SlideShare uma empresa Scribd logo
1 de 47
Linear Combination,
Span and
Linearly Independent and
Linearly Dependent
-by Dhaval Shukla(141080119050)
Abhishek Singh(141080119051)
Abhishek Singh(141080119052)
Aman Singh(141080119053)
Azhar Tai(141080119054)
-Group No. 9
-Prof. Ketan Chavda
-Mechanical Branch
-2nd Semester
Linear Combination
1 2 3 r
1 1 2 2 3 3 r
i
A vector V is called a Linear Combination of
vectors v , v , v ,......., v
if V can be expressed as
v k k k ..... k
where k are scalar such that 1 i r
rv v v v    
 
Linear Combination
 

  
.v,....,v,v,vofnCombinatio
LinearaisVthenconsistentis1inequationofsystemtheIf2
1k.....kkkv
v,.....,v,v,vofnCombinatioLinearaasVExpress1
:followasisv.....,,v,v,v
orsgiven vectofnCombinatioLinearacalledisVvectoraIf
r321
r332211
r321
r321
 rvvvv
Linear Combination
2
3
2
2
2
1
2
267p
4510p
592pofnCombinatioLinear
aas1588ppolynomialtheExpress1:
xx
xx
xx
xxEx




1 1 2 2 3 3
2 2 2
1 2
2
3
:1 Let p k k k
8 8 15 k (2 9 5 ) k (10 5 4 )
k (7 6 2 )
n
Sol p p p
x x x x x x
x x
  
          
 
Linear Combination
2
1 2 3 1 2 3
2
1 2 3
1 2 3
1 2 3
1 2 3
8 8 15 (2k 10k 7k ) (9k 5k 6k )
(5k 4k 2k )
by comparison we get,
2k 10k 7k 8
9k 5k 6k 8
5k 4k 2k 15
now, turning the above equatio
x x x
x
         
 

   
   
   
 ns into an Augmented Matrix:
82 10 7
89 5 6
155 4 2
 
 
 
  
Linear Combination
1
2 1 3 1
performing R / 2
7
1 5
42
9 5 6 8
5 4 2 15
performing R 9R , R 5R
7
1 5
2 4
51
0 50 28
2
5
31
0 21
2

 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
  
Linear Combination
2
7
2
51 14
100 25
31
2
3 2
7
2
51 14
100 25
479 169
100 25
1
performing R ( )
50
1 5 4
0 1
0 21 5
now performing R 21R
1 5 4
0 1
0 0

 
 
 
 
 
  
 
 
 
 
 
 
Linear Combination
100
3 479
7
2
51 14
100 25
676
479
7
1 2 32
51 14
2 3100 25
676
3 479
performing R ( )
1 5 4
0 1
0 0 1
Hence, here sysem is consistent
k 5k k 4
k k
k
 
 
 
 
 
 

    
   
 
Linear Combination
613
2 479
7347
1 479
by solving above equations
k and
k
which is proven

  
  

Linear Combination
1
2 3
1 1 2 2 3 3
1 2 3
: 2 Express v (6,11,6) as Linear Combination of v (2,1,4),
v (1, 1,3), v (3,2,5).
: 2
- Let v k v k v k v
(6,11,6) k (2,1,4) k (1, 1,3) k (3,2,5)
(6,11,6
n
Ex
Sol
 
  
  
   
1 2 3 1 2 3 1 2 3
1 2 3
1 2 3
1 2 3
) (2k k 3k ) (k k 2k ) (4k 3k 5k )
2k k 3k 6
k 2k 7k 11
5k 7k 7k 7
        
   
   
   
Linear Combination
1
72 4
3 3 3
2 1 3 1
Therefore,
3 2 4 7
2 2 7 12
5 7 7 7
Performing R / 3
1
2 2 7 12
5 7 7 7
Now, performing R 2R and R 5R

 
 
 
  

 
 
 
 
 
  
Linear Combination
72 4
3 3 3
10 13 22
3 3 3
11 1 14
3 3 3
2
72 4
3 3 3
13 11
10 5
11 1 14
3 3 3
11
3 23
1
0
0
Now, R ( 3/10)
1
0 1
0
Now doing R R


 

 
 
 
 
 
 
 
 
 
 
 
 
Linear Combination
1
3
2
3
3
3 2
1
3
306
3 23
1 1 2 11
0 1 6
0 0 4
Now, performing R ( )
1 1 2 11
0 1 6
0 0 1 1
So, we get
k
 
 
  
  
 
  
 
  
  

 
Linear Combination
13 11
2 310 5
1978 23171
2 35 115
306 1978 23171
23 5 115
k k
k and k
Now,
(7,12,7)= (3,2,5) (2, 2,7) (4,6,7)
(7,12,7)=(7,12,7)
Which is proven.
   
