SlideShare uma empresa Scribd logo
1 de 15
Persamaan Schroedinger
Postulat-postulat dasar Mekanika Kuantum
Postulat I: Setiap sistem fisis dinyatakan dengan fungsi gelombang atau fungsi
keadaan,           , yang secara implisit memuat informasi lengkap
mengenai observabel-observabel yang dapat diketahui pada sistem
tersebut.

Postulat II: Setiap observabel dinyatakan atau diwakili oleh suatu operator
linear hermitan.

Operator
Operator adalah suatu instruksi matematis yang bila dikenakan atau
dioperasikan pada suatu fungsi maka akan mengubah fungsi tersebut menjadi
fungsi lain. Untuk operator    dapat ditulis sebagai


[Tanda aksen ‘ bukan berarti diferensial atau turunan, tapi hanya untuk
membedakan dengan fungsi asalnya].

Beberapa Operator Observabel

 No. Observabel                           Operator
 1.    Posisi
 2.    Momentum Linier




 3.    Momentum Sudut




 4.    Energi                   Kinetik
Persamaan Schroedinger
 5.    Energi Potensial


 6.    Energi Total




Persamaan schroedinger bebas waktu

Jika fungsi potensial tidak bergantung waktu, bagaimanakah bentuk persamaan
Schroedinger untuk kasus dengan potensial bebas waktu V(x)?
Untuk kasus seperti itu persamaan gelombang Schroedinger



Bila dilakukan separasi variable (pemisahan peubah) dalam solusi persamaan di atas
sehingga                      lalu substitusikan dalam persamaan Schroedinger bebas
waktu menghasilkan :




dan dapat ditulis pula kedalam bentuk :




Dari persamaan di atas jelas terlihat bahwa ruas kiri dari persamaan tersebut hanya
mengandung variable x, dan ruas tengah hanya mengandung variable t. Sedangkan
persamaan itu berlaku untuk semua harga x maupun t. Hal ini hanya berlaku jika ruas kiri
dan ruas tengah selalu bernilai tetap, misalkan sama dengan G.


Dengan demikian dapat diperoleh dua persamaan berikut :
Persamaan Schroedinger




Solusi dari persamaan                      adalah                 , dengan G = E, yang

merupakan energy total partikel yang direpresentasikan oleh fungsi gelombang          .
Berikut penjelasannya :


Perhatikan persamaan                                             dan



                                                                                   lalu

bandingkan


dengan persamaan                                     maka didapat ungkapan :




sehingga otomatis nilai G sama besarnya dengan energi total partikel E. Dengan demikian
untuk kasus dengan fungsi potensial tidak bergantung waktu, diperoleh persamaan
Schroedinger bebas waktu (PSBW) :




dengan fungsi gelombang total:

persamaan                                                , yang dapat ditulis sebagai

                    dinamakan persamaan harga eigen, dan harga tetap E yang
merupakan solusi yang dikenal sebagai nama persamaan karakteristik, suatu topik penting
dalam pembelajaran tentang persamaan diferensial.




Sumur Potensial Persegi Tak Terhingga
Persamaan Schroedinger
Andaikanlah suatu elektron dalam pengaruh potensial berbentuk sumur tak terhingga
berdimensi-1 seperti berikut




Elektron terperangkap dalam daerah –             , dan sama sekali tak dapat ke luar daerah
itu. Dengan perkata lain peluang elektron berada di         dan di        sama dengan nol.
Oleh sebab itu, jika     adalah fungsi gelombangnya, maka :


Karena          dalam daerah –             , maka persamaan Schrödinger bagi electron
tersebut adalah:



Solusinya adalah                    dan                     . dengan syarat batas di
diperoleh :




Harga C dan D dihitung melalui normalisasi fungsi, yakni:

Hasilnya adalah                , sehingga fungsi-fungsi eigen adalah :
Persamaan Schroedinger




Fungsi-fungsi ini membentuk set ortonormal; artinya:


Selanjutnya, diperoleh harga eigen energi:




Energi ini berharga diskrit (tidak kontinu, tapi bertingkat-tingkat) ditandai oleh bilangan
kuantum n.




Applications of the Schrödinger equation in nonperiodic semiconductor structures


The infinite square-shaped quantum well
The infinite square-shaped well potential is the simplest of all possible potential wells. The
infinite square well potential is illustrated in Fig. 7.1(a) and is defined as


U(x)=0                 (-1/2    x   ½L )……………………………….(7.1)
U(x)=                  (       1/2 L)……………………………………(7.2)
Persamaan Schroedinger




To find the stationary solutions for ψn(x) and En we must find functions for ψn(x) which
satisfy the Schrödinger equation. The time-independent Schrödinger equation, contains
only the differential operator d/dx, whose eigenfunctions are exponential or sinusoidal
functions. Since the Schrödinger equation has the form of an eigenvalue equation, it is
reasonable to try only eigenfunctions of the differential operator. Furthermore, we assume
that ψn(x)=0 for        L/2 , because the potential energy is infinitely high in the barrier
regions. Since the 3rd Postulate requires that the wave function be continuous, the wave
function must have zero amplitude at the
two potential discontinuities, that is ψn(x= ± L/2)=0 We therefore employ sinusoidal
functions and differentiate between states of even and odd symmetry. We write for even
symmetry states


ψn(x)=                                 (n = 0,2,4,…and   L/2 )……………………………(7.3)

and for odd-symmetry states

ψn(x)=                                 (n =1,3,5…and     L/2 )……………………………(7.4)


Both functions have a finite amplitude in the well-region (      L/2 ) and they have zero
amplitude in the barriers, that is :


ψn(x)=0                                (n = 0,1,2,…and    L/2 )……………………………(7.3)
Persamaan Schroedinger
The shapes of the three lowest wave functions (n = 0, 1, 2,...) are shown in Fig . 7.1(b). In
order to normalize the wave functions, the constant A must be determined. The condition
      = 1 yields
       A=          ……………………………………………………….(7.6)


