SlideShare uma empresa Scribd logo
1 de 11
Baixar para ler offline
INAES
2013
2014
Groupe 4
Etude du dimensionnement du
divergent RL10-B2
Paula ARBE, Manel MATHLOUTHI, François NICOLLEAU, Marco Antônio MENEZES PRATA,
Jérémie HOUDRIL, Luciano SOLAUN et Daniel DE SANTIAGO
Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014
1
Table des matières
Présentation du travail.................................................................................................................1
Première séance...........................................................................................................................1
Deuxième séance .........................................................................................................................2
Troisième séance .........................................................................................................................5
Quatrième séance........................................................................................................................7
Conclusion..................................................................................................................................10
Présentation du travail
L’objectif de ce travail est d’étudier le dimensionnement et la justification du divergent RL10-
B2 de Pratt & Whitney. Pour ceci durant 4 séances, on a procédé à la démarche suivante :
 1ère
séance: Choix de la logique de justification en s’orientant sur les modèles
mécaniques, afin de pouvoir calculer le flambement.
 2ème
séance : Conception du modèle sous le logiciel CATIA V5, en se basant sur les
données fournies sous Excel. Et puis, l’importation de ce modèle sous Ansys pour le
calcul des modes de flambement.
 3ème
séance : Définition du problème sous Ansys : éléments finis, maillage, matériau
utilisé, orientation des plis.
 4ème
séance : Optimisation
Première séance
Logique de justification et orientations sur les choix des modèles pour appréhender le
flambement, paramétrage, …
 Matériau CMC (Céramique)  Hautes températures
 Dimensionnement (Hauteur, Diamètre, Angle de convergence, Eq. Surface, …)
 Contraintes/Sollicitations  {
Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014
2
 Propriétés{ {
 Analyse Mathématique  Eléments Finis  ANSYS{ }Coque
 Confirmation/Infirmation des hypothèses
 Optimisation
 Dessin graphiqueCATIA
 Processus de fabrication
Deuxième séance
En premier lieu, on a examiné les différentes données fournies dans le document Excel. Ceci a
contribué à définir la géométrie, la température, la différence de pression par rapport à la
variable X qui est la hauteur de la tuyère. Ensuite, en utilisant ces données on a fait d’autres
graphiques pour la température. Il s’est avéré que cette fonction ne pouvait pas être bien
approximée à une fonction polynomiale. Donc, on a réalisé une division de trois parties de
l’ensemble étudié et on a obtenu les différentes équations d’approximation de la courbe pour
chaque partie. On a trouvé par la suite les équations approximées à la différence de pression
et à la géométrie de la surface moyenne du modèle.
En ce qui suit, on a établi les graphiques de la différence de pression, sollicitation de
température et rayon de la tuyère. Cependant, on s’est rendu compte que celui de la
sollicitation de température n’est pas utile, puisque la sollicitation due à la pression est
beaucoup plus grande que celle due à la température.
y = -7E-09x3 + 6E-05x2 - 0,1735x + 150,81
R² = 0,9979
-3,00E+01
-2,00E+01
-1,00E+01
0,00E+00
1,00E+01
2,00E+01
3,00E+01
4,00E+01
5,00E+02 1,00E+03 1,50E+03 2,00E+03 2,50E+03 3,00E+03 3,50E+03 4,00E+03
