SlideShare uma empresa Scribd logo
1 de 30
Baixar para ler offline
CRISPR-Cas9
Genome Editing
20160617	
  
Lab	
  Animal	
  Pathology	
  Rounds	
  
Han	
  Tan	
  (ekhtan@ucdavis.edu)	
  
TwiCer:	
  @ekhtn	
  
Why Genome Editing?
§  Accelerate	
  basic	
  
research	
  
§  Generate	
  mulGple	
  alleles	
  
§  Generate	
  mulGple	
  gene	
  
mutaGons	
  
§  Analysis	
  of	
  linked	
  genes	
  
§  Analysis	
  of	
  lethal	
  genes	
  
§  Disease	
  modeling	
  
§  Gene	
  Therapy	
  
§  Replace	
  defecGve	
  genes	
  
§  Fix	
  specific	
  cell-­‐types	
  
§  Agriculture	
  
§  Non-­‐transgenic	
  
approaches	
  to	
  improve	
  
crops	
  
§  Genome	
  engineering	
  of	
  
plants	
  and	
  animals	
  
§  Biotechnology	
  
§  Ecological	
  control	
  of	
  
vectors	
  that	
  transmit	
  
diseases	
  
§  SyntheGc	
  biology	
  
Engineering POLLED
Phenotype in Dairy Cows
ele
e
Figure 1 Phenotypic and genotypic confirmation of POLLED introgression in Spotigy and Buri. (a,b)
Diagnostic PCRs for the Pc allele using primer pairs btHP-F1 + btHP-R2 (a) and HP1748-F1 +
HP1594_ 1748-R1 (b) (Supplementary Methods), respectively, confirmed homozygous introgression in
RCI-001, Spotigy (RCI-002) and Buri (RCI-003), and heterozygous introgression in RCI-004 relative to
the donor cell line that is negative. The identity of PCR products was confirmed by Sanger sequencing.
The positive control (p1748) was a plasmid containing the Pc allele10. (c) Photograph of Spotigy at
2 months of age, so named after the black spots where horn buds would have developed. (d)
900 3,000
2,500
2,000
1,500
1,000
700
600
500
400
300
001 002 003 004 2120p1748 001 002 003 004 t2120p1748
c d
(Carlson	
  et	
  al.,	
  Nature	
  Biotech.	
  2016)	
  
*Instant	
  introgression	
  directly	
  into	
  elite	
  breeds	
  –	
  
bypasses	
  tradiGonal	
  breeding	
  
Outline
§  Genome	
  EdiGng	
  
§  The	
  CRISPR-­‐Cas9	
  System	
  
§  The	
  many	
  flavors	
  of	
  Cas9	
  
§  Genome	
  EdiGng	
  in	
  the	
  lab	
  and	
  beyond	
  
What is Genome Editing?
§  Targeted	
  modificaGon	
  to	
  DNA	
  
	
   	
   	
  How?	
  
§  Using	
  customized	
  sequence-­‐specific	
  
nucleases	
  
Zinc Finger Nucleases
(ZFNs)
(Baltes	
  et	
  al.,	
  Trends	
  in	
  Biotech.	
  2015)	
  
Transcription Activator-Like
Effector Nucleases (TALENs)
(Baltes	
  et	
  al.,	
  Trends	
  in	
  Biotech.	
  2015)	
  
N-­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐C	
  
Repeat	
  Variable	
  Diresidue	
  
Cas9	
  
CRISPR-Cas9
sgRNA	
  
NGG	
  
NGG	
  
Comparisons
ZFNs	
   TALENs	
   CRISPR-­‐Cas9	
  
DNA	
  recogni=on	
   MulGmeric	
  protein	
  
–	
  DNA	
  interacGon	
  
Protein	
  –	
  DNA	
  
interacGon	
  
RNA	
  –	
  DNA	
  Watson-­‐
Crick	
  base-­‐pairing	
  
DNA	
  cleavage	
   Coupling	
  to	
  non-­‐
specific	
  nuclease	
  
FokI	
  
Coupling	
  to	
  non-­‐
specific	
  nuclease	
  
FokI	
  
Innate	
  to	
  Cas9	
  
Requirements	
   Two	
  large	
  protein	
  
constructs	
  	
  
Two	
  large	
  protein	
  
constructs	
  
Simple	
  20nt	
  change	
  
to	
  construct	
  
Targe=ng	
   Poor	
   Good	
   Good	
  
Feasibility	
   Difficult	
   Difficult	
   Easy	
  
CRISPR vs TALEN
as	
  of	
  
6/16/16	
  
Outline
§  Genome	
  EdiGng	
  
§  The	
  CRISPR-­‐Cas9	
  System	
  
§  The	
  many	
  flavors	
  of	
  Cas9	
  
§  CRISPR-­‐Cas9	
  in	
  the	
  lab	
  and	
  beyond	
  
Discovery of CRISPR-Cas
§  CRISPR	
  =	
  Clustered	
  Regularly	
  Interspersed	
  Short	
  
Palindromic	
  Repeats	
  [DNA	
  repeats]	
  
§  Cas	
  =	
  CRISPR	
  associated	
  [Protein	
  coding	
  
sequences]	
  
§  Discovered	
  in	
  1987	
  from	
  the	
  analysis	
  of	
  E.	
  coli	
  
genomes	
  (Ishino	
  et	
  al.,	
  J.	
  Bacteriol.	
  1987)	
  
