SlideShare uma empresa Scribd logo
1 de 33
EE 369
POWER SYSTEM ANALYSIS
Lecture 7
Transmission Line Models
Tom Overbye and Ross Baldick
1
Announcements
For lecture 7 to 10 read Chapters 5 and 3.
HW 6 is problems 5.2, 5.4, 5.7, 5.9, 5.14, 5.16,
5.19, 5.26, 5.31, 5.32, 5.33, 5.36; case study
questions chapter 5 a, b, c, d, is due Thursday,
10/15.
Homework 7 is 5.8, 5.15, 5.17, 5.24, 5.27,
5.28, 5.29, 5.34, 5.37, 5.38, 5.43, 5.45; due
10/22.
2
Transmission Line Models
Previous lectures have covered how to
calculate the distributed series inductance,
shunt capacitance, and series resistance of
transmission lines:
– That is, we have calculated the inductance L,
capacitance C, and resistance r per unit length,
– We can also think of the shunt conductance g per
unit length,
– Each infinitesimal length dx of transmission line
consists of a series impedance rdx + jωLdx and a
shunt admittance gdx + jωCdx,
In this section we will use these distributed
parameters to develop the transmission line
models used in power system analysis.
3
Transmission Line Equivalent Circuit
•Our model of an infinitesimal length of
transmission line is shown below:
For operation at frequency , let
and (with usually equal to 0)
z r j L
y g j C g
ω ω
ω
= +
= +
Units on
z and y are
per unit
length!
dx dx
dx
4
L
Derivation of V, I Relationships
We can then derive the following relationships:
d ( ) d
d ( ( ) d ) d ( ) ,
on neglecting the d d term,
d d
( ) ( ) ( ) ( )
d d
V I x z x
I V x V y x V x y dx
V x
V I
x z I x x yV x
x x
=
= + ≈
= =
dx dx
dx
5
L
Setting up a Second Order Equation
2
2
2
2
d d
( ) ( ) ( ) ( )
d d
We can rewrite these two, first order differential
equations as a single second order equation
d d
( ) ( ) ( )
dd
d
( ) ( ) 0
d
V I
x z I x x yV x
x x
V I
x z x zyV x
xx
V
x zyV x
x
= =
= =
− =
6
V, I Relationships, cont’d
Define the propagation constant as
where
the attenuation constant
the phase constant
yz j
γ
γ α β
α
β
= = +
=
=
7
Equation for Voltage
1 2
1 2 1 2
1 1 2 2 1 2
1 2
1 2
The general equation for is
( ) ,
which can be rewritten as
( ) ( )( ) ( )( )
2 2
Let and . Then
( ) ( ) ( )
2 2
cosh( ) sinh( )
x x
x x x x
x x x x
V
V x k e k e
e e e e
V x k k k k
K k k K k k
e e e e
V x K K
K x K x
γ γ
γ γ γ γ
γ γ γ γ
γ γ
−
− −
− −
= +
+ −
= + + −
= + = −
+ −
= +
= +
8
Real Hyperbolic Functions
dcosh( ) dsinh( )
sinh( ) cosh( )
d d
x x
x x
x x
γ γ
γ γ γ γ= =
For real , the cosh and sinh functions have
the following form:
xγ
cosh( )xγ sinh( )xγ
9
Complex Hyperbolic Functions
ˆFor complex ˆ
ˆ ˆcosh( ) cosh cos sinh sinˆ ˆ
ˆ ˆsinh( ) sinh cos cosh sinˆ ˆ
Make sure your calculator handles sinh and
cosh of complex numbers.
You will need this for homework and for the
x j
x j
x j
γ α β
γ α β α β
γ α β α β
= +
= +
= +
mid-term!
10
Determining Line Voltage
The voltage along the line is determined based upon
the current/voltage relationships at the terminals.
Assuming we know and at one end (say the
"receiving end" with and where = 0) we canR R
V I
V I x
1 2determine the constants and , and hence the
voltage at any point on the line.
We will mostly be interested in the voltage and
current at the other, "sending end," of the line.
K K
11
Determining Line Voltage, cont’d
1 2
1 2
1
1 2
2
( ) cosh( ) sinh( )
(0) cosh(0) sinh(0)
Since cosh(0) 1 & sinh(0) 0
( )
( ) sinh( ) cosh( )
( ) cosh( ) sinh( )
where characterist
R
R
R R
R
R R c
c
V x K x K x
V V K K
K V
dV x
zI x K x K x
dx
zI I z z
K I
yyz
V x V x I Z x
z
Z
y
γ γ
γ γ γ γ
γ
γ γ
= +
= = +
= = ⇒ =
= = +
⇒ = = =
= +
= = ic impedance
12
Determining Line Current
By similar reasoning we can determine ( )
( ) cosh( ) sinh( )
where is the distance along the line from the
receiving end.
Define transmission efficiency as ;
that is, efficiency means
R
R
c
out
in
I x
V
I x I x x
Z
x
P
P
γ γ
η
= +
=
the real power out (delivered)
divided by the real power in.
13
Transmission Line Example
6 6
Assume we have a 765 kV transmission line with
a receiving end voltage of 765 kV (line to line),
a receiving end power 2000 1000 MVA and
= 0.0201 + 0.535 = 0.535 87.8
mile
= 7.75 10 = 7.75 10 9
RS j
z j
y j − −
= +
Ω∠ °
× × ∠
3
S0.0
mile
Then
2.036 10 88.9 / mile
262.7 -1.1c
zy
z
Z
y
γ −
°
= = × ∠ °
= = ∠ ° Ω
14
Transmission Line Example, cont’d
*6
3
Do per phase analysis, using single phase power
and line to neutral voltages. Then
765 441.7 0 kV
3
(2000 1000) 10
1688 26.6 A
3 441.7 0 10
( ) cosh( ) sinh( )
441,700 0 cosh(
R
R
R R c
V
j
I
V x V x I Z xγ γ
= = ∠ °
 + ×
= = ∠ − ° 
× ∠ °× 
= +
= ∠ ° 3
3
2.036 10 88.9 )
443,440 27.7 sinh( 2.036 10 88.9 )
x
x
−
−
× × ∠ ° +
∠ − °× × × ∠ °
15
Transmission Line Example, cont’d
Receiving end Sending end
16
Squares and crosses show real and reactive power flow, where
a positive value of flow means flow to the left.
Lossless Transmission Lines
For a lossless line the characteristic impedance, ,
is known as the surge impedance.
(a real value)
If a lossless line is terminated in impedance then:
Then so we get.
c
c
c
R
c
R
R c R
Z
j L L
Z
j C C
Z
V
Z
I
I Z V
ω
ω
= = Ω
=
= ..
17
Lossless Transmission Lines
( ) cosh( ) sinh( ),
cosh sinh ,
(cosh sinh ).
( ) cosh( ) sinh( )
cosh sinh ,
(cosh sinh )
( )
That is, for every location , .
( )
R R c
R R
R
R
R
c
R R
c c
R
c
c
V x V x I Z x
V x V x
V x x
V
I x I x x
Z
V V
x x
Z Z
V
x x
Z
V x
x Z
I x
γ γ
γ γ
γ γ
γ γ
γ γ
γ γ
= +
= +
= +
= +
= +
= +
=
18
Lossless Transmission Lines
2 2
Since the line is lossless this implies that for every location ,
the real power flow is constant. Therefore:
Real power flow ( ( ) ( )*) ( ( ) ( )*)
( | ( ) | ) | ( ) | is constant and equal
c
c c
x
V x I x Z I x I x
Z I x Z I x
= ℜ = ℜ =
ℜ = 2
2
s | (0) | .
Therefore, at each , ( ) (0) .
( )
So, since , ( ) (0) and
( )
( )
Define to be the "surge impedance loading" (SIL).
c
R
c R
c
Z I
x I x I I
V x
Z V x V V
I x
V x
Z
= =
= = =
If load power P > SIL then line consumes VArs;
otherwise, the line generates VArs. 19
Transmission Matrix Model
•Often we are only interested in the terminal
characteristics of the transmission line.
Therefore we can model it as a “black box:”
VS VR
+ +
- -
IS IR
Transmission
Line
S R
S R
S S
With ,
where , , , are determined from general equation
noting that and correspond to equaling length of line.
Assume length of line is .
V VA B
I IC D
A B C D
V I x
l
    
