SlideShare uma empresa Scribd logo
1 de 36
Baixar para ler offline
S M A L L    D E E P-­‐ N E U R A L -­‐ N E T W O R K S : 
T H E I R    A D VA N TA G E S ,    A N D    T H E I R    D E S I G N 
deepscale.ai
F O R R E S T    I A N D O L A    a n d    K U R T    K E U T Z E R
2
OVERVIEW	
  
COMPUTER  VISION  FINALLY  WORKS  –  NOW  WHAT?

ADVANTAGES  OF  SMALL  DEEP  NEURAL  NETWORKS

DESIGN  OF  SMALL  DEEP  NEURAL  NETWORKS
3
COMPUTER	
  VISION	
  FINALLY	
  WORKS.	
  
NOW  WHAT?
IMAGENET TOP-5 ERROR similarly  large  accuracy  
improvements  on  tasks  such  as:
-­‐  semanRc  segmentaRon
-­‐  object  detecRon
-­‐  3D  reconstrucRon
-­‐  …and  so  on
4	
  
GADGETS	
  
VENUES	
  FOR	
  COMMERCIAL	
  
COMPUTER	
  VISION	
  USAGE
DATACENTERS	
  
SOCIAL	
  MEDIA	
  ANALYSIS	
  
	
  
WEB	
  INDEXING	
  
	
  
GOVERNMENT	
  INTELLIGENCE	
  
	
  DJI	
  PHANTOM	
  4	
  	
  
DRONE	
  
MQ-­‐9	
  
REAPER	
  
SELF-­‐DRIVING	
  CARS	
   SMARTPHONES	
  
5	
  
GADGETS	
  DATACENTERS	
  
RARELY	
  SAFETY-­‐CRITICAL	
  
LOW-­‐POWER	
  IS	
  NICE-­‐TO-­‐HAVE	
  
REAL-­‐TIME	
  IS	
  PREFERRABLE	
  
USUALLY	
  SAFETY-­‐CRITICAL	
  
	
  	
  (except	
  smartphones)	
  
LOW-­‐POWER	
  IS	
  REQUIRED	
  
REAL-­‐TIME	
  IS	
  REQUIRED	
  
THIS	
  TALK	
  IS	
  ESPECIALLY	
  
TARGETED	
  AT	
  GADGETS	
  
KEY	
  REQUIREMENTS	
  FOR	
  COMMERCIAL	
  
COMPUTER	
  VISION	
  USAGE
6
WHAT'S	
  THE	
  "RIGHT"	
  NEURAL	
  NETWORK	
  
FOR	
  USE	
  IN	
  A	
  GADGET?
DESIRABLE	
  PROPERTIES:	
  
-­‐  sufficiently	
  high	
  accuracy	
  
-­‐  low	
  computaTonal	
  complexity	
  
-­‐  low	
  energy	
  usage	
  
-­‐  small	
  model	
  size	
  
7
WHY	
  SMALL	
  DEEP-­‐NEURAL-­‐NETWORKS?
SMALL	
  DNNs	
  ARE	
  MORE	
  DEPLOYABLE	
  	
  
ON	
  EMBEDDED	
  PROCESSORS	
  
SMALL	
  DNNs	
  TRAIN	
  FASTER	
  ON	
  
DISTRIBUTED	
  HARDWARE	
  
SMALL	
  DNNs	
  ARE	
  EASILY	
  UPDATABLE	
  
OVER-­‐THE-­‐AIR	
  (OTA)	
  
Using	
  FireCaffe	
  on	
  	
  
the	
  Titan	
  cluster	
  
CVPR	
  2016	
  
145x	
  speedup	
  	
  
for	
  FireNet	
  
47x	
  speedup	
  	
  
for	
  GoogLeNet	
  
•  Fewer	
  parameter	
  weights	
  means	
  bigger	
  opportuniTes	
  for	
  scaling	
  	
  
training	
  –	
  145X	
  speedup	
  on	
  256	
  GPUs	
  
	
   Strong	
  Scaling	
  
8	
  
Small	
  Models	
  Have	
  Big	
  Advantages	
  #1	
  
Small	
  Models	
  Have	
  Big	
  Advantages	
  #2	
  
•  SqueezeNet's	
  smaller	
  number	
  of	
  weights	
  enables	
  complete	
  on-­‐chip	
  integraTon	
  of	
  
CNN	
  model	
  with	
  weights	
  –	
  no	
  need	
  for	
  off-­‐chip	
  memory	
  
–  DramaTcally	
  reduces	
  the	
  energy	
  for	
  compuTng	
  inference	
  
–  Gives	
  the	
  potenTal	
  for	
  pushing	
  the	
  data	
  processing	
  (i.e.	
  CNN	
  model)	
  up-­‐close	
  
and	
  personal	
  to	
  the	
  data	
  gathering	
  (e.g.	
  onboard	
  cameras	
  and	
  other	
  sensors)	
  	
  
Single-­‐chip	
  IntegraTon	
  of	
  CNN	
  Model	
  
Limited	
  memory	
  of	
  embedded	
  devices	
  makes	
  small	
  models	
  absolutely	
  essenTal	
  for	
  many	
  applicaTons	
  	
  
•  	
   	
  
9	
  
Closer	
  integraTon	
  with	
  sensor	
  
(e.g.	
  Camera)	
  
Small	
  Models	
  Have	
  Big	
  Advantages	
  #3	
  
•  Small	
  models	
  enable	
  conTnuous	
  wireless	
  updates	
  of	
  models	
  
•  Each	
  Tme	
  any	
  sensor	
  discovers	
  a	
  new	
  image/situaTon	
  that	
  
requires	
  retraining,	
  all	
  models	
  should	
  be	
  updated	
  
•  Data	
  is	
  uploaded	
  to	
  cloud	
  and	
  used	
  for	
  retraining	
  
•  But	
  …	
  how	
  to	
  update	
  all	
  the	
  vehicles	
  that	
  are	
  running	
  the	
  
model?	
  	
  
•  At	
  500KB	
  downloading	
  new	
  model	
  parameters	
  is	
  easy.	
  	
  
ConTnuous	
  UpdaTng	
  of	
  CNN	
  Models	
  
10	
  
11
ADVANCES	
  IN	
  SMALL	
  DNNs	
  
IN  THE  PAST  18  MONTHS
12
SqueezeNet	
  
SqueezeNet	
  
is	
  built	
  out	
  of	
  
"Fire	
  modules:"	
  
[1]	
  F.N.	
  Iandola,	
  S.	
  Han,	
  M.	
  Moskewicz,	
  K.	
  Ashraf,	
  W.	
  Dally,	
  K.	
  Keutzer.	
  SqueezeNet:	
  AlexNet-­‐
level	
  accuracy	
  with	
  50x	
  fewer	
  parameters	
  and	
  <0.5MB	
  model	
  size.	
  arXiv,	
  2016.	
  