§  Is	
  important	
  for	
  adapGve	
  immunity	
  in	
  bacteria	
  
and	
  archaea	
  
Type II CRISPR-Cas
which require substantial protein engineering for
each DNA target site to be modified, the CRISPR-
Cas9 system requires only a change in the guide
RNA sequence. For this reason, the CRISPR-Cas9
protein Cas9 together with suitable sgRNAs. As
discussed above, CRISPR refers to the repetitive
nature of the repeats in the CRISPR arrays that
encode crRNAs, and the term does not relate
the crRNA repeat–
tion (77, 78). An
bridges the two str
pears to be the hin
(Doudna	
  &	
  CharpenGer,	
  Science	
  2014)	
  
strand invasion and RNA-DNA hybrid forma-
tion (80–82).
To assess the target-binding behavior of Cas9
in cells, researchers used chromatin immuno-
precipitation and high-throughput sequencing
(ChIP-seq) to determine the numbers and types
of Cas9 binding sites on the chromosome. Re-
sults showed that in both human embryonic kid-
ney (HEK293) cells (83) and mouse embryonic
stem cells (mESCs) (84), a catalytically inactive
version of Cas9 bound to many more sites than
those matching the sequence of the sgRNA used
in each case. Such off-target interactions with
DNA, typically at sites bearing a PAM and par-
tially complementary to the guide RNA se-
quence, are consistent with established modes
as in mouse cells (75). The expected alterations
in the target DNA were observed, indicating
that site-specific DSBs by RNA-guided Cas9 had
stimulated gene editing by nonhomologous end
joining repair or gene replacement by homology-
directed repair (Fig. 4). Targeting with multiple
sgRNAs—referred to as multiplexing—was also
successfully achieved (75, 86). RNA-programmable
S. pyogenes Cas9-mediated editing has now been
applied to various human cells and embryonic
stem cells [(87–90); for reviews, see (91–93)]. Al-
though direct comparisons can be difficult to
assess because of differences in target sites and
protein expression levels, some analyses show
that CRISPR-Cas9–mediated editing efficiencies
can reach 80% or more depending on the target,
gene functio
scale lentivi
to generate
screening a
and negative
was also us
cell viability
(102). Althou
using RNA
expression o
the generati
fer from sub
of CRISPR-
enable large-
other phenot
and utility of
Streptococcus	
  pyogenes	
  
Protospacer	
  Adjacent	
  MoGf	
  
CRISPR	
  RNA	
  
Trans-­‐acGvaGng	
  CRISPR	
  RNA	
  
CRISPR-Cas9
M and par-
e RNA se-
hed modes
protein expression levels, some analyses show
that CRISPR-Cas9–mediated editing efficiencies
can reach 80% or more depending on the target,
enable large-scale screening
other phenotypes and thus w
and utility of genetic screen
nonmodel cel
Other per
CRISPR-Cas9
evance to hu
the ability to
tions respons
orders. A do
the Crygc g
cataracts was
in mice (103)
mary adult
derived from
the CFTR lo
cystic fibros
homologous r
ing in the c
miniature or
(organoids) h
exact genetic
as9. The structure of S. pyogenes Cas9 in the unliganded and RNA-DNA–bound
sgRNA	
  
(single	
  guide	
  RNA)	
  
(Jinek	
  et	
  al.,	
  Science	
  2012	
  
Doudna	
  &	
  CharpenGer,	
  Science	
  2014)	
  
What	
  can	
  you	
  do	
  with	
  double-­‐stranded	
  
DNA	
  breaks?	
  
DNA Repair by Non-Homologous
End-Joining (NHEJ)
DNA	
  LIGASE	
  IV	
  
(LIG4)	
  
XRCC4	
  
KU70/KU80	
  
Untemplated	
  DNA	
  repair	
  
and	
  very	
  error	
  prone	
  –	
  
deleGons,	
  inserGons,	
  
rearrangements	
  etc.	
  
Usefulness of DNA Repair by NHEJ
§  An	
  effecGve	
  form	
  of	
  mutagenesis	
  
§  Diversity	
  of	
  breakpoints	
  repaired	
  by	
  NHEJ	
  =	
  mulGple	
  
alleles	
  are	
  generated	
  instantly	
  
§  Make	
  two	
  breaks	
  for	
  large	
  deleGons	
  
§  Make	
  mulGple	
  breaks	
  for	
  translocaGons,	
  desired	
  
rearrangements,	
  cut	
  and	
  paste	
  modificaGons	
  
Using a sgRNA Library to Screen
Mammalian Cells
cin, len
in 93 T
(Fig. 1
reveale
sequen
contras
vectors
to inco
(Fig. 1C
Giv
by lent
ducting
(GeCK
library.
ing 5′ c
in the h
of 3 to
target s
ificatio
To t
at achi
gets, w
profilin
al deliv-
sgRNA
ntdeple-
nes. (A)
sion vec-
d sgRNA
ro, puro-
marker;
ngsignal;
element;
urinetract;
actor-1a
P2A, 2A
de;WPRE,
nal regu-
B) Distri-
nce from
ansduced
ng lenti-
1 to 6,
nd Cas9-
ed peak)
uorescent 293T cells (gray shaded peak). (C) Distribution of fluorescence from 293T-EGFP cells
A
B C
sgRNAU6 EFS SpCas9 WPREP2A Puro
cPPT
RREpsi+
lentiCRISPR
EGFP fluorescence (a.u.)
Normalizedcellcount(a.u.)
Normalizedcellcount(a.u.)
100
80
60
40
20
0
10
0 2 4 6
10 10 10
Cas9 only
HEK293T
sgRNA 1
sgRNA 2
sgRNA 3
sgRNA 4
sgRNA 5
sgRNA 6
Cas9:sgRNA
100
80
60
40
20
0
10
0 2 4 6
10 10 10
control shRNA
HEK293T
shRNA 1
shRNA 2
shRNA 3
shRNA 4
EGFP fluorescence (a.u.)
shRNA
(Shalem	
  et	
  al.,	
  Science	
  2014)	
  
A B
D
Step1:
sgRNAoligo
librarydesign
Step2:
Constructionof
lentiCRISPRscreening
library
Oligo array
synthesis
lentiCRISPR
library
Cloning sgRNA
oligo libray
into lentiviral
constructs
Step3:
GeCKO
Transduction
with lentiCRISPR
library
Select for
transduced cells
and apply
screening
assay
Analysis
of remaining
sgRNA pool
A375
Day 14
Day 3
Log2 normalized gene
Cumulativefrequency
0
0.2
0.4
0.6
0.8
1
2 4 6 8
RNA processing
Structural constituent
of ribosome
Ribonucleoprotein
complex (RNPC)
RNPC biogenesis
and assembly
RNA binding
Gene ran
2000 6000 10000
Depleted E
(Shalem	
  et	
  al.,	
  Science	
  2014)	
  