  

  

Linear Combination
1 2 3
1 1 2 2 3 3
1 2
5 1
:3 Express the matrix A= as a Linear Combination
1 9
1 1 1 1 2 2
of A , A and A .
0 3 0 2 1 1
:3 Let A=k A k A k A
5 1 1 1 1 1
k k
1 9 0 3 0 2
n
Ex
Sol
 
  
     
            
 
    
         
3
1 2 3 1 2 3
3 1 2 3
2 2
k
1 1
k k 2k k k 2k5 1
k 3k 2k k1 9
  
     
      
          
Linear Combination
1 2 3
1 2 3
3
1 2 3
k k 2k 5
-k k 2k 1
-k 1
3k 2k k 9
The Augmented Matrix will be
1 1 2 5
1 1 2 1
0 0 1 1
3 2 1 9
   
   
  
   

 
 
 
  
 
  
Linear Combination
2 1 4 1
2
Now, performing R R and R 3R
1 1 2 5
0 2 4 6
0 0 1 1
0 1 5 6
Now, doing R / 2
1 1 2 5
0 1 2 3
0 0 1 1
0 1 5 6
  
 
 
 
  
 
    

 
 
 
  
 
    
Linear Combination
1 4
1 2 3
Now, R R
1 1 2 5
0 1 2 3
0 0 1 1
0 0 3 3
The system is Inconsistent. Therefore the given
matrix A is not the linear combination of all three
matrices A , A , A .
 
 
 
 
  
 
   

Linear Combination
2
2
1
2
2
2
3
: 4 Express the polynomial p 9 7 15 as a
Linear Combination of p 2 4
p 1 3
p 3 2 5
Ex x x
x x
x x
x x
   
  
  
  
1 1 2 2 3 3
2 2 2
1 2
2
3
: 4 Let p k k k
9 7 15 k (2 4 ) k (1 3 )
k (3 2 5 )
n
Sol p p p
x x x x x x
x x
  
          
 
Linear Combination
2
1 2 3 1 2 3
2
1 2 3
1 2 3
1 2 3
1 2 3
9 7 15 (2k k 3k ) (k k 2k )
(4k 3k 5k )
by comparison we get,
2k k 3k 9
k k 2k 7
4k 3k 5k 15
now, turning the above equations into
x x x
x
         
 

   
   
   
 an Augmented Matrix:
92 1 3
71 1 2
154 3 5
 
 
 
  
Linear Combination
1 2
2 1 3 1
performing R R
1 1 2 7
2 1 3 9
4 3 5 15
performing R 2R , R 4R
1 1 2 7
0 3 1 5
0 7 3 13
 
   
 
 
  
  
   
 
 
  
Linear Combination
2
51
3 3
3 2
51
3 3
2 4
3 3
performing R / 3
1 1 2 7
0 1
0 7 3 13
now performing R 7R
1 1 2 7
0 1
0 0
Hence, the system is consistent.

   
 
 
  
 
  
 
 
  

Linear Combination
3
3
1 2 3
k 5
2 3 3
2k 4
3 3
3
5 2
2 3 3
2
1
1
k k 2 k 7
k
k 2
k
k 1
k 1 2( 2) 7
k 2
    
  
 
  
 
 
    
  
Linear Combination
2 2 2
2
2 2
Now,
9 7 15 =( 2)(2 4 ) (1)(1 3 )
( 2)(3 2 5 )
9 7 15 = 9 7 15
Which is proven.
x x x x x x
x x
x x x x

        
  
     

Linear Combination
1 2 3
1 1 2 2 3 3
1 2 3
:5 Check whether the following v (6,11,6) as Linear
Combination of v (2,1,4), v (1, 1,3), v (3,2,5).
:5
- Let v k v k v k v
(6,11,6) k (2,1,4) k (1, 1,3) k (3,
n
Ex
Sol

   
  
   
1 2 3 1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
2,5)
(6,11,6) (2k k 3k ) (k k 2k )
(4k 3k 5k )
2k k 3k 6
k k 2k 11
4k 3k 5k 6
      
 
   
   
   
Linear Combination
1 2
2 1 3 1
2 1 3 6
1 1 2 11
4 3 5 6
Now, R R
1 1 2 11
2 1 3 6
4 3 5 6
Now doing R 2R and R 4R
 
 
 
  
 
  
 
 
  
  
Linear Combination
2
161
3 3
3 2
1 1 2 11
0 3 1 16
0 7 3 38
Now, R / ( 3)
1 1 2 11
0 1
0 7 3 38
Now doing R 7R
  
 
  
   
 
  
 
  
   
 
Linear Combination
161
3 3
2 2
3 3
3
3 2
161
3 3
3
1 1 2 11
0 1
0 0
Now, performing R ( )
1 1 2 11
0 1
0 0 1 1
So, we get
k 1
 
 
  
   
 
  
 
  
  

 
Linear Combination
2 1k 5 and k 4
Now,
(6,11,6)=4(3,2,5) ( 5)(2, 2,7) 1(4,6,7)
(6,11,6)=(6,11,6)
Which is proven.
   

   

Span
 
 
1 2 3
1 2 3
The set of all the vectors that are linear combination
of the vectors in the set S= v , v , v ,....., v is
called span of S and denoted by Span S or span
v , v , v ,....., v .
r
r

Span
2
1
2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
2
1 2 3 1
:6 Determine whether the polynomial p 2 ,
p 1 , p 2 span P .
:6
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +b ) k (2
n
Ex x
x x x
Sol
x x
x x
 
    
 
 
  2 2
2 3
2
1 2 3 1 1 3 1 2 3
1 1
1 3 2
1 2 3 3
) k (1 ) k (2 )
b +b b ) (2k ) (2k k ) (2k 3k k )
2k b
2k k b
2k 3k k b
x x x x
x x
    
     
 
  
   
Span
3
1 2 3
Now, matrix will be
2 0 0
2 0 1
2 3 1
det(A)=6 0
Here det(A) 0 therefore matrix is non-Singular
therefore the system is consistent. And so, the
vectors v , v , v span R .