One can verify that Eqs. (7.3) and (7.4) are solutions of the infinite square well by inserting
the normalized wave functions into the Schrödinger equation. Insertion of the ground-state
wave function (n = 0) into the Schrödinger equation yields




Calculating the derivative on the left-hand side of the equation yields the ground sate
energy of the infinite square well



The excited state energies (n = 1, 2, 3, …) can be evaluated analogously. One obtains the
eigenstate energies in the infinite square well according to




The spacing between two adjacent energy levels, that is En – En-1, is proportional to n. Thus,
the energetic spacing between states increases with energy. The energy levels are
schematically
shown in Fig . 7.1(b) for the infinite square well. The probability density of a particle
described by the wave function ψ is given by ψ* ψ (2nd Postulate). The probability
densities of the three lowest states are shown in Fig . 7.1(c). The eigenstate energies are, as
already mentioned, expectation values of the total energy of the respective state. It is
therefore interesting to know if the eigenstate energies are purely kinetic, purely potential,
or a mixture of both. The expectation value of the kinetic energy of the ground state is
calculated according to the 5th Postulate:
Persamaan Schroedinger




Using the momentum operator p = (ħ / i) (d / dx) one obtains the expectation value of the
kinetic energy of the ground state




which is identical to the total energy given in Eq. (7.8). Evaluation of kinetic energies of all
other states yields




The kinetic energy coincides with the total energy given in Eq. (7.9). Thus, the energy of a
particle in an infinite square well is purely kinetic. The particle has no potential energy.
We next turn to a second, more intuitive method to obtain the wave functions of the infinite
potential well. This second method is based on the de Broglie wave concept. Recall that the
de . Broglie wave is defined for a constant momentum p, that is for a particle in a constant
potential.
The energy of the wave is purely kinetic. In order to find solutions of the infinite square
well, we
match the de Broglie wavelength to the width of the quantum well according to the
condition




In this equation, multiples of half of the de Broglie wavelength are matched to the width of
the quantum well. Expressing the kinetic energy in terms of the de Broglie wavelength, that
is




and inserting Eq. (7.13) into Eq. (7.14) yields
Persamaan Schroedinger




This equation is identical to Eq. (7.12) which was obtained by the solution of the
Schrödinger equation. The de Broglie wave concept yields the correct solution of the
infinite potential well,
because (i) the particle is confined to the constant potential of the well region, (ii) the
energy of
particle is purely kinetic, and (iii) the wave function is sinusoidal.


The infinite square shaped quantum well is the simplest of all potential wells. The wave
functions (eigenfunctions) and energies (eigenvalues) in an infinite square well are
relatively
simple. There is a large number of potential wells with other shapes, for example the
square well
with finite barriers, parabolic well, triangular well, or V-shaped well. The exact solutions of
these wells are more complicated. Several methods have been developed to calculate
approximate solutions for arbitrary shaped potential wells. These methods will be
discussed in the Chapter on quantum wells in this book.




The asymmetric and symmetric finite square-shaped quantum well
In contrast to the infinite square well, the finite square well has barriers of finite height. The
potential of a finite square well is shown in Fig . 7.2. The two barriers of the well have a
different height and therefore, the structure is denoted asymmetric square well. The
potential energy is constant within the three regions I, II, and III, as shown in Fig . 7.2. In
order to obtain the solutions to the Schrödinger equation for the square well potential, the
solutions in a constant potential will be considered first.
Persamaan Schroedinger




Assume that a particle with energy E is in a constant potential U. Then two cases can be
distinguished, namely E > U and E < U. In the first case (E > U) the general solution to the
time
independent one-dimensional Schrödinger equation is given by


                             ψ(x) = A cos kx + B sin kx……………………………………..(7.16)
where A and B are constants and


Insertion of the solution into the Schrödinger equation proves that it is indeed a correct
solution.
Thus the wave function is an oscillatory sinusoidal function in a constant potential with E >
U. In the second case (E < U), the solution of the time-independent one-dimensional
Schrödinger
equation is given by
                             ψ(x) = C ekx + De-kx……………………………………..(7.18)


where C and D are constants and



                                    ………………………(7.19)

Again, the insertion of the solution into the Schrödinger equation proves that it is indeed a
correct solution. Thus the wave function is an exponentially growing or decaying function in
a
constant potential with E < U.


Next, the solutions of an asymmetric and symmetric square well will be calculated. The
Persamaan Schroedinger
potential energy of the well is piecewise constant, as shown in Fig . 7.2. Having shown that
the
wave functions in a constant potential are either sinusoidal or exponential, the wave
functions in the three regions I (x ≤ 0) II (0 < x < L), and III (x ≥ L), can be written as


                …………………………………………..(7.20)
                               ………………….. ………(7.21)
                                            ……………….(7.22)


In this solution, the first boundary condition of the 3rd Postulate, i. e. ψI’(0) = ψIII’ and ψII’
(L) and ψIII’(L) , the following two equations are obtained :
                                       ……………………………………(7.23)
                                                            …..(7.24)


This homogeneous system of equations has solutions, only if the determinant of the system
vanishes. From this condition, one obtains


                                     ………………………………………..(7.25)


which is the eigenvalue equation of the finite asymmetric square well. For the finite
symmetric square well, which is of great practical relevance, the eigenvalue equation is
given by :

                                    ………………………………………….(7.26)

Where K = KI = KIII. If K is expressed as a function of k (see Eq. 7.19), then Eq. (7.26) depends
only on a single variable, i. e., k. Solving the eigenvalue equation yields the eigenvalues of k
and, by using Eqs. (7.17) and (7.19), the allowed energies E and decay constants K,
respectively. The allowed energies are also called the eigenstate energies of the potential.
Inspection of Eq. (7.26) yields that the eigenvalue equation has a trivial solution kL = 0
(and thus E = 0) which possesses no practical relevance. Non-trivial solutions of the
eigenvalue equation can be obtained by a graphical method. Figure 7.3 shows the graph of
the left-hand and right-hand side of the eigenvalue equation. The dashed curve represents
Persamaan Schroedinger
the right-hand side of the eigenvalue equation. The intersections of the dashed curve with
the periodic tangent function are the solutions of the eigenvalue equation. The quantum
state with the lowest non-trivial solution is called the ground state of the well. States of
higher energy are referred to as excited states .