Pression(mbar)
X (mm)
Différence de pression
Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014
3
y = 1E-12x6 - 1E-08x5 + 3E-05x4 - 0,0448x3 + 38,144x2 - 17059x + 3E+06
R² = 0,9828
y = 3E-14x6 - 4E-10x5 + 2E-06x4 - 0,0042x3 + 5,8437x2 - 4306,1x + 1E+06
R² = 0,8527
y = -8E-15x6 + 2E-10x5 - 1E-06x4 + 0,0044x3 - 9,6964x2 + 11415x - 6E+06
R² = 0,9852
0,00E+00
2,00E+02
4,00E+02
6,00E+02
8,00E+02
1,00E+03
1,20E+03
1,40E+03
1,60E+03
1,80E+03
0,00E+00 5,00E+02 1,00E+03 1,50E+03 2,00E+03 2,50E+03 3,00E+03 3,50E+03 4,00E+03
Température(K)
X (mm)
Sollicitation de température Zone 1 Zone 2 Zone 3
y = -4E-05x2 + 0,3834x + 231,49
R² = 0,9997
0,00E+00
2,00E+02
4,00E+02
6,00E+02
8,00E+02
1,00E+03
1,20E+03
5,00E+02 1,00E+03 1,50E+03 2,00E+03 2,50E+03 3,00E+03 3,50E+03 4,00E+03
R(mm)
X (mm)
Rayon de la tuyère
Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014
4
Il s’agit d’un modèle COQUE, qui fera la représentation de la surface moyenne de notre pièce.
On ne travaillera pas avec un modèle 3D avec épaisseur parce que c’est une grandeur
négligeable pour la modélisation de cette pièce, et de plus, la modélisation 3D présente des
difficultés dans les calculs sous le logiciel ANSYS.
En effet, on a supposé que le modèle est continu. Cette hypothèse résulte d’une connexion
entre chacune des 3 parties. Cette union fait que l’ensemble pourra être choisi pour calculer le
flambement. Cependant, pour les procédés de fabrication, il est obligatoire de séparer les
différentes parties.
En tenant compte de l‘axisymétrie de la pièce, on a pensé à simplifier le modèle. La pression et
la température sont toujours axisymétriques. Cependant, le comportement de la pièce ne peut
pas être étudié à travers cette symétrie, puisqu’on travaille avec de composites.
Après avoir obtenu les équations d’approximation des graphiques, on a introduit les données
de géométrie sous le logiciel CATIA V5 (figure 1) pour concevoir le modèle. On a suivi ces
étapes :
 Insertion de la table de données R=f(X)
 Traçage de la courbe
 Traçage des deux circonférences supérieure et inférieure de la pièce
 Révolution de la courbe  Surface moyenne  Modèle
Figure 1 Dessin Catia
Finalement, on importe ce modèle sous ANSYS (Figure 2). Remarque : Il faut travailler avec une
surface et non pas un volume car avec un système en 3D, les calculs seront très compliqués.
Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014
5
Figure 2 Modélisation Ansys
Troisième séance
Après avoir fixé un modèle utile pour faire les calculs de flambement, on doit travailler avec
deux matériaux différents. La première version (Sepcarb Novoltex FPTM0530551A) est un
composite multicouche dont on connait les propriétés de l’ensemble. Tandis que la deuxième
version (Sepcarb Naxeco, couche aiguilletée) est un composite dont les propriétés données
correspondent aux plis. Il faut donc, calculer le numéro de plis que l’on va utiliser et
l’orientation.
Figure 3 Maillage du modèle
Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014
6
Quant au premier matériau, on a choisi une orientation de zéro degrés et comme les
propriétés de l’ensemble sont connues, il ne faut que les mettre comme si elle n’était pas une
pièce composite. La première épaisseur choisie a été de 12 mm.
Par rapport à la deuxième version, on a besoin d’orienter les plis dans deux directions
différentes +45º et -45º, pour que le matériau répond à la condition d’orthotropie. Et puis, il
faut préciser les propriétés pour chaque pli. Comme première option, on a pris douze plis
orthogonaux de 1 mm d’épaisseur chacun.
