SlideShare uma empresa Scribd logo
1 de 32
ALGORITHMS AND
FLOWCHARTS
ALGORITHMS AND FLOWCHARTS
 A typical programming task can be divided into
two phases:
 Problem solving phase
 produce an ordered sequence of steps that describe
solution of problem
 this sequence of steps is called an algorithm
 Implementation phase
 implement the program in some programming
language
Steps in Problem Solving
 First produce a general algorithm (one can use
pseudocode)
 Refine the algorithm successively to get step by
step detailed algorithm that is very close to a
computer language.
 Pseudocode is an artificial and informal
language that helps programmers develop
algorithms. Pseudocode is very similar to
everyday English.
Pseudocode & Algorithm
 Example 1: Write an algorithm to
determine a student’s final grade and
indicate whether it is passing or failing.
The final grade is calculated as the
average of four marks.
Pseudocode & Algorithm
Pseudocode:
 Input a set of 4 marks
 Calculate their average by summing and dividing
by 4
 if average is below 50
Print “FAIL”
else
Print “PASS”
Pseudocode & Algorithm
 Detailed Algorithm
 Step 1: Input M1,M2,M3,M4
Step 2: GRADE  (M1+M2+M3+M4)/4
Step 3: if (GRADE < 50) then
Print “FAIL”
else
Print “PASS”
endif
The Flowchart
 (Dictionary) A schematic representation of a sequence of
operations, as in a manufacturing process or computer
program.
 (Technical) A graphical representation of the sequence of
operations in an information system or program.
Information system flowcharts show how data flows from
source documents through the computer to final
distribution to users. Program flowcharts show the
sequence of instructions in a single program or
subroutine. Different symbols are used to draw each
type of flowchart.
The Flowchart
A Flowchart
shows logic of an algorithm
emphasizes individual steps and their
interconnections
e.g. control flow from one action to the next
Flowchart Symbols
Basic
Oval
Parallelogram
Rectangle
Diamond
Hybrid
Name Symbol Use in Flowchart
Denotes the beginning or end of the program
Denotes an input operation
Denotes an output operation
Denotes a decision (or branch) to be made.
The program should continue along one of
two routes. (e.g. IF/THEN/ELSE)
Denotes a process to be carried out
e.g. addition, subtraction, division etc.
Flow line Denotes the direction of logic flow in the program
Example
PRINT
“PASS”
Step 1: Input M1,M2,M3,M4
Step 2: GRADE  (M1+M2+M3+M4)/4
Step 3: if (GRADE <50) then
Print “FAIL”
else
Print “PASS”
endif
START
Input
M1,M2,M3,M4
GRADE(M1+M2+M3+M4)/4
IS
GRADE<5
0
PRINT
“FAIL”
STOP
Y
N
Example 2
 Write an algorithm and draw a flowchart to
convert the length in feet to centimeter.
Pseudocode:
 Input the length in feet (Lft)
 Calculate the length in cm (Lcm) by
multiplying LFT with 30
 Print length in cm (LCM)
Example 2
Algorithm
 Step 1: Input Lft
 Step 2: Lcm  Lft x 30
 Step 3: Print Lcm
START
Input
Lft
Lcm  Lft x 30
Print
Lcm
STOP
Flowchart
Example 3
Write an algorithm and draw a flowchart that
will read the two sides of a rectangle and
calculate its area.
Pseudocode
 Input the width (W) and Length (L) of a rectangle
 Calculate the area (A) by multiplying L with W
 Print A
Example 3
Algorithm
 Step 1: Input W,L
 Step 2: A  L x W
 Step 3: Print A
START
Input
W, L
A  L x W
Print
A
STOP
Example 4
 Write an algorithm and draw a flowchart that
will calculate the roots of a quadratic equation
 Hint: d = sqrt ( ), and the roots are:
x1 = (–b + d)/2a and x2 = (–b – d)/2a
2
0
ax bx c
  
