SlideShare uma empresa Scribd logo
1 de 1
Baixar para ler offline
Max-Planck-Institut für Plasmaphysik, EURATOM Association
M. Schlüter, W. Jacob, C. Hopf, and T. Schwarz-Selinger
Energy, Temperature, and Flux Dependence of the Chemical Sputtering of
Carbon Surfaces by Low-energy Ions in the Presence of Atomic Hydrogen
P 2-05
100 200 300 400 500 600 700 800 900 1000
10
12
10
13
0.1
1
10
10
-4
10
-3
10
-2
10
-1
50 eV
rate(cm
-2
s
-1
)
temperature (K)
Ar+
+ H°, R=jH° / jAr
+:
800 eV (R=350)
400 eV (R=340)
200 eV (R=340)
100 eV (R=360)
50 eV (R=350)
H°
(right scale)
yield(C/Ar
+
)
800 eV
r
0 1 10 100 1000
0
1
10
100
0.0
0.5
1.0
Ar
+
+ H°
700 K
300 K
E = 50 eV,
jAr
+= 4 10
12
cm
-2
s
-1
R = j H° / j Ar
+
yield(C/Ar
+
)
rx10 (Tmax) CH

PS (1) CS (2) CE (3) IECE (4)
C
CH
r
particles coverages
H°
Ar+
C
C-H-complex
(1, 2) temperature independent (3, 4) 340 K < T < 950 K
10 100 1000
0.1
1
10
Ar
+
+ H°
Ne
+
+ H°
He
+
+ H°
N2
+
+ H°
yield(C/ion)
energy (eV)
0 100 200 300 400 500
0
1
2
3
Ar
+
+ H°
Ne
+
+ H°
200 eV,
jion = 4  10
12
cm
-2
s
-1
yield(C/ion)
R = jH° / jion
 Understanding erosion of amorphous hydrogenated carbon thin films (a-C:H) is a prerequisite to model
carbon transport and hydrogen retention in future fusion experiments and to develop methods to
remove codeposited layers.
 Use of a particle beam experiment for isolated investigation of the ion–H synergism in order to develop
a microscopic picture.
 Attempt to calculate and predict erosion rates of carbon thin films due the ion–H synergism for different
ion-energies, temperatures and particle-fluxes.
Particle-beam experiment MAJESTIX
Modelling chemical sputtering
out diffusion of
volatile species:
EROSION
ion
atomic hydrogen
carbon
a-C:H hydrogen
ion bond breaking build up of volatile species
under the surface
x
a-C:H
Ellipsometry
H2, D2
ion source
H°, D° Ar+, Ne+, He+, N2
+
10 - 1000 eV
H°,D° source
Load lock &
preparation chamber
cold N2 gas
filament
the sample
many erosion
“craters”
Principle process of chemical sputtering:
Integral model of chemical sputtering:
1. Ions break C–C bonds.
2. Atomic hydrogen (H°) passivates the broken bonds.
3. Repetition of steps (1) and (2) leads to
subsurface formation of erosion precursors.
4. The erosion precursors desorb thermally activated
or ion-induced.
• UHV experiment with load lock / preparation chamber
• Quantified H atom beam source (about 1015 cm-2s-1)
• Ion source for low energy ions (20 - 800 eV, 1012 cm-2s-1)
• Samples: hard a-C:H films (H content approx. 30%)
• Temperature variation: 110 – 950 K
• Diagnostics: ellipsometry, 632.8 nm
10 100 1000
0.1
1
10
T = 300 K
R = 350
Ar
+
+ H°
yield(C/Ar
+
)
energy (eV)
Results
Model predictions and new data
Conclusions
 Temperature (T) dependence:
yields constant in temperature
range 110 – 350 K,
increase for T>350 K,
Tmax=700 K
 Energy (E) dependence:
yield increases with energy,
threshold < 20 eV
 Flux dependence:
yield increases with
neutral-to-ion flux ratio R,
saturation for R > 1000.
Model predictions for other projectile ions using the fit parameters from Ar+ + H° and comparison
to new data: He+ + H°, Ne+ + H° and N2
+ + H°.
 New integrated model for chemical sputtering describes E, T and R (neutral-to-ion flux ratio)
dependence for simultaneous bombardment of a-C:H films with ions and atomic H.
 The ion-induced processes, which depend on energy, mass and nuclear charge, are calculated using
TRIM.SP. The successful transfer to other ion species (He+, Ne+, N2
+) indicates that this description is
appropriate.
 Ion bombardment enhances the thermal chemical erosion yield at high temperatures through creation
of additional reaction centers.
For the case N2
+ + H° see Poster P1-14
Erosion rate:
* Ref.: Rev. Sci. Instrum., 74: 5123, 2003
* Ref.: J. Nucl. Mater. 33-37: 376, 2008
Introduction
Y are calculated using
TRIM.SP code. Ansatz:
Erosion yield:  solution of a rate equation system
for the 3 coverages in steady state:
bond breaking (TRIM.SP) limitation to surface
ion + H°
model
process terms
H° build up
creation of reactive sites
H° loss
CS erosion process
IECE erosion process
1. PS: physical sputtering.
2. CS: chemical sputtering.
3. CE: chemical erosion.
4. IECE: ion-induced chemical erosion.
Fit of model parameters to all
data for Ar+ + H°
(9 parameters, 86 data points).