=    
   
20
Transmission Matrix Model, cont’d
With
Use voltage/current relationships to solve for , , ,
( ) cosh sinh
( ) cosh sinh
cosh sinh
1
sinh cosh
S R
S R
S R c R
R
S R
c
c
c
V VA B
I IC D
A B C D
V V l V l Z I l
V
I I l I l l
Z
l Z l
A B
l lC D
Z
γ γ
γ γ
γ γ
γ γ
    
=    
   
= = +
= = +
 
   = =    
 
T
21
Equivalent Circuit Model
A circuit model is another "black box" model.
We will try to represent as a equivalent circuit.π
To do this, we’ll use the T matrix values to derive the
parameters Z' and Y' that match the behavior of the
equivalent circuit to that of the T matrix.
We do this by first finding the relationship between
sending and receiving end for the equivalent circuit. 22
Equivalent Circuit Parameters
'
' 2
' '
1 '
2
' '
2 2
' ' ' '
' 1 1
4 2
' '
1 '
2
' ' ' '
' 1 1
4 2
S R
R R
S R R
S S R R
S R R
S R
S R
V V Y
V I
Z
Z Y
V V Z I
Y Y
I V V I
Z Y Z Y
I Y V I
Z Y
Z
V V
Z Y Z YI I
Y
−
− =
 = + + ÷
 