 
 
 
  
 
 
Span 2
1
2 2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
1 2
:7 Determine whether the polynomial p 1 2 ,
p 5 4 , p 2 2 2 span P .
:7
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +
n
Ex x x
x x x x
Sol
x x
x
  
       
 
 
2 2 2
3 1 2
2
3
2
1 2 3 1 2 3 1 2 3
2
1 2 3
1 2
b k (1 2 ) k (5 4 )
k ( 2 2 2 )
b +b +b (k 5k 2k ) ( k k 2k )
(2k 4 k 2k )
k 5k 2k
x x x x x
x x
x x x
x
      
  
      
  
   3 1
1 2 3 2
1 2 3 3
b
k k 2k b
2k 4k 2k b

    
   
Span
1
2
3
1 3
3
2
1
2 1 3 1
Therefore,
2 1 2 4 b
1 0 1 1 b
1 1 0 1 b
Performing R R
1 1 0 1 b
1 0 1 1 b
2 1 2 4 b
Now, performing R R and R 2R

 
 
 
  
 
 
 
 
  
  
Span
3
2 3
1 3
3 2
3
2 3
1 2 3
1 2 3 4 2
1 1 0 1 b
0 1 1 2 b b
0 1 0 2 b 2b
Now, R R
1 1 0 1 b
0 1 1 2 b b
0 0 1 4 b b b
The system is consistent for all choices of b.
Therefore vectors p ,p ,p ,p span P .
 
 
 
   
 
 
 
 
   

Span
2
1
2 2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
1 2
:8 Determine whether the polynomial p 1 2 ,
p 5 4 , p 2 2 2 span P .
:8
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +
n
Ex x x
x x x x
Sol
x x
x
  
       
 
 
2 2 2
3 1 2
2
3
2
1 2 3 1 2 3 1 2 3
2
1 2 3
1 2
b k (1 2 ) k (5 4 )
k ( 2 2 2 )
b +b +b (k 5k 2k ) ( k k 2k )
(2k 4 k 2k )
k 5k 2k
x x x x x
x x
x x x
x
      
  
      
  
   3 1
1 2 3 2
1 2 3 3
b
k k 2k b
2k 4k 2k b

    
   
Span
1 2
Now, matrix will be
1 5 2
1 1 2
2 4 2
det(A)=0
Here det(A)=0. Therefore matrix is Singular
therefore the system is consistent for some choices
of b. And so, the polynomials p , p

 
   
  


3 2, p span P .
Linear Dependence and Linear
Independence
 1 2 3
1 1 2 2 3 3
1
Let S= v , v , v ,...., v be the non-empty set
such that k v k v k v ...... k v 0 (1)
S is called Linearly Independent set if the system
of equation (1) has trivial solutions (means k 0
r
r r

     


2
,
k 0,....., k 0).
S is called Linearly dependent then the system of
equation (1) has non-trivial solution (means at least
one scalar which is non-zero).
r 

Linear Dependence and Linear
Independence
1 2 3
:9 Check whether the following vectors are
Linearly Independent or Linearly Dependent. (4,1, 2),
( 4,10,2), (4,0,1).
:9
- v (4,1, 2), v ( 4,10,2), v (4,0,1)
n
Ex
Sol


    
1 1 2 2 3 3
1 2 3
1 2 3 1 2 1 2 3
1 2 3
1 2
1 2 3
- Let k v k v k v 0
0 k (4,1, 2) k ( 4,10,2) k (4,0,1)
0 (4k 4k 4k ) (k 10k ) ( 2k 2k k )
4k 4k 4k 0
k 10k 0
-2k 2k k 0
  
    
         
   
  
   
Linear Dependence and Linear
Independence
1 2
2 1 3 1
Therefore,
4 4 4 0
1 10 2 0
2 2 1 0
Performing R R
1 10 2 0
4 4 4 0
2 2 1 0
Now, performing R 4R and R 2R

  
 
 
  
 
  
 
 
  
  
Linear Dependence and Linear
Independence
2
3 2
1 1 2 0
0 2 2 0
0 1 1 0
Performing R / ( 2)
1 1 2 0
0 1 1 0
0 1 1 0
Now, performing R 22R
 
 
  
  
 
 
 
 
  
 
Linear Dependence and Linear
Independence
3
11
3
3
11
1 10 2 0
0 1 0
0 0 3 0
Performing R / 3
1 10 2 0
0 1 0
0 0 1 0
Now,
  
 
 
  

  
 
 
  

Linear Dependence and Linear
Independence
1 2 3
3
2 311
3
2
1
1 2 3
k 10k 2k 0
k k 0
k 0
k 0
k 0
Here k , k , k all are of zero values. Therefore
the system of equation has trivial solution.
Therefore it is Linearly Independent.
   
