SlideShare uma empresa Scribd logo
1 de 20
Baixar para ler offline
0
UNIVERSIDAD CATOLICA DE CUENCA SEDE
AZOGUES
TEMA:
Taller y deber del bloque 1.
ALUMNO:
Fabián García.
CURSO:
4to ciclo de Ing. Electrónica.
CATEDRATICO:
Ing. Miguel Andrade.
FECHA:
26 De Mayo del 2015
1
INDICE
1. TALLER ........................................................................................................................................ 2
2. DEBER..................................................................................................................................... 12
2
1. TALLER
2) Con sus propias palabras, defina un material intrínseco, coeficiente de
temperatura negativo y enlace covalente.
Intrínseco: Material semiconductor que haya sido refinado cuidadosamente para lograr
tener un menor número de impurezas.
Coeficiente de temperatura negativo: Todo material semiconductor tiene un coeficiente
de temperatura negativo ya que presentan una conductividad con el nivel de calor.
Enlace covalente: Se refiere a como están enlazados los átomos entre sí para formar una
estructura cristalina.
4) Cuánta energía en Joules se requiere para mover una carga de 6C a través de
una diferencia de potencial de 3V.
W=Q.V
W=6(3)=18 J
6) Consulte su biblioteca de referencia y determine el nivel de Eg para GaP y
ZnS, dos materiales semiconductores de valor practico. Además, determine el
nombre escrito por cada material.
http://www.fisicarecreativa.com/informes/infor_mod/semicon_gap.pdf
http://www.semi1source.com/glossary/default.asp?searchterm=bandgap
3
8) Describa la diferencia entre impurezas de donadores y aceptores.
Las impurezas de donadores son difundidas con cinco electrones de valencia, mientras que
las impurezas de aceptores son difundidas con tres electrones de valencia.
10) Bosqueje la estructura atómica del silicio e inserte una impureza de
arsénico como se demostró para el silicio en la figura 1.7.
12) Consulte su biblioteca de referencia y busque otra explicación del flujo de
huecos contra el de electrones. Con ambas descripciones, describa con sus
propias palabras el proceso de conducción de huecos.
Al estar una temperatura por encima del cero absoluto habrán electrones que serán
excitados causando la banda y entrando a la banda de conducción donde podrán producir
corriente al cruzar el electrón deja un puesto vacante o hueco en la estructura cristalina del
silicio tanto el electrón como el hueco pueden moverse a través material.
(http://hyperphysics.phy-astr.gsu.edu/hbasees/solids/intrin.html)
14) Describa cómo recordará los estados de polarización en directa y en inversa
del diodo de unión p-n. Es decir, ¿cómo recordará cual potencial (positivo
o negativo) se aplica a cual terminal?
En la región tipo p positivo y en la región tipo n el negativo, para conectar de forma inversa
se invierte la polaridad se puede saber cuál es positivo y negativo basándonos en la banda
de color que tienen los diodos.
4
16) Repita el problema 15 con T= 100°C (punto de ebullición del agua).
Suponga que Is se ha incrementado a 50 mA.
T= 273 + °C = 273 + 100 = 373 K
VT=32.17mv
18) a. Grafique la función y= con x de 0 a 10. ¿Por qué es difícil hacerlo?
b. ¿Cuál es el valor de y = con x = 0?
c. Basado en los resultados de la parte (b), ¿por qué es importante el factor
de ‘1 en la ecuación (1.1)?
Es difícil hacerlo ya que la gráfica es demasiado grande para el intervalo de 0 a 10.
b) y= =1
c) Porque V = 0 V, por lo tanto = 1 y reemplazando en la formula I = Is(1 − 1) = 0 mA
5
20) Compare las características de un diodo de silicio y uno de germanio y
determine cuál preferiría utilizar en la mayoría de las aplicaciones prácticas. Dé
algunos detalles. Consulte la lista del fabricante y compare las características de un
diodo de silicio y de uno de germanio de características nominales máximas similares.
Mi elección seria el diodo de silicio gracias a su temperatura tiene más alta capacidad
puede ser usado hasta un máximo de 200 grados centígrados a diferencia del Ge que
máximo 85 grados centígrados. Con el diodo de Si se pueden usar para señales más
grandes.
22) Describa con sus propias palabras el significado de la palabra ideal como se
aplica a un dispositivo o a un sistema.
Se dice que un diodo es ideal cuando esta tiene una buena aproximación de la respuesta
general del diseño es decir las tolerancias de la fabricación cuando este es más preciso a
sus características reales de funcionamiento.
24) ¿Cuál es la diferencia importante entre las características de un interruptor
simple y las de un diodo ideal?
El interruptor es mecánico y gracias a esto es capaz de conducir la corriente a cualquier
dirección mientras que el diodo solo permite el flujo a través de este en una sola dirección.
26) Repita el problema 25 con una corriente en directa de 15 mA y compare los
resultados.
ID = 15 mA, VD = 0.83 V
RDC=
6
28) a. Determine la resistencia dinámica (ca) del diodo de la figura 1.27 con una
corriente en directa de 10 mA por medio de la ecuación (1.4)
b. Determine la resistencia dinámica (ca) del diodo de la figura 1.27 con una
corriente en directa de 10 mA con la ecuación (1.5)
c. Compare las soluciones de las partes (a) y (b).
a) rd=
b) rd=
c) La diferencia es por muy poco es de 0.4
30) Con la ecuación (1.4) determine la resistencia de ca con una corriente de 1
mA y 15 mA del diodo de la figura 1.27. Compare las soluciones y desarrolle una
conclusión general con respecto a la resistencia de ca y niveles crecientes de la
corriente en el diodo.
1mA rd=
15mA rd=
Mientras más aumenta la corriente la resistencia del diodo disminuye permitiendo así una
facilidad mayor para la conductividad atravez del diodo.
32) Determine la resistencia de ca promedio para el diodo de la figura 1.15 en
la región entre 0.6 V y 0.9 V.
rd=
7