The dashed curve shown in Fig . 7.3 has two significant points, namely a pole and an end
point. The dashed curve has a pole when the denominator of the right-hand side of the
eigenvalue equation vanishes, i. e., when kL = KL Using Eq. (7.19), it is given by :


Pole:                                        …………………………………(7.27)
The dashed curve ends when k = (2mU/ 2)1/2 If k exceeds this value, the square root in Eq.
(7.19) becomes imaginary. The end point of the dashed curve is thus given by :


And point :                                   …………………………………(7.28)




There are no further bound state solutions to the eigenvalue equation beyond the end
point. Now that the eigenvalues of k and K are known they are inserted into Eqs. (7.23) and
(7.24) which allows for the determination of the constants A and B and the wave functions.
Thus the allowed energies and the wave functions of the square well have been
determined.
It is possible to show that all states with even quantum numbers (n = 0, 1, 2, ...) are of even
symmetry with respect to the center of the well, i. e. ψ (x) = ψ (-x) All states with odd
quantum numbers (n = 1, 3, 5, ...) are of odd symmetry with respect to the center of the
well, i. e.


ψ (x) = ψ (-x) The even and odd state wave functions in the well are thus of the form

                             (for n=0,2,4,…) ……………………..(7.29)

And

                              (for n=1,3,5,…) ……………………..(7.30)
Persamaan Schroedinger
The proof of these equations is left to the reader. The three lowest wave functions of a
symmetric
square well are shown in Fig . 7.4.




Elektron Berada Dalam Sumur Potensial
Sumur potensial adalah daerah yang tidak mendapat pengaruh potensial sedangkan
daerah mendapat pengaruh potensial. Hal ini berarti bahwa jelektron, selama ia berada
berada dalam sumur potensial, merupakan elektron-bebas. Kita katakana bahwa elektron
terjebak di sumur potensial, dan kita anggap bahwa dinding potensial sangat tinggi menuju
∞ sedangkan di daerah II, yaitu antara 0 dan L,
V = 0. Kita katakan bahwa lebar sumur potensial ini adalah L.




Gb. Elektron dalam sumur potensial (daerah II).
Pada sumur potensial yang dalam, daerah I dan III adalah daerah dimana
emungkinan keberadaan elektron bisa dianggap nol, ψ (x) =0 dan ψ (x) =0 . Solusi
persamaan Schrödinger untuk daerah II adalah solusi untuk elektronbebas
                            ………………………………(3.21)
Persyaratan kekontinyuan di x = 0 mengharuskan
Persamaan Schroedinger
         BI + B2 = ψ1 (0) = 0 B1=B2
dan persyaratan kekontinyuan di L mengharuskan
                                            sehingga



                        …………………………..(3.22)

Persamaan (3.22) mengharuskan k2L= nπ atau k2 =           (dengan n bilangan bulat), sehingga

fungsi gelombang di daerah II menjadi


Ψ*(x) ψ2(x)=4B22                           ……………….(3.23)

Untuk n = 1, fungsi ini bernilai nol di x =0 dan x =L , dan maksimum di x =L/ 2 . Untuk n
= 2, nilai nol terjadi di x = 0, L/2, dan L. Untuk n = 3, nilai nol terjadi di x = 0, L/3, 2L/3,
dan L; dan seterusnya, seperti terlihat pada Gb.3.3. Selain di x = 0, jumlah titik
simpul gelombang, yaitu titik di mana fungsinya bernilai nol, sama dengan nilai n.




Karena    di   daerah    II   V   =   0,   maka                   atau                . Dengan
memasukkan nilai k2 kita peroleh energi elektron:

                        ……………………………………(3.25)

Kita lihat di sini bahwa energi elektron mempunyai nilainilai tertentu yang diskrit, yang
ditentukan oleh bilangan bulat n. Nilai diskrit ini terjadi karena pembatasan yang
harus dialami oleh ψ2, yaitu bahwa ia harus berada dalam sumur potensial. Ia harus
bernilai nol di batasbatas dinding potensial dan hal itu akan terjadi bila lebar sumur
potensial L sama dengan bilangan bulat kali setengah panjang gelombang. Jika tingkat
energi untuk n = 1 kita sebut tingkat energi yang pertama, maka tingkat energi yang kedua
Persamaan Schroedinger
pada n = 2, tingkat energi yang ketiga pada n = 3 dan seterusnya.
Jika kita kaitkan dengan bentuk gelombangnya, dapat kita katakan bahwa tingkat
tingkat energi tersebut sesuai dengan jumlah titik simpul gelombang.


Dengan demikian maka diskritisasi energi elektron terjadi secara wajar melalui
pemecahan persamaan Schödinger. Hal ini berbeda dari pendekatan Bohr yang harus
membuat postulat mengenai momentum sudut yang harus diskrit agar kuantisasi
energi terjadi.