= + +
   = + + + ÷  ÷
   
 +    
=             + + ÷  ÷      23
Equivalent circuit parameters
We now need to solve for ' and '.
Solve for ' using element:
sinh '
Then using we can solve for '
' '
= cosh 1
2
' cosh 1 1
tanh
2 sinh 2
C
c c
Z Y
Z B
B Z l Z
A Y
Z Y
A l
Y l l
Z l Z
γ
γ
γ γ
γ
= =
= +
−
= =
24
Simplified Parameters
These values can be simplified as follows:
' sinh sinh
sinh
with (recalling )
' 1
tanh tanh
2 2 2
tanh
2 with
2
2
C
c
zl zl
Z Z l l
yl zl
l
Z Z zl zy
l
Y l yl yl l
Z zl yl
l
Y
Y yl
l
γ γ
γ
γ
γ
γ γ
γ
γ
= =
= =
= =
=
@
@
25
Simplified Parameters
For medium lines make the following approximations:
sinh
' (assumes 1)
' tanh( /2)
(assumes 1)
2 2 /2
50 miles 0.998 0.02 1.001 0.01
100 miles 0.993 0.09 1.004 0.04
20
l
Z Z
l
Y Y l
l
γ
γ
γ
γ
= ≈
= ≈
∠ ° ∠ − °
∠ ° ∠ − °
sinhγl tanh(γl/2)
Length
γl γl/2
0 miles 0.972 0.35 1.014 0.18∠ ° ∠ − °
26
Three Line Models
(longer than 200 miles)
tanhsinh ' 2use ' ,
2 2
2
(between 50 and 200 miles)
use and
2
(less than 50 miles)
use (i.e., assume is zero)
l
l Y Y
Z Z
ll
Y
Z
Z Y
γ
γ
γγ
= =
Long Line Model
Medium Line Model
Short Line Model
27
The long line model is always correct.
The other models are usually good approximations
for the conditions described.
Power Transfer in Short Lines
•Often we'd like to know the maximum power that
could be transferred through a short transmission line
V1 V2
+ +
- -
I1 I2Transmission
Line with
Impedance ZS12 S21
1
*
* 1 2
12 1 1 1
1 1 2 2 2
2
1 1 2
12 12
with , ,
( )
Z
Z Z
V V
S V I V
Z
V V V V Z Z
V V V
S
Z Z
θ θ θ
θ θ θ
− = =  ÷
 
= ∠ = ∠ = ∠
= ∠ − ∠ +
28
Power Transfer in Lossless Lines
2
1 1 2
12 12 12
12 12
1 2
12 12
If we assume a line is lossless with impedance and
are just interested in real power transfer then:
90 (90 )
Since -cos(90 ) sin , we get
sin
Hence the maxi
jX
V V V
P jQ
Z Z
V V
P
X
θ
θ θ
θ
+ = ∠ ° − ∠ ° +
° + =
=
1 2
12
mum power transfer is
,
This power transfer limit is called
the steady-state stability limit.
Max V V
P
X
=
29
Limits Affecting Max. Power Transfer
Thermal limits
– limit is due to heating of conductor and hence
depends heavily on ambient conditions.
– For many lines, sagging is the limiting constraint.
– Newer conductors/materials limit can limit sag.
– Trees grow, and will eventually hit lines if they are
planted under the line,
– Note that thermal limit is different to the steady-
state stability limit that we just calculated:
– Thermal limits due to losses,
– Steady-state stability limit applies even for lossless line!30
Tree Trimming: Before
31
Tree Trimming: After
32
Other Limits Affecting Power Transfer
Angle limits
– while the maximum power transfer (steady-state
stability limit) occurs when the line angle
difference is 90 degrees, actual limit is
substantially less due to interaction of multiple
lines in the system
Voltage stability limits
– as power transfers increases, reactive losses
increase as I2
X. As reactive power increases the
voltage falls, resulting in a potentially cascading
voltage collapse.
33

Mais conteúdo relacionado

Mais procurados

射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計Simen Li
 
Ion implantation VLSI
Ion implantation VLSIIon implantation VLSI
Ion implantation VLSIAnil Kumar
 
Discrete Time Signal Processing 3rd Edition Oppenheim Solutions Manual
Discrete Time Signal Processing 3rd Edition Oppenheim Solutions ManualDiscrete Time Signal Processing 3rd Edition Oppenheim Solutions Manual
Discrete Time Signal Processing 3rd Edition Oppenheim Solutions Manualgamuhuto
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計Simen Li
 