34) Determine el circuito equivalente lineal por segmentos del diodo de la
figura 1.15. Use un segmento de línea recta que intersecte el eje horizontal
en 0.7 V y aproxime lo mejor que se pueda la curva correspondiente a la
región mayor que 0.7 V.
rd=
36) Recurriendo a la figura 1.33, determine la capacitancia de transición con
potenciales de polarización en inversa de -25 V y 10 V. ¿Cuál es la relación
del cambio de capacitancia al cambio de voltaje?
VR = −25 V: CT ≅ 0.75 pF
VR = −10 V: CT ≅ 1.25 pf
| | | |
VR = −10 V: CT ≅ 1.25 pF
VR = −1 V: CT ≅ 3 pF
| | | |
La sensibilidad a cambio de voltaje aumenta.
38) Describa con sus propias palabras cómo difieren las capacitancias de
difusión y transición.
La transición es producida por el campo de agotamiento propio del diodo, mientras que la
difusión se da fuera de los límites de la zona de agotamiento en estado de polarización
directa.
8
40) Trace la forma de onda de i de la red de la figura 1.66 si tt = 2ts y el tiempo
de recuperación en inversa es de 9 ns.
ts + tt = trr = 9 ns
ts + 2ts = 9 ns
ts = 3 ns
ts = 2ts = 6 ns
Iinversa= =0.5mA
42) Comente sobre el cambio de nivel de capacitancia con el incremento del
potencial de polarización en inversa para el diodo de la figura 1.37.
Al aumentar el potencial de polarización en inversa la capacitancia disminuye de manera
rápida. Para los potenciales de más de 10 V este se normaliza maso menos en 1.5 pF
9
44) Para el diodo de la figura 1.37 determine el nivel de Ig a temperatura
ambiente (25°C) y al punto de ebullición del agua (100°C). ¿Es significativo el
cambio? ¿Se duplica el nivel por cada 10°C de incremento de la temperatura?
TA = 25°C, IR = 0.5 nA
TA = 100°C, IR = 60 nA
El cambio es significativo de 0.5nA sube significativamente a 60nA habiendo una
diferencia de 59.5nA entre los dos.
46) Con las características de la figura 1.37, determine los niveles de disipación
de potencia nominal máximos para el diodo a temperatura ambiente (25°C) y a 100°C.
Suponiendo que VF permanece fijo en 0.7 V, ¿Cómo cambia el nivel máximo de IF
entre los dos.
T = 25°C: Pmax = 500 mW
T = 100°C: Pmax = 260 mW
Pmax = VFIF
IF=
IF=
A menor temperatura mayor corriente.
48) Se especifican las siguientes características para un diodo Zener particular:
VZ= 29 V, VR = 16.8 V, IZT= 10 mA, IR = 20 µA e IZM = 40 mA Trace la
curva característica como aparece en la figura 1.47.
10
50) Determine el coeficiente de temperatura de un diodo Zener de 5 V (valor
determinado a 25°C) si el voltaje nominal se reduce a 4.8 V a una temperatura de
100°C.
TC=
TC=
52) Determine la impedancia dinámica del diodo de 24 V con IZ =10 mA de la
figura 1.48b. Observe que es una escala logarítmica.
54) Recurriendo a la figura 1.53e, ¿qué valor de Vg parecería apropiado para
este dispositivo? ¿Cómo se compara con el valor de Vg para silicio y germanio?
El valor más apropiado es 2.0V ya que es más alto que el germanio 0.3V o silicio 0,7V.
56) a. ¿Cuál es el incremento en porcentaje de la eficiencia relativa del
dispositivo de la figura 1.53 si la corriente pico se incrementa de 5 mA a 10 mA?
b. Repita la parte (a) con 30 mA a 35 mA (el mismo incremento de corriente).
c. Compare el incremento en porcentaje de las partes (a) y (b). ¿En qué punto de la
curva diría que hay poco que ganar con un incremento adicional de la corriente pico?
(a) 5 mA ≅ 0.82
10 mA ≅ 1.02
Radio de
(b) 30 mA ≅ 1.38
35 mA ≅ 1.42
11
Radio de
(c) Para corrientes mayores a 30 mA el porcentaje de aumento es significativamente menor
que para aumentar corrientes de una magnitud menor.
(58) Trace la curva de reducción de la corriente en directa promedio del LED
rojo de alta eficiencia. De la figura 1.53 determinada por la temperatura.
(Considere las cantidades nominales máximas absolutas).
X=
12
2. DEBER
1) Bosqueje la estructura atómica del cobre y explique por qué es un buen
conductor y en qué forma su estructura es diferente de la del germanio, el silicio y el
arseniuro de galio.
El cobre es un buen conductor ya que tiene 20 electrones en su órbita y un solo electrón en
la capa externa aplicando un campo eléctrico con su polaridad correcta puede conducir
fácilmente mientras que el Si y el Ge tienen capas exteriores completas ya que tienen
enlaces covalente de electrones entre átomos.
3) Consulte su biblioteca de referencia y haga una lista de tres materiales que
tengan un coeficiente de temperatura negativo y de tres que tengan un coeficiente de
temperatura positivo.
http://www.gayatlacomulco.com/tutorials/electymagnet/tem4_2_.htm
5) Si se requieren 48 eV de energía para mover una carga a través de una
diferencia de potencial de 12 V, determine la carga implicada.
48 eV = 48(1.6 × 10−19 J) = 76.8 × 10−19 J
Q= =
13
7) Describa la diferencia entre materiales semiconductores tipo n y tipo p.
El material tipo n tiene un exceso de electrones para de conducción con átomos donadores
para establecer un enlace covalente.
El material tipo p está formado por un material intrínseco con átomos que tiene un número
insuficiente de electrones.
9) Describa la diferencia entre portadores mayoritarios y minoritarios.
En un material tipo n el electrón se llama portador mayoritario y el hueco portador
minoritario. En un material tipo p, el hueco es el portador mayoritario y el electrón el
minoritario.
11) Repita el problema 10, pero ahora inserte una impureza de indio.
13) Describa con sus propias palabras las condiciones establecidas por
condiciones de polarización en directa y en inversa en un diodo de unión p-n y cómo
se ve afectada la corriente resultante.
Al conectar el terminal positivo al al material tipo n y el negativo conectado al material tipo
p ya que el número de iones positivos en la región de empobrecimiento del material tipo n
se incrementara para la gran cantidad de electrones libres atraídos por el voltaje aplicado.
