusions: Evacuated Ambient Media
• The circulation model suggests the presence of an
evacuated cavity around the axis of symmetry
• We modelled this evacuated cavity and showed the
collimation and acceleration of the jet.
• Not a perfect circulation model – but have some
results to look for in observations
08/10/10 Laboratoire d'AstrOphysique de Grenoble 36/35
Merci beaucoup
08/10/10 Laboratoire d'AstrOphysique de Grenoble 37/35
Intensity Maps
• Intensity Maps
• Emissivity = (transition probability) * hf *N^2 * x_e * (abundance S/H) *
(ionic abundance Si/Hi) * (level pop)
• Bacciotti & Eisloffel (1999)

Mais conteúdo relacionado

Mais procurados

A Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsA Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsToshihiro FUJII
 
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectFluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectToshihiro FUJII
 
10h10 carlos roberto 21 08 botafogo
10h10 carlos roberto 21 08 botafogo10h10 carlos roberto 21 08 botafogo
10h10 carlos roberto 21 08 botafogoslides-mci
 
11h00 carlos roberto 21 08 botafogo
11h00 carlos roberto 21 08 botafogo11h00 carlos roberto 21 08 botafogo
11h00 carlos roberto 21 08 botafogoslides-mci
 
Nakata_Mukai_IGARSS2011.ppt
Nakata_Mukai_IGARSS2011.pptNakata_Mukai_IGARSS2011.ppt
Nakata_Mukai_IGARSS2011.pptgrssieee
 
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...Integrated Carbon Observation System (ICOS)
 
09h10 stv2 paulo vasconcelos 22 08 flamengo
09h10 stv2 paulo vasconcelos 22 08 flamengo09h10 stv2 paulo vasconcelos 22 08 flamengo
09h10 stv2 paulo vasconcelos 22 08 flamengoslides-mci
 
Exocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ringExocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ringSérgio Sacani
 
Multiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxiesMultiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxiesAngel Ruiz Camuñas
 
Keith_Capstone_Defense
Keith_Capstone_DefenseKeith_Capstone_Defense
Keith_Capstone_DefenseKeith Tukes
 
AEROSOL CLASSIFICATION RETRIEVAL ALGORITHMS FOR EARTHCARE/ATLID, CALIPSO/CALI...
AEROSOL CLASSIFICATION RETRIEVAL ALGORITHMS FOR EARTHCARE/ATLID, CALIPSO/CALI...AEROSOL CLASSIFICATION RETRIEVAL ALGORITHMS FOR EARTHCARE/ATLID, CALIPSO/CALI...
AEROSOL CLASSIFICATION RETRIEVAL ALGORITHMS FOR EARTHCARE/ATLID, CALIPSO/CALI...grssieee
 
Imaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black HoleImaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black HoleDatabricks
 
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...Sérgio Sacani
 
Understanding Stellar Nucleosynthesis via Multi-isotopic NanoSIMS analyses of...
Understanding Stellar Nucleosynthesis via Multi-isotopic NanoSIMS analyses of...Understanding Stellar Nucleosynthesis via Multi-isotopic NanoSIMS analyses of...
Understanding Stellar Nucleosynthesis via Multi-isotopic NanoSIMS analyses of...Lalit Shukla
 
Neutron porosity log
Neutron porosity logNeutron porosity log
Neutron porosity logYash Bansal
 

Mais procurados (20)

A Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsA Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
 
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectFluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
 
10h10 carlos roberto 21 08 botafogo
10h10 carlos roberto 21 08 botafogo10h10 carlos roberto 21 08 botafogo
10h10 carlos roberto 21 08 botafogo
 
11h00 carlos roberto 21 08 botafogo
11h00 carlos roberto 21 08 botafogo11h00 carlos roberto 21 08 botafogo
11h00 carlos roberto 21 08 botafogo
 
Nakata_Mukai_IGARSS2011.ppt
Nakata_Mukai_IGARSS2011.pptNakata_Mukai_IGARSS2011.ppt
Nakata_Mukai_IGARSS2011.ppt
 
Combinatorial approach to materials discovery.
Combinatorial approach to materials discovery.Combinatorial approach to materials discovery.
Combinatorial approach to materials discovery.
 