  
 
 
 

Linear Dependence and Linear
Independence
 2 2 2
2
2 2 2
1 2 3
1 1 2 2 3 3
:10 S= 2 , 2 ,2 2 3 Check whether S is
Linearly Independent or Linearly Dependent in P .
:10
- p 2 , p 2 , p 2 3
- Let k p k p k p 0
n
Ex x x x x x x
Sol
x x x x x x
    
      
  
2 2 2
1 2 3
2
1 3 1 2 3 1 2 3
1 3
1 2
1 2 3
0 k (2 ) k ( 2 ) k (2 2 3 )
0 (2k 2k ) (k k 2k ) (k 2k 3k )
2k 2k 0
k 10k 0
k 2k 3k 0
x x x x x x
x x
       
       
  
  
   
Linear Dependence and Linear
Independence
1 2
2 1 3 1
Therefore,
2 0 2 0
1 1 2 0
1 2 3 0
Performing R R
1 1 2 0
2 0 2 0
1 2 3 0
Now, performing R 2R and R R

 
 
 
  
 
 
 
 
  
  
Linear Dependence and Linear
Independence
2
3 2
1 1 2 0
0 2 2 0
0 1 1 0
Performing R / ( 2)
1 1 2 0
0 1 1 0
0 1 1 0
Now, performingR 2R
 
 
  
  
 
 
 
 
  
 
Linear Dependence and Linear
Independence
2 3
1 2 3
3
2
1
1
1
2
3
k k 0
k +k +2k 0
- taking k t 0
k t
k ( t)+2t=0
k t
k 1
k t 1
k 1
Here the system has trivial solution.
Therefore it is Linearly Dependent
  
 
 
  
  
  
   
        
      


Mais conteúdo relacionado

Mais procurados

Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - MathematicsDrishti Bhalla
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsaman1894
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectorsAmit Singh
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matricesStudent
 
Gram-Schmidt and QR Decomposition (Factorization) of Matrices
Gram-Schmidt and QR Decomposition (Factorization) of MatricesGram-Schmidt and QR Decomposition (Factorization) of Matrices
Gram-Schmidt and QR Decomposition (Factorization) of MatricesIsaac Yowetu
 
linear transformation
linear transformationlinear transformation
linear transformationmansi acharya
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical inductionSman Abbasi
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its applicationKrishna Peshivadiya
 
Mathematical induction by Animesh Sarkar
Mathematical induction by Animesh SarkarMathematical induction by Animesh Sarkar
Mathematical induction by Animesh SarkarAnimesh Sarkar
 
Relations and functions
Relations and functions Relations and functions
Relations and functions Seyid Kadher
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectorsRiddhi Patel
 

Mais procurados (20)

Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
 
Vector space
Vector spaceVector space
Vector space
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Metric space
Metric spaceMetric space
Metric space
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
 
Gram-Schmidt and QR Decomposition (Factorization) of Matrices
Gram-Schmidt and QR Decomposition (Factorization) of MatricesGram-Schmidt and QR Decomposition (Factorization) of Matrices
Gram-Schmidt and QR Decomposition (Factorization) of Matrices
 
Power method
Power methodPower method
Power method
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical induction
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spaces
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
 
Types of RELATIONS
Types of RELATIONSTypes of RELATIONS
Types of RELATIONS
 
Mathematical induction by Animesh Sarkar
Mathematical induction by Animesh SarkarMathematical induction by Animesh Sarkar
Mathematical induction by Animesh Sarkar
 
Relations and functions
Relations and functions Relations and functions
Relations and functions
 
Vector space
Vector spaceVector space
Vector space
 
Binomial expansion
Binomial expansionBinomial expansion
Binomial expansion
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
 
Vector spaces
Vector spaces Vector spaces
Vector spaces
 
LECTURE 2: PROPOSITIONAL EQUIVALENCES
LECTURE 2: PROPOSITIONAL EQUIVALENCESLECTURE 2: PROPOSITIONAL EQUIVALENCES
LECTURE 2: PROPOSITIONAL EQUIVALENCES
 

Destaque

Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear IndependenceMatthew Leingang
 
Linear Combination, Matrix Equations
Linear Combination, Matrix EquationsLinear Combination, Matrix Equations
Linear Combination, Matrix EquationsPrasanth George
 
Lecture 3 section 1-7, 1-8 and 1-9
Lecture 3   section 1-7, 1-8 and 1-9Lecture 3   section 1-7, 1-8 and 1-9
Lecture 3 section 1-7, 1-8 and 1-9njit-ronbrown
 
linear transformation
linear transformationlinear transformation
linear transformation8laddu8
 
Digital Bangladesh
Digital BangladeshDigital Bangladesh
Digital BangladeshJashim Uddin
 
Spanning trees & applications
Spanning trees & applicationsSpanning trees & applications
Spanning trees & applicationsTech_MX
 
Alternating Current
Alternating CurrentAlternating Current
Alternating Currentamckaytghs
 
Alternating current circuits
Alternating current circuitsAlternating current circuits
Alternating current circuitscse1014
 
Gate mathematics questions all branch by s k mondal
Gate mathematics questions all branch by s k mondalGate mathematics questions all branch by s k mondal
Gate mathematics questions all branch by s k mondalAashishv
 
Pie charts (interpreting and drawing)
Pie charts (interpreting and drawing)Pie charts (interpreting and drawing)
Pie charts (interpreting and drawing)sidraqasim99
 

Destaque (20)

Alg1 8.3 Linear Combination
Alg1 8.3 Linear CombinationAlg1 8.3 Linear Combination
Alg1 8.3 Linear Combination
 
Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear Independence
 
Linear Combination, Matrix Equations
Linear Combination, Matrix EquationsLinear Combination, Matrix Equations
Linear Combination, Matrix Equations
 
Linear (in)dependence
Linear (in)dependenceLinear (in)dependence
Linear (in)dependence
 
Scale factor gis
Scale factor gisScale factor gis
Scale factor gis
 
Pre-Alg 7.6 Triangles
Pre-Alg 7.6 TrianglesPre-Alg 7.6 Triangles
Pre-Alg 7.6 Triangles
 
HSA Prep- Scale Factor M-3
HSA Prep- Scale Factor M-3HSA Prep- Scale Factor M-3
HSA Prep- Scale Factor M-3
 