La aplicación de un potencial de polarización en directa VD “presionará” a los electrones
en el material tipo n y a los huecos en el material tipo p para que se recombinen con los
iones próximos al límite y reducirá el ancho de la región de empobrecimiento.
15) Con la ecuación (1.1), determine la corriente en el diodo a 20°C para un
diodo de silicio con Is = 50 nA y una polarización en directa aplicada de 0.6
TK = 20 + 273 = 293
k = 11,600/n = 11,600/2 = 5800
ID=Is
14
ID=
17) a. Con la ecuación (1.1) determine la corriente a 20°C en un diodo de silicio
con Is=0.1 mA con un potencial de polarización en inversa de -10 V.
b. ¿Es el resultado esperado? ¿Por qué?
TK = 20 + 273 = 293
k = 11,600/n = 11,600/2 = 5800
ID=Is
=0.1 ( )=0.1 (1.07 )
ID=0.1
19) En la región de polarización en inversa la corriente de saturación de un
diodo de silicio es de alrededor de 0.1 µA (T= 20°C). Determine su valor aproximado
si la temperatura se incrementa 40°C.
T = 20°C: Is = 0.1 μA
T = 60°C: Is = 2(0.8 μA) = 1.6 μA
21) Determine la caída de voltaje en directa a través del diodo cuyas
características aparecen en la figura 1.19 a temperaturas de -75°C, 25°C, 125°C y una
corriente de 10 mA. Determine el nivel de corriente de saturación para cada
temperatura. Compare los valores extremos de cada una y comente sobre la relación
de las dos.
-75°C 25°C 125°C
VF 1.1V 0.85 V 0.6 V
Is 0.01pA 1 pA 1.05 μA
23) Describa con sus propias palabras las características del diodo ideal y cómo
determinan los estados de encendido y apagado del dispositivo. Es decir, describa
por qué los equivalentes de cortocircuito y circuito abierto son correctos.
En polarización en directa cualquier nivel de voltaje produce una resistencia de cero
ohmios y se produce la conducción mientras que en inversa cualquier voltaje produce una
resistencia muy alta interrumpiendo la conducción.
15
25) Determine la resistencia estática o de cd del diodo comercialmente
disponible de la figura 1.15 con una corriente en directa de 2 mA.
VD ≅ 0.66 V, ID = 2 mA
RDC=
27) Determine la resistencia estática o de cd del diodo comercialmente
disponible de la figura 1.15 con un voltaje en inversa de -10 V. ¿Cómo se compara con
el valor determinado con un voltaje en inversa de -30 V?
VD= -10 ID=IS= -0.1µA
RDC=
VD= -30V ID=IS= -0.1µA
RDC=
Al ser el voltaje menor en inversa la Resistencia aumenta.
29) Calcule las resistencias de cd y ca del diodo de la figura 1.27 con una
corriente en directa de 10 mA y compare sus magnitudes.
ID = 10 mA, VD = 0.76 V
RDC=
rd= =
31) Con la ecuación (1.5), determine la resistencia de ca con una corriente de 1
mA y 15 mA del diodo de la figura 1.15. Modifique la ecuación como sea necesario
para niveles bajos de corriente del diodo. Compare con las soluciones obtenidas en el
problema 30.
ID=1mA, rd=2 ( ) =2(26 ) =52
Ejercicio 30= 55
16
ID=15mA,
rd=
Ejercicio 30=2
33) Determine la resistencia de ca para el diodo de la figura 1.15 con 0.75 V y
compárela con la resistencia de ca promedio obtenida en el problema 32.
Rd=
Ejercicio 32= 24.4
35) Repita el problema 34 con el diodo de la figura 1.27.
rd=
37) Recurriendo a la figura 1.33, determine la capacitancia de difusión con 0 V
y 0.25 V.
VD = 0 V, CD = 3.3 pF
VD = 0.25 V, CD = 9 pF
39) Determine la reactancia ofrecida por un diodo descrito por las
características de la figura 1.33, con un potencial en directa de 0.2 V y un potencial en
inversa de 20 V si la frecuencia aplicada es de 5 MHz.
VD = 0.2 V, CD = 7.3 pF
XC=
VD = −20 V, CT = 0.9 Pf
XC=
17
41) Trace IF contra VF utilizando escalas lineales para el diodo de la figura
1.37. Observe que la gráfica provista emplea una escala logarítmica para el eje
vertical (las escalas logarítmicas se abordan en las secciones 9.2 y 9.3).
43) ¿Cambia significativamente la magnitud de la corriente de saturación en
inversa del diodo de la figura 1.37 con potenciales de polarización en inversa en el
intervalo de -25 V a -100 V?
La magnitud de corriente no cambia significativamente tiene un cambio muy pequeño en
cuanto a corriente ya que:
VD = -25 V, ID = -0,2 nA
VD = -100 V, ID= -0,45 nA
45) Para el diodo de la figura 1.37 determine la resistencia de ca (dinámica)
máxima con una corriente en directa de 0.1, 1.5 y 20 mA. Compare los niveles y
comente si los resultados respaldan las conclusiones derivadas en las primeras
secciones de este capítulo.
IF = 0.1 mA rd = 700 Ω
IF = 1.5 mA rd = 70 Ω
IF = 20 mA rd = 6 Ω
47) Con las características de la figura 1.37, determine la temperatura a la cual
la corriente en el diodo será 50% de su valor a temperatura ambiente (25°C).
IF = 500 mA ……………T = 25°C
IF = 250 mA…………... T=104°C
18
49) ¿A qué temperatura el diodo Zener de 10 V de la figura 1.47 tendrá un
voltaje nominal de 10.75 V? (Sugerencia: Observe los datos de la tabla 1.7).
TC = +0.072% = X 100%
0.072 % = X 100%
0.072% =
T1-25°= °
T1= 104.17° + 25° = 129.17°
51) Con las curvas de la figura 1.48a, ¿qué nivel de coeficiente de temperatura
esperaría para un diodo de 20 V? Repita para un diodo de 5 V. Considere una escala
lineal entre los niveles de voltaje nominal y un nivel de corriente de 0.1 mA.
53) Compare los niveles de impedancia dinámica para el diodo de la figura 1.48
con niveles de corriente de 0.2, 1 y 10 mA. ¿Cómo se relacionan los resultados con la
forma de las características en esta región?
Diodo Zener 24V
0.2 mA: = 400 Ω
1 mA: = 95 Ω
10 mA: = 13 Ω
55) Con la información de la figura 1.53, determine el voltaje en directa a
través del diodo si la intensidad luminosa relativa es de 1.5.
Fig. 1.53 f…………. IF = 13 mA
Fig. 1.53 e………… VF = 2.3 V
19
57) a. Si la intensidad luminosa a un desplazamiento angular de 0° es de 3.0
mcd para el dispositivo de la figura 1.53, ¿a qué ángulo será de 0.75 mcd?
b. ¿A qué ángulo la pérdida de intensidad luminosa se reduce a menos de 50%?
a.
b. A un Angulo de 40 grados.