	
  
	
  	
  	
  	
  	
  	
  hrp://github.com/DeepScale/SqueezeNet	
  	
  
1x1	
  conv	
  
1x1	
  conv	
   3x3	
  conv	
  
"squeeze"	
  
"expand"	
  
13
SqueezeNet	
  
Compression
Approach
DNN
Architecture
Original
Model Size
Compressed
Model Size
Reduction in
Model Size
vs. AlexNet
Top-1
ImageNet
Accuracy
Top-5
ImageNet
Accuracy
None (baseline) AlexNet [1] 240MB 240MB 1x 57.2% 80.3%
SVD [2] AlexNet 240MB 48MB 5x 56.0% 79.4%
Network Pruning [3] AlexNet 240MB 27MB 9x 57.2% 80.3%
Deep Compression [4] AlexNet 240MB 6.9MB 35x 57.2% 80.3%
[1]	
  A.	
  Krizhevsky,	
  I.	
  Sutskever,	
  G.E.	
  Hinton.	
  ImageNet	
  ClassificaTon	
  with	
  Deep	
  ConvoluTonal	
  Neural	
  Networks.	
  NIPS,	
  2012.	
  
[2]	
  E.L	
  .Denton,	
  W.	
  Zaremba,	
  J.	
  Bruna,	
  Y.	
  LeCun,	
  R.	
  Fergus.	
  ExploiTng	
  linear	
  structure	
  within	
  convoluTonal	
  networks	
  for	
  efficient	
  
evaluaTon.	
  NIPS,	
  2014.	
  
[3]	
  S.	
  Han,	
  J.	
  Pool,	
  J.	
  Tran,	
  W.	
  Dally.	
  Learning	
  both	
  Weights	
  and	
  ConnecTons	
  for	
  Efficient	
  Neural	
  Networks,	
  NIPS,	
  2015.	
  
[4]	
  S.	
  Han,	
  H.	
  Mao,	
  W.	
  Dally.	
  Deep	
  Compression…,	
  arxiv:1510.00149,	
  2015.	
  
[5]	
  F.N.	
  Iandola,	
  M.	
  Moskewicz,	
  K.	
  Ashraf,	
  S.	
  Han,	
  W.	
  Dally,	
  K.	
  Keutzer.	
  SqueezeNet:	
  AlexNet-­‐level	
  accuracy	
  with	
  50x	
  fewer	
  
parameters	
  and	
  <1MB	
  model	
  size.	
  arXiv,	
  2016.	
  
14
SqueezeNet	
  
Compression
Approach
DNN
Architecture
Original
Model Size
Compressed
Model Size
Reduction in
Model Size
vs. AlexNet
Top-1
ImageNet
Accuracy
Top-5
ImageNet
Accuracy
None (baseline) AlexNet [1] 240MB 240MB 1x 57.2% 80.3%
SVD [2] AlexNet 240MB 48MB 5x 56.0% 79.4%
Network Pruning [3] AlexNet 240MB 27MB 9x 57.2% 80.3%
Deep Compression [4] AlexNet 240MB 6.9MB 35x 57.2% 80.3%
None SqueezeNet [5]
(ours)
4.8MB 4.8MB 50x 57.5% 80.3%
[1]	
  A.	
  Krizhevsky,	
  I.	
  Sutskever,	
  G.E.	
  Hinton.	
  ImageNet	
  ClassificaTon	
  with	
  Deep	
  ConvoluTonal	
  Neural	
  Networks.	
  NIPS,	
  2012.	
  
[2]	
  E.L	
  .Denton,	
  W.	
  Zaremba,	
  J.	
  Bruna,	
  Y.	
  LeCun,	
  R.	
  Fergus.	
  ExploiTng	
  linear	
  structure	
  within	
  convoluTonal	
  networks	
  for	
  efficient	
  
evaluaTon.	
  NIPS,	
  2014.	
  
[3]	
  S.	
  Han,	
  J.	
  Pool,	
  J.	
  Tran,	
  W.	
  Dally.	
  Learning	
  both	
  Weights	
  and	
  ConnecTons	
  for	
  Efficient	
  Neural	
  Networks,	
  NIPS,	
  2015.	
  
[4]	
  S.	
  Han,	
  H.	
  Mao,	
  W.	
  Dally.	
  Deep	
  Compression…,	
  arxiv:1510.00149,	
  2015.	
  
[5]	
  F.N.	
  Iandola,	
  M.	
  Moskewicz,	
  K.	
  Ashraf,	
  S.	
  Han,	
  W.	
  Dally,	
  K.	
  Keutzer.	
  SqueezeNet:	
  AlexNet-­‐level	
  accuracy	
  with	
  50x	
  fewer	
  
parameters	
  and	
  <1MB	
  model	
  size.	
  arXiv,	
  2016.	
  
15
SqueezeNet	
  
Compression
Approach
DNN
Architecture
Original
Model Size
Compressed
Model Size
Reduction in
Model Size
vs. AlexNet
Top-1
ImageNet
Accuracy
Top-5
ImageNet
Accuracy
None (baseline) AlexNet [1] 240MB 240MB 1x 57.2% 80.3%
SVD [2] AlexNet 240MB 48MB 5x 56.0% 79.4%
Network Pruning [3] AlexNet 240MB 27MB 9x 57.2% 80.3%
Deep Compression [4] AlexNet 240MB 6.9MB 35x 57.2% 80.3%
None SqueezeNet [5]
(ours)
4.8MB 4.8MB 50x 57.5% 80.3%
Deep Compression [4] SqueezeNet [5]
(ours)
4.8MB 0.47MB 510x 57.5% 80.3%
[1]	
  A.	
  Krizhevsky,	
  I.	
  Sutskever,	
  G.E.	
  Hinton.	
  ImageNet	
  ClassificaTon	
  with	
  Deep	
  ConvoluTonal	
  Neural	
  Networks.	
  NIPS,	
  2012.	
  
[2]	
  E.L	
  .Denton,	
  W.	
  Zaremba,	
  J.	
  Bruna,	
  Y.	
  LeCun,	
  R.	
  Fergus.	
  ExploiTng	
  linear	
  structure	
  within	
  convoluTonal	
  networks	
  for	
  efficient	
  
evaluaTon.	
  NIPS,	
  2014.	
  
[3]	
  S.	
  Han,	
  J.	
  Pool,	
  J.	
  Tran,	
  W.	
  Dally.	
  Learning	
  both	
  Weights	
  and	
  ConnecTons	
  for	
  Efficient	
  Neural	
  Networks,	
  NIPS,	
  2015.	
  
[4]	
  S.	
  Han,	
  H.	
  Mao,	
  W.	
  Dally.	
  Deep	
  Compression…,	
  arxiv:1510.00149,	
  2015.	
  
[5]	
  F.N.	
  Iandola,	
  M.	
  Moskewicz,	
  K.	
  Ashraf,	
  S.	
  Han,	
  W.	
  Dally,	
  K.	
  Keutzer.	
  SqueezeNet:	
  AlexNet-­‐level	
  accuracy	
  with	
  50x	
  fewer	
  
parameters	
  and	
  <1MB	
  model	
  size.	
  arXiv,	
  2016.	
  
16
MobileNets	
  
Howard,	
  et	
  al.	
  MobileNets:	
  Efficient	
  ConvoluTonal	
  Neural	
  Networks	
  for	
  Mobile	
  Vision	
  ApplicaTons.	
  arXiv,	
  2017.	
  
slide	
  credit:	
  hrps://github.com/Zehaos/MobileNet	
  
17
MobileNets	
  
Howard,	
  et	
  al.	
  MobileNets:	
  Efficient	
  ConvoluTonal	
  Neural	
  Networks	
  for	
  Mobile	
  Vision	
  ApplicaTons.	
  arXiv,	
  2017.	
  