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
 
09h10 stv2 paulo vasconcelos 22 08 flamengo
09h10 stv2 paulo vasconcelos 22 08 flamengo09h10 stv2 paulo vasconcelos 22 08 flamengo
09h10 stv2 paulo vasconcelos 22 08 flamengo
 
Exocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ringExocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ring
 
Multiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxiesMultiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxies
 
Keith_Capstone_Defense
Keith_Capstone_DefenseKeith_Capstone_Defense
Keith_Capstone_Defense
 
AEROSOL CLASSIFICATION RETRIEVAL ALGORITHMS FOR EARTHCARE/ATLID, CALIPSO/CALI...
AEROSOL CLASSIFICATION RETRIEVAL ALGORITHMS FOR EARTHCARE/ATLID, CALIPSO/CALI...AEROSOL CLASSIFICATION RETRIEVAL ALGORITHMS FOR EARTHCARE/ATLID, CALIPSO/CALI...
AEROSOL CLASSIFICATION RETRIEVAL ALGORITHMS FOR EARTHCARE/ATLID, CALIPSO/CALI...
 
Imaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black HoleImaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black Hole
 
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
 
Poster Eurosoil
Poster EurosoilPoster Eurosoil
Poster Eurosoil
 
Understanding Stellar Nucleosynthesis via Multi-isotopic NanoSIMS analyses of...
Understanding Stellar Nucleosynthesis via Multi-isotopic NanoSIMS analyses of...Understanding Stellar Nucleosynthesis via Multi-isotopic NanoSIMS analyses of...
Understanding Stellar Nucleosynthesis via Multi-isotopic NanoSIMS analyses of...
 
Porous rock evaluation with micro ct zacher_ge_copyright
Porous rock evaluation with micro ct zacher_ge_copyrightPorous rock evaluation with micro ct zacher_ge_copyright
Porous rock evaluation with micro ct zacher_ge_copyright
 
Neutron logging
Neutron loggingNeutron logging
Neutron logging
 
Neutron porosity log
Neutron porosity logNeutron porosity log
Neutron porosity log
 
Poster Roseanne Clement
Poster Roseanne ClementPoster Roseanne Clement
Poster Roseanne Clement
 

Destaque (20)

Filtros
FiltrosFiltros
Filtros
 
TT-Intro-2 (1)
TT-Intro-2 (1)TT-Intro-2 (1)
TT-Intro-2 (1)
 
villa drawings
villa drawingsvilla drawings
villa drawings
 
20151013112818649
2015101311281864920151013112818649
20151013112818649
 
Önéletrajz_Dr.Horváth Péter
Önéletrajz_Dr.Horváth PéterÖnéletrajz_Dr.Horváth Péter
Önéletrajz_Dr.Horváth Péter
 
Putul
PutulPutul
Putul
 
Ode to nature
Ode to natureOde to nature
Ode to nature
 
Red semántica
Red semánticaRed semántica
Red semántica
 
Catalogo manonera senza Loghi
Catalogo manonera senza LoghiCatalogo manonera senza Loghi
Catalogo manonera senza Loghi
 
Crises E Revol. No SéC. Xiv
Crises E Revol. No SéC. XivCrises E Revol. No SéC. Xiv
Crises E Revol. No SéC. Xiv
 
Antártica Onda Congelada
Antártica   Onda CongeladaAntártica   Onda Congelada
Antártica Onda Congelada
 
kakaka
kakakakakaka
kakaka
 
securitas-selor-badge
securitas-selor-badgesecuritas-selor-badge
securitas-selor-badge
 
Edgar carnaval
Edgar carnavalEdgar carnaval
Edgar carnaval
 
Fronteiras
FronteirasFronteiras
Fronteiras
 
Oportunidade para Empresas Inovadoras
Oportunidade para Empresas InovadorasOportunidade para Empresas Inovadoras
Oportunidade para Empresas Inovadoras
 
Dissertação de Mestrado em Administração
Dissertação de Mestrado em AdministraçãoDissertação de Mestrado em Administração
Dissertação de Mestrado em Administração
 
certificate
certificatecertificate
certificate
 
1.IE expo 2016 Brochure
1.IE expo 2016 Brochure1.IE expo 2016 Brochure
1.IE expo 2016 Brochure
 
ebrochure (2) (1)
ebrochure (2) (1)ebrochure (2) (1)
ebrochure (2) (1)
 

Semelhante a thesis_talk

Detection of an atmosphere around the super earth 55 cancri e
Detection of an atmosphere around the super earth 55 cancri eDetection of an atmosphere around the super earth 55 cancri e
Detection of an atmosphere around the super earth 55 cancri eSérgio Sacani
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画Toshihiro FUJII
 
