SlideShare uma empresa Scribd logo
1 de 69
Baixar para ler offline
Structural concrete design, dimensioning and detailing:
from truss models to computer-aided stress fields
Prof. Dr. Walter Kaufmann
ETH Zürich
Institute of Structural Engineering
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 1
Historical background of limit analysis methods
Truss models and stress fields
FE-calculations and existing computer-aided tools
DR-Design (ISD): Motivation and scope
DR-Design (ISD): Model description
DR-Design (ISD): Experimental validation
Conclusions
Structural concrete design, dimensioning and detailing:
from truss models to computer-aided stress fields
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 2
“Ancestors” of limit analysis methods – Yield line method
P. Marti et al., Aplication of yield line method (1999)A. Ingerslev «The Strength of Rectangular Slabs (1923)
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 3
“Ancestors” of limit analysis methods – Hillerborg’s strip method
H. Marcus «Die Theorie elastischer Gewebe …» (1924 / 1932) P. Marti et al., Application of Hillerborg’s Strip Method (1999)
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 4
“Ancestors” of limit analysis methods – Truss models and stress fields
E. Mörsch, «Der Eisenbetonbau» (1922)
E. Mörsch, «Der Eisenbetonbau» (1908)
K. W. Ritter, «Die Bauweise Hennebique» (1899)
Modern truss models and stress fields
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 5
“Ancestors” of limit analysis methods – Truss models and stress fields
K. W. Ritter, «Die Bauweise Hennebique» (1899)
Emil Mörsch
1872-1950
Karl Wilhelm Ritter
1847-1906
E. Mörsch, «Der Eisenbetonbau» (1922)
E. Mörsch, «Der Eisenbetonbau» (1908)
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 6
“Ancestors” of limit analysis methods – Truss models and stress fields
K. W. Ritter, «Die Bauweise Hennebique» (1899)
M. Ritter, «Massivbau» (ca. 1940) P. Lardy, «Massivbau» (1951)
E. Mörsch, «Der Eisenbetonbau» (1908)
E. Mörsch, «Der Eisenbetonbau» (1922)
E. Mörsch, «Der Eisenbetonbau» (1908)
Truss models regarded as
behavioural models
State of art: Design based on
semi-empirical models, e.g.
«admissible tensile stresses»
Situation until 1960s
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 7
“Ancestors” of limit analysis methods – Truss models and stress fields
M. Ritter, «Massivbau» (ca. 1940) P. Lardy, «Massivbau» (1951)
E. Mörsch, «Der Eisenbetonbau» (1908)
Emil Mörsch
1872-1950
Pierre Lardy
1903-1958
Max Ritter
1884-1946
Truss models regarded as
behavioural models
State of art: Design based on
semi-empirical models, e.g.
«admissible tensile stresses»
Situation until 1960s
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 8
Intrinsic problems of “admissible stress” design
Ernst Melan
1890-1963 Drawbacks of «admissible stress design»:
- Ultimate load cannot be reliably predicted (except for brittle materials)
even if stresses are accurately known → no uniform safety level
- Stresses cannot be «accurately» determined (restraint to imposed
deformations e.g. hydration, shrinkage; construction stages; …)
Ernst Melan (1938):
Since (…) typically, the sequence of loading is arbitrary, asking for the
state of stress under a certain load does not make sense.
(Translated from German: «Da (…) die Reihenfolge der Belastungen willkürlich
zu sein pflegt, hat die Frage nach einem Spannungszustand bei einer
bestimmten Belastung keinen Sinn»).
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 9
Limit analysis methods – Application to Structural Concrete
Intrinsic problems of admissible
stress design:
- initial stress state?
- safety level?
Truss models put on a consistent
mechanical basis by the Theory of
Plasticity [(Prager, Gvozdev).
Lower-bound theorem:
• Satisfy equilibrium and statical
boundary coditions
• Do not infringe yield condition
(provide required strength)
→ Safe design
→ Independent of initial stresses
( ) 0Ζ =
mΖ jσ
(S) 0=
iσ
kσ
εnΖ
z
Peter Marti
*1949
Bruno Thürlimann
1923-2008
upper bound solutions
(«failure mechanisms»)
possible range of ultimate load
lower bound solutions
(«equilibrium methods»)
P
(Among other pioneers like e.g.
D.C. Drucker, W.F. Chen,
M.P. Nielsen, M. Braestrup,
D.H. Clyde, C.T. Morley,
P. Müller, J. Witteveen ,…)
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 10
Stoffel / Marti
(1995)
Sigrist / Marti
(1992)
Kaufmann / Marti
(1995)
Bachmann / Thürlimann
(1965)
Maier / Thürlimann
(1985)
Limit analysis methods – Validation by large scale experiments
Large-scale testing indispensable
for validaton and acceptance of limit
analysis methods
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 11
“Ancestors” of limit analysis methods – Truss models and stress fields
J. Schlaich et al., «Toward a Consistent Design of Structural Concrete» (1987)
Jörg Schlaich
* 1934
(Among many others like e.g.
K. Schäfer, J.G. McGregor, …)
Strut-and-tie models
(«Stabwerkmodelle»):
Used for tracing the flow of
forces and form finding (often
based on elastic principal
stress trajectories, and
combined with graphic statics)
Mechanical basis?
Code compliant?
Behavioural models /
«Practitioner method»?
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 12
“Ancestors” of limit analysis methods – Truss models and stress fields
J. Schlaich et al., «Toward a Consistent Design of Structural Concrete» (1987)
Jörg Schlaich
* 1934
(Among many others like e.g.
K. Schäfer, J.G. McGregor, …)
Strut-and-tie models
(«Stabwerkmodelle»):
Used for tracing the flow of
forces and form finding (often
based on elastic principal
stress trajectories, and
combined with graphic statics)
Mechanical background:
Limit analysis metods!
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 13
Historical background of limit analysis methods
Truss models and stress fields
FE-calculations and existing computer-aided tools
DR-Design (ISD): Motivation and scope
DR-Design (ISD): Model description
DR-Design (ISD): Experimental validation
Conclusions
Computer-aided stress field analysis of
discontinuity concrete regions
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 14
Truss models and stress fields
E. Mörsch, «Der Eisenbetonbau» (1922)
E. Mörsch, «Der Eisenbetonbau» (1908)
K. W. Ritter, «Die Bauweise Hennebique» (1899)
Modern truss models and stress fields
consistent
mechanical
basis:
lower-bound
theorem of
limit analysis
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 15
Code provisions based on limit analysis in current EN 1992-1-1: Shear design
Truss models and stress fields
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 16
Code provisions based on limit analysis in current EN 1992-1-1: Horizontal shear and torsion
Truss models and stress fields
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 17
Truss models and stress fields
[Tjhin & Kuchma, 2002]
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 18
Truss models and stress fields
Code provisions based on limit analysis in current EN 1992-1-1: Strut and tie models
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 19
Truss models and stress fields
x
supF
z
infF−
supF centred
non-centred
wfO
x
z
infF−
supF centred
non-centred
wfO
supF
q q
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 20
Truss models and stress fields
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 21
Anchor force
NB:
= stirrup forces
+ applied load
Anchor force
[Marti & Stoffel, 1999]
Truss models and stress fields
 Flow of forces (transparency)
 Safe dimensioning
 Consistent detailing
 Tedious hand calculations
(iterations, many load cases)
 Even more so in assessment
 Compressive strength fc?
(depending on strain state)
 Deformation capacity?
 Serviceability checks
(deformations, crack widths)?
→ FE-calculations used in
engineering practice
→ Future of truss models?
→ Digitalisation required!
(computer-aided tools)
Design of Discontinuity: classic tools
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 22
Historical background of limit analysis methods
Truss models and stress fields
FE-calculations and existing computer-aided tools
DR-Design (ISD): Motivation and scope
DR-Design (ISD): Model description
DR-Design (ISD): Experimental validation
Conclusions
Computer-aided stress field analysis of
discontinuity concrete regions
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 23
FE-calculations
[Cervenka Consulting / ATENA]
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 24
FE-calculations
Linear elastic FE calculations
• Equilibrium is satisfied (application of lower bound theorem of imit analysis) → ok, but …
• Do not capture real behaviour (restraint stresses, cracking, redistribution, staged construction, …)
• Non-symmetric strength of concrete only accounted for in last step (dimensioning based on yield conditions)
• Often inefficient and / or unpractical reinforcement layouts; fc must be assumed (“safe value”)
→ Useful in design, but unable to predict realistic capacity in existing structures, nor cracking in new ones
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 25
1
sx sx x xz
sz sz z xz
a f n k n
a f n k n−
≥ +
≥ +
( )c sx sx sz sz x zhf a f a f n n≥ + − +
Direct reinforcement design
(yield regime 1):
Valid if concrete does not crush, i.e.:
FE-calculations
Linear elastic FE calculations
• Equilibrium is satisfied (application of lower bound theorem of imit analysis) → ok, but …
• Do not capture real behaviour (restraint stresses, cracking, redistribution, staged construction, …)
• Non-symmetric strength of concrete only accounted for in last step (dimensioning based on yield conditions)
• Often inefficient and / or unpractical reinforcement layouts
→ Useful in design, but unable to predict realistic capacity in existing structures, nor cracking in new ones