Table of transformation of laplace & z
Table of transformation of laplace & zTable of transformation of laplace & z
Table of transformation of laplace & zcairo university
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
Systems Analysis & Control: Steady State Errors
Systems Analysis & Control: Steady State ErrorsSystems Analysis & Control: Steady State Errors
Systems Analysis & Control: Steady State ErrorsJARossiter
 
Solution modern digital-& analog-communications-systems-b-p-lathi
Solution modern digital-& analog-communications-systems-b-p-lathiSolution modern digital-& analog-communications-systems-b-p-lathi
Solution modern digital-& analog-communications-systems-b-p-lathiFawad Masood
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計Simen Li
 
Higher Order Floquet Mode Radiating Elements
Higher Order Floquet Mode Radiating ElementsHigher Order Floquet Mode Radiating Elements
Higher Order Floquet Mode Radiating ElementsMichael Buckley
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計Simen Li
 
Appron feeder common ckt-diagram
Appron feeder common ckt-diagramAppron feeder common ckt-diagram
Appron feeder common ckt-diagramyogagivananda
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Simen Li
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬Simen Li
 

Mais procurados (20)

EE gate-2016-set-1
EE gate-2016-set-1EE gate-2016-set-1
EE gate-2016-set-1
 
PA linearity
PA linearityPA linearity
PA linearity
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
Ion implantation VLSI
Ion implantation VLSIIon implantation VLSI
Ion implantation VLSI
 
Discrete Time Signal Processing 3rd Edition Oppenheim Solutions Manual
Discrete Time Signal Processing 3rd Edition Oppenheim Solutions ManualDiscrete Time Signal Processing 3rd Edition Oppenheim Solutions Manual
Discrete Time Signal Processing 3rd Edition Oppenheim Solutions Manual
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Table of transformation of laplace & z
Table of transformation of laplace & zTable of transformation of laplace & z
Table of transformation of laplace & z
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
Systems Analysis & Control: Steady State Errors
Systems Analysis & Control: Steady State ErrorsSystems Analysis & Control: Steady State Errors
Systems Analysis & Control: Steady State Errors
 
Solution modern digital-& analog-communications-systems-b-p-lathi
Solution modern digital-& analog-communications-systems-b-p-lathiSolution modern digital-& analog-communications-systems-b-p-lathi
Solution modern digital-& analog-communications-systems-b-p-lathi
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
 
Higher Order Floquet Mode Radiating Elements
Higher Order Floquet Mode Radiating ElementsHigher Order Floquet Mode Radiating Elements
Higher Order Floquet Mode Radiating Elements
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計
 
Optical multiplexers
Optical multiplexersOptical multiplexers
Optical multiplexers
 
Information theory
Information theoryInformation theory
Information theory
 
Appron feeder common ckt-diagram
Appron feeder common ckt-diagramAppron feeder common ckt-diagram
Appron feeder common ckt-diagram
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 

Destaque

Dsp U Lec02 Data Converters
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converterstaha25
 
Contemporary Design of High ADC
Contemporary Design of High ADC Contemporary Design of High ADC
Contemporary Design of High ADC chiportal
 
Dsp U Lec03 Analogue To Digital Converters
Dsp U   Lec03 Analogue To Digital ConvertersDsp U   Lec03 Analogue To Digital Converters
Dsp U Lec03 Analogue To Digital Converterstaha25
 
Power system-analysis-presntation
Power system-analysis-presntationPower system-analysis-presntation
Power system-analysis-presntationoviiiiiiiiiiii
 
Applications of Definite Intergral
Applications of Definite IntergralApplications of Definite Intergral
Applications of Definite IntergralRAVI PRASAD K.J.
 
Radar 2009 a 3 review of signals systems and dsp
Radar 2009 a  3 review of signals systems and dspRadar 2009 a  3 review of signals systems and dsp
Radar 2009 a 3 review of signals systems and dspForward2025
 
Dsp U Lec01 Real Time Dsp Systems
Dsp U   Lec01 Real Time Dsp SystemsDsp U   Lec01 Real Time Dsp Systems
Dsp U Lec01 Real Time Dsp Systemstaha25
 
Basic Control System unit1
Basic Control System unit1Basic Control System unit1
Basic Control System unit1Asraf Malik
 
Dsp U Lec06 The Z Transform And Its Application
Dsp U   Lec06 The Z Transform And Its ApplicationDsp U   Lec06 The Z Transform And Its Application
Dsp U Lec06 The Z Transform And Its Applicationtaha25
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFTtaha25
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systemstaha25
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Designtaha25
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transformtaha25
 

Destaque (20)

Lecture 6
Lecture 6Lecture 6
Lecture 6
 
Dsp U Lec02 Data Converters
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converters
 
