SlideShare uma empresa Scribd logo
1 de 6
Baixar para ler offline
Polish J. of Environ. Stud. Vol. 18, No. 6 (2009), 1045-1050




                                                                                                            Original Research
       Two-Stage Aerobic Treatment of Wastewater:
        a Case Study from Potato Chips Industry

                                    T. Kupusović, S. Milanolo*, D. Selmanagić

                                         Hydro Engineering Institute Sarajevo – HEIS,
                                  Stjepana Tomića 1, 71000 Sarajevo, Bosnia and Herzegovina

                                                   Received: 20 January 2009
                                                     Accepted: 5 May 2009

                                                               Abstract

                     A two-stage aerobic treatment consisting of conventional active sludge treatment followed by membrane
              bio reactor has been tested for 100 days. The overall pollutant removal efficiencies (97.1% COD, 99.5%
              BOD5, 94.7% total nitrogen and 72.9% total phosphorous) are high enough to produce effluent that meets cri-
              teria for discharge to surface water with a relatively low amount of surplus sludge: 0.34 gSS (gCODremoved)-1.
              The only exception is total phosphorous concentration. The analysis of biodegradable COD in the effluent
              shows that only 14% is still biodegradable. Although the high quality effluent may be reused in preliminary
              soiled potato washing, the limiting criteria may be an increased concentration of chlorides.

              Keywords: aerobic wastewater treatment, potato chips industry, CAS, MBR, effluent recycle


                       Introduction                                     treatment of wastewater from different origins. Cicek [9]
                                                                        gives a review of applications of this technology in the field
    The food and beverage industry is one of the drivers of             of agricultural wastewater treatment and, due to its capaci-
economic development in Bosnia and Herzegovina (B&H).                   ty to treat a high-strength stream and resilience in the face
However, at the same time, due to a large number of small               of shock loads, it is deemed especially suitable for the food
and medium sized companies which do not treat their                     processing industry.
wastewater, it is also one of the largest polluters of the envi-            On the other hand, membranes may suffer from the
ronment.                                                                presence of high quantities of colloidal substances that will
    The potato chip-producing sector is constantly growing              reduce permeability and requires more frequent membrane
and in the last 4 years has almost doubled their quantity of            cleaning [10]. The abrasion of membranes by inorganic
products sold (1,557 tons in 2004 and 2,880 tons in 2007) [1].          particles is another important issue [11] that can lead to pre-
    Wastewater from the potato processing industry should               mature failure of the system or deterioration of results. The
be first treated to recover valuable by-products such as                MBR process alone already achieves low specific sludge
starch, oil and grease [2], and then treated usually using bio-         production due to the high sludge age. However, for waste-
logical methods, including mesophilic or thermophilic                   water containing a high quantity of organic material, further
anaerobic treatment [3, 4], conventional active sludge, ther-           investigations have been done using a two-stage membrane
mophilic aerobic treatment [5, 6], combination of anaerobic             reactor to further decrease the need for surplus sludge dis-
and aerobic processes [7], and treatment using fungi cul-               posal [12] or to achieve more stringent effluent characteris-
tures [8].                                                              tics [13].
    Membrane Bio Reactor (MBR) treatment technology is                      The scope of this work is to test the performances of a
already well defined and has been applied successfully in               two-stage treatment consisting of a conventional active
                                                                        sludge system and membrane bio reactor to treat high
*e-mail: simone.milanolo@heis.com.ba                                    strength wastewater from the chip industry in B&H.
1046                                                                                                         Kupusović T., et al.

                 Company Description                                   transports water to a parabolic screen (0.75 mm bars
                                                                       space) and then another pump forces it to a small hydro-
     Annual potato chip production of the company in this              cyclone for starch recovery. The outlet from the cyclone is
study is 700 tons, requiring processing of 3,200 tons of raw           stored in a small basin (around 1 m3) in order to provide
potatoes. The factory operates five days a week, and work              water for intermittent flushing of the wastewater gravity
is organized into two shifts. Basic products are different             channel. Wastewater is then discharged to the final recip-
types of potato chips. Production is carried out on one pro-           ient.
duction line, and it is uniform throughout the year. The pro-               For the purpose of this experiment, a CAS system was
duction process starts with placement of potatoes into a               placed after hydrocyclone and fed by a variable speed peri-
container that is continuously dosued into a washing                   staltic pump. The CAS system has a total useful volume of
machine with rotating brushes. Washed potatoes are                     25 l and a small settling trap at the exit to enable partial
mechanically transported to a potato peeling machine that              sludge retention. The CAS effluent was used to feed the
performs the peeling along with separation of waste mater-             MBR pilot plant having total useful volume of 25 l.
ial. From the abrasive peeling machine, the potatoes are               Microfiltration is accomplished by one submerged Kubota
transported to the centrifugal cutting machine. The cut                flat membrane (203 type) with 0.4 μm pore size and 0.11 m2
pieces then go to the blancher and then to the deep fryer.             filtering surface. Aeration, mixing and membrane air scour-
Afterwards, the fried chips are transported to the flavour             ing (in the MBR unit only) were provided using coarse bub-
doser, and then to the packaging machine. The packaged                 ble diffusers located at the bottom of the two basins.
chips are then transported to the storehouse for finished                   The filtrate is extracted from the membrane by means of
products, and from there to the market.                                variable speed peristaltic pump. A level controller located in
     The factory uses process water from the city water sup-           the MBR basin sent on/off signals to an AS inlet pump. The
ply system. Total annual consumption measured by one                   difference between maximum and minimum level was set
inlet water meter amounts to 8,071 m3/year, or approxi-                to approximately 2 l.
mately 32 m3/day. The quantity of wastewater generated
amounts to approximately 31.4 m3/day [14].
                                                                                 Sampling and Analytical Methods

                Materials and Methods                                      The biological basins were initially inoculated with
                                                                       active sludge taken from a small municipal wastewater
                   Experimental Setup                                  treatment plant. Although the experimental plant was mon-
                                                                       itored weekly for more than six months, this paper presents
    The tested wastewater treatment process is composed of             only results obtained under stable conditions achieved after
three main stages (Fig. 1): existing full-scale pre-treatment          the start-up and adaptation period (total of 100 days). Grab
(PT), a conventional activated sludge basin (CAS) and a                samples were collected regularly at locations 1, 2 and 3, as
membrane bioreactor (MBR), all connected in series as                  shown in Fig. 1. Additional samples were collected inside
explained below.                                                       the biological basin in order to monitor MLSS concentra-
    Wastewater generated in the production line flows                  tions in the reactors. Dissolved oxygen level (Hach –
through a gravity channel to a small basin (around 1 m3)               SensIon 6 field instrument), membrane cross pressure and
with manual screen (1 cm bars space) that separates pieces             flow rate through the system were also controlled and
of potato and peeled skin. A submerged centrifuge pump                 recorded weekly.