Mais conteúdo relacionado

Mais procurados

Electronica polarizacion del fet
Electronica  polarizacion del fetElectronica  polarizacion del fet
Electronica polarizacion del fet
Velmuz Buzz
 
Ejercicos fasores
Ejercicos fasoresEjercicos fasores
Ejercicos fasores
VanneGalvis
 
Problemas resueltos transformadores
Problemas resueltos transformadoresProblemas resueltos transformadores
Problemas resueltos transformadores
Laurita Cas
 

Mais procurados (20)

Problema nuestra del calculo de factor de rizo E1
Problema nuestra del calculo de factor de rizo E1Problema nuestra del calculo de factor de rizo E1
Problema nuestra del calculo de factor de rizo E1
 
Circuitos recortadores
Circuitos recortadoresCircuitos recortadores
Circuitos recortadores
 
Circuitos de corriente alterna
Circuitos de corriente alternaCircuitos de corriente alterna
Circuitos de corriente alterna
 
Campos Electromagneticos - Tema 3
Campos Electromagneticos - Tema 3Campos Electromagneticos - Tema 3
Campos Electromagneticos - Tema 3
 
2.7. Recortadores con Diodos
2.7. Recortadores con Diodos2.7. Recortadores con Diodos
2.7. Recortadores con Diodos
 
438809165-electricidad-caipitulo-28-docx.pdf
438809165-electricidad-caipitulo-28-docx.pdf438809165-electricidad-caipitulo-28-docx.pdf
438809165-electricidad-caipitulo-28-docx.pdf
 
Senoides y fasores presentacion ppt
Senoides  y fasores presentacion pptSenoides  y fasores presentacion ppt
Senoides y fasores presentacion ppt
 
Electronica polarizacion del fet
Electronica  polarizacion del fetElectronica  polarizacion del fet
Electronica polarizacion del fet
 
Ejercicos fasores
Ejercicos fasoresEjercicos fasores
Ejercicos fasores
 
Problemas resueltos transformadores
Problemas resueltos transformadoresProblemas resueltos transformadores
Problemas resueltos transformadores
 
TRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOS
TRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOSTRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOS
TRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOS
 
Capacitancia. ing. carlos moreno (ESPOL)
Capacitancia. ing. carlos moreno (ESPOL)Capacitancia. ing. carlos moreno (ESPOL)
Capacitancia. ing. carlos moreno (ESPOL)
 
Ejercicios resueltos en corriente alterna
Ejercicios resueltos en corriente alternaEjercicios resueltos en corriente alterna
Ejercicios resueltos en corriente alterna
 
Informe leyes-de-kirchhoff
Informe leyes-de-kirchhoffInforme leyes-de-kirchhoff
Informe leyes-de-kirchhoff
 
Circuitos trifasicos
Circuitos trifasicosCircuitos trifasicos
Circuitos trifasicos
 
Campos Electromagneticos - Tema 5
Campos Electromagneticos - Tema 5Campos Electromagneticos - Tema 5
Campos Electromagneticos - Tema 5
 
Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)
 
Tema 3: Campos eléctricos en el espacio material
Tema 3: Campos eléctricos en el espacio materialTema 3: Campos eléctricos en el espacio material
Tema 3: Campos eléctricos en el espacio material
 
2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos
2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos
2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos
 
2.1. Análisis Mediante la Recta de Carga para los Diodos
2.1. Análisis Mediante la Recta de Carga para los Diodos2.1. Análisis Mediante la Recta de Carga para los Diodos
2.1. Análisis Mediante la Recta de Carga para los Diodos
 

Destaque (8)

Problemas resueltos de diodos y transistores
Problemas resueltos de diodos y transistoresProblemas resueltos de diodos y transistores
Problemas resueltos de diodos y transistores
 
2.2. Configuraciones de Diodos en Serie en DC
2.2. Configuraciones de Diodos en Serie en DC2.2. Configuraciones de Diodos en Serie en DC
2.2. Configuraciones de Diodos en Serie en DC
 
Ejercicios diodos
Ejercicios diodosEjercicios diodos
Ejercicios diodos
 
Electronica ejercicios
Electronica ejerciciosElectronica ejercicios
Electronica ejercicios
 
Transistores BJT y JFET. Circuitos de polarización.
Transistores BJT y JFET. Circuitos de polarización. Transistores BJT y JFET. Circuitos de polarización.
Transistores BJT y JFET. Circuitos de polarización.
 
04 diodo
04 diodo04 diodo
04 diodo
 
CORRIENTE ALTERNA
CORRIENTE ALTERNACORRIENTE ALTERNA
CORRIENTE ALTERNA
 
problemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitosproblemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitos
 

Semelhante a Ejercicios resueltos del capítulo 1 del libro de Teoría de Circuitos y dispositivos electrónicos

6 s312 pvcf 199-204
6 s312 pvcf  199-2046 s312 pvcf  199-204
6 s312 pvcf 199-204
SENCICO
 
Resistencias en serie y en paralelo
Resistencias en serie y en paraleloResistencias en serie y en paralelo
Resistencias en serie y en paralelo
galileoano
 
Grupo cerpa banco física 1 obj. 32
Grupo cerpa banco física 1 obj. 32Grupo cerpa banco física 1 obj. 32
Grupo cerpa banco física 1 obj. 32
Edisson Herrera
 
Guia circuito serie, Juan Arias Portuguez
Guia circuito serie, Juan Arias PortuguezGuia circuito serie, Juan Arias Portuguez
Guia circuito serie, Juan Arias Portuguez
JUANARIASPORTUGUEZ
 

Semelhante a Ejercicios resueltos del capítulo 1 del libro de Teoría de Circuitos y dispositivos electrónicos (20)

6 s312 pvcf 199-204
6 s312 pvcf  199-2046 s312 pvcf  199-204
6 s312 pvcf 199-204
 
Ejercicios 02-diodo
Ejercicios 02-diodoEjercicios 02-diodo
Ejercicios 02-diodo
 
FISICA 2
FISICA 2FISICA 2
FISICA 2
 
Resistencias en serie y en paralelo
Resistencias en serie y en paraleloResistencias en serie y en paralelo
Resistencias en serie y en paralelo
 