Mais conteúdo relacionado

Semelhante a Majestix_POSTER

Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...
Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...
Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...
Chih-Ju Lin
 
Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
Chih-Ju Lin
 
5744421cvd pvd bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
5744421cvd pvd bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb5744421cvd pvd bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
5744421cvd pvd bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
BharatKashyap30
 
1.373494 ti w
1.373494   ti w1.373494   ti w
1.373494 ti w
Nattho
 
Voltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical AnalysisVoltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical Analysis
Sanchit Dhankhar
 
2010 High density hydrogen storage in nanocavities
2010 High density hydrogen storage in nanocavities2010 High density hydrogen storage in nanocavities
2010 High density hydrogen storage in nanocavities
Jorge Roque de la Puente
 

Semelhante a Majestix_POSTER (20)

Enhancement of Structure, Tc and Irreversibility Line in High Tc Superconduct...
Enhancement of Structure, Tc and Irreversibility Line in High Tc Superconduct...Enhancement of Structure, Tc and Irreversibility Line in High Tc Superconduct...
Enhancement of Structure, Tc and Irreversibility Line in High Tc Superconduct...
 
giessen short
giessen shortgiessen short
giessen short
 
Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...
Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...
Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...
 
CVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUESCVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUES
 
CO2PipeHaz - An Integrated, Multi-scale Modelling Approach for the Simulation...
CO2PipeHaz - An Integrated, Multi-scale Modelling Approach for the Simulation...CO2PipeHaz - An Integrated, Multi-scale Modelling Approach for the Simulation...
CO2PipeHaz - An Integrated, Multi-scale Modelling Approach for the Simulation...
 
CVD and PVD.ppt
CVD and PVD.pptCVD and PVD.ppt
CVD and PVD.ppt
 
Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
 
5744421cvd pvd bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
5744421cvd pvd bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb5744421cvd pvd bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
5744421cvd pvd bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 
Dissociative adsorption of molecular deuterium on polycrystalline diamond fil...
Dissociative adsorption of molecular deuterium on polycrystalline diamond fil...Dissociative adsorption of molecular deuterium on polycrystalline diamond fil...
Dissociative adsorption of molecular deuterium on polycrystalline diamond fil...
 
Thermoelectricity
ThermoelectricityThermoelectricity
Thermoelectricity
 
Younes Sina's presentation on Nuclear reaction analysis
Younes Sina's presentation on  Nuclear reaction analysisYounes Sina's presentation on  Nuclear reaction analysis
Younes Sina's presentation on Nuclear reaction analysis
 
summary
summarysummary
summary
 
d2ta09922e1.pdf
d2ta09922e1.pdfd2ta09922e1.pdf
d2ta09922e1.pdf
 
1.373494 ti w
1.373494   ti w1.373494   ti w
1.373494 ti w
 
421-821-chapter-25.ppt
421-821-chapter-25.ppt421-821-chapter-25.ppt
421-821-chapter-25.ppt
 
Voltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical AnalysisVoltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical Analysis
 
2010 High density hydrogen storage in nanocavities
2010 High density hydrogen storage in nanocavities2010 High density hydrogen storage in nanocavities
2010 High density hydrogen storage in nanocavities
 
Room-Temperature DNA-Catalyzed Hydrogen Fuel Cell
Room-Temperature DNA-Catalyzed Hydrogen  Fuel CellRoom-Temperature DNA-Catalyzed Hydrogen  Fuel Cell
Room-Temperature DNA-Catalyzed Hydrogen Fuel Cell
 
YSchutz_PPTWin
YSchutz_PPTWinYSchutz_PPTWin
YSchutz_PPTWin
 
Master Thesis Total Oxidation Over Cu Based Catalysts
Master Thesis  Total Oxidation Over Cu Based CatalystsMaster Thesis  Total Oxidation Over Cu Based Catalysts
Master Thesis Total Oxidation Over Cu Based Catalysts
 