Nonlinear FE calculations
• Capture real behaviour if correct mechanical models and material parameters are input
• Require expert users, modelling and analysis time consuming
• Input of (often many!) material parameters unknown at design stage required
• Results non-transparent and sensitive to choice of mechanical model and material parameters (often ± arbitrary in design)
• Often inefficient and / or unpractical reinforcement layouts
→ Limited use, mainly in assessment of existing structures and research
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 26
FE-calculations
[Cervenka Consulting / ATENA]
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 27
FE-calculations
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 28
 Powerful tools with lots of
possibilities
 Account for material and
geometrical nonlinearities
 Capture “real” behaviour
if right parameters are used
 ULS and SLS results provided
 Expert users required
 Many input parameters are
unknown in design stage
 Highly sensitive to seemingly
unimportant input parameters
 fct directly contributes to
resistance in many cases
(fct > 0 for numerical stability)
→ Code compliant, safe design?
→ Useful for design stage?[Cervenka Consulting / ATENA]
FE-calculations
Linear elastic FE calculations
• Equilibrium is satisfied (application of lower bound theorem of imit analysis) → ok, but …
• Do not capture real behaviour (restraint stresses, cracking, redistribution, staged construction, …)
• Non-symmetric strength of concrete only accounted for in last step (dimensioning based on yield conditions)
• Often inefficient and / or unpractical reinforcement layouts
→ Useful in design, but unable to predict realistic capacity in existing structures, nor cracking in new ones
Nonlinear FE calculations
• Capture real behaviour if correct mechanical models and material parameters are input
• Require expert users, modelling and analysis time consuming
• Input of (often many!) material parameters unknown at design stage required
• Results non-transparent and sensitive to choice of mechanical model and material parameters (often ± arbitrary in design)
• Often inefficient and / or unpractical reinforcement layouts
→ Limited use, mainly in assessment of existing structures and research
Alternative: Computer-aided truss models / stress fields (simplified nonlinear FE calculations)
• Not a new idea: «It is time to bring these methods from the drawing board to the computer» [Marti 1985]
• Surprising that no such tools were available until recently
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 29
Existing computer-aided tools
Design of Discontinuity Regions: Existing computer-aided tools
• AStruTie (HanGil)
[HanGil, 2017]
Idea StatiCa for specific details
(corbels, piles caps…)
AStrutTie (HanGil)
(strut-and-tie → fc=? Realistic results?)
[IDEA, 2017]
CAST (Tjhin & Kutchma, 2002)
(strut-and-tie → fc=? Realistic results?)
[Mata-Falcón & Sánchez-Sevilla, 2006]
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 30
Spannungsfelder
Design of Discontinuity Regions: Existing computer-aided tools
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 31
Stringer-Panel Models (Nielsen, 1971; Blaauwendraad & Hoogenboom, 1996; Marti & Heinzmann, 2012)
[Blauwendraad, 2006]
Spannungsfelder
Experimental
crack pattern
Hand-calculated
stress fields
Numerical
results EPSF
Design of Discontinuity Regions: Existing computer-aided tools
[Mata-Falcón, 2015]
[Mata-Falcón et al., 2014]
[Muttoni & Fernandez Ruiz, 2007]
EPSF elastic plastic stress fields (Fernández Ruiz & Muttoni, 2007)
 Maintains advantages of hand
calculations (transparent, safe
design with fct = 0, consistent
detailing)
 Compressive strength fc
determined automatically from
strain state
 Limited user-friendliness
 Limited use for serviceability
… no tension stiffening
… no crack width calculation
 No check of deformation
capacity (perfectly plastic
material)
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 32
Historical background of limit analysis methods
Truss models and stress fields
FE-calculations and existing computer-aided tools
DR-Design (ISD): Motivation and scope
DR-Design (ISD): Model description
DR-Design (ISD): Experimental validation
Conclusions
Computer-aided stress field analysis of
discontinuity concrete regions
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 33
DR-Design (Discontinuity Region Design)
Scope
• Simple method for efficient, code-compliant design and assessment of discontinuity concrete regions
• Including serviceability and deformation capacity verifications
• Direct link to conventional RC design: concrete tensile strength ONLY for stiffness, standard material properties
Inspirations
• EPSF finite-element implementation (strain compatibility, automatic determination of kc from strain state)
• Tension Chord Model TCM and Cracked Membrane Model CMM (tension stiffening, ductility and serviceability checks)
Features of DR-Design
• Maintains advantages of truss models and stress field design: Tensile strength of concrete does not contribute to strength!
• Simple uniaxial constitutive laws for reinforcement and concrete in compression
• Satisfies strain compatibility, accounting for tension stiffening
• Covers all verifications typically required in design (ULS, SLS including crack widths)
• Implemented in user-friendly FE-based software package IDEA StatiCa>Detail.
• Checks deformation capacity (explicit strain limitations of concrete and reinforcement)
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 34
DR-Design (Discontinuity Region Design)
Scope
• Simple method for efficient, code-compliant design and assessment of discontinuity concrete regions
• Including serviceability and deformation capacity verifications
• Direct link to conventional RC design: concrete tensile strength ONLY for stiffness, standard material properties
Inspirations
• EPSF finite-element implementation (strain compatibility, automatic determination of kc from strain state)
• Tension Chord Model TCM and Cracked Membrane Model CMM (tension stiffening, ductility and serviceability checks)
Development / Credits
This project has received partial funding from Eurostars-2
joint programme, with co-funding from the European Union
Horizon 2020 research and innovation programme
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 35
Historical background of limit analysis methods
Truss models and stress fields
FE-calculations and existing computer-aided tools
DR-Design (ISD): Motivation and scope
DR-Design (ISD): Model description
DR-Design (ISD): Experimental validation
Conclusions
Computer-aided stress field analysis of
discontinuity concrete regions
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 36
Model description
DRD verification model: main assumptions
• AStruTie (HanGil)
based on [Kaufmann and Marti, 1998]
Main assumptions:
• Fictitious rotating,
stress-free cracks
(σc1,r=0) without slip
• Average strains
• Equilibrium at cracks:
i. Maximum stresses:
-σc3,r / σs,r
ii. Concrete tensile
strength neglected
except for tension-
stiffening: εm
Suitable for elements with minimum transversal reinforcement. Slender elements without shear reinforcement would
lead to conservative results.
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 37
Model description
DRD verification model: concrete
• AStruTie (HanGil)
 Strain limitations of concrete specified by codes
(explicitly considers the increasing brittleness of
concrete with strength).
 Imposed to the average strain over a characteristic
crushing band length.
 kc discrete values for hand calculations
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 38
Model description
DRD verification model: concrete
• AStruTie (HanGil)
 kc (compression softening) automatically computed based
on the transversal strain state.
 Use of fib MC 2010 proposal for shear verifications
(consistent with considered max. stresses) extended for
general cases.
 Strain limitations of concrete specified by codes
(explicitly considers the increasing brittleness of
concrete with strength).
 Imposed to the average strain over a characteristic
crushing band length.
(standard user:
only kc currently
used, not εcu)
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 39
Model description
DRD verification model: concrete
• AStruTie (HanGil)
EN 1992-1-1, 6.5. Design with strut and tie models
6.5.2 (2): The design strength for concrete struts should
be reduced in cracked compression zones and, unless
a more rigorous approach is used, may be calculated
from Expression (6.56).
 Strain limitations of concrete specified by codes
(explicitly considers the increasing brittleness of
concrete with strength).
 Imposed to the average strain over a characteristic
crushing band length.
(standard user:
only kc currently
used, not εcu)
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 40
Model description
DRD verification model: bond and reinforcement
Bond model used exclusively for
verifications of gradients of
tension chord force
Tension-stiffening:
 Does not affect the
strength of the
reinforcement
 Increases the stiffness
 Reduces the ductility
(can reduce the strength
of the member)
explicit failure
criterion (rupture) *Bilinear naked steel input for design. More
realistic laws for assessment &
experimental validation.
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 41
Model description
DRD verification model: tension stiffening
Stabilised crack pattern
 Implementation of
Tension Chord Model
(TCM) [Alvarez, 1998;
Marti et al., 1998]
 Average crack spacing:
assumed λ=0.67
for ρ>ρcr≈0.6%  Reinforcement is able to
carry the cracking load without yielding 0
1
1sr y ctm
cr
f f n
 