Electrónica: Practica 1 de rectificador de onda completa
Electrónica: Practica 1 de rectificador de onda completaElectrónica: Practica 1 de rectificador de onda completa
Electrónica: Practica 1 de rectificador de onda completa
 
Dialnet diseno y-parametrizaciondeinductoresconnucleodehierr-4727779
Dialnet diseno y-parametrizaciondeinductoresconnucleodehierr-4727779Dialnet diseno y-parametrizaciondeinductoresconnucleodehierr-4727779
Dialnet diseno y-parametrizaciondeinductoresconnucleodehierr-4727779
 
Peri control
Peri controlPeri control
Peri control
 
Preguntas peri
Preguntas peri  Preguntas peri
Preguntas peri
 
Ejercicios electricidad
Ejercicios electricidadEjercicios electricidad
Ejercicios electricidad
 
Ejercicios electricidad
Ejercicios electricidadEjercicios electricidad
Ejercicios electricidad
 
electrotecnia-de-CA.pdf
electrotecnia-de-CA.pdfelectrotecnia-de-CA.pdf
electrotecnia-de-CA.pdf
 
Informe 1 Electronica I Laboratorio
Informe 1 Electronica I  LaboratorioInforme 1 Electronica I  Laboratorio
Informe 1 Electronica I Laboratorio
 
Analisis de circuitos electricos ss13
Analisis de circuitos electricos ss13Analisis de circuitos electricos ss13
Analisis de circuitos electricos ss13
 
Grupo cerpa banco física 1 obj. 32
Grupo cerpa banco física 1 obj. 32Grupo cerpa banco física 1 obj. 32
Grupo cerpa banco física 1 obj. 32
 
Analisis de circuitos electricos ss13
Analisis de circuitos electricos ss13Analisis de circuitos electricos ss13
Analisis de circuitos electricos ss13
 
Analisis de circuitos electricos ss13
Analisis de circuitos electricos ss13Analisis de circuitos electricos ss13
Analisis de circuitos electricos ss13
 
Preinforme lab eln 2
Preinforme lab eln 2Preinforme lab eln 2
Preinforme lab eln 2
 
Aplicaciones diodos
Aplicaciones diodos Aplicaciones diodos
Aplicaciones diodos
 
Guia circuito serie, Juan Arias Portuguez
Guia circuito serie, Juan Arias PortuguezGuia circuito serie, Juan Arias Portuguez
Guia circuito serie, Juan Arias Portuguez
 
Ejercicios resueltos capacitores (1)
Ejercicios resueltos capacitores (1)Ejercicios resueltos capacitores (1)
Ejercicios resueltos capacitores (1)
 

Último

S01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdfS01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdf
SalomeRunco
 

Último (20)

EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptxEFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
 
27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.ppt27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.ppt
 
5. MATERIALES petreos para concreto.pdf.
5. MATERIALES petreos para concreto.pdf.5. MATERIALES petreos para concreto.pdf.
5. MATERIALES petreos para concreto.pdf.
 
G4 - CASO DE ESTUDIO - VOLUMEN DE UN RESERVORIO (1).pptx
G4 - CASO DE ESTUDIO - VOLUMEN DE UN RESERVORIO (1).pptxG4 - CASO DE ESTUDIO - VOLUMEN DE UN RESERVORIO (1).pptx
G4 - CASO DE ESTUDIO - VOLUMEN DE UN RESERVORIO (1).pptx
 
3er Informe Laboratorio Quimica General (2) (1).pdf
3er Informe Laboratorio Quimica General  (2) (1).pdf3er Informe Laboratorio Quimica General  (2) (1).pdf
3er Informe Laboratorio Quimica General (2) (1).pdf
 
Determinación de espacios en la instalación
Determinación de espacios en la instalaciónDeterminación de espacios en la instalación
Determinación de espacios en la instalación
 
TECNOLOGIA DE CONCRETO 2024 estudiante.pdf
TECNOLOGIA DE CONCRETO 2024 estudiante.pdfTECNOLOGIA DE CONCRETO 2024 estudiante.pdf
TECNOLOGIA DE CONCRETO 2024 estudiante.pdf
 
Matrices Matemáticos universitario pptx
Matrices  Matemáticos universitario pptxMatrices  Matemáticos universitario pptx
Matrices Matemáticos universitario pptx
 
Mecatronica Automotriz .pdf
Mecatronica Automotriz              .pdfMecatronica Automotriz              .pdf
Mecatronica Automotriz .pdf
 
ATS-FORMATOa.pdf PARA MANTENIMIENTO MECANICO
ATS-FORMATOa.pdf PARA MANTENIMIENTO MECANICOATS-FORMATOa.pdf PARA MANTENIMIENTO MECANICO
ATS-FORMATOa.pdf PARA MANTENIMIENTO MECANICO
 
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEstadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
 
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdfNTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
 
Trabajos Preliminares en Obras de Construcción..pdf
Trabajos Preliminares en Obras de Construcción..pdfTrabajos Preliminares en Obras de Construcción..pdf
Trabajos Preliminares en Obras de Construcción..pdf
 
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
 
Video sustentación GA2- 240201528-AA3-EV01.pptx
Video sustentación GA2- 240201528-AA3-EV01.pptxVideo sustentación GA2- 240201528-AA3-EV01.pptx
Video sustentación GA2- 240201528-AA3-EV01.pptx
 
dokumen.tips_311-determinacion-del-espacio-estatico.pptx
dokumen.tips_311-determinacion-del-espacio-estatico.pptxdokumen.tips_311-determinacion-del-espacio-estatico.pptx
dokumen.tips_311-determinacion-del-espacio-estatico.pptx
 
ingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptx
 
INTEGRATED PROJECT DELIVERY.pdf (ENTREGA INTEGRADA DE PROYECTOS)
INTEGRATED PROJECT DELIVERY.pdf (ENTREGA INTEGRADA DE PROYECTOS)INTEGRATED PROJECT DELIVERY.pdf (ENTREGA INTEGRADA DE PROYECTOS)
INTEGRATED PROJECT DELIVERY.pdf (ENTREGA INTEGRADA DE PROYECTOS)
 
S01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdfS01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdf
 