Fig. 1. Pilot plant scheme showing existing pre-treatment facilities and sampling point locations.
Two-Stage Aerobic Treatment...                                                                                               1047

    Laboratory analyses were performed following the                      The MBR reactor was maintained during the first 45
American Standard Methods [15]. The first order rate con-            days at MLSS around 10 g/l, after which the sludge concen-
stant of BOD degradation in time (kBOD) and the                      tration was raised up to 20 g/l and maintained at this value
biodegradable COD (BCOD) were calculated following                   until the end of the experimental period (Fig. 2d). Surplus
methodology described by Roeleveld and Loosdrecht [16].              sludge was removed weekly from the bottom valve. Since
                                                                     no significant differences between two modes of operation
                                                                     (MLSS of 10 g/l and 20 g/l) were noticed, the results are pre-
                Results and Discussion                               sented as an average for the whole period without making
                                                                     distinction between these two operational conditions. Since
                 Operational Conditions                              the two treatment stages were connected in series, HRT was
                                                                     the same. Around 650 g of SS have been removed during the
     The first biological basin (AS) was operated at MLSS            testing period in addition to approximately 400 g of MLSS
around 5 g/l and HRT of slightly less than two days (Fig.            increased in the basins. The final specific surplus sludge pro-
2d). It should be highlighted that no direct control by means        duction has been calculated as 0.34 gSS (gCODremoved)-1.
of surplus sludge extraction was performed in this basin
(the surplus sludge extraction valve shown in Fig. 1 for                           Influent and Effluent Quality
CAS reactor has not been used). Under this condition the
MLSS concentration was set by the balance of incoming                     Average results and operational conditions are presented
suspended solids, biomass growth and suspended matter                in Table 1. Wastewater from chip production is slightly
escaping from the small settling trap and ending up in the           acidic and characterized by large amounts of organic mater-
MBR basin (which in turn depend on the sludge character-             ial, nutrients and suspended solids. Comparable results are
istics in term of settleability). Laboratory chemical analyses       reported in previous work [2, 6], while other literature, prob-
on the effluent from this basin were performed on the clar-          ably referring to raw wastewater containing starch, shows
ified liquid after one hour settling (inclusive of suspended         even 5 times higher concentrations [7, 17]. All works show
solids not settleable). Analysis of settleable solids were per-      very strong fluctuations in inlet water quality. This variabil-
formed inregularly and averaged results are used only for            ity may pose a serious problem for biological process stabil-
balance purposes.                                                    ity.




Fig. 2. Evolution of the system during the investigated period. a) COD and BOD5 in the influent after filtration and cyclone; b) COD
and BOD5 in the CAS effluent (only clarified part); c) COD and BOD5 in the MBR effluent; d) MLSS in the CAS and MBR basins;
e) total nitrogen in CAS and MBR effluents; f) total phosphorous in CAS and MBR effluents.
1048                                                                                                            Kupusović T., et al.

Table 1. Wastewater composition (average and standard deviation) at three sampling points and operational conditions of the pilot plant.
                                                     After filtration (0.75mm)         After filtration,          After filtration,
                                                            and cyclone                cyclone, CAS             cyclone, CAS, MBR
           Number of available samples                           21                           21                         21
                                                      Average         Std dev.     Average         Std dev.    Average        Std dev.
             Turbidity                   NTU            516             273          402             213          1.2           0.7
                pH                         /            5.8             0.7           7.5            0.5          7.9           0.3
        Electroconductibility            uS/cm         2,177            889         1,722            651        1,294           315
             Alkalinity                  mg/l           830             246          838             329         487            124
               COD                       mg/l          2,471           1,512         595             192          73            20
               BOD5                      mg/l          1,882           1,129         247             189          11             5
           Ammonium-N                    mg/l           38.9           16.9          17.0            20.0         1.0           0.9
             Nitrate-N                   mg/l           4.7             4.6           7.5            16.0         1.2           0.7
           Total nitrogen                mg/l           75.2           27.0          61.1            30.6         5.0           2.2
         Total phosphorous               mg/l           6.1             2.6           6.0            2.5          4.9           2.8
             Chlorides                   mg/l           114             54            89              24          74            20
        Active surfactants *           mg/l DBS         1.1             1.2            -               -          0.2           0.1
     Hydraulic Residence Time              h             -               -           45.7            3.4         45.7           3.4
               MLSS                       g/l            -               -            4.9            2.4         16.2           4.4
            Temperature                    C             -               -           18.2            3.8         17.7           3.9
         Dissolved oxygen                mg/l            -               -            5.9            1.9          6.6           1.6
                F/M                       1/d            -               -          0.0296         0.0201       0.0004        0.0002

* Only 14 samples available.



    In addition, suspended matter is often in colloidal form            concentration of ammonia and nitrates in the effluent. Since
and represents a challenge for a classical wastewater treat-            it was not expected that the denitrification process will
ment plant based on conventional gravity secondary clarifi-             occur to such an extent, the mechanism of nitrogen removal
er technology.                                                          has been investigated in more detail. The CAS basin
    The experimental pilot plant achieved an overall reduc-             appears to have a minor effect on final nitrogen concentra-
tion of 97.1% of COD and 99.5% of BOD5. The final efflu-                tion (low sludge age: around 4.6 days) so that most of the
ent concentration was always under 125 mg/l for COD and                 ammonia is converted, resulting in slight increase in
25 mg/l for BOD5 (Figs. 2a, b, c). The conventional system              nitrates and a transfer of nitrogen to the organic form, most
alone achieved a reduction of 76.3% of COD and 87.2% of                 probably due to biomass uptake. Unfortunately, no analyses
BOD5. During day 97, samples of influent, CAS and MBR                   were performed to validate the share of nitrogen between
effluents were investigated to determine the biodegradable              dissolved and suspended form but most likely the nitrogen
fraction changes (as BCOD/COD) and its nature (in terms                 is carried inside the suspended solid fraction and is not dis-
of kBOD) along the treatment process. Results show a net                solved. It should be noted that the total nitrogen concentra-
decrease of biodegradable fraction from 0.93 (raw waste-                tion given in Table 1 for CAS effluent must be increased by
water) to 0.46 (CAS effluent) and then to 0.14 (MBR efflu-              the quantity of nitrogen passing to the MBR system in the
ent). This indicates that almost all of the biodegradable COD           form of settleable solids (as already mentioned in the
has been removed. A similar conclusion for a single-stage               methodology, the analyses of CAS effluent were performed
MBR system based on removal efficiency BOD20 has been                   on the clarified liquor after one hour of settling).
reported by Sayed S.K.I. et al. [17]. The calculated values of              However, few analyses performed on settleable solids
kBOD were in the range of 0.24-0.33 d-1, with highest value             (shown as average in Table 2) shows that these solids have
for the influent. Roeleveld and Loosdrecht [16] reported a              a relatively poor quantity of nitrogen and based on normal
range of kBOD of 0.15-0.8 d-1 for municipal wastewater in               nitrogen contents in bacteria cells (around 12% of dry mat-
Netherland.                                                             ter on weight basis) only 10-20% of these solids can be
    Regarding nutrients, the overall pilot plant achieved               assumed as active sludge (the main fraction is most proba-
94.7% removal efficiency for nitrogen (Fig. 2e) with low                bly starch).
Two-Stage Aerobic Treatment...                                                                                                 1049