2
4
b ac

Example 4
Pseudocode:
 Input the coefficients (a, b, c) of the
quadratic equation
 Calculate d
 Calculate x1
 Calculate x2
 Print x1 and x2
Example 4
 Algorithm:
 Step 1: Input a, b, c
 Step 2: d  sqrt ( )
 Step 3: x1  (–b + d) / (2 x a)
 Step 4: x2  (–b – d) / (2 x a)
 Step 5: Print x1, x2
START
Input
a, b, c
d  sqrt(b x b – 4 x a x c)
Print
x1 ,x2
STOP
x1 (–b + d) / (2 x a)
X2  (–b – d) / (2 x a)
4
b b a c
   
DECISION STRUCTURES
 The expression A>B is a logical expression
 it describes a condition we want to test
 if A>B is true (if A is greater than B) we take
the action on left
 print the value of A
 if A>B is false (if A is not greater than B) we
take the action on right
 print the value of B
DECISION STRUCTURES
is
A>B
Print
B
Print
A
Y N
IF–THEN–ELSE STRUCTURE
 The structure is as follows
If condition then
true alternative
else
false alternative
endif
IF–THEN–ELSE STRUCTURE
 The algorithm for the flowchart is as
follows:
If A>B then
print A
else
print B
endif
is
A>B
Print
B
Print
A
Y N
Relational Operators
Relational Operators
Operator Description
> Greater than
< Less than
= Equal to
 Greater than or equal to
 Less than or equal to
 Not equal to
Example 5
 Write an algorithm that reads two values, determines the
largest value and prints the largest value with an
identifying message.
ALGORITHM
Step 1: Input VALUE1, VALUE2
Step 2: if (VALUE1 > VALUE2) then
MAX  VALUE1
else
MAX  VALUE2
endif
Step 3: Print “The largest value is”, MAX
Example 5
MAX  VALUE1
Print
“The largest value is”,
MAX
STOP
Y N
START
Input
VALUE1,VALUE2
MAX  VALUE2
is
VALUE1>VALUE2
NESTED IFS
 One of the alternatives within an IF–
THEN–ELSE statement
may involve further IF–THEN–ELSE
statement
Example 6
 Write an algorithm that reads three
numbers and prints the value of the largest
number.
Example 6
Step 1: Input N1, N2, N3
Step 2: if (N1>N2) then
if (N1>N3) then
MAX  N1 [N1>N2, N1>N3]
else
MAX  N3 [N3>N1>N2]
endif
else
if (N2>N3) then
MAX  N2 [N2>N1, N2>N3]
else
MAX  N3 [N3>N2>N1]
endif
endif
Step 3: Print “The largest number is”, MAX
Example 6
 Flowchart: Draw the flowchart of the
above Algorithm.
Example 7
 Write and algorithm and draw a flowchart
to
a) read an employee name (NAME),
overtime hours worked (OVERTIME),
hours absent (ABSENT) and
b) determine the bonus payment
(PAYMENT).
Example 7
Bonus Schedule
OVERTIME – (2/3)*ABSENT Bonus Paid
>40 hours
>30 but  40 hours
>20 but  30 hours
>10 but  20 hours
 10 hours
$50
$40
$30
$20
$10
Step 1: Input NAME,OVERTIME,ABSENT
Step 2: if (OVERTIME–(2/3)*ABSENT > 40) then
PAYMENT  50
else if (OVERTIME–(2/3)*ABSENT > 30) then
PAYMENT  40
else if (OVERTIME–(2/3)*ABSENT > 20) then
PAYMENT  30
else if (OVERTIME–(2/3)*ABSENT > 10) then
PAYMENT 20
else
PAYMENT  10
endif
Step 3: Print “Bonus for”, NAME “is $”, PAYMENT
Example 7
 Flowchart: Draw the flowchart of the
above algorithm?