σ = = + − 
ρ 
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 42
Model description
DRD verification model: tension stiffening
Non-stabilised crack pattern
for ρ<ρcr≈0.6%  Reinforcement is NOT able to carry the cracking load without
yielding. Cracks are controlled by other reinforcement.
 Independent cracks are
assumed + bond model of
Tension Chord Model.
 Crack localization (size
effect): stiffness of the
whole rebar embedded in
concrete > local stiffness
near the crack
→ considered strain:
average over lavg = length at
which rebar is fully anchored
(for ft )
Will be
released for
stirrups in
ISD 9.1
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 43
Model description
DRD verification model: tension stiffening
Resulting tension chord behaviour
 Fully cracked behaviour
considered for design.
 Uncracked initial stiffness
can be considered for
refined verification
models.
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 44
Model description
DRD verification model: effective area of concrete in tension
→ suitable for numerical implementation and valid for automatic definition of ρc,eff in any region
Maximum concrete area each
rebar can activate (concrete at fct)
(illustrated for rebars 3 and 4) Areas used in calculation
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 45
Model description
DRD verification model: crack width – stabilised crack pattern
WT4
[Walther, 1967]
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 46
Model description
DRD verification model: crack width – non-stabilised crack pattern
[Zhu et al., 2003]
Assumed independent cracks at SLS Considered for:
a) Regions with ρ < 0.6% (ρmin)
b) Cracks triggered by geometric
discontinuities at low loads
T6Will be
released in
ISD 9.1
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 47
Model description
DRD verification model: crack width – crack kinematics
s
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 48
Historical background of limit analysis methods
Truss models and stress fields
FE-calculations and existing computer-aided tools
DR-Design (ISD): Motivation and scope
DR-Design (ISD): Model description
DR-Design (ISD): Experimental validation
Conclusions
Computer-aided stress field analysis of
discontinuity concrete regions
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 49
Experimental validation
DRD experimental validation
• Direct tension experiments – Alvarez and Marti (1996)
 Ultimate limit state
 Load deformation behaviour
 Crack width
• Pure bending experiments – Frantz and Breen (1978)
 Crack width distribution
• Cantilever shear walls – Bimschas, Hannewald and Dazio (2010, 2013)
 Load deformation behaviour under combined loading
 Bearing capacity under combined loading
• Beams with low amount of transversal reinforcement – Huber, Huber and Kolleger (2016)
 Bearing capacity in shear (failures due to insufficient ductility of the transversal reinforcement)
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 50
Experimental validation
DRD experimental validation
Alvarez and Marti (1996) - experimental setup/specimens
[Avarez and Marti, 1996]
Z1 Z1
Specimen Z1 Z2 Z4 Z8
Long.
reinforcement
14xØ14
(ρ = 1%)
14xØ14
(ρ = 1%)
14xØ14
(ρ = 1%)
10xØ14
(ρ = 0.7%)
Steel quality
(ductility class)
High High Normal High
fck_cube (MPa) 50 90 50 50
Loading: pure tension
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 51
Experimental validation
DRD experimental validation
Alvarez and Marti (1996) - ultimate state
[Avarez and Marti, 1996]
Specimen Z1 Z2 Z4 Z8
Experiment
Vexp (kN)
εm,exp (%)
1294
6.7
1295
6.8
1275
0.6
924
6.4
DR-Design
Vcalc (kN)
εm,calc (%)
1275
7.0
1282
4.6
1242
0.4
918
6.5
Safety factor
Strength: Vexp/Vcalc
Deform. capacity: εm,exp/εm,calc
1.01
0.96
1.01
1.48
1.03
1.50
1.01
0.98
V: Peak load
εm: Average tensile strain
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 52
Experimental validation
DRD experimental validation
Alvarez and Marti (1996)
Load deformation behaviour
Neglecting tension-stiffening
overestimates the deformation
capacity up to 5 times
(depending on ρ, the ductility of
the reinforcement…)
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 53
Experimental validation
DRD experimental validation
Alvarez and Marti (1996) -
crack width
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 54
Experimental validation
DRD experimental validation
Frantz and Breen (1980) - experimental setup/specimen
• AStruTie (HanGil)
Specimen RS-3
Main
reinforcement
2xØ15.88
6xØ12.7
Web
reinforcement
6xØ6
Loading: pure bending
[Frantz and Breen, 1980]
d (mm)
885 mm
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 55
Experimental validation
DRD experimental validation
Frantz and Breen (1980) – crack width
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 56
Experimental validation
DRD experimental validation
Bimschas et al. (2010, 2013) – experimental setup/specimens
VK1: first yielding of
reinforcement [Bimschas, 2010]
1370 kN
±V
Specimen VK1 VK3 VK6
Effective height
(m)
3.30 3.30 4.50
Section depth (m) 1.50 1.50 1.50
Section width (m) 0.35 0.35 0.35
ρsl (%) 0.82 1.23 1.23
ρst (%) 0.08 0.08 0.08
Loading: constant normal force N = -1370kN; quasi-static cyclic
loading with increasing amplitudes in horizontal direction.
Note: DR-Design aims to describe the backbone of the cyclic
response using a monotonic model. Strain penetration into the
foundation is not considered.
εu=8.4%
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 57
Experimental validation
DRD experimental validation
Bimschas et al. (2010, 2013) – peak load
[Bimschas, 2010]
VK1: peak strength VK1: failure
Concrete
crushing in
compression
Specimen VK1 VK3 VK6
Experiment*
Vexp (kN)
728 876 647
DR-Design
Vcalc(kN)
730 860 650
Vexp/Vcalc 1.00 1.02 1.00
Note: DR-D aims to describe the behaviour
of the backbone until concrete peak
horizontal strength is reached, (≠ to loss of
vertical bearing capacity).
*mean peak horizontal load of North and
South directions.
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 58
Experimental validation
DRD experimental validation
Bimschas et al. (2010, 2013) – load deformation behaviour
Failure mode: concrete crushing in compression. Failure is considered when the strain limit criteria specified in codes for sectional
analysis is reached on average over the crushing band length.
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 59
Experimental validation
DRD experimental validation
Bimschas et al. (2010, 2013) – stress fields specimen VK1
Note: Refined analysis considers the initial uncracked stiffness, as well as the actual stress-strain relationship of the
reinforcement. Moreover, no concrete strain limitation is considered.
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 60
Experimental validation
DRD experimental validation: Bimschas et al. (2010, 2013) – load deformation behaviour
[%]
σsr/ft
σc3r/(fc·kc)
σsr>fy
1370 kN
250 kN
84º
1370 kN
500 kN
80º
1370 kN
750 kN
79º
σsr<0
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 61
Experimental validation
DRD experimental validation
Huber et al. (2016) – experimental setup/specimens
Øw
(mm)
fy
(MPa)
ft
(MPa)
εu
(%)
4 653 710 4.9
6 569 658 3.1
12 552 654 3.4
Specimen R1000m35 R1000m60 R500m352 R500m351
Section depth 1.00 m 1.00 m 0.50 m 0.50 m
Section width 0.30 m 0.30 m 0.15 m 0.15 m
ρw 0.094 % 0.094 % 0.084 % 0.094 %
Øw Ø6 Ø12 Ø4 Ø6
fc 29.6 MPa 60.9 MPa 35.9 MPa 37.9 MPa
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 62
Experimental validation
DRD experimental validation
Huber et al. (2016) – ultimate load
• Neglecting tension
stiffening leads to
unsafe load predictions
and does not capture
the real failure mode
(stirrup rupture).
• Higher impact of strain
localization in real size
elements  use of
existing experimental
databases could
underestimate the
impact of these failures.
Cold-formed steel with same ft & fy  less ductile & less
predicted load (≈10%) than standard bilinear steel law.
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 63
Experimental validation
DRD experimental validation
Huber et al. (2016) – stress fields specimen R1000m35
776 kN
θ=40.5º
937 kNStirrups
yielding
θ=36.5º
εz=20‰
σsrz=600 MPa<ft
ε1=23‰  kc=0.41
σc3r=12 MPa
σc3r/(fc·kc)=1.00
εz=5.4‰
σsrz=638 MPa=ft
ε1=6.4‰  kc=0.64
σc3r=7.7 MPa
σc3r/(fc·kc)=0.42
*Results at the most restrictive
concrete and steel finite elements
(minimum kc & maximum σsrz)
DRD (No tens.-stiff.)
DRD
[%]
σsr/ft
σc3r/(fc·kc)
σsr>fy
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 64
Experimental validation
DRD experimental validation
Huber et al. (2016) – shear concrete crushing verifications
 Is there a clear link to kc prescribed for hand
calculations? Impact of strain localization?
[SIA 262:213;
fib MC 2010]
Concrete crushing
 Tension-stiffening required to capture the failure
mode.
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 65
Historical background of limit analysis methods
Truss models and stress fields
FE-calculations and existing computer-aided tools
DR-Design (ISD): Motivation and scope
DR-Design (ISD): Model description
DR-Design (ISD): Experimental validation
Conclusions
Computer-aided stress field analysis of
discontinuity concrete regions
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 66
Conclusions
Why use truss models and stress fields (and limit analysis methods in general)
• Powerful tools for the design of concrete structures.
• They are transparent, allow to trace the of flow of forces and give the engineer full control over the design.
Future of truss models and stress fields
• Due to their drawbacks (time-consuming, not useful for SLS) these methods will not survive as hand calculations.
• They need to be implemented in user-friendly computer programs, but maintaining their advantages.
• The DRD-method, implemented in the program Idea Statica Detail, developed jointly by ETH Zürich and Idea-RS, will
hopefully contribute to the survival of these methods in structural concrete design.
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 67
Acknowledgements
DR-DESIGN Project Team
Funding:
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 68
Thank you for the attention
04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 69