Table 2. Mass balances based on averaged concentrations for SS, BOD5, TN and TP.
                                                                                SS           BOD5             TN             TP
                Averaged values during monitored period
                                                                              (mg/l)         (mg/l)         (mg/l)         (mg/l)
                                                                  CAS
INLET                                                                          471           1,882           75.2            6.1
ACCUMULATION AS S.S. IN THE REACTOR                                             75             92             1.3            0.2
OUTLET SETTLEABLE                                                              582            716            61.1            1.5
OUTLET NOT SETTLEABLE                                                          406            247             9.8            6.0
BALANCE (INLETS-OUTLETS-ACCUMULATION)                                          -592           827             3.0           -1.7
                                                                  MBR
INLET                                                                          988            963            70.9            7.5
ACCUMULATION AS S.S. IN THE REACTOR                                            239            302             8.3            1.3
REMOVED AS SLUDGE                                                              497            629            17.3            2.7
OUTLET                                                                          16             11             5.0            4.9
BALANCE (INLETS-OUTLETS-ACCUMULATION)                                          236             22            40.2           -1.4
                                                              TOTAL
INLET                                                                          471           1,882           75.2            6.1
ACCUMULATION AS S.S. IN THE CAS REACTOR                                         75             92             1.3            0.2
ACCUMULATION AS S.S. IN THE MBR REACTOR                                        239            302             8.3            1.3
REMOVED AS SLUDGE                                                              497            629            17.3            2.7
OUTLET                                                                          16             11             5.0            4.9
BALANCE (INLETS-OUTLETS-ACCUMULATION)                                          -356           848            43.2           -3.1




     Nitrogen is thus almost completely eliminated in the                   Similar to nitrogen, phosphorus was taken up by
MBR system where higher sludge age was achieved                         microorganisms in the process of sludge growth in the CAS
(around 21.5 days).                                                     basin transferred to the MBR basin from where it was
     Usually, biomass in the MBR is rapidly mixed by the                removed as surplus sludge. The overall phosphorus
aeration system. Since air is introduced in the central part of         removal efficiency achieved by the system in the experi-
the reactor (where the filtration membrane is located) there            mental period was 72.9% (Fig. 2f). This relatively poor
is an uplift of biomass in this section followed by its descent         removal efficiency is to be related to the fact that the whole
in the lateral part.                                                    experimental setup was run with the aim to minimize
     However, during the experimental period, it was                    sludge production. The low sludge production negatively
noticed that due to the high MLSS and probably due to the               influenced biological phosphorus removal capacity. The
presence of colloid matter, the biomass in the MBR reactor              mass balances based on average concentration of suspend-
was recirculating very slowly while the water was flowing               ed solids, BOD5, nitrogen and phosphorus are summarized
through the biomass slightly faster. Wastewater from the                in Table 2. The balance for phosphorus shows a general
CAS basin was entering MBR on the lateral section of the                inlet deficit of this nutrient during the examined period. A
reactor. This situation allowed the formation of two distinct           possible explanation for this is a not stationary situation
zones:                                                                  with high phosphor levels in the initial reactor biomass
(i) the lateral part where the wastewater with high organic             slowly released during the progress of the experiment.
     carbon concentration was in contact with biomass but
     not with the aeration system, and
(ii) the central part where biomass and water were strongly                            Water Recycling Options
     aerated and filtered by the membrane.
     In the lateral section of the channel, anoxic conditions               Effluent from second stage MBR treatment may be
have been established and scattered presence of newly                   reused in for preliminary potato washing or general clean-
formed bubbles of nitrogen noticed.                                     ing purposes in the “dirty” part of the process line.
1050                                                                                                        Kupusović T., et al.