Ejercicios resueltos del capítulo 1 del libro de Teoría de Circuitos y dispositivos electrónicos

  • 1. 0 UNIVERSIDAD CATOLICA DE CUENCA SEDE AZOGUES TEMA: Taller y deber del bloque 1. ALUMNO: Fabián García. CURSO: 4to ciclo de Ing. Electrónica. CATEDRATICO: Ing. Miguel Andrade. FECHA: 26 De Mayo del 2015
  • 2. 1 INDICE 1. TALLER ........................................................................................................................................ 2 2. DEBER..................................................................................................................................... 12
  • 3. 2 1. TALLER 2) Con sus propias palabras, defina un material intrínseco, coeficiente de temperatura negativo y enlace covalente. Intrínseco: Material semiconductor que haya sido refinado cuidadosamente para lograr tener un menor número de impurezas. Coeficiente de temperatura negativo: Todo material semiconductor tiene un coeficiente de temperatura negativo ya que presentan una conductividad con el nivel de calor. Enlace covalente: Se refiere a como están enlazados los átomos entre sí para formar una estructura cristalina. 4) Cuánta energía en Joules se requiere para mover una carga de 6C a través de una diferencia de potencial de 3V. W=Q.V W=6(3)=18 J 6) Consulte su biblioteca de referencia y determine el nivel de Eg para GaP y ZnS, dos materiales semiconductores de valor practico. Además, determine el nombre escrito por cada material. http://www.fisicarecreativa.com/informes/infor_mod/semicon_gap.pdf http://www.semi1source.com/glossary/default.asp?searchterm=bandgap
  • 4. 3 8) Describa la diferencia entre impurezas de donadores y aceptores. Las impurezas de donadores son difundidas con cinco electrones de valencia, mientras que las impurezas de aceptores son difundidas con tres electrones de valencia. 10) Bosqueje la estructura atómica del silicio e inserte una impureza de arsénico como se demostró para el silicio en la figura 1.7. 12) Consulte su biblioteca de referencia y busque otra explicación del flujo de huecos contra el de electrones. Con ambas descripciones, describa con sus propias palabras el proceso de conducción de huecos. Al estar una temperatura por encima del cero absoluto habrán electrones que serán excitados causando la banda y entrando a la banda de conducción donde podrán producir corriente al cruzar el electrón deja un puesto vacante o hueco en la estructura cristalina del silicio tanto el electrón como el hueco pueden moverse a través material. (http://hyperphysics.phy-astr.gsu.edu/hbasees/solids/intrin.html) 14) Describa cómo recordará los estados de polarización en directa y en inversa del diodo de unión p-n. Es decir, ¿cómo recordará cual potencial (positivo o negativo) se aplica a cual terminal? En la región tipo p positivo y en la región tipo n el negativo, para conectar de forma inversa se invierte la polaridad se puede saber cuál es positivo y negativo basándonos en la banda de color que tienen los diodos.
  • 5. 4 16) Repita el problema 15 con T= 100°C (punto de ebullición del agua). Suponga que Is se ha incrementado a 50 mA. T= 273 + °C = 273 + 100 = 373 K VT=32.17mv 18) a. Grafique la función y= con x de 0 a 10. ¿Por qué es difícil hacerlo? b. ¿Cuál es el valor de y = con x = 0? c. Basado en los resultados de la parte (b), ¿por qué es importante el factor de ‘1 en la ecuación (1.1)? Es difícil hacerlo ya que la gráfica es demasiado grande para el intervalo de 0 a 10. b) y= =1 c) Porque V = 0 V, por lo tanto = 1 y reemplazando en la formula I = Is(1 − 1) = 0 mA
  • 6. 5 20) Compare las características de un diodo de silicio y uno de germanio y determine cuál preferiría utilizar en la mayoría de las aplicaciones prácticas. Dé algunos detalles. Consulte la lista del fabricante y compare las características de un diodo de silicio y de uno de germanio de características nominales máximas similares. Mi elección seria el diodo de silicio gracias a su temperatura tiene más alta capacidad puede ser usado hasta un máximo de 200 grados centígrados a diferencia del Ge que máximo 85 grados centígrados. Con el diodo de Si se pueden usar para señales más grandes. 22) Describa con sus propias palabras el significado de la palabra ideal como se aplica a un dispositivo o a un sistema. Se dice que un diodo es ideal cuando esta tiene una buena aproximación de la respuesta general del diseño es decir las tolerancias de la fabricación cuando este es más preciso a sus características reales de funcionamiento. 24) ¿Cuál es la diferencia importante entre las características de un interruptor simple y las de un diodo ideal? El interruptor es mecánico y gracias a esto es capaz de conducir la corriente a cualquier dirección mientras que el diodo solo permite el flujo a través de este en una sola dirección. 26) Repita el problema 25 con una corriente en directa de 15 mA y compare los resultados. ID = 15 mA, VD = 0.83 V RDC=
  • 7. 6 28) a. Determine la resistencia dinámica (ca) del diodo de la figura 1.27 con una corriente en directa de 10 mA por medio de la ecuación (1.4) b. Determine la resistencia dinámica (ca) del diodo de la figura 1.27 con una corriente en directa de 10 mA con la ecuación (1.5) c. Compare las soluciones de las partes (a) y (b). a) rd= b) rd= c) La diferencia es por muy poco es de 0.4 30) Con la ecuación (1.4) determine la resistencia de ca con una corriente de 1 mA y 15 mA del diodo de la figura 1.27. Compare las soluciones y desarrolle una conclusión general con respecto a la resistencia de ca y niveles crecientes de la corriente en el diodo. 1mA rd= 15mA rd= Mientras más aumenta la corriente la resistencia del diodo disminuye permitiendo así una facilidad mayor para la conductividad atravez del diodo. 32) Determine la resistencia de ca promedio para el diodo de la figura 1.15 en la región entre 0.6 V y 0.9 V. rd=