Ch07 3
Ch07 3Ch07 3
Ch07 3
 
Lecture 3 section 1-7, 1-8 and 1-9
Lecture 3   section 1-7, 1-8 and 1-9Lecture 3   section 1-7, 1-8 and 1-9
Lecture 3 section 1-7, 1-8 and 1-9
 
Scale factor gis
Scale factor gisScale factor gis
Scale factor gis
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Digital bangladesh
Digital bangladeshDigital bangladesh
Digital bangladesh
 
Digital Bangladesh
Digital BangladeshDigital Bangladesh
Digital Bangladesh
 
Spanning trees & applications
Spanning trees & applicationsSpanning trees & applications
Spanning trees & applications
 
Alternating Current
Alternating CurrentAlternating Current
Alternating Current
 
Alternating current
Alternating  currentAlternating  current
Alternating current
 
Alternating current circuits
Alternating current circuitsAlternating current circuits
Alternating current circuits
 
Linear Transformations
Linear TransformationsLinear Transformations
Linear Transformations
 
Gate mathematics questions all branch by s k mondal
Gate mathematics questions all branch by s k mondalGate mathematics questions all branch by s k mondal
Gate mathematics questions all branch by s k mondal
 
Pie charts (interpreting and drawing)
Pie charts (interpreting and drawing)Pie charts (interpreting and drawing)
Pie charts (interpreting and drawing)
 

Semelhante a Linear Combination, Span And Linearly Independent, Dependent Set

Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfFranciscoJavierCaedo
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44Bilal Ahmed
 
Ch01 composition of_forces
Ch01 composition of_forcesCh01 composition of_forces
Ch01 composition of_forcesFarzeen Shua
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCarlon Baird
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuitsarjav patel
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxDrOmarShAlyozbaky
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachYang Hong
 
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdfJennifer Strong
 
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.PdfKarin Faust
 
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfMathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfJulio Banks
 

Semelhante a Linear Combination, Span And Linearly Independent, Dependent Set (20)

Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
3 analytical kinematics
3 analytical kinematics3 analytical kinematics
3 analytical kinematics
 
MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44
 
Determinants
DeterminantsDeterminants
Determinants
 
Ch01 composition of_forces
Ch01 composition of_forcesCh01 composition of_forces
Ch01 composition of_forces
 
transformer
transformertransformer
transformer
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
Signals and Systems Assignment Help
Signals and Systems Assignment HelpSignals and Systems Assignment Help
Signals and Systems Assignment Help
 
Servo systems
Servo systemsServo systems
Servo systems
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
 
M1 PART-A
M1 PART-AM1 PART-A
M1 PART-A
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemeChanged pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space Approach
 
H0743842
H0743842H0743842
H0743842
 
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf
3rd-edition-linear-algebra-and-its-applications-solutions-manual.pdf
 
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
 
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfMathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
 

Mais de Dhaval Shukla

Time Travelling.... Is It Possible?
Time Travelling.... Is It Possible?Time Travelling.... Is It Possible?
Time Travelling.... Is It Possible?Dhaval Shukla
 
Metallic Glasses (Type of Metallic Materials)
Metallic Glasses (Type of Metallic Materials)Metallic Glasses (Type of Metallic Materials)
Metallic Glasses (Type of Metallic Materials)Dhaval Shukla
 
Crank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder MechanismCrank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder MechanismDhaval Shukla
 
Lamps, Reflectors And Lumen Requirements
Lamps, Reflectors And Lumen RequirementsLamps, Reflectors And Lumen Requirements
Lamps, Reflectors And Lumen RequirementsDhaval Shukla
 
Atkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling CycleAtkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling CycleDhaval Shukla
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic FunctionDhaval Shukla
 
Electromagnetic Transducers (EMT)
Electromagnetic Transducers (EMT)Electromagnetic Transducers (EMT)
Electromagnetic Transducers (EMT)Dhaval Shukla
 
Corporate Social Responsibility (CSR)
Corporate Social Responsibility (CSR)Corporate Social Responsibility (CSR)
Corporate Social Responsibility (CSR)Dhaval Shukla
 
Gaussian Quadrature Formula
Gaussian Quadrature FormulaGaussian Quadrature Formula
Gaussian Quadrature FormulaDhaval Shukla
 
Are We Really Independent?
Are We Really Independent?Are We Really Independent?
Are We Really Independent?Dhaval Shukla
 

Mais de Dhaval Shukla (10)

Time Travelling.... Is It Possible?
Time Travelling.... Is It Possible?Time Travelling.... Is It Possible?
Time Travelling.... Is It Possible?
 
Metallic Glasses (Type of Metallic Materials)
Metallic Glasses (Type of Metallic Materials)Metallic Glasses (Type of Metallic Materials)
Metallic Glasses (Type of Metallic Materials)
 
Crank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder MechanismCrank Sliding Link Cylinder Mechanism
Crank Sliding Link Cylinder Mechanism
 
Lamps, Reflectors And Lumen Requirements
Lamps, Reflectors And Lumen RequirementsLamps, Reflectors And Lumen Requirements
Lamps, Reflectors And Lumen Requirements
 
Atkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling CycleAtkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling Cycle
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
 
Electromagnetic Transducers (EMT)
Electromagnetic Transducers (EMT)Electromagnetic Transducers (EMT)
Electromagnetic Transducers (EMT)
 
Corporate Social Responsibility (CSR)
Corporate Social Responsibility (CSR)Corporate Social Responsibility (CSR)
Corporate Social Responsibility (CSR)
 
Gaussian Quadrature Formula
Gaussian Quadrature FormulaGaussian Quadrature Formula
Gaussian Quadrature Formula
 
Are We Really Independent?
Are We Really Independent?Are We Really Independent?
Are We Really Independent?
 