     Much more extensive use of recycled wastewater was           2.    CATARINO J., MENDONÇA E., PICADO A., ANSELMO
analyzed in Aantrekker et al. [18], who investigated the                A., NOBRE DA COSTA J., PARTIDÁRIO P. Getting value
water loop closure possibility. Following basic treatment,              from wastewater: by-products recovery in a potato chips
recycled wastewater was further treated by microfiltration,             industry. Journal of Cleaner Production, 15, 927, 2007.
                                                                  3.    GUO I., LIN K.C. Anaerobic treatment of potato-processing
active carbon and UV disinfection. Under these conditions
                                                                        wastewater by a UASB system at low organic loadings.
the accumulation of chlorides in the loop and in the potato             Water Air and Soil Pollution, 53, 367, 1990.
was reported to be a limiting factor.                             4.    WAMBEKE M.V., GRUSENMEYER S., VERSRTRAETE
     Catarino et al. [2] presented achievements from the                W., LONGRY R. Sludge bed growth in an UASB reactor
Portuguese potato chip industry where around 10% of                     treating potato processing wastewater. Process Biochemistry
water that was subject to starch and grease recovery and                International, 25, 181, 1990.
subsequent treatment was recirculated in the production           5.    LASIK M., NOWAK J., KENT C. A., CZARNECKI Z.
process for soiled potato washing. Other minor water quan-              Assessment of Metabolic Activity of Single and Mixed
tities were reused for outside washing, and the watering                Microorganism Population Assigned for Potato Wastewater
                                                                        Biodegradation. Polish Journal of Environmental Studies,
system and fire network.
                                                                        11, 719, 2002.
     Results from experimental setup show that the combi-         6.    MALLADI B., INGHAM S.C. Thermophilic aerobic treat-
nation of CAS and MBR reactor has little effect on chloride             ment of potato-processing wastewater. World Journal of
concentrations (average reduction of 35%) probably due to               Microbiology and Biotechnology, 9, 45, 1993.
the uptake in sludge biomass. Theoretically, considering as       7.    HADJIVASSILIS I., GAJDOS S., VANCO D., NICO-
a worst case no effect in the WWTP, up to 40% recycling                 LAOU M. Treatment of wastewater from the potato chips
could be achieved without compromise due to chloride                    and snacks manufacturing industry. Water Science and
accumulation the possibility of discharging surplus water in            Technology, 36, 329, 1997.
a surface body based on Bosnian current legislation (chlo-        8.    MISHRA B.K., ARORA A., LATA Optimization of a bio-
                                                                        logical process for treating potato chips industry wastewater
rides limit set to 200 mg/l).
                                                                        using a mixed culture of Aspergillus foetidus and
                                                                        Aspergillus niger. Bioresource Technology, 94, 9, 2004.
                       Conclusions                                9.    CICEK N. A review of membrane bioreactors and their
                                                                        potential application in the treatment of agricultural waste-
    A two-stage aerobic treatment consisting of convention-             water. Canadian Biosystems Engineering, 45, 37, 2003.
al active sludge treatment followed by membrane bio reac-         10.   ROSEMBERGER S., LAABS C., LESJEAN B., GNIRSS
tor has been tested for 100 days in stable conditions at HRT            R., AMY G., JEKEL M., SCHROTTER J.C. Impact of col-
                                                                        loidal and soluble organic material on membrane perfor-
of two days for each stage. The conventional active sludge
                                                                        mance in membrane bioreactors for municipal wastewater
pre-treatment succeeded protecting membranes from inor-                 treatment. Water Research, 40, 710, 2006.
ganic particles, colloids and large load oscillation. The over-   11.   CICEK N., DIONYSIOU D., SUIDAN M.T., GINESTET
all pollutant removal efficiencies (97.1% COD, 99.5%                    P., AUDIC J.M. Performance deterioration and structural
BOD5, 94.7% total nitrogen and 72.9% total phosphorous)                 changes of ceramic membrane bioreactor due to inorganic
are high enough to produce effluent that meets criteria for             abrasion. Journal of membrane Science, 163, 19, 1999.
discharge to surface water. The only exception is concentra-      12.   GHYOOT W., VERSTRAETE W. Reduced sludge produc-
tion of total phosphorous. The analysis of biodegradable                tion in a two-stage membrane-assisted bioreactor. Water
                                                                        Research, 34, 205, 1999.
COD in the effluent shows that only 14% is still biodegrad-
                                                                  13.   ACHARYA C., NAKHLA G., BASSI A. Operational
able and that further improvement of biological step would              Optimization and Mass Balances in a Two-Stage MBR
hardly achieve higher removal efficiency. Despite high level            Treating High Strength Pet Food Wastewater. Journal of
of organic matter and suspended solids in the wastewater,               Environmental Engineering, 132, 2006.
the sludge production has been relatively low amounting to        14.   INSTITUTE FOR PUBLIC HEALTH OF SARAJEVO
0.32 gSS (gCODremoved)-1. Although the high quality effluent            CANTON. Report on the Results of Testing of Wastewater
may be reused in preliminary soiled potato washing, the lim-            Pollution Load Expressed as PE, for “Kelly S.E.E.”, Ltd.
iting criteria may be increased concentration of chlorides.             Zavidovići, February, 2007, [In Bosnian].
                                                                  15.   EATON A.D., CLESCERI L.S., GREENBERG A.E.
                                                                        Standards methods for the examination of water and waste-
                  Acknowledgements                                      water – 19th Edition. Published by APHA, AWWA and WEF,
                                                                        1995.
    This research has been financially supported by the           16.   ROELEVELD P.J., LOOSDRECHT M.C.M. Experience
                                                                        with the guidelines for wastewater characterization in The
Ministry of Education and Science of Canton Sarajevo,
                                                                        Netherlands. Water Science and Technology, 45, 77, 2002.
Bosnia and Herzegovina. The authors wish to thank the
                                                                  17.   SAYED S.K.I., EL-EZABY K.H., GROENDIJK L. Treatment
reviewer for comments that resulted in substantial improve-             of potato processing wastewater using a membrane bioreactor.
ment of the manuscript.                                                 Proceedings of the 9th International Water Technology
                                                                        Conference, IWTC9-2005, Sharm El-Sheikh, Egypt, 2005.
                        References                                18.   AANTREKKER E.D., PADT A., BOOM R.M. Modelling
                                                                        the effect of water recycling on the quality of potato prod-
1.   B&H Statistics Agency, Industrial Production in B&H for            ucts. International Journal of Food Science and Technology,
     the period 2004-2007, Thematic Bulletins.                          38, 427, 2003.

Mais conteúdo relacionado

Mais procurados

Sequential Batch Reactor
Sequential Batch ReactorSequential Batch Reactor
Sequential Batch Reactor
GRD Journals
 
Study on Performance of Membrane Bioreactor (MBR) system at various temperatu...
Study on Performance of Membrane Bioreactor (MBR) system at various temperatu...Study on Performance of Membrane Bioreactor (MBR) system at various temperatu...
Study on Performance of Membrane Bioreactor (MBR) system at various temperatu...
AM Publications
 
06.03.14 Presentation by Yue Liu
06.03.14 Presentation by Yue Liu06.03.14 Presentation by Yue Liu
06.03.14 Presentation by Yue Liu
Yue Liu
 
An Overview of Membrane Bioreactors for Anaerobic Treatment of Wastewaters
An Overview of Membrane Bioreactors for Anaerobic Treatment of WastewatersAn Overview of Membrane Bioreactors for Anaerobic Treatment of Wastewaters
An Overview of Membrane Bioreactors for Anaerobic Treatment of Wastewaters
AM Publications
 

Mais procurados (20)

Sequencing batch reactor ppt
Sequencing batch reactor pptSequencing batch reactor ppt
Sequencing batch reactor ppt
 
The difference between sbr, mbr and mbbr-sewage treatment plants
The difference between sbr, mbr and mbbr-sewage treatment plantsThe difference between sbr, mbr and mbbr-sewage treatment plants
The difference between sbr, mbr and mbbr-sewage treatment plants
 
IRJET- Study on Increasing the Efficiency of the Existing Sequential Batch Re...
IRJET- Study on Increasing the Efficiency of the Existing Sequential Batch Re...IRJET- Study on Increasing the Efficiency of the Existing Sequential Batch Re...
IRJET- Study on Increasing the Efficiency of the Existing Sequential Batch Re...
 
Membrane bioreactors for wastewater treatment
Membrane bioreactors for wastewater treatmentMembrane bioreactors for wastewater treatment
Membrane bioreactors for wastewater treatment
 
MEMBRANE BIO-REACTOR
MEMBRANE BIO-REACTORMEMBRANE BIO-REACTOR
MEMBRANE BIO-REACTOR
 
Anaerobic-Aerobic Treatment of Sewage
Anaerobic-Aerobic Treatment of SewageAnaerobic-Aerobic Treatment of Sewage
Anaerobic-Aerobic Treatment of Sewage
 
Beverage industry wastewater treatment with two–stage MBBR plant
Beverage industry wastewater treatment with two–stage MBBR plantBeverage industry wastewater treatment with two–stage MBBR plant
Beverage industry wastewater treatment with two–stage MBBR plant
 
Sludge treatment and disposal 1
Sludge treatment and disposal 1Sludge treatment and disposal 1
Sludge treatment and disposal 1
 
Sequential Batch Reactor
Sequential Batch ReactorSequential Batch Reactor
Sequential Batch Reactor
 
MBBR wastewater treatment plant
MBBR wastewater treatment plantMBBR wastewater treatment plant
MBBR wastewater treatment plant
 
Thermax
ThermaxThermax
Thermax
 
Waste to Watts: Anaerobic Digestion of Livestock Manure (Sood)
Waste to Watts: Anaerobic Digestion of Livestock Manure (Sood)Waste to Watts: Anaerobic Digestion of Livestock Manure (Sood)
Waste to Watts: Anaerobic Digestion of Livestock Manure (Sood)
 
LEVAPOR STEPFEED-IFAS PROCESS FOR BNR
LEVAPOR STEPFEED-IFAS PROCESS FOR BNR LEVAPOR STEPFEED-IFAS PROCESS FOR BNR
LEVAPOR STEPFEED-IFAS PROCESS FOR BNR
 
Waste water treatment by mbbr
Waste water treatment by mbbrWaste water treatment by mbbr
Waste water treatment by mbbr
 
LEVAPOR IFAS/MBBR process for Biological Nutrient Removal(BNR) and Industrial...
LEVAPOR IFAS/MBBR process for Biological Nutrient Removal(BNR) and Industrial...LEVAPOR IFAS/MBBR process for Biological Nutrient Removal(BNR) and Industrial...
LEVAPOR IFAS/MBBR process for Biological Nutrient Removal(BNR) and Industrial...
 