Contemporary Design of High ADC
Contemporary Design of High ADC Contemporary Design of High ADC
Contemporary Design of High ADC
 
Lecture 4
Lecture 4Lecture 4
Lecture 4
 
Dsp U Lec03 Analogue To Digital Converters
Dsp U   Lec03 Analogue To Digital ConvertersDsp U   Lec03 Analogue To Digital Converters
Dsp U Lec03 Analogue To Digital Converters
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
Lecture 13
Lecture 13Lecture 13
Lecture 13
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
Power system-analysis-presntation
Power system-analysis-presntationPower system-analysis-presntation
Power system-analysis-presntation
 
Applications of Definite Intergral
Applications of Definite IntergralApplications of Definite Intergral
Applications of Definite Intergral
 
Radar 2009 a 3 review of signals systems and dsp
Radar 2009 a  3 review of signals systems and dspRadar 2009 a  3 review of signals systems and dsp
Radar 2009 a 3 review of signals systems and dsp
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Dsp U Lec01 Real Time Dsp Systems
Dsp U   Lec01 Real Time Dsp SystemsDsp U   Lec01 Real Time Dsp Systems
Dsp U Lec01 Real Time Dsp Systems
 
Basic Control System unit1
Basic Control System unit1Basic Control System unit1
Basic Control System unit1
 
Dsp U Lec06 The Z Transform And Its Application
Dsp U   Lec06 The Z Transform And Its ApplicationDsp U   Lec06 The Z Transform And Its Application
Dsp U Lec06 The Z Transform And Its Application
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Design
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
 

Semelhante a Lecture 7

Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson methodNazrul Kabir
 
Load flow study Part-II
Load flow study Part-IILoad flow study Part-II
Load flow study Part-IIAsif Jamadar
 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdfLucasMogaka
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptZahid Yousaf
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptmuhammadzaid733820
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysisdivyanshuprakashrock
 
D-tutorial.pdf
D-tutorial.pdfD-tutorial.pdf
D-tutorial.pdfRizaJr
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitancePei-Che Chang
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.pptMohammedAhmed66819
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuitsarjav patel
 
Load flow study Part-I
Load flow study Part-ILoad flow study Part-I
Load flow study Part-IAsif Jamadar
 

Semelhante a Lecture 7 (20)

Lecture 12
Lecture 12Lecture 12
Lecture 12
 
Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson method
 
Load flow study Part-II
Load flow study Part-IILoad flow study Part-II
Load flow study Part-II
 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdf
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.ppt
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
powerflowproblem.ppt
powerflowproblem.pptpowerflowproblem.ppt
powerflowproblem.ppt
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.ppt
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
D-tutorial.pdf
D-tutorial.pdfD-tutorial.pdf
D-tutorial.pdf
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.ppt
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
transformer
transformertransformer
transformer
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
Load flow study Part-I
Load flow study Part-ILoad flow study Part-I
Load flow study Part-I
 
FinalReport
FinalReportFinalReport
FinalReport
 
Transmissionline
TransmissionlineTransmissionline
Transmissionline
 

Mais de Forward2025

Radar 2009 a 19 electronic counter measures
Radar 2009 a 19 electronic counter measuresRadar 2009 a 19 electronic counter measures
Radar 2009 a 19 electronic counter measuresForward2025
 
Radar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radarRadar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radarForward2025
 
Radar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receiversRadar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receiversForward2025
 
Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2Forward2025
 
Radar 2009 a 15 parameter estimation and tracking part 1
Radar 2009 a 15 parameter estimation and tracking part 1Radar 2009 a 15 parameter estimation and tracking part 1
Radar 2009 a 15 parameter estimation and tracking part 1Forward2025
 
Radar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radarRadar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radarForward2025
 
Radar 2009 a 13 clutter rejection doppler filtering
Radar 2009 a 13 clutter rejection   doppler filteringRadar 2009 a 13 clutter rejection   doppler filtering
Radar 2009 a 13 clutter rejection doppler filteringForward2025
 
Radar 2009 a 12 clutter rejection basics and mti
Radar 2009 a 12 clutter rejection   basics and mtiRadar 2009 a 12 clutter rejection   basics and mti
Radar 2009 a 12 clutter rejection basics and mtiForward2025
 
Radar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compressionRadar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compressionForward2025
 
Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1Forward2025
 
Radar 2009 a 10 radar clutter.2pdf
Radar 2009 a 10 radar clutter.2pdfRadar 2009 a 10 radar clutter.2pdf
Radar 2009 a 10 radar clutter.2pdfForward2025
 
Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Forward2025
 

Mais de Forward2025 (20)