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...Toshihiro FUJII
 
Direct Measure of Radiative And Dynamical Properties Of An Exoplanet Atmosphere
Direct Measure of Radiative And Dynamical Properties Of An Exoplanet AtmosphereDirect Measure of Radiative And Dynamical Properties Of An Exoplanet Atmosphere
Direct Measure of Radiative And Dynamical Properties Of An Exoplanet AtmosphereSérgio Sacani
 
The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...Advanced-Concepts-Team
 
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...Sérgio Sacani
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価Toshihiro FUJII
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discoveryAnubhav Jain
 
The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -Toshihiro FUJII
 
X ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orX ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orbpati5271
 
XRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfXRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfEmadElsehly
 
Inference of homogeneous_clouds_in_an_exoplanet_atmosphere
Inference of homogeneous_clouds_in_an_exoplanet_atmosphereInference of homogeneous_clouds_in_an_exoplanet_atmosphere
Inference of homogeneous_clouds_in_an_exoplanet_atmosphereSérgio Sacani
 
Sara Seager - Lecture1 - MIT
Sara Seager - Lecture1 - MITSara Seager - Lecture1 - MIT
Sara Seager - Lecture1 - MITAtner Yegorov
 
X-Ray Properties of NGC 253ʼs Starburst-driven Outflow
X-Ray Properties of NGC 253ʼs Starburst-driven OutflowX-Ray Properties of NGC 253ʼs Starburst-driven Outflow
X-Ray Properties of NGC 253ʼs Starburst-driven OutflowSérgio Sacani
 
Future Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonFuture Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonToshihiro FUJII
 
637126main stysley presentation
637126main stysley presentation637126main stysley presentation
637126main stysley presentationClifford Stone
 
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...Altair
 

Semelhante a thesis_talk (20)

Detection of an atmosphere around the super earth 55 cancri e
Detection of an atmosphere around the super earth 55 cancri eDetection of an atmosphere around the super earth 55 cancri e
Detection of an atmosphere around the super earth 55 cancri e
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
 
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
 
Direct Measure of Radiative And Dynamical Properties Of An Exoplanet Atmosphere
Direct Measure of Radiative And Dynamical Properties Of An Exoplanet AtmosphereDirect Measure of Radiative And Dynamical Properties Of An Exoplanet Atmosphere
Direct Measure of Radiative And Dynamical Properties Of An Exoplanet Atmosphere
 
PARABLE POSTER
PARABLE POSTERPARABLE POSTER
PARABLE POSTER
 
The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...
 
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...
 
1071 bickford[1]
1071 bickford[1]1071 bickford[1]
1071 bickford[1]
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価
 
MSc Dissertation
MSc DissertationMSc Dissertation
MSc Dissertation
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
 
The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -
 
X ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orX ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction or
 
XRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfXRD-calculations and characterization.pdf
XRD-calculations and characterization.pdf
 
Inference of homogeneous_clouds_in_an_exoplanet_atmosphere
Inference of homogeneous_clouds_in_an_exoplanet_atmosphereInference of homogeneous_clouds_in_an_exoplanet_atmosphere
Inference of homogeneous_clouds_in_an_exoplanet_atmosphere
 
Sara Seager - Lecture1 - MIT
Sara Seager - Lecture1 - MITSara Seager - Lecture1 - MIT
Sara Seager - Lecture1 - MIT
 
X-Ray Properties of NGC 253ʼs Starburst-driven Outflow
X-Ray Properties of NGC 253ʼs Starburst-driven OutflowX-Ray Properties of NGC 253ʼs Starburst-driven Outflow
X-Ray Properties of NGC 253ʼs Starburst-driven Outflow
 
Future Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonFuture Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE Photon
 
637126main stysley presentation
637126main stysley presentation637126main stysley presentation
637126main stysley presentation
 