Study on Performance of Membrane Bioreactor (MBR) system at various temperatu...
Study on Performance of Membrane Bioreactor (MBR) system at various temperatu...Study on Performance of Membrane Bioreactor (MBR) system at various temperatu...
Study on Performance of Membrane Bioreactor (MBR) system at various temperatu...
 
06.03.14 Presentation by Yue Liu
06.03.14 Presentation by Yue Liu06.03.14 Presentation by Yue Liu
06.03.14 Presentation by Yue Liu
 
Packaged MBBR plants
Packaged MBBR plantsPackaged MBBR plants
Packaged MBBR plants
 
Innovative Techonolgies - Membrane and Moving Bed Biofilm Reactor
Innovative Techonolgies - Membrane and Moving Bed Biofilm ReactorInnovative Techonolgies - Membrane and Moving Bed Biofilm Reactor
Innovative Techonolgies - Membrane and Moving Bed Biofilm Reactor
 
An Overview of Membrane Bioreactors for Anaerobic Treatment of Wastewaters
An Overview of Membrane Bioreactors for Anaerobic Treatment of WastewatersAn Overview of Membrane Bioreactors for Anaerobic Treatment of Wastewaters
An Overview of Membrane Bioreactors for Anaerobic Treatment of Wastewaters
 

Semelhante a 1045 1050

Treatment of domestic wastewater in an up flow anaerobic sludge
Treatment of domestic wastewater in an up flow anaerobic sludgeTreatment of domestic wastewater in an up flow anaerobic sludge
Treatment of domestic wastewater in an up flow anaerobic sludge
Alvaro Huete
 

Semelhante a 1045 1050 (20)

Ae35171177
Ae35171177Ae35171177
Ae35171177
 
Anaerobic methods of waste water treatment v.n.nag
Anaerobic methods of waste water treatment v.n.nagAnaerobic methods of waste water treatment v.n.nag
Anaerobic methods of waste water treatment v.n.nag
 
BIOTECHNOLOGICAL APPROACHES TOWARDS WATER WASTE MANAGEMENT
BIOTECHNOLOGICAL APPROACHES TOWARDS WATER       WASTE MANAGEMENT BIOTECHNOLOGICAL APPROACHES TOWARDS WATER       WASTE MANAGEMENT
BIOTECHNOLOGICAL APPROACHES TOWARDS WATER WASTE MANAGEMENT
 
JSEHR 1(1)-6
JSEHR 1(1)-6JSEHR 1(1)-6
JSEHR 1(1)-6
 
Low Cost Anaerobic Treatment of Municipal Solid Waste Leachate
Low Cost Anaerobic Treatment of Municipal Solid Waste LeachateLow Cost Anaerobic Treatment of Municipal Solid Waste Leachate
Low Cost Anaerobic Treatment of Municipal Solid Waste Leachate
 
Sewage Treatment Plants.pptx
Sewage Treatment Plants.pptxSewage Treatment Plants.pptx
Sewage Treatment Plants.pptx
 
Wwtp presentation asim
Wwtp presentation asimWwtp presentation asim
Wwtp presentation asim
 
Treatment of domestic wastewater in an up flow anaerobic sludge
Treatment of domestic wastewater in an up flow anaerobic sludgeTreatment of domestic wastewater in an up flow anaerobic sludge
Treatment of domestic wastewater in an up flow anaerobic sludge
 
Hariom ppt report
Hariom ppt reportHariom ppt report
Hariom ppt report
 
F04915660
F04915660F04915660
F04915660
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
1.pdf
1.pdf1.pdf
1.pdf
 
Sewage and Sludge Treatment
 Sewage and Sludge Treatment Sewage and Sludge Treatment
Sewage and Sludge Treatment
 
INNOVATIVE APPROACH OF SEWAGE DISPOSAL SYSTEM.pdf
INNOVATIVE APPROACH OF SEWAGE DISPOSAL SYSTEM.pdfINNOVATIVE APPROACH OF SEWAGE DISPOSAL SYSTEM.pdf
INNOVATIVE APPROACH OF SEWAGE DISPOSAL SYSTEM.pdf
 
Ashu kumar ppt
Ashu kumar pptAshu kumar ppt
Ashu kumar ppt
 
ACE DYNAMICS etp
ACE DYNAMICS etpACE DYNAMICS etp
ACE DYNAMICS etp
 
Biological and Advanced Water Treatment.pptx
Biological and Advanced Water Treatment.pptxBiological and Advanced Water Treatment.pptx
Biological and Advanced Water Treatment.pptx
 
Soil Bio-technology | Architectural Environment Sciences
Soil Bio-technology | Architectural Environment SciencesSoil Bio-technology | Architectural Environment Sciences
Soil Bio-technology | Architectural Environment Sciences
 
Moving Bed Biofilm Reactor -A New Perspective In Pulp And Paper Waste Water T...
Moving Bed Biofilm Reactor -A New Perspective In Pulp And Paper Waste Water T...Moving Bed Biofilm Reactor -A New Perspective In Pulp And Paper Waste Water T...
Moving Bed Biofilm Reactor -A New Perspective In Pulp And Paper Waste Water T...
 
World Oil paper
World Oil paperWorld Oil paper
World Oil paper
 

Último

Último (20)

Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 

1045 1050

  • 1. Polish J. of Environ. Stud. Vol. 18, No. 6 (2009), 1045-1050 Original Research Two-Stage Aerobic Treatment of Wastewater: a Case Study from Potato Chips Industry T. Kupusović, S. Milanolo*, D. Selmanagić Hydro Engineering Institute Sarajevo – HEIS, Stjepana Tomića 1, 71000 Sarajevo, Bosnia and Herzegovina Received: 20 January 2009 Accepted: 5 May 2009 Abstract A two-stage aerobic treatment consisting of conventional active sludge treatment followed by membrane bio reactor has been tested for 100 days. The overall pollutant removal efficiencies (97.1% COD, 99.5% BOD5, 94.7% total nitrogen and 72.9% total phosphorous) are high enough to produce effluent that meets cri- teria for discharge to surface water with a relatively low amount of surplus sludge: 0.34 gSS (gCODremoved)-1. The only exception is total phosphorous concentration. The analysis of biodegradable COD in the effluent shows that only 14% is still biodegradable. Although the high quality effluent may be reused in preliminary soiled potato washing, the limiting criteria may be an increased concentration of chlorides. Keywords: aerobic wastewater treatment, potato chips industry, CAS, MBR, effluent recycle Introduction treatment of wastewater from different origins. Cicek [9] gives a review of applications of this technology in the field The food and beverage industry is one of the drivers of of agricultural wastewater treatment and, due to its capaci- economic development in Bosnia and Herzegovina (B&H). ty to treat a high-strength stream and resilience in the face However, at the same time, due to a large number of small of shock loads, it is deemed especially suitable for the food and medium sized companies which do not treat their processing industry. wastewater, it is also one of the largest polluters of the envi- On the other hand, membranes may suffer from the ronment. presence of high quantities of colloidal substances that will The potato chip-producing sector is constantly growing reduce permeability and requires more frequent membrane and in the last 4 years has almost doubled their quantity of cleaning [10]. The abrasion of membranes by inorganic products sold (1,557 tons in 2004 and 2,880 tons in 2007) [1]. particles is another important issue [11] that can lead to pre- Wastewater from the potato processing industry should mature failure of the system or deterioration of results. The be first treated to recover valuable by-products such as MBR process alone already achieves low specific sludge starch, oil and grease [2], and then treated usually using bio- production due to the high sludge age. However, for waste- logical methods, including mesophilic or thermophilic water containing a high quantity of organic material, further anaerobic treatment [3, 4], conventional active sludge, ther- investigations have been done using a two-stage membrane mophilic aerobic treatment [5, 6], combination of anaerobic reactor to further decrease the need for surplus sludge dis- and aerobic processes [7], and treatment using fungi cul- posal [12] or to achieve more stringent effluent characteris- tures [8]. tics [13]. Membrane Bio Reactor (MBR) treatment technology is The scope of this work is to test the performances of a already well defined and has been applied successfully in two-stage treatment consisting of a conventional active sludge system and membrane bio reactor to treat high *e-mail: simone.milanolo@heis.com.ba strength wastewater from the chip industry in B&H.
  • 2. 1046 Kupusović T., et al. Company Description transports water to a parabolic screen (0.75 mm bars space) and then another pump forces it to a small hydro- Annual potato chip production of the company in this cyclone for starch recovery. The outlet from the cyclone is study is 700 tons, requiring processing of 3,200 tons of raw stored in a small basin (around 1 m3) in order to provide potatoes. The factory operates five days a week, and work water for intermittent flushing of the wastewater gravity is organized into two shifts. Basic products are different channel. Wastewater is then discharged to the final recip- types of potato chips. Production is carried out on one pro- ient. duction line, and it is uniform throughout the year. The pro- For the purpose of this experiment, a CAS system was duction process starts with placement of potatoes into a placed after hydrocyclone and fed by a variable speed peri- container that is continuously dosued into a washing staltic pump. The CAS system has a total useful volume of machine with rotating brushes. Washed potatoes are 25 l and a small settling trap at the exit to enable partial mechanically transported to a potato peeling machine that sludge retention. The CAS effluent was used to feed the performs the peeling along with separation of waste mater- MBR pilot plant having total useful volume of 25 l. ial. From the abrasive peeling machine, the potatoes are Microfiltration is accomplished by one submerged Kubota transported to the centrifugal cutting machine. The cut flat membrane (203 type) with 0.4 μm pore size and 0.11 m2 pieces then go to the blancher and then to the deep fryer. filtering surface. Aeration, mixing and membrane air scour- Afterwards, the fried chips are transported to the flavour ing (in the MBR unit only) were provided using coarse bub- doser, and then to the packaging machine. The packaged ble diffusers located at the bottom of the two basins. chips are then transported to the storehouse for finished The filtrate is extracted from the membrane by means of products, and from there to the market. variable speed peristaltic pump. A level controller located in The factory uses process water from the city water sup- the MBR basin sent on/off signals to an AS inlet pump. The ply system. Total annual consumption measured by one difference between maximum and minimum level was set inlet water meter amounts to 8,071 m3/year, or approxi- to approximately 2 l. mately 32 m3/day. The quantity of wastewater generated amounts to approximately 31.4 m3/day [14]. Sampling and Analytical Methods Materials and Methods The biological basins were initially inoculated with active sludge taken from a small municipal wastewater Experimental Setup treatment plant. Although the experimental plant was mon- itored weekly for more than six months, this paper presents The tested wastewater treatment process is composed of only results obtained under stable conditions achieved after three main stages (Fig. 1): existing full-scale pre-treatment the start-up and adaptation period (total of 100 days). Grab (PT), a conventional activated sludge basin (CAS) and a samples were collected regularly at locations 1, 2 and 3, as membrane bioreactor (MBR), all connected in series as shown in Fig. 1. Additional samples were collected inside explained below. the biological basin in order to monitor MLSS concentra- Wastewater generated in the production line flows tions in the reactors. Dissolved oxygen level (Hach – through a gravity channel to a small basin (around 1 m3) SensIon 6 field instrument), membrane cross pressure and with manual screen (1 cm bars space) that separates pieces flow rate through the system were also controlled and of potato and peeled skin. A submerged centrifuge pump recorded weekly. Fig. 1. Pilot plant scheme showing existing pre-treatment facilities and sampling point locations.