Comme élément fini on a choisi le « Shell 121 3D » qui, selon Ansys, est utile pour les
composites avec épaisseur négligeable et ce qui aboutit à une déformation logarithmique.
Au moment du maillage on a introduit un raffinement de 3, parce que celui de 5 était trop
précis ce qui demande plus de temps pour calculer la solution. (Figure 3).
Sur la circonférence la plus petite, il faut mettre un encastrement pour éliminer tous les degrés
de liberté, contrairement à l’autre extrémité qui reste libre. (Figure 4)
Pour finir, la pression est donnée selon la fonction mathématique que l’on a calculée sous
Excel.
Figure 4 Encastrement
Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014
7
Finalement, les résultats peuvent être calculés avec toutes les données que l’on vient
d’expliquer. (Figure 5)
Figure 5 Calcul des résultats
Quatrième séance
En calculant les modes de flambement et la charge critique, on peut optimiser la
structure. Un facteur de sécurité plus petit que 1 montre que la charge que l’on a
introduite est déjà plus grande que la charge critique de flambement avec l’épaisseur
et les matériaux utilisés. Cependant, plus le coefficient de sécurité est trop élevé, plus
le matériau sera gaspillé. Nous considérons un coefficient d’une valeur de 1,5 est
cohérent en cherchant toujours une masse minimale.
En premier lieu, on a introduit les valeurs du matériau multicouche. Avec ces données,
on a trouvé un facteur de sécurité de 1,69, qui correspond au mode de flambement
illustré dans la figure suivante. (Figure 6).
Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014
8
Figure 6 Mode 1 flambement. Composite multicouche
Le facteur de sécurité a une valeur proche à 1,5. Ce qui correspond aux conditions
mentionnées ci-dessus. Cela est une valeur optimisée en gardant la même épaisseur
de toute la pièce. Une optimisation ultérieure sera faite en changeant l’épaisseur.
En ce qui concerne le second matériau, on a trouvé un coefficient initial de sécurité de
2,11 pour les conditions initiales (Figure 7). On a considéré que cette valeur est trop
élevée et c’est pourquoi on a réduit le nombre de plis.
Figure 7 Composite 12 plis
Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014
9
Comme une optimisation possible on a choisi un composite de 8 plis. Cette fois-là, il s’est avéré
que le facteur de sécurité est plus petit que 1, donc il est évident qu’il faut augmenter
maintenant le nombre de plis. (Figure 8).
Figure 8 8 plis 1 mm
Finalement, avec 10 plis de 1 mm, on aboutit à un facteur de 1,34, qui atteint donc nos
objectifs. (Figure 9).
Figure 9 10 plis 1 mm
Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014
10
Conclusion
On choisit alors la deuxième version : en effet, l’épaisseur est plus petite que pour la première
version pour arriver à un coefficient de sécurité similaire.
La tuyère étant réalisée en trois parties, il serait judicieux d’avoir trois épaisseurs différentes
pour chaque partie. Nous n’avons malheureusement pas pu mener cette étude à son terme
par manque de temps.
Figure 10 Modélisation de la structure en trois parties
Remarque : A la fin de la dernière séance on s’est rendu compte qu’il y avait un problème de
conception du modèle sous Catia. Spécifiquement, on a défini la surface moyenne par un
balayage autour d’un cercle, au lieu d’une révolution autour d’un axe. Cela nous a empêché de
trouver une bonne solution de la charge critique de flambage, puisque la distribution est
perturbée par la construction définie précédemment. On s’est arrêté à cause de cette erreur
pendant plus de 7 heures et on a trouvé la solution 45 minutes avant la fin de la séance.