Persamaan (3.25) memperlihatkan bahwa selisih energi antara satu tingkat dengan
tingkat berikutnya, misalnya antara n = 1 dan n = 2, berbanding terbalik dengan
kwadrat lebar sumur potensial. Makin lebar sumur ini, makin kecil selisih energi
tersebut, artinya tingkattingkat energi semakin rapat. Untuk L sama dengan satu
satuan misalnya, selisih energi untuk n=2 dan n=1 adalah E2 – E1 =3h2/8m dan jika
L 10 kali lebih lebar maka selisih ini menjadi E2 – E1 =0,0h32/8m. gb.3.4




Di x = 0 dan x = L amplitudo gelombang tidak lagi nol dan demikian juga
probabilitas keberadaan elektronnya. Selain itu penurunan amplitudo akan makin
lambat jika sumur potensial makin dangkal. Hal ini berarti bahwa makin dangkal

Mais conteúdo relacionado

Mais procurados

teori Bohr tentang Atom Hidrogen
teori Bohr tentang Atom Hidrogenteori Bohr tentang Atom Hidrogen
teori Bohr tentang Atom Hidrogen
Khotim U
 
Statistik Maxwell-Boltzmann & Interpretasi Statistik tentang Entropi
Statistik Maxwell-Boltzmann & Interpretasi Statistik tentang EntropiStatistik Maxwell-Boltzmann & Interpretasi Statistik tentang Entropi
Statistik Maxwell-Boltzmann & Interpretasi Statistik tentang Entropi
Samantars17
 
Bab 3 b5 persamaan schrodinger
Bab 3 b5 persamaan schrodingerBab 3 b5 persamaan schrodinger
Bab 3 b5 persamaan schrodinger
Nur Yunani Yuna
 

Mais procurados (20)

teori Bohr tentang Atom Hidrogen
teori Bohr tentang Atom Hidrogenteori Bohr tentang Atom Hidrogen
teori Bohr tentang Atom Hidrogen
 
Statistik Fermi dirac
Statistik Fermi diracStatistik Fermi dirac
Statistik Fermi dirac
 
Partikel Elementer
Partikel ElementerPartikel Elementer
Partikel Elementer
 
Fisika kuantum part 4
Fisika kuantum part 4Fisika kuantum part 4
Fisika kuantum part 4
 
Fisika Kuantum (4) metodologi
Fisika Kuantum (4) metodologiFisika Kuantum (4) metodologi
Fisika Kuantum (4) metodologi
 
Bab iii(fix)
Bab iii(fix)Bab iii(fix)
Bab iii(fix)
 
Ppt 2 difraksi kristal dan kisi balik
Ppt 2 difraksi kristal dan kisi balikPpt 2 difraksi kristal dan kisi balik
Ppt 2 difraksi kristal dan kisi balik
 
Fisika inti diktat
Fisika inti diktatFisika inti diktat
Fisika inti diktat
 
Statistik Maxwell-Boltzmann & Interpretasi Statistik tentang Entropi
Statistik Maxwell-Boltzmann & Interpretasi Statistik tentang EntropiStatistik Maxwell-Boltzmann & Interpretasi Statistik tentang Entropi
Statistik Maxwell-Boltzmann & Interpretasi Statistik tentang Entropi
 
Bab 3 b5 persamaan schrodinger
Bab 3 b5 persamaan schrodingerBab 3 b5 persamaan schrodinger
Bab 3 b5 persamaan schrodinger
 
MODUL FISIKA KUANTUM
MODUL FISIKA KUANTUMMODUL FISIKA KUANTUM
MODUL FISIKA KUANTUM
 
Efek zeeman
Efek zeemanEfek zeeman
Efek zeeman
 
Laporan praktikum lanjutan fisika inti spektroskopi sinar gamma
Laporan praktikum lanjutan  fisika inti spektroskopi sinar gammaLaporan praktikum lanjutan  fisika inti spektroskopi sinar gamma
Laporan praktikum lanjutan fisika inti spektroskopi sinar gamma
 
PERCOBAAN GEIGER MULLER
PERCOBAAN GEIGER MULLERPERCOBAAN GEIGER MULLER
PERCOBAAN GEIGER MULLER
 
Fisika Kuantum part 2
Fisika Kuantum part 2Fisika Kuantum part 2
Fisika Kuantum part 2
 
Fisika modern
Fisika modernFisika modern
Fisika modern
 
Laporan praktikum Efek Fotolistrik
Laporan praktikum Efek FotolistrikLaporan praktikum Efek Fotolistrik
Laporan praktikum Efek Fotolistrik
 
Sifat gelombang de broglie
Sifat gelombang de broglieSifat gelombang de broglie
Sifat gelombang de broglie
 
Peluruhan alfa
Peluruhan alfaPeluruhan alfa
Peluruhan alfa
 
Fisika Inti
Fisika IntiFisika Inti
Fisika Inti
 

Semelhante a Persamaan schroedinger bebas waktu

Born oppenheimer p1 7
Born oppenheimer p1 7Born oppenheimer p1 7
Born oppenheimer p1 7
Lim Wei
 
Quantum physics the bottom up approach
Quantum physics the bottom up approachQuantum physics the bottom up approach
Quantum physics the bottom up approach
Springer
 

Semelhante a Persamaan schroedinger bebas waktu (20)

HYDROGEN ATOM.ppt
HYDROGEN ATOM.pptHYDROGEN ATOM.ppt
HYDROGEN ATOM.ppt
 
Quantum Mechanics II.ppt
Quantum Mechanics II.pptQuantum Mechanics II.ppt
Quantum Mechanics II.ppt
 
TR-6.ppt
TR-6.pptTR-6.ppt
TR-6.ppt
 
Trm 7
Trm 7Trm 7
Trm 7
 
Quantum course
Quantum courseQuantum course
Quantum course
 
Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2
 
CHAPTER 6 Quantum Mechanics II
CHAPTER 6 Quantum Mechanics IICHAPTER 6 Quantum Mechanics II
CHAPTER 6 Quantum Mechanics II
 
Wave mechanics, 8(4)
Wave mechanics,  8(4) Wave mechanics,  8(4)
Wave mechanics, 8(4)
 
Stephy index page no 1 to 25 2
Stephy  index page no 1 to 25 2Stephy  index page no 1 to 25 2
Stephy index page no 1 to 25 2
 
Born oppenheimer p1 7
Born oppenheimer p1 7Born oppenheimer p1 7
Born oppenheimer p1 7
 
Hydrogen spectrum analysis by simulation
Hydrogen spectrum analysis by simulationHydrogen spectrum analysis by simulation
Hydrogen spectrum analysis by simulation
 
Atom hidrogen
Atom hidrogenAtom hidrogen
Atom hidrogen
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
Quantum physics the bottom up approach
Quantum physics the bottom up approachQuantum physics the bottom up approach
Quantum physics the bottom up approach
 