  • 3. Two-Stage Aerobic Treatment... 1047 Laboratory analyses were performed following the The MBR reactor was maintained during the first 45 American Standard Methods [15]. The first order rate con- days at MLSS around 10 g/l, after which the sludge concen- stant of BOD degradation in time (kBOD) and the tration was raised up to 20 g/l and maintained at this value biodegradable COD (BCOD) were calculated following until the end of the experimental period (Fig. 2d). Surplus methodology described by Roeleveld and Loosdrecht [16]. sludge was removed weekly from the bottom valve. Since no significant differences between two modes of operation (MLSS of 10 g/l and 20 g/l) were noticed, the results are pre- Results and Discussion sented as an average for the whole period without making distinction between these two operational conditions. Since Operational Conditions the two treatment stages were connected in series, HRT was the same. Around 650 g of SS have been removed during the The first biological basin (AS) was operated at MLSS testing period in addition to approximately 400 g of MLSS around 5 g/l and HRT of slightly less than two days (Fig. increased in the basins. The final specific surplus sludge pro- 2d). It should be highlighted that no direct control by means duction has been calculated as 0.34 gSS (gCODremoved)-1. of surplus sludge extraction was performed in this basin (the surplus sludge extraction valve shown in Fig. 1 for Influent and Effluent Quality CAS reactor has not been used). Under this condition the MLSS concentration was set by the balance of incoming Average results and operational conditions are presented suspended solids, biomass growth and suspended matter in Table 1. Wastewater from chip production is slightly escaping from the small settling trap and ending up in the acidic and characterized by large amounts of organic mater- MBR basin (which in turn depend on the sludge character- ial, nutrients and suspended solids. Comparable results are istics in term of settleability). Laboratory chemical analyses reported in previous work [2, 6], while other literature, prob- on the effluent from this basin were performed on the clar- ably referring to raw wastewater containing starch, shows ified liquid after one hour settling (inclusive of suspended even 5 times higher concentrations [7, 17]. All works show solids not settleable). Analysis of settleable solids were per- very strong fluctuations in inlet water quality. This variabil- formed inregularly and averaged results are used only for ity may pose a serious problem for biological process stabil- balance purposes. ity. Fig. 2. Evolution of the system during the investigated period. a) COD and BOD5 in the influent after filtration and cyclone; b) COD and BOD5 in the CAS effluent (only clarified part); c) COD and BOD5 in the MBR effluent; d) MLSS in the CAS and MBR basins; e) total nitrogen in CAS and MBR effluents; f) total phosphorous in CAS and MBR effluents.
  • 4. 1048 Kupusović T., et al. Table 1. Wastewater composition (average and standard deviation) at three sampling points and operational conditions of the pilot plant. After filtration (0.75mm) After filtration, After filtration, and cyclone cyclone, CAS cyclone, CAS, MBR Number of available samples 21 21 21 Average Std dev. Average Std dev. Average Std dev. Turbidity NTU 516 273 402 213 1.2 0.7 pH / 5.8 0.7 7.5 0.5 7.9 0.3 Electroconductibility uS/cm 2,177 889 1,722 651 1,294 315 Alkalinity mg/l 830 246 838 329 487 124 COD mg/l 2,471 1,512 595 192 73 20 BOD5 mg/l 1,882 1,129 247 189 11 5 Ammonium-N mg/l 38.9 16.9 17.0 20.0 1.0 0.9 Nitrate-N mg/l 4.7 4.6 7.5 16.0 1.2 0.7 Total nitrogen mg/l 75.2 27.0 61.1 30.6 5.0 2.2 Total phosphorous mg/l 6.1 2.6 6.0 2.5 4.9 2.8 Chlorides mg/l 114 54 89 24 74 20 Active surfactants * mg/l DBS 1.1 1.2 - - 0.2 0.1 Hydraulic Residence Time h - - 45.7 3.4 45.7 3.4 MLSS g/l - - 4.9 2.4 16.2 4.4 Temperature C - - 18.2 3.8 17.7 3.9 Dissolved oxygen mg/l - - 5.9 1.9 6.6 1.6 F/M 1/d - - 0.0296 0.0201 0.0004 0.0002 * Only 14 samples available. In addition, suspended matter is often in colloidal form concentration of ammonia and nitrates in the effluent. Since and represents a challenge for a classical wastewater treat- it was not expected that the denitrification process will ment plant based on conventional gravity secondary clarifi- occur to such an extent, the mechanism of nitrogen removal er technology. has been investigated in more detail. The CAS basin The experimental pilot plant achieved an overall reduc- appears to have a minor effect on final nitrogen concentra- tion of 97.1% of COD and 99.5% of BOD5. The final efflu- tion (low sludge age: around 4.6 days) so that most of the ent concentration was always under 125 mg/l for COD and ammonia is converted, resulting in slight increase in 25 mg/l for BOD5 (Figs. 2a, b, c). The conventional system nitrates and a transfer of nitrogen to the organic form, most alone achieved a reduction of 76.3% of COD and 87.2% of probably due to biomass uptake. Unfortunately, no analyses BOD5. During day 97, samples of influent, CAS and MBR were performed to validate the share of nitrogen between effluents were investigated to determine the biodegradable dissolved and suspended form but most likely the nitrogen fraction changes (as BCOD/COD) and its nature (in terms is carried inside the suspended solid fraction and is not dis- of kBOD) along the treatment process. Results show a net solved. It should be noted that the total nitrogen concentra- decrease of biodegradable fraction from 0.93 (raw waste- tion given in Table 1 for CAS effluent must be increased by water) to 0.46 (CAS effluent) and then to 0.14 (MBR efflu- the quantity of nitrogen passing to the MBR system in the ent). This indicates that almost all of the biodegradable COD form of settleable solids (as already mentioned in the has been removed. A similar conclusion for a single-stage methodology, the analyses of CAS effluent were performed MBR system based on removal efficiency BOD20 has been on the clarified liquor after one hour of settling). reported by Sayed S.K.I. et al. [17]. The calculated values of However, few analyses performed on settleable solids kBOD were in the range of 0.24-0.33 d-1, with highest value (shown as average in Table 2) shows that these solids have for the influent. Roeleveld and Loosdrecht [16] reported a a relatively poor quantity of nitrogen and based on normal range of kBOD of 0.15-0.8 d-1 for municipal wastewater in nitrogen contents in bacteria cells (around 12% of dry mat- Netherland. ter on weight basis) only 10-20% of these solids can be Regarding nutrients, the overall pilot plant achieved assumed as active sludge (the main fraction is most proba- 94.7% removal efficiency for nitrogen (Fig. 2e) with low bly starch).
  • 5. Two-Stage Aerobic Treatment... 1049 Table 2. Mass balances based on averaged concentrations for SS, BOD5, TN and TP. SS BOD5 TN TP Averaged values during monitored period (mg/l) (mg/l) (mg/l) (mg/l) CAS INLET 471 1,882 75.2 6.1 ACCUMULATION AS S.S. IN THE REACTOR 75 92 1.3 0.2 OUTLET SETTLEABLE 582 716 61.1 1.5 OUTLET NOT SETTLEABLE 406 247 9.8 6.0 BALANCE (INLETS-OUTLETS-ACCUMULATION) -592 827 3.0 -1.7 MBR INLET 988 963 70.9 7.5 ACCUMULATION AS S.S. IN THE REACTOR 239 302 8.3 1.3 REMOVED AS SLUDGE 497 629 17.3 2.7 OUTLET 16 11 5.0 4.9 BALANCE (INLETS-OUTLETS-ACCUMULATION) 236 22 40.2 -1.4 TOTAL INLET 471 1,882 75.2 6.1 ACCUMULATION AS S.S. IN THE CAS REACTOR 75 92 1.3 0.2 ACCUMULATION AS S.S. IN THE MBR REACTOR 239 302 8.3 1.3 REMOVED AS SLUDGE 497 629 17.3 2.7 OUTLET 16 11 5.0 4.9 BALANCE (INLETS-OUTLETS-ACCUMULATION) -356 848 43.2 -3.1 Nitrogen is thus almost completely eliminated in the Similar to nitrogen, phosphorus was taken up by MBR system where higher sludge age was achieved microorganisms in the process of sludge growth in the CAS (around 21.5 days). basin transferred to the MBR basin from where it was Usually, biomass in the MBR is rapidly mixed by the removed as surplus sludge. The overall phosphorus aeration system. Since air is introduced in the central part of removal efficiency achieved by the system in the