Mais conteúdo relacionado

Mais procurados

03 fondations superficielles - solutionnaire (étudiants)
03   fondations superficielles - solutionnaire (étudiants)03   fondations superficielles - solutionnaire (étudiants)
03 fondations superficielles - solutionnaire (étudiants)
Aissa Ouai
 
Calcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacementsCalcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacements
Sami Sahli
 
Conception d'un convoyeur à bande
Conception d'un convoyeur à bandeConception d'un convoyeur à bande
Conception d'un convoyeur à bande
medrouam
 
Projet Methode numerique_(MENG Try)
Projet Methode numerique_(MENG Try)Projet Methode numerique_(MENG Try)
Projet Methode numerique_(MENG Try)
meng try
 

Mais procurados (12)

03 fondations superficielles - solutionnaire (étudiants)
03   fondations superficielles - solutionnaire (étudiants)03   fondations superficielles - solutionnaire (étudiants)
03 fondations superficielles - solutionnaire (étudiants)
 
Tps exercices corriges de mecanique des sols
Tps    exercices corriges de mecanique des solsTps    exercices corriges de mecanique des sols
Tps exercices corriges de mecanique des sols
 
Elements fini
Elements finiElements fini
Elements fini
 
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
 
T. Masrour - cours dynamique des systèmes - vibrations -chapitre2-n ddl (1)
T. Masrour - cours dynamique des systèmes - vibrations -chapitre2-n ddl (1)T. Masrour - cours dynamique des systèmes - vibrations -chapitre2-n ddl (1)
T. Masrour - cours dynamique des systèmes - vibrations -chapitre2-n ddl (1)
 
Analysis and Modelisation of Fluid Transport, the Euler Problem and Common Ap...
Analysis and Modelisation of Fluid Transport, the Euler Problem and Common Ap...Analysis and Modelisation of Fluid Transport, the Euler Problem and Common Ap...
Analysis and Modelisation of Fluid Transport, the Euler Problem and Common Ap...
 
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmcT. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
 
Calcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacementsCalcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacements
 
Projet Méthodes Numériques
Projet  Méthodes Numériques Projet  Méthodes Numériques
Projet Méthodes Numériques
 
Conception d'un convoyeur à bande
Conception d'un convoyeur à bandeConception d'un convoyeur à bande
Conception d'un convoyeur à bande
 
Projet Methode numerique_(MENG Try)
Projet Methode numerique_(MENG Try)Projet Methode numerique_(MENG Try)
Projet Methode numerique_(MENG Try)
 
Synthes eflexion 4t
Synthes eflexion 4tSynthes eflexion 4t
Synthes eflexion 4t
 

Semelhante a Etude du dimensionnement du divergent RL10-B2

cours_EF_B_ZOUARI.pdf
cours_EF_B_ZOUARI.pdfcours_EF_B_ZOUARI.pdf
cours_EF_B_ZOUARI.pdf
Khul12
 
Bac s 2014_centres_etrangers
Bac s 2014_centres_etrangersBac s 2014_centres_etrangers
Bac s 2014_centres_etrangers
Fabrice Lallemand
 
Moulage par injection 4 pdf
Moulage par injection  4 pdfMoulage par injection  4 pdf
Moulage par injection 4 pdf
Khaoula Jellouli
 
Efficacité du processus de mesure (Calcul R$R).pdf
Efficacité du processus de mesure (Calcul R$R).pdfEfficacité du processus de mesure (Calcul R$R).pdf
Efficacité du processus de mesure (Calcul R$R).pdf
AyaEss
 

Semelhante a Etude du dimensionnement du divergent RL10-B2 (20)

cours_EF_B_ZOUARI.pdf
cours_EF_B_ZOUARI.pdfcours_EF_B_ZOUARI.pdf
cours_EF_B_ZOUARI.pdf
 
rapport
rapportrapport
rapport
 
Projet d'Analyse Numérique
Projet d'Analyse NumériqueProjet d'Analyse Numérique
Projet d'Analyse Numérique
 
Rapport
RapportRapport
Rapport
 
Structural design project
Structural design projectStructural design project
Structural design project
 
Sujet1 si-1-mines-mp-2007
Sujet1 si-1-mines-mp-2007Sujet1 si-1-mines-mp-2007
Sujet1 si-1-mines-mp-2007
 
Transfer de chaleur exercice corriger
Transfer de chaleur exercice corriger Transfer de chaleur exercice corriger
Transfer de chaleur exercice corriger
 
Conception d'algorithmes pour l'approximation de la "Cut-Norm" avec l'inégali...
Conception d'algorithmes pour l'approximation de la "Cut-Norm" avec l'inégali...Conception d'algorithmes pour l'approximation de la "Cut-Norm" avec l'inégali...
Conception d'algorithmes pour l'approximation de la "Cut-Norm" avec l'inégali...
 