DNA Repair by Homology-
Directed Repair (HDR)
RAD51	
  
Templated	
  DNA	
  repair	
  using	
  
homologous	
  sequences	
  
D-­‐Loop	
  formaGon	
  
and	
  DNA	
  synthesis	
  
Usefulness of DNA Repair by HDR
§  Gene	
  Therapy	
  
§  Gene	
  Replacement	
  
§  Genome	
  Engineering	
  
§  SyntheGc	
  Biology	
  
§  Gene	
  Drive	
  –	
  Control	
  vectors	
  such	
  as	
  
mosquitoes	
  
Correcting a Gene
(Mouse Model)
•  FAH	
  gene	
  –	
  last	
  gene	
  in	
  the	
  tyrosine	
  catabolic	
  pathway	
  
•  Recessive	
  mutaGon	
  of	
  GàA	
  in	
  exon	
  8	
  causes	
  Hereditary	
  
Tyrosinemia	
  and	
  is	
  fatal	
  	
  
using the mismatch-spe
detected at Fah in 3T3
match between FAH1,
prevent Cas9-mediated
was not detected at the a
xon 8 and Fahmut/mut mice injected with FAH1, 2
- and 405-bp PCR bands, indicating that the exon
is restored in a subset of hepatocytes (Fig. 2b).
05-bp bands in CRISPR-Cas9 treated mice con-
cted G nucleotide is included in the PCR product
Hydrodynamic injection
(Cas9 + sgRNA + ssDNA)
NTBC withdrawn
Fahmut/mut Fah+ hepatocytes?
5…CCTCATGAACGACTGGAGCGgtaatgcctggtgg…3 ssDNA
5…CCTCATGAACGACTGGAGCAgtaatgcctggtgg…3 genomic
7 8 9 7 8 9
A G
a
d
Fah+/
H&E
a
Fah IHC
Fahmut/mut
Unguided Cas9Fah+/+
FAH2
NTBC off NTBC off
Figure 2 CRISPR-Cas9–mediated editing corrects Fah s
the liver. (a) Fah immunohistochemistry (IHC) of Fahmut/m
with unguided Cas9 or Cas9 plus the FAH2 sgRNA. Uppe
were off NTBC water for 30 d as in Figure 1d. There are 3
Fah+ cells (n = 3 mice). Lower panel: mice were kept on
euthanized at day 6 to estimate initial repair rate. Fah+ c
0.40 0.12% for FAH2 and 0.01 0.02% for unguided
(n = 3 mice) using an unpaired t-test. Fah+/+ mice are sh
Scale bars, 100 m. (b) RT-PCR in liver RNA from wild-t
Fahmut/mut and Fahmut/mut mice injected with FAH1, 2 or
B R I E F C O M M U N
(Lin	
  et	
  al.,	
  Nature	
  Biotech.	
  2014)	
  
prevent Ca
was not de
Sequencing of the 405-bp bands in CRISPR-Cas9 treated mice con-
firmed that the corrected G nucleotide is included in the PCR product
Figure 1 Hydrodynamic
injection of CRISPR
components rescues
lethal phenotype of
Fah-deficient mice.
(a) Experimental
design. Fahmut/mut
mice harbor a
homozygous G A
point mutation at
the last nucleotide of
exon 8 (red), causing
skipping of exon 8
during splicing. pX330
plasmids expressing
Cas9 and a sgRNA
targeting the Fah locus
are delivered to the
liver by hydrodynamic
tail vein injection. A
ssDNA oligo with the
correct fragment of
Fah sequence (i.e., the
G allele) is co-injected
Hydrodynamic injection
(Cas9 + sgRNA + ssDNA)
NTBC withdrawn
Fahmut/mut Fah+ hepatocytes?
5…CCTCATGAACGACTGGAGCGgtaatgcctggtgg…3 ssDNA
5…CCTCATGAACGACTGGAGCAgtaatgcctggtgg…3 genomic
7 8 9 7 8 9
A G
a
b
d
1.1
Injection
day
(–3)
7
8
11
13
14
15
16
20
21
22
23
24
25
26
27
28
29
30
Day 0
Time (days)
Weightratio
FAH1
FAH2
FAH1
FAH3
Saline
ssDNA oligo
Unguided Cas9
0.9
0.8
Outline
§  Genome	
  EdiGng	
  
§  The	
  CRISPR-­‐Cas9	
  System	
  
§  The	
  many	
  flavors	
  of	
  Cas9	
  
§  Genome	
  EdiGng	
  in	
  the	
  lab	
  and	
  beyond	
  
Various Flavors of Cas9
cellular DNA repair
hat catalyze non-
end joining (NHEJ)
-directed repair
as9 can function as
Cas9) when engi-
ntain an inactivat-
in either the HNH
uvC domain active
nCas9 is used with
that recognize
sites in DNA, a
ouble-strand break
C) Cas9 functions
uided DNA binding
n engineered to
ivating mutations
active sites. This
nactive or dead
9) can mediate
al down-regulation
, particularly
to activator or
mains. In addition,
e fused to fluores-
s, such as green
protein (GFP), for
ging of chromo-
ther dCas9 fusions,
e including chro-
A modification
y enable targeted
hanges to
A.
onMay20,2016http://science.sciencemag.org/Downloadedfrom
onMay20,http://science.sciencemag.org/Downloadedfrom
§  Higher	
  specificity	
  and	
  
efficiency	
  than	
  using	
  a	
  
one	
  sgRNA	
  
§  Similar	
  to	
  TALENs	
  
Single-­‐strand	
  DNA	
  
breaks	
  are	
  repaired	
  
slightly	
  differently	
  
than	
  dsDNA	
  breaks	
  
(Doudna	
  &	
  CharpenGer,	
  Science	
  2014)	
  