The	
  MobileNets	
  paper	
  reports	
  a	
  whole	
  family	
  of	
  DNN	
  architectures	
  that	
  
the	
  authors	
  discovered	
  while	
  exploring	
  the	
  design	
  space	
  
roughly	
  the	
  size	
  of	
  SqueezeNet	
  
and	
  more	
  accurate	
  
18
OK.	
  How	
  do	
  you	
  
create	
  a	
  small	
  NN?	
  
19
IMPORTANT  TO  KNOW:  MULTIPLE  CHANNELS  AND  MULTIPLE  FILTERS
Anatomy	
  of	
  a	
  convoluSon	
  layer	
  
filterW	
  
filterH	
  
dataH	
   dataW	
  
The	
  number	
  of	
  channels	
  in	
  the	
  
current	
  layer	
  is	
  determined	
  by	
  
the	
  number	
  of	
  filters	
  (numFilt)	
  
in	
  the	
  previous	
  layer.	
  
x	
  numFilt	
  
x	
  batch	
  size	
  
20
1.	
  Replace	
  Fully-­‐Connected	
  Layers	
  with	
  ConvoluSons	
  
In	
  AlexNet	
  and	
  VGG,	
  the	
  majority	
  of	
  the	
  parameters	
  are	
  in	
  the	
  FC	
  layers.	
  	
  
	
  
The	
  FC7	
  layer	
  in	
  AlexNet	
  has	
  4096	
  input	
  channels	
  and	
  4096	
  filters	
  à	
  67MB	
  of	
  params	
  
	
  
The	
  mere	
  presence	
  of	
  fully-­‐connected	
  layers	
  is	
  not	
  the	
  culprit	
  for	
  the	
  high	
  model	
  size;	
  the	
  problem	
  is	
  
that	
  some	
  FC	
  layers	
  of	
  VGG	
  and	
  AlexNet	
  have	
  a	
  huge	
  number	
  of	
  channels	
  and	
  filters.	
  
	
  
21
2.	
  Kernel	
  ReducSon	
  
While	
  1x1	
  filters	
  cannot	
  see	
  outside	
  of	
  a	
  1-­‐pixel	
  radius,	
  they	
  retain	
  the	
  ability	
  to	
  
combine	
  and	
  reorganize	
  informaTon	
  across	
  channels.	
  
	
  
In	
  our	
  design	
  space	
  exploraTon	
  that	
  led	
  up	
  to	
  SqueezeNet,	
  we	
  found	
  that	
  we	
  could	
  
replace	
  half	
  the	
  3x3	
  filters	
  with	
  1x1's	
  without	
  diminishing	
  accuracy	
  
	
  
A	
  "saturaTon	
  point"	
  is	
  when	
  adding	
  more	
  parameters	
  doesn’t	
  improve	
  accuracy.	
  
3	
  
3	
  
x	
  numFilt	
  
1	
  
1	
  
x	
  numFilt	
  
REDUCING  THE  HEIGHT  AND  WIDTH  OF  FILTERS
22
3.	
  Channel	
  ReducSon	
  
If	
  we	
  halve	
  the	
  number	
  of	
  filters	
  in	
  layer	
  Li	
  	
  
	
  	
  à	
  this	
  halves	
  the	
  number	
  of	
  input	
  channels	
  in	
  layer	
  Li+1	
  	
  
	
  	
  	
  	
  à	
  up	
  to	
  4x	
  reducTon	
  in	
  number	
  of	
  parameters	
  
3	
  
3	
  
x	
  numFilt	
  
3	
  
3	
  
x	
  numFilt	
  
REDUCING  THE  NUMBER  OF  FILTERS  AND  CHANNELS
OLD	
  layer	
  Li+1	
   NEW	
  layer	
  Li+1	
  
23
4.	
  Evenly	
  Spaced	
  Downsampling	
  
Early	
  	
  
Downsampling	
  
Evenly	
  Spaced	
  
Downsampling	
  
Late	
  
Downsampling	
  
pool	
  
pool	
  
pool	
  
pool	
  
pool	
  
pool	
  
DNN	
  AcTvaTons	
  
Accuracy	
  
Speed	
  
Accuracy	
  
Speed	
  
Accuracy	
  
Speed	
  
ACTIVATIONS  DON'T  CONTRIBUTE  TO  MODEL  SIZE,  BUT  
BIGGER  ACTIVATIONS  REQUIRE  MORE  COMPUTATION
24
5.	
  Depthwise	
  Separable	
  ConvoluSons	
  
in	
  2017	
  papers	
  such	
  as:	
  MobileNets,	
  ResNeXt,	
  "A	
  Compact	
  DNN"	
  
3	
  
3	
  
x	
  numFilt	
  
3	
  
3	
  
x	
  numFilt	
  
Each	
  3x3	
  filter	
  has	
  1	
  channel	
  
Each	
  filter	
  gets	
  applied	
  to	
  a	
  different	
  channel	
  of	
  the	
  input	
  
ALSO  CALLED:  "GROUP  CONVOLUTIONS"  or  "CARDINALITY"
25
6.	
  Shuffle	
  OperaSons	
  
Ayer	
  applying	
  the	
  previous	
  opTmizaTons,	
  we	
  now	
  
have	
  >90%	
  of	
  the	
  parameters	
  in	
  1x1	
  convoluTons	
  
	
  
Separable	
  1x1	
  convs	
  would	
  lead	
  to	
  mulTple	
  DNNs	
  
that	
  don't	
  communicate	
  
	
  
Recent	
  approach	
  (published	
  last	
  month):	
  shuffle	
  
layer	
  ayer	
  separable	
  1x1	
  convs	
  
"shuffle"	
  layer	
  
Zhang,	
  et	
  al.	
  ShuffleNet:	
  An	
  Extremely	
  Efficient	
  ConvoluTonal	
  Neural	
  Network	
  for	
  Mobile	
  Devices.	
  arXiv,	
  2017.	
  
26
7.	
  DisSllaSon	
  &	
  Compression	
  
Model	
  DisTllaTon	
  
	
  Li,	
  et	
  al.	
  Mimicking	
  Very	
  Efficient	
  Network	
  for	
  Object	
  DetecTon.	
  CVPR,	
  2017.	
  
27
7.	
  DisSllaSon	
  &	
  Compression	
  
Deep	
  Compression	
  
Han,	
  et	
  al.	
  	
  Deep	
  Compression:	
  Compressing	
  Deep	
  Neural	
  Networks...	
  ICLR,	
  2016.	
  
28
Successful	
  applicaSon	
  of	
  small	
  DNNs	
  
to	
  other	
  computer	
  vision	
  tasks	
  
29
Style	
  Transfer	
  using	
  SqueezeNet	
  
hrps://github.com/lizeng614/SqueezeNet-­‐Neural-­‐Style-­‐Pytorch	
  	
  
+ =
30
Not	
  Hotdog	
  	
  
using	
  SqueezeNet	
  and	
  MobileNets	
  
SqueezeNet	
  powers	
  Version	
  2	
  of	
  the	
  Not	
  Hotdog	
  
app	
  from	
  the	
  Silicon	
  Valley	
  TV	
  show.	
  