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
 

thesis_talk

  • 1. 08/10/10 University of Dublin, Trinity College 1/35 Simulations of Jets in Star Forming Regions Gareth Murphy
  • 2. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 2/35 Collaborators • F. Bacciotti • L. Drury • T. Lery • C. Combet • R. Curran • S. O’Sullivan • D. Spicer • T. Ray • E.T. Whelan
  • 3. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 3/35 Outline 1. Introduction 2. Numerical Code: Atlas 3. Simulations of Jets from Binary Sources 4. Jets in Evacuated Ambient Media 5. Conclusions
  • 4. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 4/35 1. Introduction
  • 5. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 5/35 Low Mass Star Formation • Stars form inside collapsing molecular cores • Centrifugal forces flatten the envelope in thin accretion disks • Orbiting matter decays toward the central object - increasing tangential velocity thanks to the conservation of angular momentum • Charged particles drag frozen magnetic field lines towards the centre • Approximately 10% of the material is ejected from the disk and travels along open B field lines in bipolar direction. Class 0 Class I/II Class III
  • 6. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 6/35 Jets and Magnetic field • Wind velocity is ~ escape velocity close to the central object • Magnetic field is necessary for collimation and to accelerate wind to the high velocities associated with protostellar jets. • Mechanism may be either a disk wind (Blandford & Payne 82, Ferreira 97) or an X-Wind (Shu 94) or both
  • 7. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 7/35 Binary Jets • Large numbers of young binaries exist in Taurus, Ophichus clouds. • Binary TTS frequency is 60% in Taurus- Auriga (Ghez et al 93) • Most forming stars have bipolar outflows • Can a young binary produce a binary outflow? • Only ~10 candidate binary jets out of ~ 800 HH objects • Is there a BINARY JET DESERT? • What affects direction of jets? • What is the effect of the circumbinary disk (if any)? • Do the jets interact - collide - merge - can interaction be observed? • What sort of jets interact? What is the role of the magnetic field?
  • 8. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 8/35 Why Simulate Jets? • Jets are important tracers of star formation process. • Forbidden line emission from jets is easier to observe than the central object. • Jet probes the central launching engine. • We can try to explain morphology and emission produced by nonlinear physical processes. • We can try to explain and predict observations. • We can test theory, produce synthetic observations (emission maps etc) which can be useful for observers. • Simulations provide a laboratory in which we can include effects of ambient environment, magnetic fields, radiative cooling, turbulence. • Jets from low-mass YSOs have long lifetimes ~10 kyr
  • 9. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 9/35 3. Numerical Code: Atlas
  • 10. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 10/35 Numerical Simulations Fluid equations + Maxwell’s Laws + Assumptions = Ideal MHD Equations • Time-integrate the partial differential equations • Solve for B, E, u and rho numerically. ∂ ρ ∂t ∇⋅ρu=0 ∂ ρu ∂t ∇⋅ρuup IBB=0 ∂B ∂t ∇⋅uB−Bu=0 ∂ E ∂t ∇⋅[ Ep∗u−u.B B]−Lcooling=0 E= 1 2 ρu2  p γ−1  1 2 B2 p∗¿ p 1 2 B2
  • 11. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 11/35 AMR MHD Code: Atlas • Written by D.S. Spicer, Stephen O’Sullivan - NASA GSFC • 3D Parallel AMR MHD Godunov code • Roe-Balsara Riemann solver • Corner transport upwind method – unsplit scheme so can use the • Staggered Mesh (Constrained Transport scheme) to maintain div B=0 • Piecewise parabolic method for reconstruction of the fluxes • Paramesh v3.3 - Parallel Structured AMR with face-centred fields • Optically thin radiative cooling
  • 12. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 12/35 Adaptive Mesh Refinement • The grid adapts itself to the physical changes within, tracking the features of the result as the computation progresses • Richardson Truncation Error Estimation
  • 13. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 13/35 Numerical Test Problems Hydro Shock – Mach Reflection MHD Orszag-Tang Vortex MHD Blast Wave
  • 14. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 14/35 2. Simulations of Jets from Binary Sources
  • 15. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 15/35 Binary Protostars Make Binary Jets
  • 16. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 16/35 Binary Protostars Don’t Make Binary Jets • DG Tau (Coffey et al 2005), • T Tau (triple) (Schwartz 1975) • L1642-2 (Reipurth et al 1990), • Z Cma (Millan-Gabet & Monnier 2002), • Sz 68 (Reipurth & Zinnecker 1993), • SR 24 (Struve and Rudkjobing 1949), • XZ Tau (Haas, Leinert, Zinnecker 1990) • CoKu Tau/1 (Movsesyan 1989) • DO Tau (Tessier et al 1994) There are plenty of multiple sources which only drive one bipolar jet
  • 17. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 17/35 Jet Binaries, HH1, HH111, HH154
  • 18. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 18/35 Jets from L1551 IRS 5 • L1551 IRS 5 system • Observations of binary disks and bipolar binary jets from L1551 IRS 5 • Unlikely to be a cavity in the jet – velocity difference too great + bipolar +binary source all point towards 2 jets. • 2 jets - fast and slow jet • 1 bow shock visible • Wiggling along course of jets – South jet appears to turn in direction of north jet