Schrödinger wave equation
Schrödinger wave equationSchrödinger wave equation
Schrödinger wave equation
 
4 b5lecture62008
4 b5lecture620084 b5lecture62008
4 b5lecture62008
 
Chemistry Assignment Help
Chemistry Assignment HelpChemistry Assignment Help
Chemistry Assignment Help
 
Problem and solution i ph o 7
Problem and solution i ph o 7Problem and solution i ph o 7
Problem and solution i ph o 7
 
7th i ph_o_1974
7th i ph_o_19747th i ph_o_1974
7th i ph_o_1974
 
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan DashConcepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
 

Mais de Fani Diamanti

Presentasi Makalah Open Ended OSN Pertamina 2012
Presentasi Makalah Open Ended OSN Pertamina 2012Presentasi Makalah Open Ended OSN Pertamina 2012
Presentasi Makalah Open Ended OSN Pertamina 2012
Fani Diamanti
 
Measuring instrument task
Measuring instrument taskMeasuring instrument task
Measuring instrument task
Fani Diamanti
 
'Mekanika' tugas fisdas dari mner wagania
'Mekanika' tugas fisdas dari mner wagania'Mekanika' tugas fisdas dari mner wagania
'Mekanika' tugas fisdas dari mner wagania
Fani Diamanti
 
'Mekanika' tugas fisdas dari mner dungus
'Mekanika' tugas fisdas dari mner dungus'Mekanika' tugas fisdas dari mner dungus
'Mekanika' tugas fisdas dari mner dungus
Fani Diamanti
 
Laporan koefisien gesekan
Laporan koefisien gesekanLaporan koefisien gesekan
Laporan koefisien gesekan
Fani Diamanti
 
Laporan osilasi harmonik
Laporan osilasi harmonikLaporan osilasi harmonik
Laporan osilasi harmonik
Fani Diamanti
 
BAB 3 Gaya Pegas (Bilingual)
BAB 3 Gaya Pegas (Bilingual)BAB 3 Gaya Pegas (Bilingual)
BAB 3 Gaya Pegas (Bilingual)
Fani Diamanti
 
Light dependent resistor
Light dependent resistorLight dependent resistor
Light dependent resistor
Fani Diamanti
 
Laporan spektrometer atom
Laporan spektrometer atomLaporan spektrometer atom
Laporan spektrometer atom
Fani Diamanti
 
Laporan konstanta rydberg
Laporan konstanta rydbergLaporan konstanta rydberg
Laporan konstanta rydberg
Fani Diamanti
 
Contextual Teaching and Learning
Contextual Teaching and LearningContextual Teaching and Learning
Contextual Teaching and Learning
Fani Diamanti
 
Sumur potensial persegi tak terhingga
Sumur potensial persegi tak terhinggaSumur potensial persegi tak terhingga
Sumur potensial persegi tak terhingga
Fani Diamanti
 
Anak didik sebagai komponen pendidikan
Anak didik sebagai komponen pendidikanAnak didik sebagai komponen pendidikan
Anak didik sebagai komponen pendidikan
Fani Diamanti
 
Pendidikan sebagai ilmu pengetahuan
Pendidikan sebagai ilmu pengetahuanPendidikan sebagai ilmu pengetahuan
Pendidikan sebagai ilmu pengetahuan
Fani Diamanti
 
Perkembangan nilai dan sikap
Perkembangan nilai dan sikapPerkembangan nilai dan sikap
Perkembangan nilai dan sikap
Fani Diamanti
 

Mais de Fani Diamanti (20)

Geometric optics
Geometric optics Geometric optics
Geometric optics
 
Presentasi Makalah Open Ended OSN Pertamina 2012
Presentasi Makalah Open Ended OSN Pertamina 2012Presentasi Makalah Open Ended OSN Pertamina 2012
Presentasi Makalah Open Ended OSN Pertamina 2012
 
Pemanfaatan Energi Surya Melalui Teknologi Non-Photo Voltaic
Pemanfaatan Energi Surya Melalui Teknologi Non-Photo VoltaicPemanfaatan Energi Surya Melalui Teknologi Non-Photo Voltaic
Pemanfaatan Energi Surya Melalui Teknologi Non-Photo Voltaic
 
Measuring instrument task
Measuring instrument taskMeasuring instrument task
Measuring instrument task
 
'Mekanika' tugas fisdas dari mner wagania
'Mekanika' tugas fisdas dari mner wagania'Mekanika' tugas fisdas dari mner wagania
'Mekanika' tugas fisdas dari mner wagania
 
'Mekanika' tugas fisdas dari mner dungus
'Mekanika' tugas fisdas dari mner dungus'Mekanika' tugas fisdas dari mner dungus
'Mekanika' tugas fisdas dari mner dungus
 
Laporan koefisien gesekan
Laporan koefisien gesekanLaporan koefisien gesekan
Laporan koefisien gesekan
 
Laporan osilasi harmonik
Laporan osilasi harmonikLaporan osilasi harmonik
Laporan osilasi harmonik
 
BAB 3 Gaya Pegas (Bilingual)
BAB 3 Gaya Pegas (Bilingual)BAB 3 Gaya Pegas (Bilingual)
BAB 3 Gaya Pegas (Bilingual)
 
Light dependent resistor
Light dependent resistorLight dependent resistor
Light dependent resistor
 
Laporan spektrometer atom
Laporan spektrometer atomLaporan spektrometer atom
Laporan spektrometer atom
 
Laporan konstanta rydberg
Laporan konstanta rydbergLaporan konstanta rydberg
Laporan konstanta rydberg
 
Laporan spektrometer atom
Laporan spektrometer atomLaporan spektrometer atom
Laporan spektrometer atom
 
Contextual Teaching and Learning
Contextual Teaching and LearningContextual Teaching and Learning
Contextual Teaching and Learning
 
Sumur potensial persegi tak terhingga
Sumur potensial persegi tak terhinggaSumur potensial persegi tak terhingga
Sumur potensial persegi tak terhingga
 