	
  
A	
  variant	
  of	
  MobileNets	
  powers	
  Version	
  3.	
  
31
Chinese	
  Character	
  RecogniSon	
  
with	
  a	
  2.3MB	
  DNN	
  
Chinese	
  Character	
  RecogniTon:	
  
from	
  23MB	
  to	
  2.3MB	
  	
  
(10x	
  savings)	
  
32
SemanSc	
  SegmentaSon	
  with	
  a	
  
0.7MB	
  DNN	
  
SemanTc	
  SegmentaTon:	
  
from	
  117MB	
  to	
  0.7MB	
  
(167x	
  savings)	
  
33
Big	
  Brave	
  Future	
  
Through	
  Small	
  NNs	
  
34
Open	
  Problems	
  
How	
  small	
  can	
  we	
  get?	
  Could	
  algorithmic	
  informaTon	
  theory	
  hold	
  the	
  answer?	
  
•  Can	
  we	
  design	
  a	
  DNN	
  that	
  achieves	
  state-­‐of-­‐the-­‐art	
  ImageNet	
  results	
  (3%	
  error)	
  
and	
  fits	
  into	
  a	
  2	
  War	
  embedded	
  processor's	
  cache?	
  
•  How	
  much	
  accuracy	
  can	
  we	
  achieve	
  in	
  a	
  10KB	
  DNN?	
  	
  (remember,	
  compressed-­‐
SqueezeNet	
  was	
  500KB)	
  
How	
  well	
  do	
  the	
  techniques	
  from	
  this	
  talk	
  apply	
  in	
  other	
  domains	
  (e.g.	
  audio,	
  
text,	
  etc)	
  
	
  
	
  
	
  
35
Future	
  Hardware	
  Will	
  Demand	
  
Small	
  Models	
  
15+	
  startups	
  are	
  working	
  on	
  DNN-­‐specific	
  processors	
  that	
  promise	
  
10-­‐100X	
  improvements	
  in	
  computaTon-­‐per-­‐War	
  
	
  
Meanwhile,	
  memory	
  is	
  improving	
  by	
  less	
  than	
  2X	
  per	
  year	
  
	
  
Unless	
  we	
  fit	
  the	
  DNNs	
  on-­‐chip,	
  almost	
  all	
  the	
  power	
  will	
  be	
  used	
  for	
  
memory	
  
	
  
So,	
  the	
  importance	
  of	
  small	
  DNNs	
  will	
  increase	
  in	
  the	
  future	
  
36
Guess	
  what?	
  	
  
We're	
  hiring	
  (too)	
  

Mais conteúdo relacionado

Mais procurados

Recent developments in Deep Learning
Recent developments in Deep LearningRecent developments in Deep Learning
Recent developments in Deep LearningBrahim HAMADICHAREF
 
Deep learning on mobile - 2019 Practitioner's Guide
Deep learning on mobile - 2019 Practitioner's GuideDeep learning on mobile - 2019 Practitioner's Guide
Deep learning on mobile - 2019 Practitioner's GuideAnirudh Koul
 
Squeezing Deep Learning Into Mobile Phones
Squeezing Deep Learning Into Mobile PhonesSqueezing Deep Learning Into Mobile Phones
Squeezing Deep Learning Into Mobile PhonesAnirudh Koul
 
Mastering Computer Vision Problems with State-of-the-art Deep Learning
Mastering Computer Vision Problems with State-of-the-art Deep LearningMastering Computer Vision Problems with State-of-the-art Deep Learning
Mastering Computer Vision Problems with State-of-the-art Deep LearningMiguel González-Fierro
 
Deep Learning Primer: A First-Principles Approach
Deep Learning Primer: A First-Principles ApproachDeep Learning Primer: A First-Principles Approach
Deep Learning Primer: A First-Principles ApproachMaurizio Calo Caligaris
 
Convolutional Neural Networks for Computer vision Applications
Convolutional Neural Networks for Computer vision ApplicationsConvolutional Neural Networks for Computer vision Applications
Convolutional Neural Networks for Computer vision ApplicationsAlex Conway
 
“Explainability in Computer Vision: A Machine Learning Engineer’s Overview,” ...
“Explainability in Computer Vision: A Machine Learning Engineer’s Overview,” ...“Explainability in Computer Vision: A Machine Learning Engineer’s Overview,” ...
“Explainability in Computer Vision: A Machine Learning Engineer’s Overview,” ...Edge AI and Vision Alliance
 
Why is Deep learning hot right now? and How can we apply it on each day job?
Why is Deep learning hot right now? and How can we apply it on each day job?Why is Deep learning hot right now? and How can we apply it on each day job?
Why is Deep learning hot right now? and How can we apply it on each day job?Issam AlZinati
 
Deep Learning with Microsoft R Open
Deep Learning with Microsoft R OpenDeep Learning with Microsoft R Open
Deep Learning with Microsoft R OpenPoo Kuan Hoong
 
"New Dataflow Architecture for Machine Learning," a Presentation from Wave Co...
"New Dataflow Architecture for Machine Learning," a Presentation from Wave Co..."New Dataflow Architecture for Machine Learning," a Presentation from Wave Co...
"New Dataflow Architecture for Machine Learning," a Presentation from Wave Co...Edge AI and Vision Alliance
 
Deep Learning for Robotics
Deep Learning for RoboticsDeep Learning for Robotics
Deep Learning for RoboticsIntel Nervana
 
“Modern Machine Vision from Basics to Advanced Deep Learning,” a Presentation...
“Modern Machine Vision from Basics to Advanced Deep Learning,” a Presentation...“Modern Machine Vision from Basics to Advanced Deep Learning,” a Presentation...
“Modern Machine Vision from Basics to Advanced Deep Learning,” a Presentation...Edge AI and Vision Alliance
 
“Case Study: Facial Detection and Recognition for Always-On Applications,” a ...
“Case Study: Facial Detection and Recognition for Always-On Applications,” a ...“Case Study: Facial Detection and Recognition for Always-On Applications,” a ...
“Case Study: Facial Detection and Recognition for Always-On Applications,” a ...Edge AI and Vision Alliance
 
“Applying the Right Deep Learning Model with the Right Data for Your Applicat...
“Applying the Right Deep Learning Model with the Right Data for Your Applicat...“Applying the Right Deep Learning Model with the Right Data for Your Applicat...
“Applying the Right Deep Learning Model with the Right Data for Your Applicat...Edge AI and Vision Alliance
 
“Introduction to DNN Model Compression Techniques,” a Presentation from Xailient
“Introduction to DNN Model Compression Techniques,” a Presentation from Xailient“Introduction to DNN Model Compression Techniques,” a Presentation from Xailient
“Introduction to DNN Model Compression Techniques,” a Presentation from XailientEdge AI and Vision Alliance
 
Deep Learning for Computer Vision - PyconDE 2017
Deep Learning for Computer Vision - PyconDE 2017Deep Learning for Computer Vision - PyconDE 2017
Deep Learning for Computer Vision - PyconDE 2017Alex Conway
 