28 NOVEMBER 2014 • VOL 346 ISSUE 62
ns,
d
§  Repression	
  of	
  genes	
  
§  AcGvaGon	
  of	
  genes	
  
§  Fluorescent	
  tags	
  
§  EpigeneGc	
  modificaGons	
  
§  DNA	
  pull-­‐downs	
  
§  dCas9	
  can	
  even	
  be	
  used	
  
for	
  HDR	
  	
  
dCas9	
  =	
  “dead”	
  Cas9	
  
(Doudna	
  &	
  CharpenGer,	
  Science	
  2014)	
  
Outline
§  Genome	
  EdiGng	
  
§  The	
  CRISPR-­‐Cas9	
  System	
  
§  The	
  many	
  flavors	
  of	
  Cas9	
  
§  Genome	
  EdiGng	
  in	
  the	
  lab	
  and	
  beyond	
  
Cpf1
(Zetsche	
  et	
  al.,	
  Cell	
  2015)	
  
Another	
  Type	
  II	
  CRISPR-­‐Cas	
  system	
  
NgAgo
P
Phosphorylated	
  ssDNA	
  
as	
  the	
  guide	
  
(Gao	
  et	
  al.,	
  Nature	
  Biotech.	
  2016)	
  
Argonaute	
  from	
  Natronobacterium	
  gregoryi	
  
NgAgo	
  
dsDNA	
  target	
  
C2c2 CRISPR for RNA
targeting
(Abudayyeh	
  et	
  al.,	
  Science	
  2016)	
  
C2c2	
   crRNA	
  
RNA	
  
Class	
  II	
  Type	
  VIA	
  CRISPR-­‐Cas	
  system	
  from	
  Leptotrichia	
  shahii	
  
Take Home
§  Genome	
  ediGng	
  is	
  a	
  powerful	
  tool	
  that	
  is	
  under	
  
constant	
  development	
  –	
  CRISPR-­‐Cas	
  systems	
  in	
  
parGcular	
  
§  The	
  advantages	
  of	
  CRISPR-­‐Cas9	
  are	
  its	
  ease	
  of	
  
use	
  and	
  its	
  efficacy	
  in	
  almost	
  any	
  organism	
  that	
  
has	
  been	
  tested	
  so	
  far	
  
§  Roadblock	
  to	
  genome	
  engineering	
  has	
  been	
  
removed	
  with	
  CRISPR-­‐Cas9	
  technology	
  
§  The	
  potenGal	
  impacts	
  that	
  genome	
  engineering	
  
can	
  have	
  in	
  our	
  lives	
  is	
  just	
  emerging	
  –	
  stay	
  
tuned!	
  

Mais conteúdo relacionado

Mais procurados (20)

CRISPR Technology
CRISPR TechnologyCRISPR Technology
CRISPR Technology
 
crispr cas 9
crispr cas 9crispr cas 9
crispr cas 9
 
CRISPR/CAS9 ppt by sanjana pandey
CRISPR/CAS9 ppt by sanjana pandeyCRISPR/CAS9 ppt by sanjana pandey
CRISPR/CAS9 ppt by sanjana pandey
 
Crispr
CrisprCrispr
Crispr
 
CRISPR
CRISPRCRISPR
CRISPR
 
CRISPR-Cas system
CRISPR-Cas systemCRISPR-Cas system
CRISPR-Cas system
 
Genome editing
Genome editingGenome editing
Genome editing
 
Crispr cas
Crispr casCrispr cas
Crispr cas
 
Crispar
CrisparCrispar
Crispar
 
Genome editing with CRISPR/Cas9
Genome editing with CRISPR/Cas9Genome editing with CRISPR/Cas9
Genome editing with CRISPR/Cas9
 
Gene targeting and sequence tags
Gene targeting and sequence tagsGene targeting and sequence tags
Gene targeting and sequence tags
 
Crispr cas: A new tool of genome editing
Crispr cas: A new tool of genome editing Crispr cas: A new tool of genome editing
Crispr cas: A new tool of genome editing
 
Crispr cas9
Crispr cas9Crispr cas9
Crispr cas9
 
CRISPR, cas9 in plant disease resistance
CRISPR, cas9 in plant disease resistance CRISPR, cas9 in plant disease resistance
CRISPR, cas9 in plant disease resistance
 
CRISPR: Discovery & Potential Applications
CRISPR: Discovery & Potential ApplicationsCRISPR: Discovery & Potential Applications
CRISPR: Discovery & Potential Applications
 
Crispr/cas9 101
Crispr/cas9 101Crispr/cas9 101
Crispr/cas9 101
 
CRISPR/CAS9- THE GENE EDITING TOOL
CRISPR/CAS9- THE GENE EDITING TOOLCRISPR/CAS9- THE GENE EDITING TOOL
CRISPR/CAS9- THE GENE EDITING TOOL
 
Genome Editing Introduction
Genome Editing IntroductionGenome Editing Introduction
Genome Editing Introduction
 
Crispr technique
Crispr techniqueCrispr technique
Crispr technique
 
RNA Interference (RNAi)
RNA Interference (RNAi)RNA Interference (RNAi)
RNA Interference (RNAi)
 

Destaque

An Introduction to Crispr Genome Editing
An Introduction to Crispr Genome EditingAn Introduction to Crispr Genome Editing
An Introduction to Crispr Genome EditingChris Thorne
 
CRISPR cas, a potential tool for targeted genome modification in crops.
CRISPR cas, a potential tool for targeted genome modification in crops.CRISPR cas, a potential tool for targeted genome modification in crops.
CRISPR cas, a potential tool for targeted genome modification in crops.UAS,GKVK<BANGALORE
 
A New molecular biology techniques for gene therapy
A New molecular biology techniques for gene therapyA New molecular biology techniques for gene therapy
A New molecular biology techniques for gene therapyVanessa Chappell
 
"CRISPR" Gene Editing Tool
"CRISPR" Gene Editing Tool"CRISPR" Gene Editing Tool
"CRISPR" Gene Editing Toolzabby2407
 