Black body radiation
Black body radiationBlack body radiation
Black body radiation
 
Long life education
Long life educationLong life education
Long life education
 
Anak didik sebagai komponen pendidikan
Anak didik sebagai komponen pendidikanAnak didik sebagai komponen pendidikan
Anak didik sebagai komponen pendidikan
 
Pendidikan sebagai ilmu pengetahuan
Pendidikan sebagai ilmu pengetahuanPendidikan sebagai ilmu pengetahuan
Pendidikan sebagai ilmu pengetahuan
 
Perkembangan nilai dan sikap
Perkembangan nilai dan sikapPerkembangan nilai dan sikap
Perkembangan nilai dan sikap
 

Último

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Último (20)

Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 

Persamaan schroedinger bebas waktu

  • 1. Persamaan Schroedinger Postulat-postulat dasar Mekanika Kuantum Postulat I: Setiap sistem fisis dinyatakan dengan fungsi gelombang atau fungsi keadaan, , yang secara implisit memuat informasi lengkap mengenai observabel-observabel yang dapat diketahui pada sistem tersebut. Postulat II: Setiap observabel dinyatakan atau diwakili oleh suatu operator linear hermitan. Operator Operator adalah suatu instruksi matematis yang bila dikenakan atau dioperasikan pada suatu fungsi maka akan mengubah fungsi tersebut menjadi fungsi lain. Untuk operator dapat ditulis sebagai [Tanda aksen ‘ bukan berarti diferensial atau turunan, tapi hanya untuk membedakan dengan fungsi asalnya]. Beberapa Operator Observabel No. Observabel Operator 1. Posisi 2. Momentum Linier 3. Momentum Sudut 4. Energi Kinetik
  • 2. Persamaan Schroedinger 5. Energi Potensial 6. Energi Total Persamaan schroedinger bebas waktu Jika fungsi potensial tidak bergantung waktu, bagaimanakah bentuk persamaan Schroedinger untuk kasus dengan potensial bebas waktu V(x)? Untuk kasus seperti itu persamaan gelombang Schroedinger Bila dilakukan separasi variable (pemisahan peubah) dalam solusi persamaan di atas sehingga lalu substitusikan dalam persamaan Schroedinger bebas waktu menghasilkan : dan dapat ditulis pula kedalam bentuk : Dari persamaan di atas jelas terlihat bahwa ruas kiri dari persamaan tersebut hanya mengandung variable x, dan ruas tengah hanya mengandung variable t. Sedangkan persamaan itu berlaku untuk semua harga x maupun t. Hal ini hanya berlaku jika ruas kiri dan ruas tengah selalu bernilai tetap, misalkan sama dengan G. Dengan demikian dapat diperoleh dua persamaan berikut :
  • 3. Persamaan Schroedinger Solusi dari persamaan adalah , dengan G = E, yang merupakan energy total partikel yang direpresentasikan oleh fungsi gelombang . Berikut penjelasannya : Perhatikan persamaan dan lalu bandingkan dengan persamaan maka didapat ungkapan : sehingga otomatis nilai G sama besarnya dengan energi total partikel E. Dengan demikian untuk kasus dengan fungsi potensial tidak bergantung waktu, diperoleh persamaan Schroedinger bebas waktu (PSBW) : dengan fungsi gelombang total: persamaan , yang dapat ditulis sebagai dinamakan persamaan harga eigen, dan harga tetap E yang merupakan solusi yang dikenal sebagai nama persamaan karakteristik, suatu topik penting dalam pembelajaran tentang persamaan diferensial. Sumur Potensial Persegi Tak Terhingga
  • 4. Persamaan Schroedinger Andaikanlah suatu elektron dalam pengaruh potensial berbentuk sumur tak terhingga berdimensi-1 seperti berikut Elektron terperangkap dalam daerah – , dan sama sekali tak dapat ke luar daerah itu. Dengan perkata lain peluang elektron berada di dan di sama dengan nol. Oleh sebab itu, jika adalah fungsi gelombangnya, maka : Karena dalam daerah – , maka persamaan Schrödinger bagi electron tersebut adalah: Solusinya adalah dan . dengan syarat batas di diperoleh : Harga C dan D dihitung melalui normalisasi fungsi, yakni: Hasilnya adalah , sehingga fungsi-fungsi eigen adalah :
  • 5. Persamaan Schroedinger Fungsi-fungsi ini membentuk set ortonormal; artinya: Selanjutnya, diperoleh harga eigen energi: Energi ini berharga diskrit (tidak kontinu, tapi bertingkat-tingkat) ditandai oleh bilangan kuantum n. Applications of the Schrödinger equation in nonperiodic semiconductor structures The infinite square-shaped quantum well The infinite square-shaped well potential is the simplest of all possible potential wells. The infinite square well potential is illustrated in Fig. 7.1(a) and is defined as U(x)=0 (-1/2 x ½L )……………………………….(7.1) U(x)= ( 1/2 L)……………………………………(7.2)
  • 6. Persamaan Schroedinger To find the stationary solutions for ψn(x) and En we must find functions for ψn(x) which satisfy the Schrödinger equation. The time-independent Schrödinger equation, contains only the differential operator d/dx, whose eigenfunctions are exponential or sinusoidal functions. Since the Schrödinger equation has the form of an eigenvalue equation, it is reasonable to try only eigenfunctions of the differential operator. Furthermore, we assume that ψn(x)=0 for L/2 , because the potential energy is infinitely high in the barrier regions. Since the 3rd Postulate requires that the wave function be continuous, the wave function must have zero amplitude at the two potential discontinuities, that is ψn(x= ± L/2)=0 We therefore employ sinusoidal functions and differentiate between states of even and odd symmetry. We write for even symmetry states ψn(x)= (n = 0,2,4,…and L/2 )……………………………(7.3) and for odd-symmetry states ψn(x)= (n =1,3,5…and L/2 )……………………………(7.4) Both functions have a finite amplitude in the well-region ( L/2 ) and they have zero amplitude in the barriers, that is : ψn(x)=0 (n = 0,1,2,…and L/2 )……………………………(7.3)