  • 8. 7 34) Determine el circuito equivalente lineal por segmentos del diodo de la figura 1.15. Use un segmento de línea recta que intersecte el eje horizontal en 0.7 V y aproxime lo mejor que se pueda la curva correspondiente a la región mayor que 0.7 V. rd= 36) Recurriendo a la figura 1.33, determine la capacitancia de transición con potenciales de polarización en inversa de -25 V y 10 V. ¿Cuál es la relación del cambio de capacitancia al cambio de voltaje? VR = −25 V: CT ≅ 0.75 pF VR = −10 V: CT ≅ 1.25 pf | | | | VR = −10 V: CT ≅ 1.25 pF VR = −1 V: CT ≅ 3 pF | | | | La sensibilidad a cambio de voltaje aumenta. 38) Describa con sus propias palabras cómo difieren las capacitancias de difusión y transición. La transición es producida por el campo de agotamiento propio del diodo, mientras que la difusión se da fuera de los límites de la zona de agotamiento en estado de polarización directa.
  • 9. 8 40) Trace la forma de onda de i de la red de la figura 1.66 si tt = 2ts y el tiempo de recuperación en inversa es de 9 ns. ts + tt = trr = 9 ns ts + 2ts = 9 ns ts = 3 ns ts = 2ts = 6 ns Iinversa= =0.5mA 42) Comente sobre el cambio de nivel de capacitancia con el incremento del potencial de polarización en inversa para el diodo de la figura 1.37. Al aumentar el potencial de polarización en inversa la capacitancia disminuye de manera rápida. Para los potenciales de más de 10 V este se normaliza maso menos en 1.5 pF
  • 10. 9 44) Para el diodo de la figura 1.37 determine el nivel de Ig a temperatura ambiente (25°C) y al punto de ebullición del agua (100°C). ¿Es significativo el cambio? ¿Se duplica el nivel por cada 10°C de incremento de la temperatura? TA = 25°C, IR = 0.5 nA TA = 100°C, IR = 60 nA El cambio es significativo de 0.5nA sube significativamente a 60nA habiendo una diferencia de 59.5nA entre los dos. 46) Con las características de la figura 1.37, determine los niveles de disipación de potencia nominal máximos para el diodo a temperatura ambiente (25°C) y a 100°C. Suponiendo que VF permanece fijo en 0.7 V, ¿Cómo cambia el nivel máximo de IF entre los dos. T = 25°C: Pmax = 500 mW T = 100°C: Pmax = 260 mW Pmax = VFIF IF= IF= A menor temperatura mayor corriente. 48) Se especifican las siguientes características para un diodo Zener particular: VZ= 29 V, VR = 16.8 V, IZT= 10 mA, IR = 20 µA e IZM = 40 mA Trace la curva característica como aparece en la figura 1.47.
  • 11. 10 50) Determine el coeficiente de temperatura de un diodo Zener de 5 V (valor determinado a 25°C) si el voltaje nominal se reduce a 4.8 V a una temperatura de 100°C. TC= TC= 52) Determine la impedancia dinámica del diodo de 24 V con IZ =10 mA de la figura 1.48b. Observe que es una escala logarítmica. 54) Recurriendo a la figura 1.53e, ¿qué valor de Vg parecería apropiado para este dispositivo? ¿Cómo se compara con el valor de Vg para silicio y germanio? El valor más apropiado es 2.0V ya que es más alto que el germanio 0.3V o silicio 0,7V. 56) a. ¿Cuál es el incremento en porcentaje de la eficiencia relativa del dispositivo de la figura 1.53 si la corriente pico se incrementa de 5 mA a 10 mA? b. Repita la parte (a) con 30 mA a 35 mA (el mismo incremento de corriente). c. Compare el incremento en porcentaje de las partes (a) y (b). ¿En qué punto de la curva diría que hay poco que ganar con un incremento adicional de la corriente pico? (a) 5 mA ≅ 0.82 10 mA ≅ 1.02 Radio de (b) 30 mA ≅ 1.38 35 mA ≅ 1.42
  • 12. 11 Radio de (c) Para corrientes mayores a 30 mA el porcentaje de aumento es significativamente menor que para aumentar corrientes de una magnitud menor. (58) Trace la curva de reducción de la corriente en directa promedio del LED rojo de alta eficiencia. De la figura 1.53 determinada por la temperatura. (Considere las cantidades nominales máximas absolutas). X=
  • 13. 12 2. DEBER 1) Bosqueje la estructura atómica del cobre y explique por qué es un buen conductor y en qué forma su estructura es diferente de la del germanio, el silicio y el arseniuro de galio. El cobre es un buen conductor ya que tiene 20 electrones en su órbita y un solo electrón en la capa externa aplicando un campo eléctrico con su polaridad correcta puede conducir fácilmente mientras que el Si y el Ge tienen capas exteriores completas ya que tienen enlaces covalente de electrones entre átomos. 3) Consulte su biblioteca de referencia y haga una lista de tres materiales que tengan un coeficiente de temperatura negativo y de tres que tengan un coeficiente de temperatura positivo. http://www.gayatlacomulco.com/tutorials/electymagnet/tem4_2_.htm 5) Si se requieren 48 eV de energía para mover una carga a través de una diferencia de potencial de 12 V, determine la carga implicada. 48 eV = 48(1.6 × 10−19 J) = 76.8 × 10−19 J Q= =
  • 14. 13 7) Describa la diferencia entre materiales semiconductores tipo n y tipo p. El material tipo n tiene un exceso de electrones para de conducción con átomos donadores para establecer un enlace covalente. El material tipo p está formado por un material intrínseco con átomos que tiene un número insuficiente de electrones. 9) Describa la diferencia entre portadores mayoritarios y minoritarios. En un material tipo n el electrón se llama portador mayoritario y el hueco portador minoritario. En un material tipo p, el hueco es el portador mayoritario y el electrón el minoritario. 11) Repita el problema 10, pero ahora inserte una impureza de indio. 13) Describa con sus propias palabras las condiciones establecidas por condiciones de polarización en directa y en inversa en un diodo de unión p-n y cómo se ve afectada la corriente resultante. Al conectar el terminal positivo al al material tipo n y el negativo conectado al material tipo p ya que el número de iones positivos en la región de empobrecimiento del material tipo n se incrementara para la gran cantidad de electrones libres atraídos por el voltaje aplicado. La aplicación de un potencial de polarización en directa VD “presionará” a los electrones en el material tipo n y a los huecos en el material tipo p para que se recombinen con los iones próximos al límite y reducirá el ancho de la región de empobrecimiento. 15) Con la ecuación (1.1), determine la corriente en el diodo a 20°C para un diodo de silicio con Is = 50 nA y una polarización en directa aplicada de 0.6 TK = 20 + 273 = 293 k = 11,600/n = 11,600/2 = 5800 ID=Is