Mais conteúdo relacionado

Semelhante a 01 Algorithms And Flowcharts.ppt

Algorithms and flowcharts
Algorithms and flowchartsAlgorithms and flowcharts
Algorithms and flowcharts
khair20
 
Algorithmsandflowcharts1
Algorithmsandflowcharts1Algorithmsandflowcharts1
Algorithmsandflowcharts1
luhkahreth
 
Algorithmsandflowcharts1
Algorithmsandflowcharts1Algorithmsandflowcharts1
Algorithmsandflowcharts1
Jesuraj Love
 
Algorithms and flowcharts1
Algorithms and flowcharts1Algorithms and flowcharts1
Algorithms and flowcharts1
Lincoln School
 
Programming fundamentals lecture 4
Programming fundamentals lecture 4Programming fundamentals lecture 4
Programming fundamentals lecture 4
Raja Hamid
 
1153 algorithms%20and%20flowcharts
1153 algorithms%20and%20flowcharts1153 algorithms%20and%20flowcharts
1153 algorithms%20and%20flowcharts
Dani Garnida
 
Programming fundamentals lecture 2 of c
Programming fundamentals lecture 2 of cProgramming fundamentals lecture 2 of c
Programming fundamentals lecture 2 of c
Raja Hamid
 

Semelhante a 01 Algorithms And Flowcharts.ppt (20)

Algorithms and flowcharts
Algorithms and flowchartsAlgorithms and flowcharts
Algorithms and flowcharts
 
Basic Slides on Algorithms and Flowcharts
Basic Slides on Algorithms and FlowchartsBasic Slides on Algorithms and Flowcharts
Basic Slides on Algorithms and Flowcharts
 
Lecture1-Algorithms-and-Flowcharts-ppt.ppt
Lecture1-Algorithms-and-Flowcharts-ppt.pptLecture1-Algorithms-and-Flowcharts-ppt.ppt
Lecture1-Algorithms-and-Flowcharts-ppt.ppt
 
Algorithmsandflowcharts1
Algorithmsandflowcharts1Algorithmsandflowcharts1
Algorithmsandflowcharts1
 
Algorithmsandflowcharts1
Algorithmsandflowcharts1Algorithmsandflowcharts1
Algorithmsandflowcharts1
 
Algorithms and flowcharts1
Algorithms and flowcharts1Algorithms and flowcharts1
Algorithms and flowcharts1
 
algorithms and flow chart overview.pdf
algorithms and flow chart overview.pdfalgorithms and flow chart overview.pdf
algorithms and flow chart overview.pdf
 
Programming fundamentals lecture 4
Programming fundamentals lecture 4Programming fundamentals lecture 4
Programming fundamentals lecture 4
 
AlgorithmAndFlowChart.pdf
AlgorithmAndFlowChart.pdfAlgorithmAndFlowChart.pdf
AlgorithmAndFlowChart.pdf
 
1153 algorithms%20and%20flowcharts
1153 algorithms%20and%20flowcharts1153 algorithms%20and%20flowcharts
1153 algorithms%20and%20flowcharts
 
programming fortran 77 Slide01
programming fortran 77 Slide01programming fortran 77 Slide01
programming fortran 77 Slide01
 
Algorithm and flowchart
Algorithm and flowchartAlgorithm and flowchart
Algorithm and flowchart
 
Algorithms and Flowchart.ppt
Algorithms and Flowchart.pptAlgorithms and Flowchart.ppt
Algorithms and Flowchart.ppt
 
ALGORITHM PPT GUIDE.pdf
ALGORITHM PPT GUIDE.pdfALGORITHM PPT GUIDE.pdf
ALGORITHM PPT GUIDE.pdf
 
3 algorithm-and-flowchart
3 algorithm-and-flowchart3 algorithm-and-flowchart
3 algorithm-and-flowchart
 
UNIT 1.pptx
UNIT 1.pptxUNIT 1.pptx
UNIT 1.pptx
 
Best Techniques To Design Programs - Program Designing Techniques
Best Techniques To Design Programs - Program Designing TechniquesBest Techniques To Design Programs - Program Designing Techniques
Best Techniques To Design Programs - Program Designing Techniques
 