Mais conteúdo relacionado

Semelhante a Presentatie prof. Kaufmann op de IDEA Concrete infomiddag

Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docx
Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docxAnalysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docx
Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docxAdnan Lazem
 
Analysis and Design of Open Web Steel Joist-Girders.docx
Analysis and Design of Open Web Steel Joist-Girders.docxAnalysis and Design of Open Web Steel Joist-Girders.docx
Analysis and Design of Open Web Steel Joist-Girders.docxAdnan Lazem
 
D1 (A3) Johan Magnusson - Shear in Concrete Structural Elements Subjected to ...
D1 (A3) Johan Magnusson - Shear in Concrete Structural Elements Subjected to ...D1 (A3) Johan Magnusson - Shear in Concrete Structural Elements Subjected to ...
D1 (A3) Johan Magnusson - Shear in Concrete Structural Elements Subjected to ...Svenska Betongföreningen
 
Optimization of Design Parameters for Crane Hook Using Finite Element Analysis
Optimization of Design Parameters for Crane Hook Using Finite Element AnalysisOptimization of Design Parameters for Crane Hook Using Finite Element Analysis
Optimization of Design Parameters for Crane Hook Using Finite Element AnalysisIJRTEMJOURNAL
 
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docxAnalysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docxadnan885140
 
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docxAnalysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docxadnan885140
 
M.tech (se & ndm) w.e.f. 2012 13 batch
M.tech (se & ndm) w.e.f. 2012 13 batchM.tech (se & ndm) w.e.f. 2012 13 batch
M.tech (se & ndm) w.e.f. 2012 13 batchsanthosh kumar
 
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxAnalysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxAdnan Lazem
 
Analysis of a thin and thick walled pressure vessel for different materials
Analysis of a thin and thick walled pressure vessel for different materialsAnalysis of a thin and thick walled pressure vessel for different materials
Analysis of a thin and thick walled pressure vessel for different materialsIAEME Publication
 
ANALYSIS OF A THIN AND THICK WALLED PRESSURE VESSEL FOR DIFFERENT MATERIALS
ANALYSIS OF A THIN AND THICK WALLED PRESSURE VESSEL FOR DIFFERENT MATERIALS ANALYSIS OF A THIN AND THICK WALLED PRESSURE VESSEL FOR DIFFERENT MATERIALS
ANALYSIS OF A THIN AND THICK WALLED PRESSURE VESSEL FOR DIFFERENT MATERIALS IAEME Publication
 
Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docx
Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docxAnalysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docx
Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docxadnan885140
 
Defense_Thesis_Ramy_Gabr_06-22-2014_Final-with notes - Copy
Defense_Thesis_Ramy_Gabr_06-22-2014_Final-with notes - CopyDefense_Thesis_Ramy_Gabr_06-22-2014_Final-with notes - Copy
Defense_Thesis_Ramy_Gabr_06-22-2014_Final-with notes - CopyRamy Gabr, M.Sc, P.E.
 
R18 b.techmechanicalenggii yearsyllabus
R18 b.techmechanicalenggii yearsyllabusR18 b.techmechanicalenggii yearsyllabus
R18 b.techmechanicalenggii yearsyllabusNARESH GUDURU
 
Structural engineering r 16 regulations
Structural engineering r 16 regulationsStructural engineering r 16 regulations
Structural engineering r 16 regulationspavani reddy
 
Shotcrete for Underground Support and Tunnelling-م.90-#تواصل_تطوير-أ.د.أحمد موسى
Shotcrete for Underground Support and Tunnelling-م.90-#تواصل_تطوير-أ.د.أحمد موسىShotcrete for Underground Support and Tunnelling-م.90-#تواصل_تطوير-أ.د.أحمد موسى
Shotcrete for Underground Support and Tunnelling-م.90-#تواصل_تطوير-أ.د.أحمد موسىEgyptian Engineers Association
 
Statically Balanced Tensegrity Mechanisms By Schenk
Statically Balanced Tensegrity Mechanisms By SchenkStatically Balanced Tensegrity Mechanisms By Schenk
Statically Balanced Tensegrity Mechanisms By SchenkTensegrity Wiki
 

Semelhante a Presentatie prof. Kaufmann op de IDEA Concrete infomiddag (20)

Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docx
Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docxAnalysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docx
Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docx
 
Killing rsm
Killing rsmKilling rsm
Killing rsm
 
Analysis and Design of Open Web Steel Joist-Girders.docx
Analysis and Design of Open Web Steel Joist-Girders.docxAnalysis and Design of Open Web Steel Joist-Girders.docx
Analysis and Design of Open Web Steel Joist-Girders.docx
 
D1 (A3) Johan Magnusson - Shear in Concrete Structural Elements Subjected to ...
D1 (A3) Johan Magnusson - Shear in Concrete Structural Elements Subjected to ...D1 (A3) Johan Magnusson - Shear in Concrete Structural Elements Subjected to ...
D1 (A3) Johan Magnusson - Shear in Concrete Structural Elements Subjected to ...
 