Lecture 18
Lecture 18Lecture 18
Lecture 18
 
Lecture 17
Lecture 17Lecture 17
Lecture 17
 
Lecture 16
Lecture 16Lecture 16
Lecture 16
 
Lecture 15
Lecture 15Lecture 15
Lecture 15
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 
Lecture 9
Lecture 9Lecture 9
Lecture 9
 
Lecture 8
Lecture 8Lecture 8
Lecture 8
 
Radar 2009 a 19 electronic counter measures
Radar 2009 a 19 electronic counter measuresRadar 2009 a 19 electronic counter measures
Radar 2009 a 19 electronic counter measures
 
Radar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radarRadar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radar
 
Radar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receiversRadar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receivers
 
Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2
 
Radar 2009 a 15 parameter estimation and tracking part 1
Radar 2009 a 15 parameter estimation and tracking part 1Radar 2009 a 15 parameter estimation and tracking part 1
Radar 2009 a 15 parameter estimation and tracking part 1
 
Radar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radarRadar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radar
 
Radar 2009 a 13 clutter rejection doppler filtering
Radar 2009 a 13 clutter rejection   doppler filteringRadar 2009 a 13 clutter rejection   doppler filtering
Radar 2009 a 13 clutter rejection doppler filtering
 
Radar 2009 a 12 clutter rejection basics and mti
Radar 2009 a 12 clutter rejection   basics and mtiRadar 2009 a 12 clutter rejection   basics and mti
Radar 2009 a 12 clutter rejection basics and mti
 
Radar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compressionRadar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compression
 
Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1
 
Radar 2009 a 10 radar clutter.2pdf
Radar 2009 a 10 radar clutter.2pdfRadar 2009 a 10 radar clutter.2pdf
Radar 2009 a 10 radar clutter.2pdf
 
Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2
 

Último

UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 

Último (20)

UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 

Lecture 7

  • 1. EE 369 POWER SYSTEM ANALYSIS Lecture 7 Transmission Line Models Tom Overbye and Ross Baldick 1
  • 2. Announcements For lecture 7 to 10 read Chapters 5 and 3. HW 6 is problems 5.2, 5.4, 5.7, 5.9, 5.14, 5.16, 5.19, 5.26, 5.31, 5.32, 5.33, 5.36; case study questions chapter 5 a, b, c, d, is due Thursday, 10/15. Homework 7 is 5.8, 5.15, 5.17, 5.24, 5.27, 5.28, 5.29, 5.34, 5.37, 5.38, 5.43, 5.45; due 10/22. 2
  • 3. Transmission Line Models Previous lectures have covered how to calculate the distributed series inductance, shunt capacitance, and series resistance of transmission lines: – That is, we have calculated the inductance L, capacitance C, and resistance r per unit length, – We can also think of the shunt conductance g per unit length, – Each infinitesimal length dx of transmission line consists of a series impedance rdx + jωLdx and a shunt admittance gdx + jωCdx, In this section we will use these distributed parameters to develop the transmission line models used in power system analysis. 3
  • 4. Transmission Line Equivalent Circuit •Our model of an infinitesimal length of transmission line is shown below: For operation at frequency , let and (with usually equal to 0) z r j L y g j C g ω ω ω = + = + Units on z and y are per unit length! dx dx dx 4 L
  • 5. Derivation of V, I Relationships We can then derive the following relationships: d ( ) d d ( ( ) d ) d ( ) , on neglecting the d d term, d d ( ) ( ) ( ) ( ) d d V I x z x I V x V y x V x y dx V x V I x z I x x yV x x x = = + ≈ = = dx dx dx 5 L
  • 6. Setting up a Second Order Equation 2 2 2 2 d d ( ) ( ) ( ) ( ) d d We can rewrite these two, first order differential equations as a single second order equation d d ( ) ( ) ( ) dd d ( ) ( ) 0 d V I x z I x x yV x x x V I x z x zyV x xx V x zyV x x = = = = − = 6
  • 7. V, I Relationships, cont’d Define the propagation constant as where the attenuation constant the phase constant yz j γ γ α β α β = = + = = 7
  • 8. Equation for Voltage 1 2 1 2 1 2 1 1 2 2 1 2 1 2 1 2 The general equation for is ( ) , which can be rewritten as ( ) ( )( ) ( )( ) 2 2 Let and . Then ( ) ( ) ( ) 2 2 cosh( ) sinh( ) x x x x x x x x x x V V x k e k e e e e e V x k k k k K k k K k k e e e e V x K K K x K x γ γ γ γ γ γ γ γ γ γ γ γ − − − − − = + + − = + + − = + = − + − = + = + 8
  • 9. Real Hyperbolic Functions dcosh( ) dsinh( ) sinh( ) cosh( ) d d x x x x x x γ γ γ γ γ γ= = For real , the cosh and sinh functions have the following form: xγ cosh( )xγ sinh( )xγ 9
  • 10. Complex Hyperbolic Functions ˆFor complex ˆ ˆ ˆcosh( ) cosh cos sinh sinˆ ˆ ˆ ˆsinh( ) sinh cos cosh sinˆ ˆ Make sure your calculator handles sinh and cosh of complex numbers. You will need this for homework and for the x j x j x j γ α β γ α β α β γ α β α β = + = + = + mid-term! 10
  • 11. Determining Line Voltage The voltage along the line is determined based upon the current/voltage relationships at the terminals. Assuming we know and at one end (say the "receiving end" with and where = 0) we canR R V I V I x 1 2determine the constants and , and hence the voltage at any point on the line. We will mostly be interested in the voltage and current at the other, "sending end," of the line. K K 11
  • 12. Determining Line Voltage, cont’d 1 2 1 2 1 1 2 2 ( ) cosh( ) sinh( ) (0) cosh(0) sinh(0) Since cosh(0) 1 & sinh(0) 0 ( ) ( ) sinh( ) cosh( ) ( ) cosh( ) sinh( ) where characterist R R R R R R R c c V x K x K x V V K K K V dV x zI x K x K x dx zI I z z K I yyz V x V x I Z x z Z y γ γ γ γ γ γ γ γ γ = + = = + = = ⇒ = = = + ⇒ = = = = + = = ic impedance 12
  • 13. Determining Line Current By similar reasoning we can determine ( ) ( ) cosh( ) sinh( ) where is the distance along the line from the receiving end. Define transmission efficiency as ; that is, efficiency means R R c out in I x V I x I x x Z x P P γ γ η = + = the real power out (delivered) divided by the real power in. 13
  • 14. Transmission Line Example 6 6 Assume we have a 765 kV transmission line with a receiving end voltage of 765 kV (line to line), a receiving end power 2000 1000 MVA and = 0.0201 + 0.535 = 0.535 87.8 mile = 7.75 10 = 7.75 10 9 RS j z j y j − − = + Ω∠ ° × × ∠ 3 S0.0 mile Then 2.036 10 88.9 / mile 262.7 -1.1c zy z Z y γ − ° = = × ∠ ° = = ∠ ° Ω 14
  • 15. Transmission Line Example, cont’d *6 3 Do per phase analysis, using single phase power and line to neutral voltages. Then 765 441.7 0 kV 3 (2000 1000) 10 1688 26.6 A 3 441.7 0 10 ( ) cosh( ) sinh( ) 441,700 0 cosh( R R R R c V j I V x V x I Z xγ γ = = ∠ °  + × = = ∠ − °  × ∠ °×  = + = ∠ ° 3 3 2.036 10 88.9 ) 443,440 27.7 sinh( 2.036 10 88.9 ) x x − − × × ∠ ° + ∠ − °× × × ∠ ° 15
  • 16. Transmission Line Example, cont’d Receiving end Sending end 16 Squares and crosses show real and reactive power flow, where a positive value of flow means flow to the left.
  • 17. Lossless Transmission Lines For a lossless line the characteristic impedance, , is known as the surge impedance. (a real value) If a lossless line is terminated in impedance then: Then so we get. c c c R c R R c R Z j L L Z j C C Z V Z I I Z V ω ω = = Ω = = .. 17