Review of CRISPR/Cas9
Review of CRISPR/Cas9Review of CRISPR/Cas9
Review of CRISPR/Cas9Hub_lot
 
NCER Position on Crispr-Cas9
NCER Position on Crispr-Cas9NCER Position on Crispr-Cas9
NCER Position on Crispr-Cas9Joe Szczepaniak
 
Genome Editing with CRISPR-Cas9
Genome Editing with CRISPR-Cas9Genome Editing with CRISPR-Cas9
Genome Editing with CRISPR-Cas9Lopamudra Nayak
 

Destaque (12)

Genome editing
Genome editingGenome editing
Genome editing
 
An Introduction to Crispr Genome Editing
An Introduction to Crispr Genome EditingAn Introduction to Crispr Genome Editing
An Introduction to Crispr Genome Editing
 
Crispr cas ppt by ashish
Crispr cas ppt by ashishCrispr cas ppt by ashish
Crispr cas ppt by ashish
 
Crispr
CrisprCrispr
Crispr
 
Crispr cas9
Crispr cas9Crispr cas9
Crispr cas9
 
Seminar on crispr
Seminar on crisprSeminar on crispr
Seminar on crispr
 
CRISPR cas, a potential tool for targeted genome modification in crops.
CRISPR cas, a potential tool for targeted genome modification in crops.CRISPR cas, a potential tool for targeted genome modification in crops.
CRISPR cas, a potential tool for targeted genome modification in crops.
 
A New molecular biology techniques for gene therapy
A New molecular biology techniques for gene therapyA New molecular biology techniques for gene therapy
A New molecular biology techniques for gene therapy
 
"CRISPR" Gene Editing Tool
"CRISPR" Gene Editing Tool"CRISPR" Gene Editing Tool
"CRISPR" Gene Editing Tool
 
Review of CRISPR/Cas9
Review of CRISPR/Cas9Review of CRISPR/Cas9
Review of CRISPR/Cas9
 
NCER Position on Crispr-Cas9
NCER Position on Crispr-Cas9NCER Position on Crispr-Cas9
NCER Position on Crispr-Cas9
 
Genome Editing with CRISPR-Cas9
Genome Editing with CRISPR-Cas9Genome Editing with CRISPR-Cas9
Genome Editing with CRISPR-Cas9
 

Semelhante a Genome Editing CRISPR-Cas9

Animal bt group presentation
Animal bt group presentationAnimal bt group presentation
Animal bt group presentationNatashaLeong1
 
Animal bt group presentation (1)
Animal bt group presentation (1)Animal bt group presentation (1)
Animal bt group presentation (1)NatashaLeong1
 
Gene Editing for everyone
Gene Editing for everyoneGene Editing for everyone
Gene Editing for everyoneMike Jowett
 
CRISPR: Gene editing for everyone
CRISPR: Gene editing for everyoneCRISPR: Gene editing for everyone
CRISPR: Gene editing for everyoneCandy Smellie
 
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BD
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BDCRISPR Crops--a talk by Sophien Kamoun at Science Portal BD
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BDSophien Kamoun
 
CRISPR - gene-editing for everyone
CRISPR - gene-editing for everyoneCRISPR - gene-editing for everyone
CRISPR - gene-editing for everyoneCandy Smellie
 
Translating Genomes | Personalizing Medicine
Translating Genomes | Personalizing MedicineTranslating Genomes | Personalizing Medicine
Translating Genomes | Personalizing MedicineCandy Smellie
 
Gene Editing of Fishes and its Applications in Aquatic Medicine by B.pptx
Gene Editing of Fishes and its Applications in Aquatic Medicine by B.pptxGene Editing of Fishes and its Applications in Aquatic Medicine by B.pptx
Gene Editing of Fishes and its Applications in Aquatic Medicine by B.pptxB. BHASKAR
 
Group 4 Animal Biotech Case Study
Group 4 Animal Biotech Case StudyGroup 4 Animal Biotech Case Study
Group 4 Animal Biotech Case StudyBryanSow
 
CRISPR Screening: the What, Why and How
CRISPR Screening: the What, Why and HowCRISPR Screening: the What, Why and How
CRISPR Screening: the What, Why and HowHorizonDiscovery
 
Crispr cas9 ( a overview)
Crispr cas9 ( a overview)Crispr cas9 ( a overview)
Crispr cas9 ( a overview)Navdeep Singh
 
Genome editing with engineered nucleases
Genome editing with engineered nucleasesGenome editing with engineered nucleases
Genome editing with engineered nucleasesKrishan Kumar
 

Semelhante a Genome Editing CRISPR-Cas9 (20)

Animal bt group presentation
Animal bt group presentationAnimal bt group presentation
Animal bt group presentation
 
Animal bt group presentation (1)
Animal bt group presentation (1)Animal bt group presentation (1)
Animal bt group presentation (1)
 
Gene Editing for everyone
Gene Editing for everyoneGene Editing for everyone
Gene Editing for everyone
 
CRISPR: Gene editing for everyone
CRISPR: Gene editing for everyoneCRISPR: Gene editing for everyone
CRISPR: Gene editing for everyone
 
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BD
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BDCRISPR Crops--a talk by Sophien Kamoun at Science Portal BD
CRISPR Crops--a talk by Sophien Kamoun at Science Portal BD
 
CRISPR - gene-editing for everyone
CRISPR - gene-editing for everyoneCRISPR - gene-editing for everyone
CRISPR - gene-editing for everyone
 
CRISPR:CAS9
CRISPR:CAS9CRISPR:CAS9
CRISPR:CAS9
 
Genome editing
Genome editingGenome editing
Genome editing
 
Translating Genomes | Personalizing Medicine
Translating Genomes | Personalizing MedicineTranslating Genomes | Personalizing Medicine
Translating Genomes | Personalizing Medicine
 
Crisper Cas system
Crisper Cas systemCrisper Cas system
Crisper Cas system
 
Crispr cas9
Crispr cas9Crispr cas9
Crispr cas9
 
MSU Transgenic and Genome Editing Facility
MSU Transgenic and Genome Editing FacilityMSU Transgenic and Genome Editing Facility
MSU Transgenic and Genome Editing Facility
 