Optimization of Design Parameters for Crane Hook Using Finite Element Analysis
Optimization of Design Parameters for Crane Hook Using Finite Element AnalysisOptimization of Design Parameters for Crane Hook Using Finite Element Analysis
Optimization of Design Parameters for Crane Hook Using Finite Element Analysis
 
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docxAnalysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
 
Final_report-R._Fankhaenel-MoscowPolytech-TU_Dresden-IAESTE
Final_report-R._Fankhaenel-MoscowPolytech-TU_Dresden-IAESTEFinal_report-R._Fankhaenel-MoscowPolytech-TU_Dresden-IAESTE
Final_report-R._Fankhaenel-MoscowPolytech-TU_Dresden-IAESTE
 
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docxAnalysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
 
FLUID DYNAMIC
FLUID DYNAMICFLUID DYNAMIC
FLUID DYNAMIC
 
M.tech (se & ndm) w.e.f. 2012 13 batch
M.tech (se & ndm) w.e.f. 2012 13 batchM.tech (se & ndm) w.e.f. 2012 13 batch
M.tech (se & ndm) w.e.f. 2012 13 batch
 
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxAnalysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
 
Analysis of a thin and thick walled pressure vessel for different materials
Analysis of a thin and thick walled pressure vessel for different materialsAnalysis of a thin and thick walled pressure vessel for different materials
Analysis of a thin and thick walled pressure vessel for different materials
 
ANALYSIS OF A THIN AND THICK WALLED PRESSURE VESSEL FOR DIFFERENT MATERIALS
ANALYSIS OF A THIN AND THICK WALLED PRESSURE VESSEL FOR DIFFERENT MATERIALS ANALYSIS OF A THIN AND THICK WALLED PRESSURE VESSEL FOR DIFFERENT MATERIALS
ANALYSIS OF A THIN AND THICK WALLED PRESSURE VESSEL FOR DIFFERENT MATERIALS
 
Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docx
Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docxAnalysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docx
Analysis and Design of Telecommunication Steel Towers (Guyed Mast)_2023.docx
 
Defense_Thesis_Ramy_Gabr_06-22-2014_Final-with notes - Copy
Defense_Thesis_Ramy_Gabr_06-22-2014_Final-with notes - CopyDefense_Thesis_Ramy_Gabr_06-22-2014_Final-with notes - Copy
Defense_Thesis_Ramy_Gabr_06-22-2014_Final-with notes - Copy
 
R18 b.techmechanicalenggii yearsyllabus
R18 b.techmechanicalenggii yearsyllabusR18 b.techmechanicalenggii yearsyllabus
R18 b.techmechanicalenggii yearsyllabus
 
1609540014 lokesh
1609540014 lokesh1609540014 lokesh
1609540014 lokesh
 
Structural engineering r 16 regulations
Structural engineering r 16 regulationsStructural engineering r 16 regulations
Structural engineering r 16 regulations
 
Shotcrete for Underground Support and Tunnelling-م.90-#تواصل_تطوير-أ.د.أحمد موسى
Shotcrete for Underground Support and Tunnelling-م.90-#تواصل_تطوير-أ.د.أحمد موسىShotcrete for Underground Support and Tunnelling-م.90-#تواصل_تطوير-أ.د.أحمد موسى
Shotcrete for Underground Support and Tunnelling-م.90-#تواصل_تطوير-أ.د.أحمد موسى
 
Statically Balanced Tensegrity Mechanisms By Schenk
Statically Balanced Tensegrity Mechanisms By SchenkStatically Balanced Tensegrity Mechanisms By Schenk
Statically Balanced Tensegrity Mechanisms By Schenk
 

Mais de Emiel Peltenburg

Waarom RFEM de optimale rekensoftware voor u is!
Waarom RFEM de optimale rekensoftware voor u is!Waarom RFEM de optimale rekensoftware voor u is!
Waarom RFEM de optimale rekensoftware voor u is!Emiel Peltenburg
 
IDEA statiCa Detail - presentatie op de IDEA Beton infomiddag
IDEA statiCa Detail - presentatie op de IDEA Beton infomiddagIDEA statiCa Detail - presentatie op de IDEA Beton infomiddag
IDEA statiCa Detail - presentatie op de IDEA Beton infomiddagEmiel Peltenburg
 
Theoretische achtergrond van IDEA StatiCa Detail
Theoretische achtergrond van IDEA StatiCa DetailTheoretische achtergrond van IDEA StatiCa Detail
Theoretische achtergrond van IDEA StatiCa DetailEmiel Peltenburg
 
Sessie 4 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 4 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesSessie 4 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 4 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesEmiel Peltenburg
 
Sessie 2 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 2 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesSessie 2 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 2 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesEmiel Peltenburg
 
Sessie 1 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 1 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesSessie 1 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 1 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesEmiel Peltenburg
 
Sessie 3 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 3 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesSessie 3 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 3 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesEmiel Peltenburg
 

Mais de Emiel Peltenburg (8)

Waarom RFEM de optimale rekensoftware voor u is!
Waarom RFEM de optimale rekensoftware voor u is!Waarom RFEM de optimale rekensoftware voor u is!
Waarom RFEM de optimale rekensoftware voor u is!
 
IDEA statiCa Detail - presentatie op de IDEA Beton infomiddag
IDEA statiCa Detail - presentatie op de IDEA Beton infomiddagIDEA statiCa Detail - presentatie op de IDEA Beton infomiddag
IDEA statiCa Detail - presentatie op de IDEA Beton infomiddag
 
Theoretische achtergrond van IDEA StatiCa Detail
Theoretische achtergrond van IDEA StatiCa DetailTheoretische achtergrond van IDEA StatiCa Detail
Theoretische achtergrond van IDEA StatiCa Detail
 
Overzicht IDEA Infodagen
Overzicht IDEA InfodagenOverzicht IDEA Infodagen
Overzicht IDEA Infodagen
 
Sessie 4 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 4 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesSessie 4 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 4 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
 
Sessie 2 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 2 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesSessie 2 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 2 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
 
Sessie 1 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 1 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesSessie 1 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 1 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
 
Sessie 3 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 3 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen BetonconstructiesSessie 3 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
Sessie 3 EC2 Seminar - Ontwerp van Gewapende en Voorgespannen Betonconstructies
 

Último

Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLkantirani197
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Servicenishacall1
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Monika Rani
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxBhagirath Gogikar
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONSTS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONrouseeyyy
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flyPRADYUMMAURYA1
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Silpa
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformationAreesha Ahmad
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oManavSingh202607
 

Último (20)

Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptx
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONSTS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 o
 