  • 18. Lossless Transmission Lines ( ) cosh( ) sinh( ), cosh sinh , (cosh sinh ). ( ) cosh( ) sinh( ) cosh sinh , (cosh sinh ) ( ) That is, for every location , . ( ) R R c R R R R R c R R c c R c c V x V x I Z x V x V x V x x V I x I x x Z V V x x Z Z V x x Z V x x Z I x γ γ γ γ γ γ γ γ γ γ γ γ = + = + = + = + = + = + = 18
  • 19. Lossless Transmission Lines 2 2 Since the line is lossless this implies that for every location , the real power flow is constant. Therefore: Real power flow ( ( ) ( )*) ( ( ) ( )*) ( | ( ) | ) | ( ) | is constant and equal c c c x V x I x Z I x I x Z I x Z I x = ℜ = ℜ = ℜ = 2 2 s | (0) | . Therefore, at each , ( ) (0) . ( ) So, since , ( ) (0) and ( ) ( ) Define to be the "surge impedance loading" (SIL). c R c R c Z I x I x I I V x Z V x V V I x V x Z = = = = = If load power P > SIL then line consumes VArs; otherwise, the line generates VArs. 19
  • 20. Transmission Matrix Model •Often we are only interested in the terminal characteristics of the transmission line. Therefore we can model it as a “black box:” VS VR + + - - IS IR Transmission Line S R S R S S With , where , , , are determined from general equation noting that and correspond to equaling length of line. Assume length of line is . V VA B I IC D A B C D V I x l      =         20
  • 21. Transmission Matrix Model, cont’d With Use voltage/current relationships to solve for , , , ( ) cosh sinh ( ) cosh sinh cosh sinh 1 sinh cosh S R S R S R c R R S R c c c V VA B I IC D A B C D V V l V l Z I l V I I l I l l Z l Z l A B l lC D Z γ γ γ γ γ γ γ γ      =         = = + = = +      = =       T 21
  • 22. Equivalent Circuit Model A circuit model is another "black box" model. We will try to represent as a equivalent circuit.π To do this, we’ll use the T matrix values to derive the parameters Z' and Y' that match the behavior of the equivalent circuit to that of the T matrix. We do this by first finding the relationship between sending and receiving end for the equivalent circuit. 22
  • 23. Equivalent Circuit Parameters ' ' 2 ' ' 1 ' 2 ' ' 2 2 ' ' ' ' ' 1 1 4 2 ' ' 1 ' 2 ' ' ' ' ' 1 1 4 2 S R R R S R R S S R R S R R S R S R V V Y V I Z Z Y V V Z I Y Y I V V I Z Y Z Y I Y V I Z Y Z V V Z Y Z YI I Y − − =  = + + ÷   = + +    = + + + ÷  ÷      +     =             + + ÷  ÷      23
  • 24. Equivalent circuit parameters We now need to solve for ' and '. Solve for ' using element: sinh ' Then using we can solve for ' ' ' = cosh 1 2 ' cosh 1 1 tanh 2 sinh 2 C c c Z Y Z B B Z l Z A Y Z Y A l Y l l Z l Z γ γ γ γ γ = = = + − = = 24
  • 25. Simplified Parameters These values can be simplified as follows: ' sinh sinh sinh with (recalling ) ' 1 tanh tanh 2 2 2 tanh 2 with 2 2 C c zl zl Z Z l l yl zl l Z Z zl zy l Y l yl yl l Z zl yl l Y Y yl l γ γ γ γ γ γ γ γ γ = = = = = = = @ @ 25
  • 26. Simplified Parameters For medium lines make the following approximations: sinh ' (assumes 1) ' tanh( /2) (assumes 1) 2 2 /2 50 miles 0.998 0.02 1.001 0.01 100 miles 0.993 0.09 1.004 0.04 20 l Z Z l Y Y l l γ γ γ γ = ≈ = ≈ ∠ ° ∠ − ° ∠ ° ∠ − ° sinhγl tanh(γl/2) Length γl γl/2 0 miles 0.972 0.35 1.014 0.18∠ ° ∠ − ° 26
  • 27. Three Line Models (longer than 200 miles) tanhsinh ' 2use ' , 2 2 2 (between 50 and 200 miles) use and 2 (less than 50 miles) use (i.e., assume is zero) l l Y Y Z Z ll Y Z Z Y γ γ γγ = = Long Line Model Medium Line Model Short Line Model 27 The long line model is always correct. The other models are usually good approximations for the conditions described.
  • 28. Power Transfer in Short Lines •Often we'd like to know the maximum power that could be transferred through a short transmission line V1 V2 + + - - I1 I2Transmission Line with Impedance ZS12 S21 1 * * 1 2 12 1 1 1 1 1 2 2 2 2 1 1 2 12 12 with , , ( ) Z Z Z V V S V I V Z V V V V Z Z V V V S Z Z θ θ θ θ θ θ − = =  ÷   = ∠ = ∠ = ∠ = ∠ − ∠ + 28
  • 29. Power Transfer in Lossless Lines 2 1 1 2 12 12 12 12 12 1 2 12 12 If we assume a line is lossless with impedance and are just interested in real power transfer then: 90 (90 ) Since -cos(90 ) sin , we get sin Hence the maxi jX V V V P jQ Z Z V V P X θ θ θ θ + = ∠ ° − ∠ ° + ° + = = 1 2 12 mum power transfer is , This power transfer limit is called the steady-state stability limit. Max V V P X = 29
  • 30. Limits Affecting Max. Power Transfer Thermal limits – limit is due to heating of conductor and hence depends heavily on ambient conditions. – For many lines, sagging is the limiting constraint. – Newer conductors/materials limit can limit sag. – Trees grow, and will eventually hit lines if they are planted under the line, – Note that thermal limit is different to the steady- state stability limit that we just calculated: – Thermal limits due to losses, – Steady-state stability limit applies even for lossless line!30
  • 33. Other Limits Affecting Power Transfer Angle limits – while the maximum power transfer (steady-state stability limit) occurs when the line angle difference is 90 degrees, actual limit is substantially less due to interaction of multiple lines in the system Voltage stability limits – as power transfers increases, reactive losses increase as I2 X. As reactive power increases the voltage falls, resulting in a potentially cascading voltage collapse. 33