  • 19. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 19/35 Two Jets From LDN1551 IRS 5 (Fridlund and Liseau 98)
  • 20. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 20/35 Initial Conditions • Assumed distance of 140 parsecs • Density=500 /cm^3, temperature=1000 K • Velocities 300km/s (North Jet) and 100km/s (South Jet) • Sinusoidal varying injection velocity (Raga et al. 1990), assuming an amplitude of 30% in the velocity with a period of 8 years for each jet. • The ambient medium is modelled with a uniform density (5000 /cm^3) • Stagger launching of the two jets - faster northern jet is launched 150 years after the slower southern jet. • The velocity profile is a positive cosine - with its maximum at centre and its minimum (zero) at r_jet. • Profile chosen based on the observations of Bacciotti et al. (2000), where the highest velocities are thought to be located in the centre of the jet.
  • 21. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 21/35 Orbiting Jets Density contours 3d hydro orbiting jet simulation. Orbital Period=250 years
  • 22. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 22/35 Parallel Interacting Jets 3D midplane slice isopycnics for parallel hydrodynamic interacting jets
  • 23. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 23/35 Magnetic Field Configuration • Polarimetry measurements of Scarrott (1988) (optical) , Lucas and Roche (1997) (infra-red) and Curran (2006) (submm) all point towards a toroidal magnetic field around the cloud. • We use a 0.01 mG toroidal field in the ambient medium.
  • 24. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 24/35 Magnetically Confined Interaction 3D midplane density slice
  • 25. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 25/35 Interacting Binary Jets • Jet Interaction – kink in structure caused by bow shock impinging on neighbour’s beam • Ambient toroidal field – enhances interaction – collimates the jets • Orbital motion has negligible effect (at this stage) • X-rays from source probably just scattered out of protostars • Murphy et al (PPV, 2005)
  • 26. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 26/35 4. Jets collimated by environment
  • 27. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 27/35 Motivation: Circulation Model • Combet et al (2006) • Solutions to the model present both density and velocity gradients. • The model also implies a prehistory of jets and outflows. • The model applies to both low and massive star formation. • Large-scale model far from launch region • We launch a jet into the medium and see does the medium affect the morphology and the dynamics of the jet
  • 28. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 28/35 Jets (Re)Collimated by Environment • Prehistory of outflows – a previous outflow creates a channel or cavity in the molecular cloud • The cavity fills in on the order of 10^6 years (Quillen et al. 2005) • The jet on entering a cavity is accelerated, and recollimated. Direction may also be affected. • Frank & Mellema (1996,1999) – 2.5D HD and MHD study of WAW entering a cavity for PNe • Opher et al (2004) - 3D MHD studies • Our study - 2D and 3D HD and MHD collimated jet enters a cavity • Note: Model requires a coarse mesh at a high level of refinement so models take longer to run.
  • 29. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 29/35 2D Calculations –Effect of density gradient Density gradient Constant density Medium •2 main effects •Collimation •Increased structure in the cocoon
  • 30. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 30/35 3D jet in evac ambient medium
  • 31. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 31/35 3D calculations - Intensity Maps Evacuated Cavity Medium Jet is accelerated and collimated Constant Density Medium
  • 32. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 32/35 5. Conclusions
  • 33. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 33/35 Conclusions: Binary Jets • We show that the toroidal ambient magnetic field helps to collimate and refocus the two jets, and increases the interaction between the two jets • The density ratio between the jet and ambient medium controls the interaction, underdense jets have larger cocoons and are much more likely to interfere than more ballistic jets • Bow shock temperatures are high enough to produce some weak X-rays, but the interacting region does not produce X-rays by thermal means (implies either scattering or some non-thermal process). • SMBBH?
  • 34. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 34/35 Super Massive Binary Black Hole Merger
  • 35. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 35/35 Conclusions: Evacuated Ambient Media • The circulation model suggests the presence of an evacuated cavity around the axis of symmetry • We modelled this evacuated cavity and showed the collimation and acceleration of the jet. • Not a perfect circulation model – but have some results to look for in observations
  • 36. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 36/35 Merci beaucoup
  • 37. 08/10/10 Laboratoire d'AstrOphysique de Grenoble 37/35 Intensity Maps • Intensity Maps • Emissivity = (transition probability) * hf *N^2 * x_e * (abundance S/H) * (ionic abundance Si/Hi) * (level pop) • Bacciotti & Eisloffel (1999)