Presentatie prof. Kaufmann op de IDEA Concrete infomiddag

  • 1. Structural concrete design, dimensioning and detailing: from truss models to computer-aided stress fields Prof. Dr. Walter Kaufmann ETH Zürich Institute of Structural Engineering 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 1
  • 2. Historical background of limit analysis methods Truss models and stress fields FE-calculations and existing computer-aided tools DR-Design (ISD): Motivation and scope DR-Design (ISD): Model description DR-Design (ISD): Experimental validation Conclusions Structural concrete design, dimensioning and detailing: from truss models to computer-aided stress fields 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 2
  • 3. “Ancestors” of limit analysis methods – Yield line method P. Marti et al., Aplication of yield line method (1999)A. Ingerslev «The Strength of Rectangular Slabs (1923) 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 3
  • 4. “Ancestors” of limit analysis methods – Hillerborg’s strip method H. Marcus «Die Theorie elastischer Gewebe …» (1924 / 1932) P. Marti et al., Application of Hillerborg’s Strip Method (1999) 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 4
  • 5. “Ancestors” of limit analysis methods – Truss models and stress fields E. Mörsch, «Der Eisenbetonbau» (1922) E. Mörsch, «Der Eisenbetonbau» (1908) K. W. Ritter, «Die Bauweise Hennebique» (1899) Modern truss models and stress fields 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 5
  • 6. “Ancestors” of limit analysis methods – Truss models and stress fields K. W. Ritter, «Die Bauweise Hennebique» (1899) Emil Mörsch 1872-1950 Karl Wilhelm Ritter 1847-1906 E. Mörsch, «Der Eisenbetonbau» (1922) E. Mörsch, «Der Eisenbetonbau» (1908) 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 6
  • 7. “Ancestors” of limit analysis methods – Truss models and stress fields K. W. Ritter, «Die Bauweise Hennebique» (1899) M. Ritter, «Massivbau» (ca. 1940) P. Lardy, «Massivbau» (1951) E. Mörsch, «Der Eisenbetonbau» (1908) E. Mörsch, «Der Eisenbetonbau» (1922) E. Mörsch, «Der Eisenbetonbau» (1908) Truss models regarded as behavioural models State of art: Design based on semi-empirical models, e.g. «admissible tensile stresses» Situation until 1960s 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 7
  • 8. “Ancestors” of limit analysis methods – Truss models and stress fields M. Ritter, «Massivbau» (ca. 1940) P. Lardy, «Massivbau» (1951) E. Mörsch, «Der Eisenbetonbau» (1908) Emil Mörsch 1872-1950 Pierre Lardy 1903-1958 Max Ritter 1884-1946 Truss models regarded as behavioural models State of art: Design based on semi-empirical models, e.g. «admissible tensile stresses» Situation until 1960s 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 8
  • 9. Intrinsic problems of “admissible stress” design Ernst Melan 1890-1963 Drawbacks of «admissible stress design»: - Ultimate load cannot be reliably predicted (except for brittle materials) even if stresses are accurately known → no uniform safety level - Stresses cannot be «accurately» determined (restraint to imposed deformations e.g. hydration, shrinkage; construction stages; …) Ernst Melan (1938): Since (…) typically, the sequence of loading is arbitrary, asking for the state of stress under a certain load does not make sense. (Translated from German: «Da (…) die Reihenfolge der Belastungen willkürlich zu sein pflegt, hat die Frage nach einem Spannungszustand bei einer bestimmten Belastung keinen Sinn»). 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 9
  • 10. Limit analysis methods – Application to Structural Concrete Intrinsic problems of admissible stress design: - initial stress state? - safety level? Truss models put on a consistent mechanical basis by the Theory of Plasticity [(Prager, Gvozdev). Lower-bound theorem: • Satisfy equilibrium and statical boundary coditions • Do not infringe yield condition (provide required strength) → Safe design → Independent of initial stresses ( ) 0Ζ = mΖ jσ (S) 0= iσ kσ εnΖ z Peter Marti *1949 Bruno Thürlimann 1923-2008 upper bound solutions («failure mechanisms») possible range of ultimate load lower bound solutions («equilibrium methods») P (Among other pioneers like e.g. D.C. Drucker, W.F. Chen, M.P. Nielsen, M. Braestrup, D.H. Clyde, C.T. Morley, P. Müller, J. Witteveen ,…) 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 10
  • 11. Stoffel / Marti (1995) Sigrist / Marti (1992) Kaufmann / Marti (1995) Bachmann / Thürlimann (1965) Maier / Thürlimann (1985) Limit analysis methods – Validation by large scale experiments Large-scale testing indispensable for validaton and acceptance of limit analysis methods 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 11
  • 12. “Ancestors” of limit analysis methods – Truss models and stress fields J. Schlaich et al., «Toward a Consistent Design of Structural Concrete» (1987) Jörg Schlaich * 1934 (Among many others like e.g. K. Schäfer, J.G. McGregor, …) Strut-and-tie models («Stabwerkmodelle»): Used for tracing the flow of forces and form finding (often based on elastic principal stress trajectories, and combined with graphic statics) Mechanical basis? Code compliant? Behavioural models / «Practitioner method»? 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 12
  • 13. “Ancestors” of limit analysis methods – Truss models and stress fields J. Schlaich et al., «Toward a Consistent Design of Structural Concrete» (1987) Jörg Schlaich * 1934 (Among many others like e.g. K. Schäfer, J.G. McGregor, …) Strut-and-tie models («Stabwerkmodelle»): Used for tracing the flow of forces and form finding (often based on elastic principal stress trajectories, and combined with graphic statics) Mechanical background: Limit analysis metods! 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 13
  • 14. Historical background of limit analysis methods Truss models and stress fields FE-calculations and existing computer-aided tools DR-Design (ISD): Motivation and scope DR-Design (ISD): Model description DR-Design (ISD): Experimental validation Conclusions Computer-aided stress field analysis of discontinuity concrete regions 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 14
  • 15. Truss models and stress fields E. Mörsch, «Der Eisenbetonbau» (1922) E. Mörsch, «Der Eisenbetonbau» (1908) K. W. Ritter, «Die Bauweise Hennebique» (1899) Modern truss models and stress fields consistent mechanical basis: lower-bound theorem of limit analysis 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 15
  • 16. Code provisions based on limit analysis in current EN 1992-1-1: Shear design Truss models and stress fields 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 16
  • 17. Code provisions based on limit analysis in current EN 1992-1-1: Horizontal shear and torsion Truss models and stress fields 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 17
  • 18. Truss models and stress fields [Tjhin & Kuchma, 2002] 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 18
  • 19. Truss models and stress fields Code provisions based on limit analysis in current EN 1992-1-1: Strut and tie models 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 19
  • 20. Truss models and stress fields x supF z infF− supF centred non-centred wfO x z infF− supF centred non-centred wfO supF q q 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 20
  • 21. Truss models and stress fields 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 21
  • 22. Anchor force NB: = stirrup forces + applied load Anchor force [Marti & Stoffel, 1999] Truss models and stress fields  Flow of forces (transparency)  Safe dimensioning  Consistent detailing  Tedious hand calculations (iterations, many load cases)  Even more so in assessment  Compressive strength fc? (depending on strain state)  Deformation capacity?  Serviceability checks (deformations, crack widths)? → FE-calculations used in engineering practice → Future of truss models? → Digitalisation required! (computer-aided tools) Design of Discontinuity: classic tools 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 22
  • 23. Historical background of limit analysis methods Truss models and stress fields FE-calculations and existing computer-aided tools DR-Design (ISD): Motivation and scope DR-Design (ISD): Model description DR-Design (ISD): Experimental validation Conclusions Computer-aided stress field analysis of discontinuity concrete regions 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 23
  • 24. FE-calculations [Cervenka Consulting / ATENA] 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 24
  • 25. FE-calculations Linear elastic FE calculations • Equilibrium is satisfied (application of lower bound theorem of imit analysis) → ok, but … • Do not capture real behaviour (restraint stresses, cracking, redistribution, staged construction, …) • Non-symmetric strength of concrete only accounted for in last step (dimensioning based on yield conditions) • Often inefficient and / or unpractical reinforcement layouts; fc must be assumed (“safe value”) → Useful in design, but unable to predict realistic capacity in existing structures, nor cracking in new ones 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 25 1 sx sx x xz sz sz z xz a f n k n a f n k n− ≥ + ≥ + ( )c sx sx sz sz x zhf a f a f n n≥ + − + Direct reinforcement design (yield regime 1): Valid if concrete does not crush, i.e.:
  • 26. FE-calculations Linear elastic FE calculations • Equilibrium is satisfied (application of lower bound theorem of imit analysis) → ok, but … • Do not capture real behaviour (restraint stresses, cracking, redistribution, staged construction, …) • Non-symmetric strength of concrete only accounted for in last step (dimensioning based on yield conditions) • Often inefficient and / or unpractical reinforcement layouts → Useful in design, but unable to predict realistic capacity in existing structures, nor cracking in new ones Nonlinear FE calculations • Capture real behaviour if correct mechanical models and material parameters are input • Require expert users, modelling and analysis time consuming • Input of (often many!) material parameters unknown at design stage required • Results non-transparent and sensitive to choice of mechanical model and material parameters (often ± arbitrary in design) • Often inefficient and / or unpractical reinforcement layouts → Limited use, mainly in assessment of existing structures and research 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 26