Gene Editing of Fishes and its Applications in Aquatic Medicine by B.pptx
Gene Editing of Fishes and its Applications in Aquatic Medicine by B.pptxGene Editing of Fishes and its Applications in Aquatic Medicine by B.pptx
Gene Editing of Fishes and its Applications in Aquatic Medicine by B.pptx
 
Poster
PosterPoster
Poster
 
CRISPR.pdf
CRISPR.pdfCRISPR.pdf
CRISPR.pdf
 
Group 4 Animal Biotech Case Study
Group 4 Animal Biotech Case StudyGroup 4 Animal Biotech Case Study
Group 4 Animal Biotech Case Study
 
CRISPR Screening: the What, Why and How
CRISPR Screening: the What, Why and HowCRISPR Screening: the What, Why and How
CRISPR Screening: the What, Why and How
 
Crispr cas9 ( a overview)
Crispr cas9 ( a overview)Crispr cas9 ( a overview)
Crispr cas9 ( a overview)
 
vineeta poster 2
vineeta  poster  2vineeta  poster  2
vineeta poster 2
 
Genome editing with engineered nucleases
Genome editing with engineered nucleasesGenome editing with engineered nucleases
Genome editing with engineered nucleases
 

Último

A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 

Último (20)

A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 

Genome Editing CRISPR-Cas9

  • 1. CRISPR-Cas9 Genome Editing 20160617   Lab  Animal  Pathology  Rounds   Han  Tan  (ekhtan@ucdavis.edu)   TwiCer:  @ekhtn  
  • 2. Why Genome Editing? §  Accelerate  basic   research   §  Generate  mulGple  alleles   §  Generate  mulGple  gene   mutaGons   §  Analysis  of  linked  genes   §  Analysis  of  lethal  genes   §  Disease  modeling   §  Gene  Therapy   §  Replace  defecGve  genes   §  Fix  specific  cell-­‐types   §  Agriculture   §  Non-­‐transgenic   approaches  to  improve   crops   §  Genome  engineering  of   plants  and  animals   §  Biotechnology   §  Ecological  control  of   vectors  that  transmit   diseases   §  SyntheGc  biology  
  • 3. Engineering POLLED Phenotype in Dairy Cows ele e Figure 1 Phenotypic and genotypic confirmation of POLLED introgression in Spotigy and Buri. (a,b) Diagnostic PCRs for the Pc allele using primer pairs btHP-F1 + btHP-R2 (a) and HP1748-F1 + HP1594_ 1748-R1 (b) (Supplementary Methods), respectively, confirmed homozygous introgression in RCI-001, Spotigy (RCI-002) and Buri (RCI-003), and heterozygous introgression in RCI-004 relative to the donor cell line that is negative. The identity of PCR products was confirmed by Sanger sequencing. The positive control (p1748) was a plasmid containing the Pc allele10. (c) Photograph of Spotigy at 2 months of age, so named after the black spots where horn buds would have developed. (d) 900 3,000 2,500 2,000 1,500 1,000 700 600 500 400 300 001 002 003 004 2120p1748 001 002 003 004 t2120p1748 c d (Carlson  et  al.,  Nature  Biotech.  2016)   *Instant  introgression  directly  into  elite  breeds  –   bypasses  tradiGonal  breeding  
  • 4. Outline §  Genome  EdiGng   §  The  CRISPR-­‐Cas9  System   §  The  many  flavors  of  Cas9   §  Genome  EdiGng  in  the  lab  and  beyond  
  • 5. What is Genome Editing? §  Targeted  modificaGon  to  DNA        How?   §  Using  customized  sequence-­‐specific   nucleases  
  • 6. Zinc Finger Nucleases (ZFNs) (Baltes  et  al.,  Trends  in  Biotech.  2015)  
  • 7. Transcription Activator-Like Effector Nucleases (TALENs) (Baltes  et  al.,  Trends  in  Biotech.  2015)   N-­‐                                                                                                                      -­‐C   Repeat  Variable  Diresidue  
  • 9. Comparisons ZFNs   TALENs   CRISPR-­‐Cas9   DNA  recogni=on   MulGmeric  protein   –  DNA  interacGon   Protein  –  DNA   interacGon   RNA  –  DNA  Watson-­‐ Crick  base-­‐pairing   DNA  cleavage   Coupling  to  non-­‐ specific  nuclease   FokI   Coupling  to  non-­‐ specific  nuclease   FokI   Innate  to  Cas9   Requirements   Two  large  protein   constructs     Two  large  protein   constructs   Simple  20nt  change   to  construct   Targe=ng   Poor   Good   Good   Feasibility   Difficult   Difficult   Easy  
  • 10. CRISPR vs TALEN as  of   6/16/16  
  • 11. Outline §  Genome  EdiGng   §  The  CRISPR-­‐Cas9  System   §  The  many  flavors  of  Cas9   §  CRISPR-­‐Cas9  in  the  lab  and  beyond  
  • 12. Discovery of CRISPR-Cas §  CRISPR  =  Clustered  Regularly  Interspersed  Short   Palindromic  Repeats  [DNA  repeats]   §  Cas  =  CRISPR  associated  [Protein  coding   sequences]   §  Discovered  in  1987  from  the  analysis  of  E.  coli   genomes  (Ishino  et  al.,  J.  Bacteriol.  1987)   §  Is  important  for  adapGve  immunity  in  bacteria   and  archaea  