experi- the reactor (where the filtration membrane is located) there mental period was 72.9% (Fig. 2f). This relatively poor is an uplift of biomass in this section followed by its descent removal efficiency is to be related to the fact that the whole in the lateral part. experimental setup was run with the aim to minimize However, during the experimental period, it was sludge production. The low sludge production negatively noticed that due to the high MLSS and probably due to the influenced biological phosphorus removal capacity. The presence of colloid matter, the biomass in the MBR reactor mass balances based on average concentration of suspend- was recirculating very slowly while the water was flowing ed solids, BOD5, nitrogen and phosphorus are summarized through the biomass slightly faster. Wastewater from the in Table 2. The balance for phosphorus shows a general CAS basin was entering MBR on the lateral section of the inlet deficit of this nutrient during the examined period. A reactor. This situation allowed the formation of two distinct possible explanation for this is a not stationary situation zones: with high phosphor levels in the initial reactor biomass (i) the lateral part where the wastewater with high organic slowly released during the progress of the experiment. carbon concentration was in contact with biomass but not with the aeration system, and (ii) the central part where biomass and water were strongly Water Recycling Options aerated and filtered by the membrane. In the lateral section of the channel, anoxic conditions Effluent from second stage MBR treatment may be have been established and scattered presence of newly reused in for preliminary potato washing or general clean- formed bubbles of nitrogen noticed. ing purposes in the “dirty” part of the process line.
  • 6. 1050 Kupusović T., et al. Much more extensive use of recycled wastewater was 2. CATARINO J., MENDONÇA E., PICADO A., ANSELMO analyzed in Aantrekker et al. [18], who investigated the A., NOBRE DA COSTA J., PARTIDÁRIO P. Getting value water loop closure possibility. Following basic treatment, from wastewater: by-products recovery in a potato chips recycled wastewater was further treated by microfiltration, industry. Journal of Cleaner Production, 15, 927, 2007. 3. GUO I., LIN K.C. Anaerobic treatment of potato-processing active carbon and UV disinfection. Under these conditions wastewater by a UASB system at low organic loadings. the accumulation of chlorides in the loop and in the potato Water Air and Soil Pollution, 53, 367, 1990. was reported to be a limiting factor. 4. WAMBEKE M.V., GRUSENMEYER S., VERSRTRAETE Catarino et al. [2] presented achievements from the W., LONGRY R. Sludge bed growth in an UASB reactor Portuguese potato chip industry where around 10% of treating potato processing wastewater. Process Biochemistry water that was subject to starch and grease recovery and International, 25, 181, 1990. subsequent treatment was recirculated in the production 5. LASIK M., NOWAK J., KENT C. A., CZARNECKI Z. process for soiled potato washing. Other minor water quan- Assessment of Metabolic Activity of Single and Mixed tities were reused for outside washing, and the watering Microorganism Population Assigned for Potato Wastewater Biodegradation. Polish Journal of Environmental Studies, system and fire network. 11, 719, 2002. Results from experimental setup show that the combi- 6. MALLADI B., INGHAM S.C. Thermophilic aerobic treat- nation of CAS and MBR reactor has little effect on chloride ment of potato-processing wastewater. World Journal of concentrations (average reduction of 35%) probably due to Microbiology and Biotechnology, 9, 45, 1993. the uptake in sludge biomass. Theoretically, considering as 7. HADJIVASSILIS I., GAJDOS S., VANCO D., NICO- a worst case no effect in the WWTP, up to 40% recycling LAOU M. Treatment of wastewater from the potato chips could be achieved without compromise due to chloride and snacks manufacturing industry. Water Science and accumulation the possibility of discharging surplus water in Technology, 36, 329, 1997. a surface body based on Bosnian current legislation (chlo- 8. MISHRA B.K., ARORA A., LATA Optimization of a bio- logical process for treating potato chips industry wastewater rides limit set to 200 mg/l). using a mixed culture of Aspergillus foetidus and Aspergillus niger. Bioresource Technology, 94, 9, 2004. Conclusions 9. CICEK N. A review of membrane bioreactors and their potential application in the treatment of agricultural waste- A two-stage aerobic treatment consisting of convention- water. Canadian Biosystems Engineering, 45, 37, 2003. al active sludge treatment followed by membrane bio reac- 10. ROSEMBERGER S., LAABS C., LESJEAN B., GNIRSS tor has been tested for 100 days in stable conditions at HRT R., AMY G., JEKEL M., SCHROTTER J.C. Impact of col- loidal and soluble organic material on membrane perfor- of two days for each stage. The conventional active sludge mance in membrane bioreactors for municipal wastewater pre-treatment succeeded protecting membranes from inor- treatment. Water Research, 40, 710, 2006. ganic particles, colloids and large load oscillation. The over- 11. CICEK N., DIONYSIOU D., SUIDAN M.T., GINESTET all pollutant removal efficiencies (97.1% COD, 99.5% P., AUDIC J.M. Performance deterioration and structural BOD5, 94.7% total nitrogen and 72.9% total phosphorous) changes of ceramic membrane bioreactor due to inorganic are high enough to produce effluent that meets criteria for abrasion. Journal of membrane Science, 163, 19, 1999. discharge to surface water. The only exception is concentra- 12. GHYOOT W., VERSTRAETE W. Reduced sludge produc- tion of total phosphorous. The analysis of biodegradable tion in a two-stage membrane-assisted bioreactor. Water Research, 34, 205, 1999. COD in the effluent shows that only 14% is still biodegrad- 13. ACHARYA C., NAKHLA G., BASSI A. Operational able and that further improvement of biological step would Optimization and Mass Balances in a Two-Stage MBR hardly achieve higher removal efficiency. Despite high level Treating High Strength Pet Food Wastewater. Journal of of organic matter and suspended solids in the wastewater, Environmental Engineering, 132, 2006. the sludge production has been relatively low amounting to 14. INSTITUTE FOR PUBLIC HEALTH OF SARAJEVO 0.32 gSS (gCODremoved)-1. Although the high quality effluent CANTON. Report on the Results of Testing of Wastewater may be reused in preliminary soiled potato washing, the lim- Pollution Load Expressed as PE, for “Kelly S.E.E.”, Ltd. iting criteria may be increased concentration of chlorides. Zavidovići, February, 2007, [In Bosnian]. 15. EATON A.D., CLESCERI L.S., GREENBERG A.E. Standards methods for the examination of water and waste- Acknowledgements water – 19th Edition. Published by APHA, AWWA and WEF, 1995. This research has been financially supported by the 16. ROELEVELD P.J., LOOSDRECHT M.C.M. Experience with the guidelines for wastewater characterization in The Ministry of Education and Science of Canton Sarajevo, Netherlands. Water Science and Technology, 45, 77, 2002. Bosnia and Herzegovina. The authors wish to thank the 17. SAYED S.K.I., EL-EZABY K.H., GROENDIJK L. Treatment reviewer for comments that resulted in substantial improve- of potato processing wastewater using a membrane bioreactor. ment of the manuscript. Proceedings of the 9th International Water Technology Conference, IWTC9-2005, Sharm El-Sheikh, Egypt, 2005. References 18. AANTREKKER E.D., PADT A., BOOM R.M. Modelling the effect of water recycling on the quality of potato prod- 1. B&H Statistics Agency, Industrial Production in B&H for ucts. International Journal of Food Science and Technology, the period 2004-2007, Thematic Bulletins. 38, 427, 2003.