"Designing a Stereo IP Camera From Scratch," a Presentation from ELVEES
"Designing a Stereo IP Camera From Scratch," a Presentation from ELVEES"Designing a Stereo IP Camera From Scratch," a Presentation from ELVEES
"Designing a Stereo IP Camera From Scratch," a Presentation from ELVEESEdge AI and Vision Alliance
 

Mais procurados (20)

Recent developments in Deep Learning
Recent developments in Deep LearningRecent developments in Deep Learning
Recent developments in Deep Learning
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
 
Deep learning on mobile - 2019 Practitioner's Guide
Deep learning on mobile - 2019 Practitioner's GuideDeep learning on mobile - 2019 Practitioner's Guide
Deep learning on mobile - 2019 Practitioner's Guide
 
Android and Deep Learning
Android and Deep LearningAndroid and Deep Learning
Android and Deep Learning
 
Squeezing Deep Learning Into Mobile Phones
Squeezing Deep Learning Into Mobile PhonesSqueezing Deep Learning Into Mobile Phones
Squeezing Deep Learning Into Mobile Phones
 
Mastering Computer Vision Problems with State-of-the-art Deep Learning
Mastering Computer Vision Problems with State-of-the-art Deep LearningMastering Computer Vision Problems with State-of-the-art Deep Learning
Mastering Computer Vision Problems with State-of-the-art Deep Learning
 
Deep Learning Primer: A First-Principles Approach
Deep Learning Primer: A First-Principles ApproachDeep Learning Primer: A First-Principles Approach
Deep Learning Primer: A First-Principles Approach
 
Convolutional Neural Networks for Computer vision Applications
Convolutional Neural Networks for Computer vision ApplicationsConvolutional Neural Networks for Computer vision Applications
Convolutional Neural Networks for Computer vision Applications
 
“Explainability in Computer Vision: A Machine Learning Engineer’s Overview,” ...
“Explainability in Computer Vision: A Machine Learning Engineer’s Overview,” ...“Explainability in Computer Vision: A Machine Learning Engineer’s Overview,” ...
“Explainability in Computer Vision: A Machine Learning Engineer’s Overview,” ...
 
Why is Deep learning hot right now? and How can we apply it on each day job?
Why is Deep learning hot right now? and How can we apply it on each day job?Why is Deep learning hot right now? and How can we apply it on each day job?
Why is Deep learning hot right now? and How can we apply it on each day job?
 
Deep Learning with Microsoft R Open
Deep Learning with Microsoft R OpenDeep Learning with Microsoft R Open
Deep Learning with Microsoft R Open
 
"New Dataflow Architecture for Machine Learning," a Presentation from Wave Co...
"New Dataflow Architecture for Machine Learning," a Presentation from Wave Co..."New Dataflow Architecture for Machine Learning," a Presentation from Wave Co...
"New Dataflow Architecture for Machine Learning," a Presentation from Wave Co...
 
Deep Learning for Robotics
Deep Learning for RoboticsDeep Learning for Robotics
Deep Learning for Robotics
 
“Modern Machine Vision from Basics to Advanced Deep Learning,” a Presentation...
“Modern Machine Vision from Basics to Advanced Deep Learning,” a Presentation...“Modern Machine Vision from Basics to Advanced Deep Learning,” a Presentation...
“Modern Machine Vision from Basics to Advanced Deep Learning,” a Presentation...
 
“Case Study: Facial Detection and Recognition for Always-On Applications,” a ...
“Case Study: Facial Detection and Recognition for Always-On Applications,” a ...“Case Study: Facial Detection and Recognition for Always-On Applications,” a ...
“Case Study: Facial Detection and Recognition for Always-On Applications,” a ...
 
“Applying the Right Deep Learning Model with the Right Data for Your Applicat...
“Applying the Right Deep Learning Model with the Right Data for Your Applicat...“Applying the Right Deep Learning Model with the Right Data for Your Applicat...
“Applying the Right Deep Learning Model with the Right Data for Your Applicat...
 
“Introduction to DNN Model Compression Techniques,” a Presentation from Xailient
“Introduction to DNN Model Compression Techniques,” a Presentation from Xailient“Introduction to DNN Model Compression Techniques,” a Presentation from Xailient
“Introduction to DNN Model Compression Techniques,” a Presentation from Xailient
 
Deep Learning for Computer Vision - PyconDE 2017
Deep Learning for Computer Vision - PyconDE 2017Deep Learning for Computer Vision - PyconDE 2017
Deep Learning for Computer Vision - PyconDE 2017
 
CNN Quantization
CNN QuantizationCNN Quantization
CNN Quantization
 
"Designing a Stereo IP Camera From Scratch," a Presentation from ELVEES
"Designing a Stereo IP Camera From Scratch," a Presentation from ELVEES"Designing a Stereo IP Camera From Scratch," a Presentation from ELVEES
"Designing a Stereo IP Camera From Scratch," a Presentation from ELVEES
 

Semelhante a Small Deep-Neural-Networks: Their Advantages and Their Design

Convolutional neural network
Convolutional neural network Convolutional neural network
Convolutional neural network Yan Xu
 
Saptashwa_Mitra_Sitakanta_Mishra_Final_Project_Report
Saptashwa_Mitra_Sitakanta_Mishra_Final_Project_ReportSaptashwa_Mitra_Sitakanta_Mishra_Final_Project_Report
Saptashwa_Mitra_Sitakanta_Mishra_Final_Project_ReportSitakanta Mishra
 
Architecture Design for Deep Neural Networks I
Architecture Design for Deep Neural Networks IArchitecture Design for Deep Neural Networks I
Architecture Design for Deep Neural Networks IWanjin Yu
 
A Survey on Image Processing using CNN in Deep Learning
A Survey on Image Processing using CNN in Deep LearningA Survey on Image Processing using CNN in Deep Learning
A Survey on Image Processing using CNN in Deep LearningIRJET Journal
 
Devanagari Digit and Character Recognition Using Convolutional Neural Network
Devanagari Digit and Character Recognition Using Convolutional Neural NetworkDevanagari Digit and Character Recognition Using Convolutional Neural Network
Devanagari Digit and Character Recognition Using Convolutional Neural NetworkIRJET Journal
 
"Enabling Automated Design of Computationally Efficient Deep Neural Networks,...
"Enabling Automated Design of Computationally Efficient Deep Neural Networks,..."Enabling Automated Design of Computationally Efficient Deep Neural Networks,...
"Enabling Automated Design of Computationally Efficient Deep Neural Networks,...Edge AI and Vision Alliance
 
IRJET - Gender Recognition from Facial Images
IRJET - Gender Recognition from Facial ImagesIRJET - Gender Recognition from Facial Images
IRJET - Gender Recognition from Facial ImagesIRJET Journal
 
Anomaly Detection with Azure and .NET
Anomaly Detection with Azure and .NETAnomaly Detection with Azure and .NET
Anomaly Detection with Azure and .NETMarco Parenzan
 
Transformer models for FER
Transformer models for FERTransformer models for FER
Transformer models for FERIRJET Journal
 
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al..."Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al...Edge AI and Vision Alliance
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020Universitat Politècnica de Catalunya
 
MobileNet Review | Mobile Net Research Paper Review | MobileNet v1 Paper Expl...
MobileNet Review | Mobile Net Research Paper Review | MobileNet v1 Paper Expl...MobileNet Review | Mobile Net Research Paper Review | MobileNet v1 Paper Expl...
MobileNet Review | Mobile Net Research Paper Review | MobileNet v1 Paper Expl...Laxmi Kant Tiwari
 