  • 13. Type II CRISPR-Cas which require substantial protein engineering for each DNA target site to be modified, the CRISPR- Cas9 system requires only a change in the guide RNA sequence. For this reason, the CRISPR-Cas9 protein Cas9 together with suitable sgRNAs. As discussed above, CRISPR refers to the repetitive nature of the repeats in the CRISPR arrays that encode crRNAs, and the term does not relate the crRNA repeat– tion (77, 78). An bridges the two str pears to be the hin (Doudna  &  CharpenGer,  Science  2014)   strand invasion and RNA-DNA hybrid forma- tion (80–82). To assess the target-binding behavior of Cas9 in cells, researchers used chromatin immuno- precipitation and high-throughput sequencing (ChIP-seq) to determine the numbers and types of Cas9 binding sites on the chromosome. Re- sults showed that in both human embryonic kid- ney (HEK293) cells (83) and mouse embryonic stem cells (mESCs) (84), a catalytically inactive version of Cas9 bound to many more sites than those matching the sequence of the sgRNA used in each case. Such off-target interactions with DNA, typically at sites bearing a PAM and par- tially complementary to the guide RNA se- quence, are consistent with established modes as in mouse cells (75). The expected alterations in the target DNA were observed, indicating that site-specific DSBs by RNA-guided Cas9 had stimulated gene editing by nonhomologous end joining repair or gene replacement by homology- directed repair (Fig. 4). Targeting with multiple sgRNAs—referred to as multiplexing—was also successfully achieved (75, 86). RNA-programmable S. pyogenes Cas9-mediated editing has now been applied to various human cells and embryonic stem cells [(87–90); for reviews, see (91–93)]. Al- though direct comparisons can be difficult to assess because of differences in target sites and protein expression levels, some analyses show that CRISPR-Cas9–mediated editing efficiencies can reach 80% or more depending on the target, gene functio scale lentivi to generate screening a and negative was also us cell viability (102). Althou using RNA expression o the generati fer from sub of CRISPR- enable large- other phenot and utility of Streptococcus  pyogenes   Protospacer  Adjacent  MoGf   CRISPR  RNA   Trans-­‐acGvaGng  CRISPR  RNA  
  • 14. CRISPR-Cas9 M and par- e RNA se- hed modes protein expression levels, some analyses show that CRISPR-Cas9–mediated editing efficiencies can reach 80% or more depending on the target, enable large-scale screening other phenotypes and thus w and utility of genetic screen nonmodel cel Other per CRISPR-Cas9 evance to hu the ability to tions respons orders. A do the Crygc g cataracts was in mice (103) mary adult derived from the CFTR lo cystic fibros homologous r ing in the c miniature or (organoids) h exact genetic as9. The structure of S. pyogenes Cas9 in the unliganded and RNA-DNA–bound sgRNA   (single  guide  RNA)   (Jinek  et  al.,  Science  2012   Doudna  &  CharpenGer,  Science  2014)  
  • 15. What  can  you  do  with  double-­‐stranded   DNA  breaks?  
  • 16. DNA Repair by Non-Homologous End-Joining (NHEJ) DNA  LIGASE  IV   (LIG4)   XRCC4   KU70/KU80   Untemplated  DNA  repair   and  very  error  prone  –   deleGons,  inserGons,   rearrangements  etc.  
  • 17. Usefulness of DNA Repair by NHEJ §  An  effecGve  form  of  mutagenesis   §  Diversity  of  breakpoints  repaired  by  NHEJ  =  mulGple   alleles  are  generated  instantly   §  Make  two  breaks  for  large  deleGons   §  Make  mulGple  breaks  for  translocaGons,  desired   rearrangements,  cut  and  paste  modificaGons  
  • 18. Using a sgRNA Library to Screen Mammalian Cells cin, len in 93 T (Fig. 1 reveale sequen contras vectors to inco (Fig. 1C Giv by lent ducting (GeCK library. ing 5′ c in the h of 3 to target s ificatio To t at achi gets, w profilin al deliv- sgRNA ntdeple- nes. (A) sion vec- d sgRNA ro, puro- marker; ngsignal; element; urinetract; actor-1a P2A, 2A de;WPRE, nal regu- B) Distri- nce from ansduced ng lenti- 1 to 6, nd Cas9- ed peak) uorescent 293T cells (gray shaded peak). (C) Distribution of fluorescence from 293T-EGFP cells A B C sgRNAU6 EFS SpCas9 WPREP2A Puro cPPT RREpsi+ lentiCRISPR EGFP fluorescence (a.u.) Normalizedcellcount(a.u.) Normalizedcellcount(a.u.) 100 80 60 40 20 0 10 0 2 4 6 10 10 10 Cas9 only HEK293T sgRNA 1 sgRNA 2 sgRNA 3 sgRNA 4 sgRNA 5 sgRNA 6 Cas9:sgRNA 100 80 60 40 20 0 10 0 2 4 6 10 10 10 control shRNA HEK293T shRNA 1 shRNA 2 shRNA 3 shRNA 4 EGFP fluorescence (a.u.) shRNA (Shalem  et  al.,  Science  2014)  
  • 19. A B D Step1: sgRNAoligo librarydesign Step2: Constructionof lentiCRISPRscreening library Oligo array synthesis lentiCRISPR library Cloning sgRNA oligo libray into lentiviral constructs Step3: GeCKO Transduction with lentiCRISPR library Select for transduced cells and apply screening assay Analysis of remaining sgRNA pool A375 Day 14 Day 3 Log2 normalized gene Cumulativefrequency 0 0.2 0.4 0.6 0.8 1 2 4 6 8 RNA processing Structural constituent of ribosome Ribonucleoprotein complex (RNPC) RNPC biogenesis and assembly RNA binding Gene ran 2000 6000 10000 Depleted E (Shalem  et  al.,  Science  2014)  
  • 20. DNA Repair by Homology- Directed Repair (HDR) RAD51   Templated  DNA  repair  using   homologous  sequences   D-­‐Loop  formaGon   and  DNA  synthesis  
  • 21. Usefulness of DNA Repair by HDR §  Gene  Therapy   §  Gene  Replacement   §  Genome  Engineering   §  SyntheGc  Biology   §  Gene  Drive  –  Control  vectors  such  as   mosquitoes  