  • 7. Persamaan Schroedinger The shapes of the three lowest wave functions (n = 0, 1, 2,...) are shown in Fig . 7.1(b). In order to normalize the wave functions, the constant A must be determined. The condition = 1 yields A= ……………………………………………………….(7.6) One can verify that Eqs. (7.3) and (7.4) are solutions of the infinite square well by inserting the normalized wave functions into the Schrödinger equation. Insertion of the ground-state wave function (n = 0) into the Schrödinger equation yields Calculating the derivative on the left-hand side of the equation yields the ground sate energy of the infinite square well The excited state energies (n = 1, 2, 3, …) can be evaluated analogously. One obtains the eigenstate energies in the infinite square well according to The spacing between two adjacent energy levels, that is En – En-1, is proportional to n. Thus, the energetic spacing between states increases with energy. The energy levels are schematically shown in Fig . 7.1(b) for the infinite square well. The probability density of a particle described by the wave function ψ is given by ψ* ψ (2nd Postulate). The probability densities of the three lowest states are shown in Fig . 7.1(c). The eigenstate energies are, as already mentioned, expectation values of the total energy of the respective state. It is therefore interesting to know if the eigenstate energies are purely kinetic, purely potential, or a mixture of both. The expectation value of the kinetic energy of the ground state is calculated according to the 5th Postulate:
  • 8. Persamaan Schroedinger Using the momentum operator p = (ħ / i) (d / dx) one obtains the expectation value of the kinetic energy of the ground state which is identical to the total energy given in Eq. (7.8). Evaluation of kinetic energies of all other states yields The kinetic energy coincides with the total energy given in Eq. (7.9). Thus, the energy of a particle in an infinite square well is purely kinetic. The particle has no potential energy. We next turn to a second, more intuitive method to obtain the wave functions of the infinite potential well. This second method is based on the de Broglie wave concept. Recall that the de . Broglie wave is defined for a constant momentum p, that is for a particle in a constant potential. The energy of the wave is purely kinetic. In order to find solutions of the infinite square well, we match the de Broglie wavelength to the width of the quantum well according to the condition In this equation, multiples of half of the de Broglie wavelength are matched to the width of the quantum well. Expressing the kinetic energy in terms of the de Broglie wavelength, that is and inserting Eq. (7.13) into Eq. (7.14) yields
  • 9. Persamaan Schroedinger This equation is identical to Eq. (7.12) which was obtained by the solution of the Schrödinger equation. The de Broglie wave concept yields the correct solution of the infinite potential well, because (i) the particle is confined to the constant potential of the well region, (ii) the energy of particle is purely kinetic, and (iii) the wave function is sinusoidal. The infinite square shaped quantum well is the simplest of all potential wells. The wave functions (eigenfunctions) and energies (eigenvalues) in an infinite square well are relatively simple. There is a large number of potential wells with other shapes, for example the square well with finite barriers, parabolic well, triangular well, or V-shaped well. The exact solutions of these wells are more complicated. Several methods have been developed to calculate approximate solutions for arbitrary shaped potential wells. These methods will be discussed in the Chapter on quantum wells in this book. The asymmetric and symmetric finite square-shaped quantum well In contrast to the infinite square well, the finite square well has barriers of finite height. The potential of a finite square well is shown in Fig . 7.2. The two barriers of the well have a different height and therefore, the structure is denoted asymmetric square well. The potential energy is constant within the three regions I, II, and III, as shown in Fig . 7.2. In order to obtain the solutions to the Schrödinger equation for the square well potential, the solutions in a constant potential will be considered first.
  • 10. Persamaan Schroedinger Assume that a particle with energy E is in a constant potential U. Then two cases can be distinguished, namely E > U and E < U. In the first case (E > U) the general solution to the time independent one-dimensional Schrödinger equation is given by ψ(x) = A cos kx + B sin kx……………………………………..(7.16) where A and B are constants and Insertion of the solution into the Schrödinger equation proves that it is indeed a correct solution. Thus the wave function is an oscillatory sinusoidal function in a constant potential with E > U. In the second case (E < U), the solution of the time-independent one-dimensional Schrödinger equation is given by ψ(x) = C ekx + De-kx……………………………………..(7.18) where C and D are constants and ………………………(7.19) Again, the insertion of the solution into the Schrödinger equation proves that it is indeed a correct solution. Thus the wave function is an exponentially growing or decaying function in a constant potential with E < U. Next, the solutions of an asymmetric and symmetric square well will be calculated. The
  • 11. Persamaan Schroedinger potential energy of the well is piecewise constant, as shown in Fig . 7.2. Having shown that the wave functions in a constant potential are either sinusoidal or exponential, the wave functions in the three regions I (x ≤ 0) II (0 < x < L), and III (x ≥ L), can be written as …………………………………………..(7.20) ………………….. ………(7.21) ……………….(7.22) In this solution, the first boundary condition of the 3rd Postulate, i. e. ψI’(0) = ψIII’ and ψII’ (L) and ψIII’(L) , the following two equations are obtained : ……………………………………(7.23) …..(7.24) This homogeneous system of equations has solutions, only if the determinant of the system vanishes. From this condition, one obtains ………………………………………..(7.25) which is the eigenvalue equation of the finite asymmetric square well. For the finite symmetric square well, which is of great practical relevance, the eigenvalue equation is given by : ………………………………………….(7.26) Where K = KI = KIII. If K is expressed as a function of k (see Eq. 7.19), then Eq. (7.26) depends only on a single variable, i. e., k. Solving the eigenvalue equation yields the eigenvalues of k and, by using Eqs. (7.17) and (7.19), the allowed energies E and decay constants K, respectively. The allowed energies are also called the eigenstate energies of the potential. Inspection of Eq. (7.26) yields that the eigenvalue equation has a trivial solution kL = 0 (and thus E = 0) which possesses no practical relevance. Non-trivial solutions of the eigenvalue equation can be obtained by a graphical method. Figure 7.3 shows the graph of the left-hand and right-hand side of the eigenvalue equation. The dashed curve represents