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...Edge AI and Vision Alliance
 
convolutional_neural_networks.pptx
convolutional_neural_networks.pptxconvolutional_neural_networks.pptx
convolutional_neural_networks.pptxMsKiranSingh
 
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural NetworksPR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural NetworksJinwon Lee
 
Data compression, data security, and machine learning
Data compression, data security, and machine learningData compression, data security, and machine learning
Data compression, data security, and machine learningChris Huang
 
Machine Vision on Embedded Hardware
Machine Vision on Embedded HardwareMachine Vision on Embedded Hardware
Machine Vision on Embedded HardwareJash Shah
 
Scalable image recognition model with deep embedding
Scalable image recognition model with deep embeddingScalable image recognition model with deep embedding
Scalable image recognition model with deep embedding捷恩 蔡
 
Anomaly Detection with Azure and .net
Anomaly Detection with Azure and .netAnomaly Detection with Azure and .net
Anomaly Detection with Azure and .netMarco Parenzan
 
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019Universitat Politècnica de Catalunya
 

Semelhante a Small Deep-Neural-Networks: Their Advantages and Their Design (20)

Convolutional neural network
Convolutional neural network Convolutional neural network
Convolutional neural network
 
Saptashwa_Mitra_Sitakanta_Mishra_Final_Project_Report
Saptashwa_Mitra_Sitakanta_Mishra_Final_Project_ReportSaptashwa_Mitra_Sitakanta_Mishra_Final_Project_Report
Saptashwa_Mitra_Sitakanta_Mishra_Final_Project_Report
 
Architecture Design for Deep Neural Networks I
Architecture Design for Deep Neural Networks IArchitecture Design for Deep Neural Networks I
Architecture Design for Deep Neural Networks I
 
A Survey on Image Processing using CNN in Deep Learning
A Survey on Image Processing using CNN in Deep LearningA Survey on Image Processing using CNN in Deep Learning
A Survey on Image Processing using CNN in Deep Learning
 
Devanagari Digit and Character Recognition Using Convolutional Neural Network
Devanagari Digit and Character Recognition Using Convolutional Neural NetworkDevanagari Digit and Character Recognition Using Convolutional Neural Network
Devanagari Digit and Character Recognition Using Convolutional Neural Network
 
"Enabling Automated Design of Computationally Efficient Deep Neural Networks,...
"Enabling Automated Design of Computationally Efficient Deep Neural Networks,..."Enabling Automated Design of Computationally Efficient Deep Neural Networks,...
"Enabling Automated Design of Computationally Efficient Deep Neural Networks,...
 
IRJET - Gender Recognition from Facial Images
IRJET - Gender Recognition from Facial ImagesIRJET - Gender Recognition from Facial Images
IRJET - Gender Recognition from Facial Images
 
Anomaly Detection with Azure and .NET
Anomaly Detection with Azure and .NETAnomaly Detection with Azure and .NET
Anomaly Detection with Azure and .NET
 
Transformer models for FER
Transformer models for FERTransformer models for FER
Transformer models for FER
 
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al..."Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
 
MobileNet Review | Mobile Net Research Paper Review | MobileNet v1 Paper Expl...
MobileNet Review | Mobile Net Research Paper Review | MobileNet v1 Paper Expl...MobileNet Review | Mobile Net Research Paper Review | MobileNet v1 Paper Expl...
MobileNet Review | Mobile Net Research Paper Review | MobileNet v1 Paper Expl...
 
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
 
convolutional_neural_networks.pptx
convolutional_neural_networks.pptxconvolutional_neural_networks.pptx
convolutional_neural_networks.pptx
 
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural NetworksPR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
 
Data compression, data security, and machine learning
Data compression, data security, and machine learningData compression, data security, and machine learning
Data compression, data security, and machine learning
 
Machine Vision on Embedded Hardware
Machine Vision on Embedded HardwareMachine Vision on Embedded Hardware
Machine Vision on Embedded Hardware
 
Scalable image recognition model with deep embedding
Scalable image recognition model with deep embeddingScalable image recognition model with deep embedding
Scalable image recognition model with deep embedding
 
Anomaly Detection with Azure and .net
Anomaly Detection with Azure and .netAnomaly Detection with Azure and .net
Anomaly Detection with Azure and .net
 
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
 

Último

[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 

Último (20)