  • 27. FE-calculations [Cervenka Consulting / ATENA] 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 27
  • 28. FE-calculations 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 28  Powerful tools with lots of possibilities  Account for material and geometrical nonlinearities  Capture “real” behaviour if right parameters are used  ULS and SLS results provided  Expert users required  Many input parameters are unknown in design stage  Highly sensitive to seemingly unimportant input parameters  fct directly contributes to resistance in many cases (fct > 0 for numerical stability) → Code compliant, safe design? → Useful for design stage?[Cervenka Consulting / ATENA]
  • 29. FE-calculations Linear elastic FE calculations • Equilibrium is satisfied (application of lower bound theorem of imit analysis) → ok, but … • Do not capture real behaviour (restraint stresses, cracking, redistribution, staged construction, …) • Non-symmetric strength of concrete only accounted for in last step (dimensioning based on yield conditions) • Often inefficient and / or unpractical reinforcement layouts → Useful in design, but unable to predict realistic capacity in existing structures, nor cracking in new ones Nonlinear FE calculations • Capture real behaviour if correct mechanical models and material parameters are input • Require expert users, modelling and analysis time consuming • Input of (often many!) material parameters unknown at design stage required • Results non-transparent and sensitive to choice of mechanical model and material parameters (often ± arbitrary in design) • Often inefficient and / or unpractical reinforcement layouts → Limited use, mainly in assessment of existing structures and research Alternative: Computer-aided truss models / stress fields (simplified nonlinear FE calculations) • Not a new idea: «It is time to bring these methods from the drawing board to the computer» [Marti 1985] • Surprising that no such tools were available until recently 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 29
  • 30. Existing computer-aided tools Design of Discontinuity Regions: Existing computer-aided tools • AStruTie (HanGil) [HanGil, 2017] Idea StatiCa for specific details (corbels, piles caps…) AStrutTie (HanGil) (strut-and-tie → fc=? Realistic results?) [IDEA, 2017] CAST (Tjhin & Kutchma, 2002) (strut-and-tie → fc=? Realistic results?) [Mata-Falcón & Sánchez-Sevilla, 2006] 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 30
  • 31. Spannungsfelder Design of Discontinuity Regions: Existing computer-aided tools 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 31 Stringer-Panel Models (Nielsen, 1971; Blaauwendraad & Hoogenboom, 1996; Marti & Heinzmann, 2012) [Blauwendraad, 2006]
  • 32. Spannungsfelder Experimental crack pattern Hand-calculated stress fields Numerical results EPSF Design of Discontinuity Regions: Existing computer-aided tools [Mata-Falcón, 2015] [Mata-Falcón et al., 2014] [Muttoni & Fernandez Ruiz, 2007] EPSF elastic plastic stress fields (Fernández Ruiz & Muttoni, 2007)  Maintains advantages of hand calculations (transparent, safe design with fct = 0, consistent detailing)  Compressive strength fc determined automatically from strain state  Limited user-friendliness  Limited use for serviceability … no tension stiffening … no crack width calculation  No check of deformation capacity (perfectly plastic material) 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 32
  • 33. Historical background of limit analysis methods Truss models and stress fields FE-calculations and existing computer-aided tools DR-Design (ISD): Motivation and scope DR-Design (ISD): Model description DR-Design (ISD): Experimental validation Conclusions Computer-aided stress field analysis of discontinuity concrete regions 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 33
  • 34. DR-Design (Discontinuity Region Design) Scope • Simple method for efficient, code-compliant design and assessment of discontinuity concrete regions • Including serviceability and deformation capacity verifications • Direct link to conventional RC design: concrete tensile strength ONLY for stiffness, standard material properties Inspirations • EPSF finite-element implementation (strain compatibility, automatic determination of kc from strain state) • Tension Chord Model TCM and Cracked Membrane Model CMM (tension stiffening, ductility and serviceability checks) Features of DR-Design • Maintains advantages of truss models and stress field design: Tensile strength of concrete does not contribute to strength! • Simple uniaxial constitutive laws for reinforcement and concrete in compression • Satisfies strain compatibility, accounting for tension stiffening • Covers all verifications typically required in design (ULS, SLS including crack widths) • Implemented in user-friendly FE-based software package IDEA StatiCa>Detail. • Checks deformation capacity (explicit strain limitations of concrete and reinforcement) 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 34
  • 35. DR-Design (Discontinuity Region Design) Scope • Simple method for efficient, code-compliant design and assessment of discontinuity concrete regions • Including serviceability and deformation capacity verifications • Direct link to conventional RC design: concrete tensile strength ONLY for stiffness, standard material properties Inspirations • EPSF finite-element implementation (strain compatibility, automatic determination of kc from strain state) • Tension Chord Model TCM and Cracked Membrane Model CMM (tension stiffening, ductility and serviceability checks) Development / Credits This project has received partial funding from Eurostars-2 joint programme, with co-funding from the European Union Horizon 2020 research and innovation programme 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 35
  • 36. Historical background of limit analysis methods Truss models and stress fields FE-calculations and existing computer-aided tools DR-Design (ISD): Motivation and scope DR-Design (ISD): Model description DR-Design (ISD): Experimental validation Conclusions Computer-aided stress field analysis of discontinuity concrete regions 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 36
  • 37. Model description DRD verification model: main assumptions • AStruTie (HanGil) based on [Kaufmann and Marti, 1998] Main assumptions: • Fictitious rotating, stress-free cracks (σc1,r=0) without slip • Average strains • Equilibrium at cracks: i. Maximum stresses: -σc3,r / σs,r ii. Concrete tensile strength neglected except for tension- stiffening: εm Suitable for elements with minimum transversal reinforcement. Slender elements without shear reinforcement would lead to conservative results. 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 37
  • 38. Model description DRD verification model: concrete • AStruTie (HanGil)  Strain limitations of concrete specified by codes (explicitly considers the increasing brittleness of concrete with strength).  Imposed to the average strain over a characteristic crushing band length.  kc discrete values for hand calculations 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 38
  • 39. Model description DRD verification model: concrete • AStruTie (HanGil)  kc (compression softening) automatically computed based on the transversal strain state.  Use of fib MC 2010 proposal for shear verifications (consistent with considered max. stresses) extended for general cases.  Strain limitations of concrete specified by codes (explicitly considers the increasing brittleness of concrete with strength).  Imposed to the average strain over a characteristic crushing band length. (standard user: only kc currently used, not εcu) 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 39
  • 40. Model description DRD verification model: concrete • AStruTie (HanGil) EN 1992-1-1, 6.5. Design with strut and tie models 6.5.2 (2): The design strength for concrete struts should be reduced in cracked compression zones and, unless a more rigorous approach is used, may be calculated from Expression (6.56).  Strain limitations of concrete specified by codes (explicitly considers the increasing brittleness of concrete with strength).  Imposed to the average strain over a characteristic crushing band length. (standard user: only kc currently used, not εcu) 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 40
  • 41. Model description DRD verification model: bond and reinforcement Bond model used exclusively for verifications of gradients of tension chord force Tension-stiffening:  Does not affect the strength of the reinforcement  Increases the stiffness  Reduces the ductility (can reduce the strength of the member) explicit failure criterion (rupture) *Bilinear naked steel input for design. More realistic laws for assessment & experimental validation. 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 41
  • 42. Model description DRD verification model: tension stiffening Stabilised crack pattern  Implementation of Tension Chord Model (TCM) [Alvarez, 1998; Marti et al., 1998]  Average crack spacing: assumed λ=0.67 for ρ>ρcr≈0.6%  Reinforcement is able to carry the cracking load without yielding 0 1 1sr y ctm cr f f n   σ = = + −  ρ  04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 42