  • 22. Correcting a Gene (Mouse Model) •  FAH  gene  –  last  gene  in  the  tyrosine  catabolic  pathway   •  Recessive  mutaGon  of  GàA  in  exon  8  causes  Hereditary   Tyrosinemia  and  is  fatal     using the mismatch-spe detected at Fah in 3T3 match between FAH1, prevent Cas9-mediated was not detected at the a xon 8 and Fahmut/mut mice injected with FAH1, 2 - and 405-bp PCR bands, indicating that the exon is restored in a subset of hepatocytes (Fig. 2b). 05-bp bands in CRISPR-Cas9 treated mice con- cted G nucleotide is included in the PCR product Hydrodynamic injection (Cas9 + sgRNA + ssDNA) NTBC withdrawn Fahmut/mut Fah+ hepatocytes? 5…CCTCATGAACGACTGGAGCGgtaatgcctggtgg…3 ssDNA 5…CCTCATGAACGACTGGAGCAgtaatgcctggtgg…3 genomic 7 8 9 7 8 9 A G a d Fah+/ H&E a Fah IHC Fahmut/mut Unguided Cas9Fah+/+ FAH2 NTBC off NTBC off Figure 2 CRISPR-Cas9–mediated editing corrects Fah s the liver. (a) Fah immunohistochemistry (IHC) of Fahmut/m with unguided Cas9 or Cas9 plus the FAH2 sgRNA. Uppe were off NTBC water for 30 d as in Figure 1d. There are 3 Fah+ cells (n = 3 mice). Lower panel: mice were kept on euthanized at day 6 to estimate initial repair rate. Fah+ c 0.40 0.12% for FAH2 and 0.01 0.02% for unguided (n = 3 mice) using an unpaired t-test. Fah+/+ mice are sh Scale bars, 100 m. (b) RT-PCR in liver RNA from wild-t Fahmut/mut and Fahmut/mut mice injected with FAH1, 2 or B R I E F C O M M U N (Lin  et  al.,  Nature  Biotech.  2014)   prevent Ca was not de Sequencing of the 405-bp bands in CRISPR-Cas9 treated mice con- firmed that the corrected G nucleotide is included in the PCR product Figure 1 Hydrodynamic injection of CRISPR components rescues lethal phenotype of Fah-deficient mice. (a) Experimental design. Fahmut/mut mice harbor a homozygous G A point mutation at the last nucleotide of exon 8 (red), causing skipping of exon 8 during splicing. pX330 plasmids expressing Cas9 and a sgRNA targeting the Fah locus are delivered to the liver by hydrodynamic tail vein injection. A ssDNA oligo with the correct fragment of Fah sequence (i.e., the G allele) is co-injected Hydrodynamic injection (Cas9 + sgRNA + ssDNA) NTBC withdrawn Fahmut/mut Fah+ hepatocytes? 5…CCTCATGAACGACTGGAGCGgtaatgcctggtgg…3 ssDNA 5…CCTCATGAACGACTGGAGCAgtaatgcctggtgg…3 genomic 7 8 9 7 8 9 A G a b d 1.1 Injection day (–3) 7 8 11 13 14 15 16 20 21 22 23 24 25 26 27 28 29 30 Day 0 Time (days) Weightratio FAH1 FAH2 FAH1 FAH3 Saline ssDNA oligo Unguided Cas9 0.9 0.8
  • 23. Outline §  Genome  EdiGng   §  The  CRISPR-­‐Cas9  System   §  The  many  flavors  of  Cas9   §  Genome  EdiGng  in  the  lab  and  beyond  
  • 24. Various Flavors of Cas9 cellular DNA repair hat catalyze non- end joining (NHEJ) -directed repair as9 can function as Cas9) when engi- ntain an inactivat- in either the HNH uvC domain active nCas9 is used with that recognize sites in DNA, a ouble-strand break C) Cas9 functions uided DNA binding n engineered to ivating mutations active sites. This nactive or dead 9) can mediate al down-regulation , particularly to activator or mains. In addition, e fused to fluores- s, such as green protein (GFP), for ging of chromo- ther dCas9 fusions, e including chro- A modification y enable targeted hanges to A. onMay20,2016http://science.sciencemag.org/Downloadedfrom onMay20,http://science.sciencemag.org/Downloadedfrom §  Higher  specificity  and   efficiency  than  using  a   one  sgRNA   §  Similar  to  TALENs   Single-­‐strand  DNA   breaks  are  repaired   slightly  differently   than  dsDNA  breaks   (Doudna  &  CharpenGer,  Science  2014)  
  • 25. 28 NOVEMBER 2014 • VOL 346 ISSUE 62 ns, d §  Repression  of  genes   §  AcGvaGon  of  genes   §  Fluorescent  tags   §  EpigeneGc  modificaGons   §  DNA  pull-­‐downs   §  dCas9  can  even  be  used   for  HDR     dCas9  =  “dead”  Cas9   (Doudna  &  CharpenGer,  Science  2014)  
  • 26. Outline §  Genome  EdiGng   §  The  CRISPR-­‐Cas9  System   §  The  many  flavors  of  Cas9   §  Genome  EdiGng  in  the  lab  and  beyond  
  • 27. Cpf1 (Zetsche  et  al.,  Cell  2015)   Another  Type  II  CRISPR-­‐Cas  system  
  • 28. NgAgo P Phosphorylated  ssDNA   as  the  guide   (Gao  et  al.,  Nature  Biotech.  2016)   Argonaute  from  Natronobacterium  gregoryi   NgAgo   dsDNA  target  
  • 29. C2c2 CRISPR for RNA targeting (Abudayyeh  et  al.,  Science  2016)   C2c2   crRNA   RNA   Class  II  Type  VIA  CRISPR-­‐Cas  system  from  Leptotrichia  shahii  
  • 30. Take Home §  Genome  ediGng  is  a  powerful  tool  that  is  under   constant  development  –  CRISPR-­‐Cas  systems  in   parGcular   §  The  advantages  of  CRISPR-­‐Cas9  are  its  ease  of   use  and  its  efficacy  in  almost  any  organism  that   has  been  tested  so  far   §  Roadblock  to  genome  engineering  has  been   removed  with  CRISPR-­‐Cas9  technology   §  The  potenGal  impacts  that  genome  engineering   can  have  in  our  lives  is  just  emerging  –  stay   tuned!