Majestix_POSTER

  • 1. Max-Planck-Institut für Plasmaphysik, EURATOM Association M. Schlüter, W. Jacob, C. Hopf, and T. Schwarz-Selinger Energy, Temperature, and Flux Dependence of the Chemical Sputtering of Carbon Surfaces by Low-energy Ions in the Presence of Atomic Hydrogen P 2-05 100 200 300 400 500 600 700 800 900 1000 10 12 10 13 0.1 1 10 10 -4 10 -3 10 -2 10 -1 50 eV rate(cm -2 s -1 ) temperature (K) Ar+ + H°, R=jH° / jAr +: 800 eV (R=350) 400 eV (R=340) 200 eV (R=340) 100 eV (R=360) 50 eV (R=350) H° (right scale) yield(C/Ar + ) 800 eV r 0 1 10 100 1000 0 1 10 100 0.0 0.5 1.0 Ar + + H° 700 K 300 K E = 50 eV, jAr += 4 10 12 cm -2 s -1 R = j H° / j Ar + yield(C/Ar + ) rx10 (Tmax) CH  PS (1) CS (2) CE (3) IECE (4) C CH r particles coverages H° Ar+ C C-H-complex (1, 2) temperature independent (3, 4) 340 K < T < 950 K 10 100 1000 0.1 1 10 Ar + + H° Ne + + H° He + + H° N2 + + H° yield(C/ion) energy (eV) 0 100 200 300 400 500 0 1 2 3 Ar + + H° Ne + + H° 200 eV, jion = 4  10 12 cm -2 s -1 yield(C/ion) R = jH° / jion  Understanding erosion of amorphous hydrogenated carbon thin films (a-C:H) is a prerequisite to model carbon transport and hydrogen retention in future fusion experiments and to develop methods to remove codeposited layers.  Use of a particle beam experiment for isolated investigation of the ion–H synergism in order to develop a microscopic picture.  Attempt to calculate and predict erosion rates of carbon thin films due the ion–H synergism for different ion-energies, temperatures and particle-fluxes. Particle-beam experiment MAJESTIX Modelling chemical sputtering out diffusion of volatile species: EROSION ion atomic hydrogen carbon a-C:H hydrogen ion bond breaking build up of volatile species under the surface x a-C:H Ellipsometry H2, D2 ion source H°, D° Ar+, Ne+, He+, N2 + 10 - 1000 eV H°,D° source Load lock & preparation chamber cold N2 gas filament the sample many erosion “craters” Principle process of chemical sputtering: Integral model of chemical sputtering: 1. Ions break C–C bonds. 2. Atomic hydrogen (H°) passivates the broken bonds. 3. Repetition of steps (1) and (2) leads to subsurface formation of erosion precursors. 4. The erosion precursors desorb thermally activated or ion-induced. • UHV experiment with load lock / preparation chamber • Quantified H atom beam source (about 1015 cm-2s-1) • Ion source for low energy ions (20 - 800 eV, 1012 cm-2s-1) • Samples: hard a-C:H films (H content approx. 30%) • Temperature variation: 110 – 950 K • Diagnostics: ellipsometry, 632.8 nm 10 100 1000 0.1 1 10 T = 300 K R = 350 Ar + + H° yield(C/Ar + ) energy (eV) Results Model predictions and new data Conclusions  Temperature (T) dependence: yields constant in temperature range 110 – 350 K, increase for T>350 K, Tmax=700 K  Energy (E) dependence: yield increases with energy, threshold < 20 eV  Flux dependence: yield increases with neutral-to-ion flux ratio R, saturation for R > 1000. Model predictions for other projectile ions using the fit parameters from Ar+ + H° and comparison to new data: He+ + H°, Ne+ + H° and N2 + + H°.  New integrated model for chemical sputtering describes E, T and R (neutral-to-ion flux ratio) dependence for simultaneous bombardment of a-C:H films with ions and atomic H.  The ion-induced processes, which depend on energy, mass and nuclear charge, are calculated using TRIM.SP. The successful transfer to other ion species (He+, Ne+, N2 +) indicates that this description is appropriate.  Ion bombardment enhances the thermal chemical erosion yield at high temperatures through creation of additional reaction centers. For the case N2 + + H° see Poster P1-14 Erosion rate: * Ref.: Rev. Sci. Instrum., 74: 5123, 2003 * Ref.: J. Nucl. Mater. 33-37: 376, 2008 Introduction Y are calculated using TRIM.SP code. Ansatz: Erosion yield:  solution of a rate equation system for the 3 coverages in steady state: bond breaking (TRIM.SP) limitation to surface ion + H° model process terms H° build up creation of reactive sites H° loss CS erosion process IECE erosion process 1. PS: physical sputtering. 2. CS: chemical sputtering. 3. CE: chemical erosion. 4. IECE: ion-induced chemical erosion. Fit of model parameters to all data for Ar+ + H° (9 parameters, 86 data points).