  • 43. Model description DRD verification model: tension stiffening Non-stabilised crack pattern for ρ<ρcr≈0.6%  Reinforcement is NOT able to carry the cracking load without yielding. Cracks are controlled by other reinforcement.  Independent cracks are assumed + bond model of Tension Chord Model.  Crack localization (size effect): stiffness of the whole rebar embedded in concrete > local stiffness near the crack → considered strain: average over lavg = length at which rebar is fully anchored (for ft ) Will be released for stirrups in ISD 9.1 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 43
  • 44. Model description DRD verification model: tension stiffening Resulting tension chord behaviour  Fully cracked behaviour considered for design.  Uncracked initial stiffness can be considered for refined verification models. 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 44
  • 45. Model description DRD verification model: effective area of concrete in tension → suitable for numerical implementation and valid for automatic definition of ρc,eff in any region Maximum concrete area each rebar can activate (concrete at fct) (illustrated for rebars 3 and 4) Areas used in calculation 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 45
  • 46. Model description DRD verification model: crack width – stabilised crack pattern WT4 [Walther, 1967] 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 46
  • 47. Model description DRD verification model: crack width – non-stabilised crack pattern [Zhu et al., 2003] Assumed independent cracks at SLS Considered for: a) Regions with ρ < 0.6% (ρmin) b) Cracks triggered by geometric discontinuities at low loads T6Will be released in ISD 9.1 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 47
  • 48. Model description DRD verification model: crack width – crack kinematics s 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 48
  • 49. Historical background of limit analysis methods Truss models and stress fields FE-calculations and existing computer-aided tools DR-Design (ISD): Motivation and scope DR-Design (ISD): Model description DR-Design (ISD): Experimental validation Conclusions Computer-aided stress field analysis of discontinuity concrete regions 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 49
  • 50. Experimental validation DRD experimental validation • Direct tension experiments – Alvarez and Marti (1996)  Ultimate limit state  Load deformation behaviour  Crack width • Pure bending experiments – Frantz and Breen (1978)  Crack width distribution • Cantilever shear walls – Bimschas, Hannewald and Dazio (2010, 2013)  Load deformation behaviour under combined loading  Bearing capacity under combined loading • Beams with low amount of transversal reinforcement – Huber, Huber and Kolleger (2016)  Bearing capacity in shear (failures due to insufficient ductility of the transversal reinforcement) 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 50
  • 51. Experimental validation DRD experimental validation Alvarez and Marti (1996) - experimental setup/specimens [Avarez and Marti, 1996] Z1 Z1 Specimen Z1 Z2 Z4 Z8 Long. reinforcement 14xØ14 (ρ = 1%) 14xØ14 (ρ = 1%) 14xØ14 (ρ = 1%) 10xØ14 (ρ = 0.7%) Steel quality (ductility class) High High Normal High fck_cube (MPa) 50 90 50 50 Loading: pure tension 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 51
  • 52. Experimental validation DRD experimental validation Alvarez and Marti (1996) - ultimate state [Avarez and Marti, 1996] Specimen Z1 Z2 Z4 Z8 Experiment Vexp (kN) εm,exp (%) 1294 6.7 1295 6.8 1275 0.6 924 6.4 DR-Design Vcalc (kN) εm,calc (%) 1275 7.0 1282 4.6 1242 0.4 918 6.5 Safety factor Strength: Vexp/Vcalc Deform. capacity: εm,exp/εm,calc 1.01 0.96 1.01 1.48 1.03 1.50 1.01 0.98 V: Peak load εm: Average tensile strain 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 52
  • 53. Experimental validation DRD experimental validation Alvarez and Marti (1996) Load deformation behaviour Neglecting tension-stiffening overestimates the deformation capacity up to 5 times (depending on ρ, the ductility of the reinforcement…) 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 53
  • 54. Experimental validation DRD experimental validation Alvarez and Marti (1996) - crack width 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 54
  • 55. Experimental validation DRD experimental validation Frantz and Breen (1980) - experimental setup/specimen • AStruTie (HanGil) Specimen RS-3 Main reinforcement 2xØ15.88 6xØ12.7 Web reinforcement 6xØ6 Loading: pure bending [Frantz and Breen, 1980] d (mm) 885 mm 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 55
  • 56. Experimental validation DRD experimental validation Frantz and Breen (1980) – crack width 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 56
  • 57. Experimental validation DRD experimental validation Bimschas et al. (2010, 2013) – experimental setup/specimens VK1: first yielding of reinforcement [Bimschas, 2010] 1370 kN ±V Specimen VK1 VK3 VK6 Effective height (m) 3.30 3.30 4.50 Section depth (m) 1.50 1.50 1.50 Section width (m) 0.35 0.35 0.35 ρsl (%) 0.82 1.23 1.23 ρst (%) 0.08 0.08 0.08 Loading: constant normal force N = -1370kN; quasi-static cyclic loading with increasing amplitudes in horizontal direction. Note: DR-Design aims to describe the backbone of the cyclic response using a monotonic model. Strain penetration into the foundation is not considered. εu=8.4% 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 57
  • 58. Experimental validation DRD experimental validation Bimschas et al. (2010, 2013) – peak load [Bimschas, 2010] VK1: peak strength VK1: failure Concrete crushing in compression Specimen VK1 VK3 VK6 Experiment* Vexp (kN) 728 876 647 DR-Design Vcalc(kN) 730 860 650 Vexp/Vcalc 1.00 1.02 1.00 Note: DR-D aims to describe the behaviour of the backbone until concrete peak horizontal strength is reached, (≠ to loss of vertical bearing capacity). *mean peak horizontal load of North and South directions. 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 58
  • 59. Experimental validation DRD experimental validation Bimschas et al. (2010, 2013) – load deformation behaviour Failure mode: concrete crushing in compression. Failure is considered when the strain limit criteria specified in codes for sectional analysis is reached on average over the crushing band length. 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 59
  • 60. Experimental validation DRD experimental validation Bimschas et al. (2010, 2013) – stress fields specimen VK1 Note: Refined analysis considers the initial uncracked stiffness, as well as the actual stress-strain relationship of the reinforcement. Moreover, no concrete strain limitation is considered. 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 60
  • 61. Experimental validation DRD experimental validation: Bimschas et al. (2010, 2013) – load deformation behaviour [%] σsr/ft σc3r/(fc·kc) σsr>fy 1370 kN 250 kN 84º 1370 kN 500 kN 80º 1370 kN 750 kN 79º σsr<0 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 61
  • 62. Experimental validation DRD experimental validation Huber et al. (2016) – experimental setup/specimens Øw (mm) fy (MPa) ft (MPa) εu (%) 4 653 710 4.9 6 569 658 3.1 12 552 654 3.4 Specimen R1000m35 R1000m60 R500m352 R500m351 Section depth 1.00 m 1.00 m 0.50 m 0.50 m Section width 0.30 m 0.30 m 0.15 m 0.15 m ρw 0.094 % 0.094 % 0.084 % 0.094 % Øw Ø6 Ø12 Ø4 Ø6 fc 29.6 MPa 60.9 MPa 35.9 MPa 37.9 MPa 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 62
  • 63. Experimental validation DRD experimental validation Huber et al. (2016) – ultimate load • Neglecting tension stiffening leads to unsafe load predictions and does not capture the real failure mode (stirrup rupture). • Higher impact of strain localization in real size elements  use of existing experimental databases could underestimate the impact of these failures. Cold-formed steel with same ft & fy  less ductile & less predicted load (≈10%) than standard bilinear steel law. 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 63
  • 64. Experimental validation DRD experimental validation Huber et al. (2016) – stress fields specimen R1000m35 776 kN θ=40.5º 937 kNStirrups yielding θ=36.5º εz=20‰ σsrz=600 MPa<ft ε1=23‰  kc=0.41 σc3r=12 MPa σc3r/(fc·kc)=1.00 εz=5.4‰ σsrz=638 MPa=ft ε1=6.4‰  kc=0.64 σc3r=7.7 MPa σc3r/(fc·kc)=0.42 *Results at the most restrictive concrete and steel finite elements (minimum kc & maximum σsrz) DRD (No tens.-stiff.) DRD [%] σsr/ft σc3r/(fc·kc) σsr>fy 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 64
  • 65. Experimental validation DRD experimental validation Huber et al. (2016) – shear concrete crushing verifications  Is there a clear link to kc prescribed for hand calculations? Impact of strain localization? [SIA 262:213; fib MC 2010] Concrete crushing  Tension-stiffening required to capture the failure mode. 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 65
  • 66. Historical background of limit analysis methods Truss models and stress fields FE-calculations and existing computer-aided tools DR-Design (ISD): Motivation and scope DR-Design (ISD): Model description DR-Design (ISD): Experimental validation Conclusions Computer-aided stress field analysis of discontinuity concrete regions 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 66
  • 67. Conclusions Why use truss models and stress fields (and limit analysis methods in general) • Powerful tools for the design of concrete structures. • They are transparent, allow to trace the of flow of forces and give the engineer full control over the design. Future of truss models and stress fields • Due to their drawbacks (time-consuming, not useful for SLS) these methods will not survive as hand calculations. • They need to be implemented in user-friendly computer programs, but maintaining their advantages. • The DRD-method, implemented in the program Idea Statica Detail, developed jointly by ETH Zürich and Idea-RS, will hopefully contribute to the survival of these methods in structural concrete design. 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 67
  • 68. Acknowledgements DR-DESIGN Project Team Funding: 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 68
  • 69. Thank you for the attention 04.06.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 69