[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 

Small Deep-Neural-Networks: Their Advantages and Their Design

  • 1. S M A L L   D E E P-­‐ N E U R A L -­‐ N E T W O R K S : T H E I R   A D VA N TA G E S ,   A N D   T H E I R   D E S I G N deepscale.ai F O R R E S T   I A N D O L A   a n d   K U R T   K E U T Z E R
  • 2. 2 OVERVIEW   COMPUTER  VISION  FINALLY  WORKS  –  NOW  WHAT? ADVANTAGES  OF  SMALL  DEEP  NEURAL  NETWORKS DESIGN  OF  SMALL  DEEP  NEURAL  NETWORKS
  • 3. 3 COMPUTER  VISION  FINALLY  WORKS.   NOW  WHAT? IMAGENET TOP-5 ERROR similarly  large  accuracy   improvements  on  tasks  such  as: -­‐  semanRc  segmentaRon -­‐  object  detecRon -­‐  3D  reconstrucRon -­‐  …and  so  on
  • 4. 4   GADGETS   VENUES  FOR  COMMERCIAL   COMPUTER  VISION  USAGE DATACENTERS   SOCIAL  MEDIA  ANALYSIS     WEB  INDEXING     GOVERNMENT  INTELLIGENCE    DJI  PHANTOM  4     DRONE   MQ-­‐9   REAPER   SELF-­‐DRIVING  CARS   SMARTPHONES  
  • 5. 5   GADGETS  DATACENTERS   RARELY  SAFETY-­‐CRITICAL   LOW-­‐POWER  IS  NICE-­‐TO-­‐HAVE   REAL-­‐TIME  IS  PREFERRABLE   USUALLY  SAFETY-­‐CRITICAL      (except  smartphones)   LOW-­‐POWER  IS  REQUIRED   REAL-­‐TIME  IS  REQUIRED   THIS  TALK  IS  ESPECIALLY   TARGETED  AT  GADGETS   KEY  REQUIREMENTS  FOR  COMMERCIAL   COMPUTER  VISION  USAGE
  • 6. 6 WHAT'S  THE  "RIGHT"  NEURAL  NETWORK   FOR  USE  IN  A  GADGET? DESIRABLE  PROPERTIES:   -­‐  sufficiently  high  accuracy   -­‐  low  computaTonal  complexity   -­‐  low  energy  usage   -­‐  small  model  size  
  • 7. 7 WHY  SMALL  DEEP-­‐NEURAL-­‐NETWORKS? SMALL  DNNs  ARE  MORE  DEPLOYABLE     ON  EMBEDDED  PROCESSORS   SMALL  DNNs  TRAIN  FASTER  ON   DISTRIBUTED  HARDWARE   SMALL  DNNs  ARE  EASILY  UPDATABLE   OVER-­‐THE-­‐AIR  (OTA)  
  • 8. Using  FireCaffe  on     the  Titan  cluster   CVPR  2016   145x  speedup     for  FireNet   47x  speedup     for  GoogLeNet   •  Fewer  parameter  weights  means  bigger  opportuniTes  for  scaling     training  –  145X  speedup  on  256  GPUs     Strong  Scaling   8   Small  Models  Have  Big  Advantages  #1  
  • 9. Small  Models  Have  Big  Advantages  #2   •  SqueezeNet's  smaller  number  of  weights  enables  complete  on-­‐chip  integraTon  of   CNN  model  with  weights  –  no  need  for  off-­‐chip  memory   –  DramaTcally  reduces  the  energy  for  compuTng  inference   –  Gives  the  potenTal  for  pushing  the  data  processing  (i.e.  CNN  model)  up-­‐close   and  personal  to  the  data  gathering  (e.g.  onboard  cameras  and  other  sensors)     Single-­‐chip  IntegraTon  of  CNN  Model   Limited  memory  of  embedded  devices  makes  small  models  absolutely  essenTal  for  many  applicaTons     •      9   Closer  integraTon  with  sensor   (e.g.  Camera)  
  • 10. Small  Models  Have  Big  Advantages  #3   •  Small  models  enable  conTnuous  wireless  updates  of  models   •  Each  Tme  any  sensor  discovers  a  new  image/situaTon  that   requires  retraining,  all  models  should  be  updated   •  Data  is  uploaded  to  cloud  and  used  for  retraining   •  But  …  how  to  update  all  the  vehicles  that  are  running  the   model?     •  At  500KB  downloading  new  model  parameters  is  easy.     ConTnuous  UpdaTng  of  CNN  Models   10  
  • 11. 11 ADVANCES  IN  SMALL  DNNs   IN  THE  PAST  18  MONTHS
  • 12. 12 SqueezeNet   SqueezeNet   is  built  out  of   "Fire  modules:"   [1]  F.N.  Iandola,  S.  Han,  M.  Moskewicz,  K.  Ashraf,  W.  Dally,  K.  Keutzer.  SqueezeNet:  AlexNet-­‐ level  accuracy  with  50x  fewer  parameters  and  <0.5MB  model  size.  arXiv,  2016.                hrp://github.com/DeepScale/SqueezeNet     1x1  conv   1x1  conv   3x3  conv   "squeeze"   "expand"  
  • 13. 13 SqueezeNet   Compression Approach DNN Architecture Original Model Size Compressed Model Size Reduction in Model Size vs. AlexNet Top-1 ImageNet Accuracy Top-5 ImageNet Accuracy None (baseline) AlexNet [1] 240MB 240MB 1x 57.2% 80.3% SVD [2] AlexNet 240MB 48MB 5x 56.0% 79.4% Network Pruning [3] AlexNet 240MB 27MB 9x 57.2% 80.3% Deep Compression [4] AlexNet 240MB 6.9MB 35x 57.2% 80.3% [1]  A.  Krizhevsky,  I.  Sutskever,  G.E.  Hinton.  ImageNet  ClassificaTon  with  Deep  ConvoluTonal  Neural  Networks.  NIPS,  2012.   [2]  E.L  .Denton,  W.  Zaremba,  J.  Bruna,  Y.  LeCun,  R.  Fergus.  ExploiTng  linear  structure  within  convoluTonal  networks  for  efficient   evaluaTon.  NIPS,  2014.   [3]  S.  Han,  J.  Pool,  J.  Tran,  W.  Dally.  Learning  both  Weights  and  ConnecTons  for  Efficient  Neural  Networks,  NIPS,  2015.   [4]  S.  Han,  H.  Mao,  W.  Dally.  Deep  Compression…,  arxiv:1510.00149,  2015.   [5]  F.N.  Iandola,  M.  Moskewicz,  K.  Ashraf,  S.  Han,  W.  Dally,  K.  Keutzer.  SqueezeNet:  AlexNet-­‐level  accuracy  with  50x  fewer   parameters  and  <1MB  model  size.  arXiv,  2016.  
  • 14. 14 SqueezeNet   Compression Approach DNN Architecture Original Model Size Compressed Model Size Reduction in Model Size vs. AlexNet Top-1 ImageNet Accuracy Top-5 ImageNet Accuracy None (baseline) AlexNet [1] 240MB 240MB 1x 57.2% 80.3% SVD [2] AlexNet 240MB 48MB 5x 56.0% 79.4% Network Pruning [3] AlexNet 240MB 27MB 9x 57.2% 80.3% Deep Compression [4] AlexNet 240MB 6.9MB 35x 57.2% 80.3% None SqueezeNet [5] (ours) 4.8MB 4.8MB 50x 57.5% 80.3% [1]  A.  Krizhevsky,  I.  Sutskever,  G.E.  Hinton.  ImageNet  ClassificaTon  with  Deep  ConvoluTonal  Neural  Networks.  NIPS,  2012.   [2]  E.L  .Denton,  W.  Zaremba,  J.  Bruna,  Y.  LeCun,  R.  Fergus.  ExploiTng  linear  structure  within  convoluTonal  networks  for  efficient   evaluaTon.  NIPS,  2014.   [3]  S.  Han,  J.  Pool,  J.  Tran,  W.  Dally.  Learning  both  Weights  and  ConnecTons  for  Efficient  Neural  Networks,  NIPS,  2015.   [4]  S.  Han,  H.  Mao,  W.  Dally.  Deep  Compression…,  arxiv:1510.00149,  2015.   [5]  F.N.  Iandola,  M.  Moskewicz,  K.  Ashraf,  S.  Han,  W.  Dally,  K.  Keutzer.  SqueezeNet:  AlexNet-­‐level  accuracy  with  50x  fewer   parameters  and  <1MB  model  size.  arXiv,  2016.  