Último

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxNadaHaitham1
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 

Último (20)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 

Linear Combination, Span And Linearly Independent, Dependent Set

  • 1. Linear Combination, Span and Linearly Independent and Linearly Dependent -by Dhaval Shukla(141080119050) Abhishek Singh(141080119051) Abhishek Singh(141080119052) Aman Singh(141080119053) Azhar Tai(141080119054) -Group No. 9 -Prof. Ketan Chavda -Mechanical Branch -2nd Semester
  • 2. Linear Combination 1 2 3 r 1 1 2 2 3 3 r i A vector V is called a Linear Combination of vectors v , v , v ,......., v if V can be expressed as v k k k ..... k where k are scalar such that 1 i r rv v v v      
  • 3. Linear Combination       .v,....,v,v,vofnCombinatio LinearaisVthenconsistentis1inequationofsystemtheIf2 1k.....kkkv v,.....,v,v,vofnCombinatioLinearaasVExpress1 :followasisv.....,,v,v,v orsgiven vectofnCombinatioLinearacalledisVvectoraIf r321 r332211 r321 r321  rvvvv
  • 4. Linear Combination 2 3 2 2 2 1 2 267p 4510p 592pofnCombinatioLinear aas1588ppolynomialtheExpress1: xx xx xx xxEx     1 1 2 2 3 3 2 2 2 1 2 2 3 :1 Let p k k k 8 8 15 k (2 9 5 ) k (10 5 4 ) k (7 6 2 ) n Sol p p p x x x x x x x x                
  • 5. Linear Combination 2 1 2 3 1 2 3 2 1 2 3 1 2 3 1 2 3 1 2 3 8 8 15 (2k 10k 7k ) (9k 5k 6k ) (5k 4k 2k ) by comparison we get, 2k 10k 7k 8 9k 5k 6k 8 5k 4k 2k 15 now, turning the above equatio x x x x                           ns into an Augmented Matrix: 82 10 7 89 5 6 155 4 2         
  • 6. Linear Combination 1 2 1 3 1 performing R / 2 7 1 5 42 9 5 6 8 5 4 2 15 performing R 9R , R 5R 7 1 5 2 4 51 0 50 28 2 5 31 0 21 2                                    
  • 7. Linear Combination 2 7 2 51 14 100 25 31 2 3 2 7 2 51 14 100 25 479 169 100 25 1 performing R ( ) 50 1 5 4 0 1 0 21 5 now performing R 21R 1 5 4 0 1 0 0                          
  • 8. Linear Combination 100 3 479 7 2 51 14 100 25 676 479 7 1 2 32 51 14 2 3100 25 676 3 479 performing R ( ) 1 5 4 0 1 0 0 1 Hence, here sysem is consistent k 5k k 4 k k k                        
  • 9. Linear Combination 613 2 479 7347 1 479 by solving above equations k and k which is proven        
  • 10. Linear Combination 1 2 3 1 1 2 2 3 3 1 2 3 : 2 Express v (6,11,6) as Linear Combination of v (2,1,4), v (1, 1,3), v (3,2,5). : 2 - Let v k v k v k v (6,11,6) k (2,1,4) k (1, 1,3) k (3,2,5) (6,11,6 n Ex Sol             1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ) (2k k 3k ) (k k 2k ) (4k 3k 5k ) 2k k 3k 6 k 2k 7k 11 5k 7k 7k 7                     
  • 11. Linear Combination 1 72 4 3 3 3 2 1 3 1 Therefore, 3 2 4 7 2 2 7 12 5 7 7 7 Performing R / 3 1 2 2 7 12 5 7 7 7 Now, performing R 2R and R 5R                        
  • 12. Linear Combination 72 4 3 3 3 10 13 22 3 3 3 11 1 14 3 3 3 2 72 4 3 3 3 13 11 10 5 11 1 14 3 3 3 11 3 23 1 0 0 Now, R ( 3/10) 1 0 1 0 Now doing R R                             
  • 13. Linear Combination 1 3 2 3 3 3 2 1 3 306 3 23 1 1 2 11 0 1 6 0 0 4 Now, performing R ( ) 1 1 2 11 0 1 6 0 0 1 1 So, we get k                          
  • 14. Linear Combination 13 11 2 310 5 1978 23171 2 35 115 306 1978 23171 23 5 115 k k k and k Now, (7,12,7)= (3,2,5) (2, 2,7) (4,6,7) (7,12,7)=(7,12,7) Which is proven.            
  • 15. Linear Combination 1 2 3 1 1 2 2 3 3 1 2 5 1 :3 Express the matrix A= as a Linear Combination 1 9 1 1 1 1 2 2 of A , A and A . 0 3 0 2 1 1 :3 Let A=k A k A k A 5 1 1 1 1 1 k k 1 9 0 3 0 2 n Ex Sol                                          3 1 2 3 1 2 3 3 1 2 3 2 2 k 1 1 k k 2k k k 2k5 1 k 3k 2k k1 9                           
  • 16. Linear Combination 1 2 3 1 2 3 3 1 2 3 k k 2k 5 -k k 2k 1 -k 1 3k 2k k 9 The Augmented Matrix will be 1 1 2 5 1 1 2 1 0 0 1 1 3 2 1 9                              