Problem solving using computers - Chapter 1
Problem solving using computers - Chapter 1 Problem solving using computers - Chapter 1
Problem solving using computers - Chapter 1
 
Programming fundamentals lecture 2 of c
Programming fundamentals lecture 2 of cProgramming fundamentals lecture 2 of c
Programming fundamentals lecture 2 of c
 
ICP - Lecture 6
ICP - Lecture 6ICP - Lecture 6
ICP - Lecture 6
 

Último

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Krashi Coaching
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
SoniaTolstoy
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 

Último (20)

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 

01 Algorithms And Flowcharts.ppt

  • 2. ALGORITHMS AND FLOWCHARTS  A typical programming task can be divided into two phases:  Problem solving phase  produce an ordered sequence of steps that describe solution of problem  this sequence of steps is called an algorithm  Implementation phase  implement the program in some programming language
  • 3. Steps in Problem Solving  First produce a general algorithm (one can use pseudocode)  Refine the algorithm successively to get step by step detailed algorithm that is very close to a computer language.  Pseudocode is an artificial and informal language that helps programmers develop algorithms. Pseudocode is very similar to everyday English.
  • 4. Pseudocode & Algorithm  Example 1: Write an algorithm to determine a student’s final grade and indicate whether it is passing or failing. The final grade is calculated as the average of four marks.
  • 5. Pseudocode & Algorithm Pseudocode:  Input a set of 4 marks  Calculate their average by summing and dividing by 4  if average is below 50 Print “FAIL” else Print “PASS”
  • 6. Pseudocode & Algorithm  Detailed Algorithm  Step 1: Input M1,M2,M3,M4 Step 2: GRADE  (M1+M2+M3+M4)/4 Step 3: if (GRADE < 50) then Print “FAIL” else Print “PASS” endif
  • 7. The Flowchart  (Dictionary) A schematic representation of a sequence of operations, as in a manufacturing process or computer program.  (Technical) A graphical representation of the sequence of operations in an information system or program. Information system flowcharts show how data flows from source documents through the computer to final distribution to users. Program flowcharts show the sequence of instructions in a single program or subroutine. Different symbols are used to draw each type of flowchart.
  • 8. The Flowchart A Flowchart shows logic of an algorithm emphasizes individual steps and their interconnections e.g. control flow from one action to the next
  • 9. Flowchart Symbols Basic Oval Parallelogram Rectangle Diamond Hybrid Name Symbol Use in Flowchart Denotes the beginning or end of the program Denotes an input operation Denotes an output operation Denotes a decision (or branch) to be made. The program should continue along one of two routes. (e.g. IF/THEN/ELSE) Denotes a process to be carried out e.g. addition, subtraction, division etc. Flow line Denotes the direction of logic flow in the program
  • 10. Example PRINT “PASS” Step 1: Input M1,M2,M3,M4 Step 2: GRADE  (M1+M2+M3+M4)/4 Step 3: if (GRADE <50) then Print “FAIL” else Print “PASS” endif START Input M1,M2,M3,M4 GRADE(M1+M2+M3+M4)/4 IS GRADE<5 0 PRINT “FAIL” STOP Y N
  • 11. Example 2  Write an algorithm and draw a flowchart to convert the length in feet to centimeter. Pseudocode:  Input the length in feet (Lft)  Calculate the length in cm (Lcm) by multiplying LFT with 30  Print length in cm (LCM)