  • 15. 15 SqueezeNet   Compression Approach DNN Architecture Original Model Size Compressed Model Size Reduction in Model Size vs. AlexNet Top-1 ImageNet Accuracy Top-5 ImageNet Accuracy None (baseline) AlexNet [1] 240MB 240MB 1x 57.2% 80.3% SVD [2] AlexNet 240MB 48MB 5x 56.0% 79.4% Network Pruning [3] AlexNet 240MB 27MB 9x 57.2% 80.3% Deep Compression [4] AlexNet 240MB 6.9MB 35x 57.2% 80.3% None SqueezeNet [5] (ours) 4.8MB 4.8MB 50x 57.5% 80.3% Deep Compression [4] SqueezeNet [5] (ours) 4.8MB 0.47MB 510x 57.5% 80.3% [1]  A.  Krizhevsky,  I.  Sutskever,  G.E.  Hinton.  ImageNet  ClassificaTon  with  Deep  ConvoluTonal  Neural  Networks.  NIPS,  2012.   [2]  E.L  .Denton,  W.  Zaremba,  J.  Bruna,  Y.  LeCun,  R.  Fergus.  ExploiTng  linear  structure  within  convoluTonal  networks  for  efficient   evaluaTon.  NIPS,  2014.   [3]  S.  Han,  J.  Pool,  J.  Tran,  W.  Dally.  Learning  both  Weights  and  ConnecTons  for  Efficient  Neural  Networks,  NIPS,  2015.   [4]  S.  Han,  H.  Mao,  W.  Dally.  Deep  Compression…,  arxiv:1510.00149,  2015.   [5]  F.N.  Iandola,  M.  Moskewicz,  K.  Ashraf,  S.  Han,  W.  Dally,  K.  Keutzer.  SqueezeNet:  AlexNet-­‐level  accuracy  with  50x  fewer   parameters  and  <1MB  model  size.  arXiv,  2016.  
  • 16. 16 MobileNets   Howard,  et  al.  MobileNets:  Efficient  ConvoluTonal  Neural  Networks  for  Mobile  Vision  ApplicaTons.  arXiv,  2017.   slide  credit:  hrps://github.com/Zehaos/MobileNet  
  • 17. 17 MobileNets   Howard,  et  al.  MobileNets:  Efficient  ConvoluTonal  Neural  Networks  for  Mobile  Vision  ApplicaTons.  arXiv,  2017.   The  MobileNets  paper  reports  a  whole  family  of  DNN  architectures  that   the  authors  discovered  while  exploring  the  design  space   roughly  the  size  of  SqueezeNet   and  more  accurate  
  • 18. 18 OK.  How  do  you   create  a  small  NN?  
  • 19. 19 IMPORTANT  TO  KNOW:  MULTIPLE  CHANNELS  AND  MULTIPLE  FILTERS Anatomy  of  a  convoluSon  layer   filterW   filterH   dataH   dataW   The  number  of  channels  in  the   current  layer  is  determined  by   the  number  of  filters  (numFilt)   in  the  previous  layer.   x  numFilt   x  batch  size  
  • 20. 20 1.  Replace  Fully-­‐Connected  Layers  with  ConvoluSons   In  AlexNet  and  VGG,  the  majority  of  the  parameters  are  in  the  FC  layers.       The  FC7  layer  in  AlexNet  has  4096  input  channels  and  4096  filters  à  67MB  of  params     The  mere  presence  of  fully-­‐connected  layers  is  not  the  culprit  for  the  high  model  size;  the  problem  is   that  some  FC  layers  of  VGG  and  AlexNet  have  a  huge  number  of  channels  and  filters.    
  • 21. 21 2.  Kernel  ReducSon   While  1x1  filters  cannot  see  outside  of  a  1-­‐pixel  radius,  they  retain  the  ability  to   combine  and  reorganize  informaTon  across  channels.     In  our  design  space  exploraTon  that  led  up  to  SqueezeNet,  we  found  that  we  could   replace  half  the  3x3  filters  with  1x1's  without  diminishing  accuracy     A  "saturaTon  point"  is  when  adding  more  parameters  doesn’t  improve  accuracy.   3   3   x  numFilt   1   1   x  numFilt   REDUCING  THE  HEIGHT  AND  WIDTH  OF  FILTERS
  • 22. 22 3.  Channel  ReducSon   If  we  halve  the  number  of  filters  in  layer  Li        à  this  halves  the  number  of  input  channels  in  layer  Li+1            à  up  to  4x  reducTon  in  number  of  parameters   3   3   x  numFilt   3   3   x  numFilt   REDUCING  THE  NUMBER  OF  FILTERS  AND  CHANNELS OLD  layer  Li+1   NEW  layer  Li+1  
  • 23. 23 4.  Evenly  Spaced  Downsampling   Early     Downsampling   Evenly  Spaced   Downsampling   Late   Downsampling   pool   pool   pool   pool   pool   pool   DNN  AcTvaTons   Accuracy   Speed   Accuracy   Speed   Accuracy   Speed   ACTIVATIONS  DON'T  CONTRIBUTE  TO  MODEL  SIZE,  BUT   BIGGER  ACTIVATIONS  REQUIRE  MORE  COMPUTATION
  • 24. 24 5.  Depthwise  Separable  ConvoluSons   in  2017  papers  such  as:  MobileNets,  ResNeXt,  "A  Compact  DNN"   3   3   x  numFilt   3   3   x  numFilt   Each  3x3  filter  has  1  channel   Each  filter  gets  applied  to  a  different  channel  of  the  input   ALSO  CALLED:  "GROUP  CONVOLUTIONS"  or  "CARDINALITY"
  • 25. 25 6.  Shuffle  OperaSons   Ayer  applying  the  previous  opTmizaTons,  we  now   have  >90%  of  the  parameters  in  1x1  convoluTons     Separable  1x1  convs  would  lead  to  mulTple  DNNs   that  don't  communicate     Recent  approach  (published  last  month):  shuffle   layer  ayer  separable  1x1  convs   "shuffle"  layer   Zhang,  et  al.  ShuffleNet:  An  Extremely  Efficient  ConvoluTonal  Neural  Network  for  Mobile  Devices.  arXiv,  2017.  
  • 26. 26 7.  DisSllaSon  &  Compression   Model  DisTllaTon    Li,  et  al.  Mimicking  Very  Efficient  Network  for  Object  DetecTon.  CVPR,  2017.  
  • 27. 27 7.  DisSllaSon  &  Compression   Deep  Compression   Han,  et  al.    Deep  Compression:  Compressing  Deep  Neural  Networks...  ICLR,  2016.  
  • 28. 28 Successful  applicaSon  of  small  DNNs   to  other  computer  vision  tasks  
  • 29. 29 Style  Transfer  using  SqueezeNet   hrps://github.com/lizeng614/SqueezeNet-­‐Neural-­‐Style-­‐Pytorch     + =
  • 30. 30 Not  Hotdog     using  SqueezeNet  and  MobileNets   SqueezeNet  powers  Version  2  of  the  Not  Hotdog   app  from  the  Silicon  Valley  TV  show.     A  variant  of  MobileNets  powers  Version  3.  
  • 31. 31 Chinese  Character  RecogniSon   with  a  2.3MB  DNN   Chinese  Character  RecogniTon:   from  23MB  to  2.3MB     (10x  savings)  
  • 32. 32 SemanSc  SegmentaSon  with  a   0.7MB  DNN   SemanTc  SegmentaTon:   from  117MB  to  0.7MB   (167x  savings)  
  • 33. 33 Big  Brave  Future   Through  Small  NNs  
  • 34. 34 Open  Problems   How  small  can  we  get?  Could  algorithmic  informaTon  theory  hold  the  answer?   •  Can  we  design  a  DNN  that  achieves  state-­‐of-­‐the-­‐art  ImageNet  results  (3%  error)   and  fits  into  a  2  War  embedded  processor's  cache?   •  How  much  accuracy  can  we  achieve  in  a  10KB  DNN?    (remember,  compressed-­‐ SqueezeNet  was  500KB)   How  well  do  the  techniques  from  this  talk  apply  in  other  domains  (e.g.  audio,   text,  etc)        
  • 35. 35 Future  Hardware  Will  Demand   Small  Models   15+  startups  are  working  on  DNN-­‐specific  processors  that  promise   10-­‐100X  improvements  in  computaTon-­‐per-­‐War     Meanwhile,  memory  is  improving  by  less  than  2X  per  year     Unless  we  fit  the  DNNs  on-­‐chip,  almost  all  the  power  will  be  used  for   memory     So,  the  importance  of  small  DNNs  will  increase  in  the  future  
  • 36. 36 Guess  what?     We're  hiring  (too)