  • 12. Persamaan Schroedinger the right-hand side of the eigenvalue equation. The intersections of the dashed curve with the periodic tangent function are the solutions of the eigenvalue equation. The quantum state with the lowest non-trivial solution is called the ground state of the well. States of higher energy are referred to as excited states . The dashed curve shown in Fig . 7.3 has two significant points, namely a pole and an end point. The dashed curve has a pole when the denominator of the right-hand side of the eigenvalue equation vanishes, i. e., when kL = KL Using Eq. (7.19), it is given by : Pole: …………………………………(7.27) The dashed curve ends when k = (2mU/ 2)1/2 If k exceeds this value, the square root in Eq. (7.19) becomes imaginary. The end point of the dashed curve is thus given by : And point : …………………………………(7.28) There are no further bound state solutions to the eigenvalue equation beyond the end point. Now that the eigenvalues of k and K are known they are inserted into Eqs. (7.23) and (7.24) which allows for the determination of the constants A and B and the wave functions. Thus the allowed energies and the wave functions of the square well have been determined. It is possible to show that all states with even quantum numbers (n = 0, 1, 2, ...) are of even symmetry with respect to the center of the well, i. e. ψ (x) = ψ (-x) All states with odd quantum numbers (n = 1, 3, 5, ...) are of odd symmetry with respect to the center of the well, i. e. ψ (x) = ψ (-x) The even and odd state wave functions in the well are thus of the form (for n=0,2,4,…) ……………………..(7.29) And (for n=1,3,5,…) ……………………..(7.30)
  • 13. Persamaan Schroedinger The proof of these equations is left to the reader. The three lowest wave functions of a symmetric square well are shown in Fig . 7.4. Elektron Berada Dalam Sumur Potensial Sumur potensial adalah daerah yang tidak mendapat pengaruh potensial sedangkan daerah mendapat pengaruh potensial. Hal ini berarti bahwa jelektron, selama ia berada berada dalam sumur potensial, merupakan elektron-bebas. Kita katakana bahwa elektron terjebak di sumur potensial, dan kita anggap bahwa dinding potensial sangat tinggi menuju ∞ sedangkan di daerah II, yaitu antara 0 dan L, V = 0. Kita katakan bahwa lebar sumur potensial ini adalah L. Gb. Elektron dalam sumur potensial (daerah II). Pada sumur potensial yang dalam, daerah I dan III adalah daerah dimana emungkinan keberadaan elektron bisa dianggap nol, ψ (x) =0 dan ψ (x) =0 . Solusi persamaan Schrödinger untuk daerah II adalah solusi untuk elektronbebas ………………………………(3.21) Persyaratan kekontinyuan di x = 0 mengharuskan
  • 14. Persamaan Schroedinger BI + B2 = ψ1 (0) = 0 B1=B2 dan persyaratan kekontinyuan di L mengharuskan sehingga …………………………..(3.22) Persamaan (3.22) mengharuskan k2L= nπ atau k2 = (dengan n bilangan bulat), sehingga fungsi gelombang di daerah II menjadi Ψ*(x) ψ2(x)=4B22 ……………….(3.23) Untuk n = 1, fungsi ini bernilai nol di x =0 dan x =L , dan maksimum di x =L/ 2 . Untuk n = 2, nilai nol terjadi di x = 0, L/2, dan L. Untuk n = 3, nilai nol terjadi di x = 0, L/3, 2L/3, dan L; dan seterusnya, seperti terlihat pada Gb.3.3. Selain di x = 0, jumlah titik simpul gelombang, yaitu titik di mana fungsinya bernilai nol, sama dengan nilai n. Karena di daerah II V = 0, maka atau . Dengan memasukkan nilai k2 kita peroleh energi elektron: ……………………………………(3.25) Kita lihat di sini bahwa energi elektron mempunyai nilainilai tertentu yang diskrit, yang ditentukan oleh bilangan bulat n. Nilai diskrit ini terjadi karena pembatasan yang harus dialami oleh ψ2, yaitu bahwa ia harus berada dalam sumur potensial. Ia harus bernilai nol di batasbatas dinding potensial dan hal itu akan terjadi bila lebar sumur potensial L sama dengan bilangan bulat kali setengah panjang gelombang. Jika tingkat energi untuk n = 1 kita sebut tingkat energi yang pertama, maka tingkat energi yang kedua
  • 15. Persamaan Schroedinger pada n = 2, tingkat energi yang ketiga pada n = 3 dan seterusnya. Jika kita kaitkan dengan bentuk gelombangnya, dapat kita katakan bahwa tingkat tingkat energi tersebut sesuai dengan jumlah titik simpul gelombang. Dengan demikian maka diskritisasi energi elektron terjadi secara wajar melalui pemecahan persamaan Schödinger. Hal ini berbeda dari pendekatan Bohr yang harus membuat postulat mengenai momentum sudut yang harus diskrit agar kuantisasi energi terjadi. Persamaan (3.25) memperlihatkan bahwa selisih energi antara satu tingkat dengan tingkat berikutnya, misalnya antara n = 1 dan n = 2, berbanding terbalik dengan kwadrat lebar sumur potensial. Makin lebar sumur ini, makin kecil selisih energi tersebut, artinya tingkattingkat energi semakin rapat. Untuk L sama dengan satu satuan misalnya, selisih energi untuk n=2 dan n=1 adalah E2 – E1 =3h2/8m dan jika L 10 kali lebih lebar maka selisih ini menjadi E2 – E1 =0,0h32/8m. gb.3.4 Di x = 0 dan x = L amplitudo gelombang tidak lagi nol dan demikian juga probabilitas keberadaan elektronnya. Selain itu penurunan amplitudo akan makin lambat jika sumur potensial makin dangkal. Hal ini berarti bahwa makin dangkal