  • 12. Example 2 Algorithm  Step 1: Input Lft  Step 2: Lcm  Lft x 30  Step 3: Print Lcm START Input Lft Lcm  Lft x 30 Print Lcm STOP Flowchart
  • 13. Example 3 Write an algorithm and draw a flowchart that will read the two sides of a rectangle and calculate its area. Pseudocode  Input the width (W) and Length (L) of a rectangle  Calculate the area (A) by multiplying L with W  Print A
  • 14. Example 3 Algorithm  Step 1: Input W,L  Step 2: A  L x W  Step 3: Print A START Input W, L A  L x W Print A STOP
  • 15. Example 4  Write an algorithm and draw a flowchart that will calculate the roots of a quadratic equation  Hint: d = sqrt ( ), and the roots are: x1 = (–b + d)/2a and x2 = (–b – d)/2a 2 0 ax bx c    2 4 b ac 
  • 16. Example 4 Pseudocode:  Input the coefficients (a, b, c) of the quadratic equation  Calculate d  Calculate x1  Calculate x2  Print x1 and x2
  • 17. Example 4  Algorithm:  Step 1: Input a, b, c  Step 2: d  sqrt ( )  Step 3: x1  (–b + d) / (2 x a)  Step 4: x2  (–b – d) / (2 x a)  Step 5: Print x1, x2 START Input a, b, c d  sqrt(b x b – 4 x a x c) Print x1 ,x2 STOP x1 (–b + d) / (2 x a) X2  (–b – d) / (2 x a) 4 b b a c    
  • 18. DECISION STRUCTURES  The expression A>B is a logical expression  it describes a condition we want to test  if A>B is true (if A is greater than B) we take the action on left  print the value of A  if A>B is false (if A is not greater than B) we take the action on right  print the value of B
  • 20. IF–THEN–ELSE STRUCTURE  The structure is as follows If condition then true alternative else false alternative endif
  • 21. IF–THEN–ELSE STRUCTURE  The algorithm for the flowchart is as follows: If A>B then print A else print B endif is A>B Print B Print A Y N
  • 22. Relational Operators Relational Operators Operator Description > Greater than < Less than = Equal to  Greater than or equal to  Less than or equal to  Not equal to
  • 23. Example 5  Write an algorithm that reads two values, determines the largest value and prints the largest value with an identifying message. ALGORITHM Step 1: Input VALUE1, VALUE2 Step 2: if (VALUE1 > VALUE2) then MAX  VALUE1 else MAX  VALUE2 endif Step 3: Print “The largest value is”, MAX
  • 24. Example 5 MAX  VALUE1 Print “The largest value is”, MAX STOP Y N START Input VALUE1,VALUE2 MAX  VALUE2 is VALUE1>VALUE2
  • 25. NESTED IFS  One of the alternatives within an IF– THEN–ELSE statement may involve further IF–THEN–ELSE statement
  • 26. Example 6  Write an algorithm that reads three numbers and prints the value of the largest number.
  • 27. Example 6 Step 1: Input N1, N2, N3 Step 2: if (N1>N2) then if (N1>N3) then MAX  N1 [N1>N2, N1>N3] else MAX  N3 [N3>N1>N2] endif else if (N2>N3) then MAX  N2 [N2>N1, N2>N3] else MAX  N3 [N3>N2>N1] endif endif Step 3: Print “The largest number is”, MAX
  • 28. Example 6  Flowchart: Draw the flowchart of the above Algorithm.
  • 29. Example 7  Write and algorithm and draw a flowchart to a) read an employee name (NAME), overtime hours worked (OVERTIME), hours absent (ABSENT) and b) determine the bonus payment (PAYMENT).
  • 30. Example 7 Bonus Schedule OVERTIME – (2/3)*ABSENT Bonus Paid >40 hours >30 but  40 hours >20 but  30 hours >10 but  20 hours  10 hours $50 $40 $30 $20 $10
  • 31. Step 1: Input NAME,OVERTIME,ABSENT Step 2: if (OVERTIME–(2/3)*ABSENT > 40) then PAYMENT  50 else if (OVERTIME–(2/3)*ABSENT > 30) then PAYMENT  40 else if (OVERTIME–(2/3)*ABSENT > 20) then PAYMENT  30 else if (OVERTIME–(2/3)*ABSENT > 10) then PAYMENT 20 else PAYMENT  10 endif Step 3: Print “Bonus for”, NAME “is $”, PAYMENT
  • 32. Example 7  Flowchart: Draw the flowchart of the above algorithm?