  • 17. Linear Combination 2 1 4 1 2 Now, performing R R and R 3R 1 1 2 5 0 2 4 6 0 0 1 1 0 1 5 6 Now, doing R / 2 1 1 2 5 0 1 2 3 0 0 1 1 0 1 5 6                                    
  • 18. Linear Combination 1 4 1 2 3 Now, R R 1 1 2 5 0 1 2 3 0 0 1 1 0 0 3 3 The system is Inconsistent. Therefore the given matrix A is not the linear combination of all three matrices A , A , A .                  
  • 19. Linear Combination 2 2 1 2 2 2 3 : 4 Express the polynomial p 9 7 15 as a Linear Combination of p 2 4 p 1 3 p 3 2 5 Ex x x x x x x x x              1 1 2 2 3 3 2 2 2 1 2 2 3 : 4 Let p k k k 9 7 15 k (2 4 ) k (1 3 ) k (3 2 5 ) n Sol p p p x x x x x x x x                
  • 20. Linear Combination 2 1 2 3 1 2 3 2 1 2 3 1 2 3 1 2 3 1 2 3 9 7 15 (2k k 3k ) (k k 2k ) (4k 3k 5k ) by comparison we get, 2k k 3k 9 k k 2k 7 4k 3k 5k 15 now, turning the above equations into x x x x                           an Augmented Matrix: 92 1 3 71 1 2 154 3 5         
  • 21. Linear Combination 1 2 2 1 3 1 performing R R 1 1 2 7 2 1 3 9 4 3 5 15 performing R 2R , R 4R 1 1 2 7 0 3 1 5 0 7 3 13                           
  • 22. Linear Combination 2 51 3 3 3 2 51 3 3 2 4 3 3 performing R / 3 1 1 2 7 0 1 0 7 3 13 now performing R 7R 1 1 2 7 0 1 0 0 Hence, the system is consistent.                         
  • 23. Linear Combination 3 3 1 2 3 k 5 2 3 3 2k 4 3 3 3 5 2 2 3 3 2 1 1 k k 2 k 7 k k 2 k k 1 k 1 2( 2) 7 k 2                         
  • 24. Linear Combination 2 2 2 2 2 2 Now, 9 7 15 =( 2)(2 4 ) (1)(1 3 ) ( 2)(3 2 5 ) 9 7 15 = 9 7 15 Which is proven. x x x x x x x x x x x x                    
  • 25. Linear Combination 1 2 3 1 1 2 2 3 3 1 2 3 :5 Check whether the following v (6,11,6) as Linear Combination of v (2,1,4), v (1, 1,3), v (3,2,5). :5 - Let v k v k v k v (6,11,6) k (2,1,4) k (1, 1,3) k (3, n Ex Sol             1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2,5) (6,11,6) (2k k 3k ) (k k 2k ) (4k 3k 5k ) 2k k 3k 6 k k 2k 11 4k 3k 5k 6                     
  • 26. Linear Combination 1 2 2 1 3 1 2 1 3 6 1 1 2 11 4 3 5 6 Now, R R 1 1 2 11 2 1 3 6 4 3 5 6 Now doing R 2R and R 4R                        
  • 27. Linear Combination 2 161 3 3 3 2 1 1 2 11 0 3 1 16 0 7 3 38 Now, R / ( 3) 1 1 2 11 0 1 0 7 3 38 Now doing R 7R                            
  • 28. Linear Combination 161 3 3 2 2 3 3 3 3 2 161 3 3 3 1 1 2 11 0 1 0 0 Now, performing R ( ) 1 1 2 11 0 1 0 0 1 1 So, we get k 1                           
  • 29. Linear Combination 2 1k 5 and k 4 Now, (6,11,6)=4(3,2,5) ( 5)(2, 2,7) 1(4,6,7) (6,11,6)=(6,11,6) Which is proven.          
  • 30. Span     1 2 3 1 2 3 The set of all the vectors that are linear combination of the vectors in the set S= v , v , v ,....., v is called span of S and denoted by Span S or span v , v , v ,....., v . r r 
  • 31. Span 2 1 2 2 3 2 2 1 2 3 2 1 1 2 2 3 3 2 1 2 3 1 :6 Determine whether the polynomial p 2 , p 1 , p 2 span P . :6 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b +b ) k (2 n Ex x x x x Sol x x x x              2 2 2 3 2 1 2 3 1 1 3 1 2 3 1 1 1 3 2 1 2 3 3 ) k (1 ) k (2 ) b +b b ) (2k ) (2k k ) (2k 3k k ) 2k b 2k k b 2k 3k k b x x x x x x                    
  • 32. Span 3 1 2 3 Now, matrix will be 2 0 0 2 0 1 2 3 1 det(A)=6 0 Here det(A) 0 therefore matrix is non-Singular therefore the system is consistent. And so, the vectors v , v , v span R .              
  • 33. Span 2 1 2 2 2 3 2 2 1 2 3 2 1 1 2 2 3 3 1 2 :7 Determine whether the polynomial p 1 2 , p 5 4 , p 2 2 2 span P . :7 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b + n Ex x x x x x x Sol x x x                2 2 2 3 1 2 2 3 2 1 2 3 1 2 3 1 2 3 2 1 2 3 1 2 b k (1 2 ) k (5 4 ) k ( 2 2 2 ) b +b +b (k 5k 2k ) ( k k 2k ) (2k 4 k 2k ) k 5k 2k x x x x x x x x x x x                        3 1 1 2 3 2 1 2 3 3 b k k 2k b 2k 4k 2k b          