  • 15. 14 ID= 17) a. Con la ecuación (1.1) determine la corriente a 20°C en un diodo de silicio con Is=0.1 mA con un potencial de polarización en inversa de -10 V. b. ¿Es el resultado esperado? ¿Por qué? TK = 20 + 273 = 293 k = 11,600/n = 11,600/2 = 5800 ID=Is =0.1 ( )=0.1 (1.07 ) ID=0.1 19) En la región de polarización en inversa la corriente de saturación de un diodo de silicio es de alrededor de 0.1 µA (T= 20°C). Determine su valor aproximado si la temperatura se incrementa 40°C. T = 20°C: Is = 0.1 μA T = 60°C: Is = 2(0.8 μA) = 1.6 μA 21) Determine la caída de voltaje en directa a través del diodo cuyas características aparecen en la figura 1.19 a temperaturas de -75°C, 25°C, 125°C y una corriente de 10 mA. Determine el nivel de corriente de saturación para cada temperatura. Compare los valores extremos de cada una y comente sobre la relación de las dos. -75°C 25°C 125°C VF 1.1V 0.85 V 0.6 V Is 0.01pA 1 pA 1.05 μA 23) Describa con sus propias palabras las características del diodo ideal y cómo determinan los estados de encendido y apagado del dispositivo. Es decir, describa por qué los equivalentes de cortocircuito y circuito abierto son correctos. En polarización en directa cualquier nivel de voltaje produce una resistencia de cero ohmios y se produce la conducción mientras que en inversa cualquier voltaje produce una resistencia muy alta interrumpiendo la conducción.
  • 16. 15 25) Determine la resistencia estática o de cd del diodo comercialmente disponible de la figura 1.15 con una corriente en directa de 2 mA. VD ≅ 0.66 V, ID = 2 mA RDC= 27) Determine la resistencia estática o de cd del diodo comercialmente disponible de la figura 1.15 con un voltaje en inversa de -10 V. ¿Cómo se compara con el valor determinado con un voltaje en inversa de -30 V? VD= -10 ID=IS= -0.1µA RDC= VD= -30V ID=IS= -0.1µA RDC= Al ser el voltaje menor en inversa la Resistencia aumenta. 29) Calcule las resistencias de cd y ca del diodo de la figura 1.27 con una corriente en directa de 10 mA y compare sus magnitudes. ID = 10 mA, VD = 0.76 V RDC= rd= = 31) Con la ecuación (1.5), determine la resistencia de ca con una corriente de 1 mA y 15 mA del diodo de la figura 1.15. Modifique la ecuación como sea necesario para niveles bajos de corriente del diodo. Compare con las soluciones obtenidas en el problema 30. ID=1mA, rd=2 ( ) =2(26 ) =52 Ejercicio 30= 55
  • 17. 16 ID=15mA, rd= Ejercicio 30=2 33) Determine la resistencia de ca para el diodo de la figura 1.15 con 0.75 V y compárela con la resistencia de ca promedio obtenida en el problema 32. Rd= Ejercicio 32= 24.4 35) Repita el problema 34 con el diodo de la figura 1.27. rd= 37) Recurriendo a la figura 1.33, determine la capacitancia de difusión con 0 V y 0.25 V. VD = 0 V, CD = 3.3 pF VD = 0.25 V, CD = 9 pF 39) Determine la reactancia ofrecida por un diodo descrito por las características de la figura 1.33, con un potencial en directa de 0.2 V y un potencial en inversa de 20 V si la frecuencia aplicada es de 5 MHz. VD = 0.2 V, CD = 7.3 pF XC= VD = −20 V, CT = 0.9 Pf XC=
  • 18. 17 41) Trace IF contra VF utilizando escalas lineales para el diodo de la figura 1.37. Observe que la gráfica provista emplea una escala logarítmica para el eje vertical (las escalas logarítmicas se abordan en las secciones 9.2 y 9.3). 43) ¿Cambia significativamente la magnitud de la corriente de saturación en inversa del diodo de la figura 1.37 con potenciales de polarización en inversa en el intervalo de -25 V a -100 V? La magnitud de corriente no cambia significativamente tiene un cambio muy pequeño en cuanto a corriente ya que: VD = -25 V, ID = -0,2 nA VD = -100 V, ID= -0,45 nA 45) Para el diodo de la figura 1.37 determine la resistencia de ca (dinámica) máxima con una corriente en directa de 0.1, 1.5 y 20 mA. Compare los niveles y comente si los resultados respaldan las conclusiones derivadas en las primeras secciones de este capítulo. IF = 0.1 mA rd = 700 Ω IF = 1.5 mA rd = 70 Ω IF = 20 mA rd = 6 Ω 47) Con las características de la figura 1.37, determine la temperatura a la cual la corriente en el diodo será 50% de su valor a temperatura ambiente (25°C). IF = 500 mA ……………T = 25°C IF = 250 mA…………... T=104°C
  • 19. 18 49) ¿A qué temperatura el diodo Zener de 10 V de la figura 1.47 tendrá un voltaje nominal de 10.75 V? (Sugerencia: Observe los datos de la tabla 1.7). TC = +0.072% = X 100% 0.072 % = X 100% 0.072% = T1-25°= ° T1= 104.17° + 25° = 129.17° 51) Con las curvas de la figura 1.48a, ¿qué nivel de coeficiente de temperatura esperaría para un diodo de 20 V? Repita para un diodo de 5 V. Considere una escala lineal entre los niveles de voltaje nominal y un nivel de corriente de 0.1 mA. 53) Compare los niveles de impedancia dinámica para el diodo de la figura 1.48 con niveles de corriente de 0.2, 1 y 10 mA. ¿Cómo se relacionan los resultados con la forma de las características en esta región? Diodo Zener 24V 0.2 mA: = 400 Ω 1 mA: = 95 Ω 10 mA: = 13 Ω 55) Con la información de la figura 1.53, determine el voltaje en directa a través del diodo si la intensidad luminosa relativa es de 1.5. Fig. 1.53 f…………. IF = 13 mA Fig. 1.53 e………… VF = 2.3 V
  • 20. 19 57) a. Si la intensidad luminosa a un desplazamiento angular de 0° es de 3.0 mcd para el dispositivo de la figura 1.53, ¿a qué ángulo será de 0.75 mcd? b. ¿A qué ángulo la pérdida de intensidad luminosa se reduce a menos de 50%? a. b. A un Angulo de 40 grados.