  • 34. Span 1 2 3 1 3 3 2 1 2 1 3 1 Therefore, 2 1 2 4 b 1 0 1 1 b 1 1 0 1 b Performing R R 1 1 0 1 b 1 0 1 1 b 2 1 2 4 b Now, performing R R and R 2R                        
  • 35. Span 3 2 3 1 3 3 2 3 2 3 1 2 3 1 2 3 4 2 1 1 0 1 b 0 1 1 2 b b 0 1 0 2 b 2b Now, R R 1 1 0 1 b 0 1 1 2 b b 0 0 1 4 b b b The system is consistent for all choices of b. Therefore vectors p ,p ,p ,p span P .                       
  • 36. Span 2 1 2 2 2 3 2 2 1 2 3 2 1 1 2 2 3 3 1 2 :8 Determine whether the polynomial p 1 2 , p 5 4 , p 2 2 2 span P . :8 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b + n Ex x x x x x x Sol x x x                2 2 2 3 1 2 2 3 2 1 2 3 1 2 3 1 2 3 2 1 2 3 1 2 b k (1 2 ) k (5 4 ) k ( 2 2 2 ) b +b +b (k 5k 2k ) ( k k 2k ) (2k 4 k 2k ) k 5k 2k x x x x x x x x x x x                        3 1 1 2 3 2 1 2 3 3 b k k 2k b 2k 4k 2k b          
  • 37. Span 1 2 Now, matrix will be 1 5 2 1 1 2 2 4 2 det(A)=0 Here det(A)=0. Therefore matrix is Singular therefore the system is consistent for some choices of b. And so, the polynomials p , p             3 2, p span P .
  • 38. Linear Dependence and Linear Independence  1 2 3 1 1 2 2 3 3 1 Let S= v , v , v ,...., v be the non-empty set such that k v k v k v ...... k v 0 (1) S is called Linearly Independent set if the system of equation (1) has trivial solutions (means k 0 r r r          2 , k 0,....., k 0). S is called Linearly dependent then the system of equation (1) has non-trivial solution (means at least one scalar which is non-zero). r  
  • 39. Linear Dependence and Linear Independence 1 2 3 :9 Check whether the following vectors are Linearly Independent or Linearly Dependent. (4,1, 2), ( 4,10,2), (4,0,1). :9 - v (4,1, 2), v ( 4,10,2), v (4,0,1) n Ex Sol        1 1 2 2 3 3 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 1 2 3 - Let k v k v k v 0 0 k (4,1, 2) k ( 4,10,2) k (4,0,1) 0 (4k 4k 4k ) (k 10k ) ( 2k 2k k ) 4k 4k 4k 0 k 10k 0 -2k 2k k 0                             
  • 40. Linear Dependence and Linear Independence 1 2 2 1 3 1 Therefore, 4 4 4 0 1 10 2 0 2 2 1 0 Performing R R 1 10 2 0 4 4 4 0 2 2 1 0 Now, performing R 4R and R 2R                          
  • 41. Linear Dependence and Linear Independence 2 3 2 1 1 2 0 0 2 2 0 0 1 1 0 Performing R / ( 2) 1 1 2 0 0 1 1 0 0 1 1 0 Now, performing R 22R                       
  • 42. Linear Dependence and Linear Independence 3 11 3 3 11 1 10 2 0 0 1 0 0 0 3 0 Performing R / 3 1 10 2 0 0 1 0 0 0 1 0 Now,                      
  • 43. Linear Dependence and Linear Independence 1 2 3 3 2 311 3 2 1 1 2 3 k 10k 2k 0 k k 0 k 0 k 0 k 0 Here k , k , k all are of zero values. Therefore the system of equation has trivial solution. Therefore it is Linearly Independent.              
  • 44. Linear Dependence and Linear Independence  2 2 2 2 2 2 2 1 2 3 1 1 2 2 3 3 :10 S= 2 , 2 ,2 2 3 Check whether S is Linearly Independent or Linearly Dependent in P . :10 - p 2 , p 2 , p 2 3 - Let k p k p k p 0 n Ex x x x x x x Sol x x x x x x                2 2 2 1 2 3 2 1 3 1 2 3 1 2 3 1 3 1 2 1 2 3 0 k (2 ) k ( 2 ) k (2 2 3 ) 0 (2k 2k ) (k k 2k ) (k 2k 3k ) 2k 2k 0 k 10k 0 k 2k 3k 0 x x x x x x x x                          
  • 45. Linear Dependence and Linear Independence 1 2 2 1 3 1 Therefore, 2 0 2 0 1 1 2 0 1 2 3 0 Performing R R 1 1 2 0 2 0 2 0 1 2 3 0 Now, performing R 2R and R R                        
  • 46. Linear Dependence and Linear Independence 2 3 2 1 1 2 0 0 2 2 0 0 1 1 0 Performing R / ( 2) 1 1 2 0 0 1 1 0 0 1 1 0 Now, performingR 2R                       
  • 47. Linear Dependence and Linear Independence 2 3 1 2 3 3 2 1 1 1 2 3 k k 0 k +k +2k 0 - taking k t 0 k t k ( t)+2t=0 k t k 1 k t 1 k 1 Here the system has trivial solution. Therefore it is Linearly Dependent                                     