Kamal Lmsp V2
Kamal Lmsp V2Kamal Lmsp V2
Kamal Lmsp V2
 
Bac s 2014_centres_etrangers
Bac s 2014_centres_etrangersBac s 2014_centres_etrangers
Bac s 2014_centres_etrangers
 
G1SSCIN03205-sujet3.pdf
G1SSCIN03205-sujet3.pdfG1SSCIN03205-sujet3.pdf
G1SSCIN03205-sujet3.pdf
 
Note cours v0
Note cours v0Note cours v0
Note cours v0
 
Modelisation d'un Robot capable d'écrire, le PARVUS
Modelisation d'un Robot capable d'écrire, le PARVUSModelisation d'un Robot capable d'écrire, le PARVUS
Modelisation d'un Robot capable d'écrire, le PARVUS
 
Approximation de ritter
Approximation de ritterApproximation de ritter
Approximation de ritter
 
Rapport
RapportRapport
Rapport
 
Chapitre 3 NP-complétude
Chapitre 3 NP-complétudeChapitre 3 NP-complétude
Chapitre 3 NP-complétude
 
[Fsjes tanger.com]stat1 exoscorrige-splanche2
[Fsjes tanger.com]stat1 exoscorrige-splanche2[Fsjes tanger.com]stat1 exoscorrige-splanche2
[Fsjes tanger.com]stat1 exoscorrige-splanche2
 
Moulage par injection 4 pdf
Moulage par injection  4 pdfMoulage par injection  4 pdf
Moulage par injection 4 pdf
 
Mur de soutènement
Mur de soutènementMur de soutènement
Mur de soutènement
 
Efficacité du processus de mesure (Calcul R$R).pdf
Efficacité du processus de mesure (Calcul R$R).pdfEfficacité du processus de mesure (Calcul R$R).pdf
Efficacité du processus de mesure (Calcul R$R).pdf
 

Mais de Daniel de Santiago Casado (6)

[Fr]CV Daniel de Santiago
[Fr]CV Daniel de Santiago[Fr]CV Daniel de Santiago
[Fr]CV Daniel de Santiago
 
[Es]CV Daniel de Santiago
[Es]CV Daniel de Santiago[Es]CV Daniel de Santiago
[Es]CV Daniel de Santiago
 
[Eng]CV Daniel de Santiago
[Eng]CV Daniel de Santiago[Eng]CV Daniel de Santiago
[Eng]CV Daniel de Santiago
 
SESDiploma_Q22016
SESDiploma_Q22016SESDiploma_Q22016
SESDiploma_Q22016
 
Rendimiento estacional _Daniel de Santiago
Rendimiento estacional _Daniel de SantiagoRendimiento estacional _Daniel de Santiago
Rendimiento estacional _Daniel de Santiago
 
DE SANTIAGO BIPV
DE SANTIAGO BIPVDE SANTIAGO BIPV
DE SANTIAGO BIPV
 

Etude du dimensionnement du divergent RL10-B2

  • 1. INAES 2013 2014 Groupe 4 Etude du dimensionnement du divergent RL10-B2 Paula ARBE, Manel MATHLOUTHI, François NICOLLEAU, Marco Antônio MENEZES PRATA, Jérémie HOUDRIL, Luciano SOLAUN et Daniel DE SANTIAGO
  • 2. Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014 1 Table des matières Présentation du travail.................................................................................................................1 Première séance...........................................................................................................................1 Deuxième séance .........................................................................................................................2 Troisième séance .........................................................................................................................5 Quatrième séance........................................................................................................................7 Conclusion..................................................................................................................................10 Présentation du travail L’objectif de ce travail est d’étudier le dimensionnement et la justification du divergent RL10- B2 de Pratt & Whitney. Pour ceci durant 4 séances, on a procédé à la démarche suivante :  1ère séance: Choix de la logique de justification en s’orientant sur les modèles mécaniques, afin de pouvoir calculer le flambement.  2ème séance : Conception du modèle sous le logiciel CATIA V5, en se basant sur les données fournies sous Excel. Et puis, l’importation de ce modèle sous Ansys pour le calcul des modes de flambement.  3ème séance : Définition du problème sous Ansys : éléments finis, maillage, matériau utilisé, orientation des plis.  4ème séance : Optimisation Première séance Logique de justification et orientations sur les choix des modèles pour appréhender le flambement, paramétrage, …  Matériau CMC (Céramique)  Hautes températures  Dimensionnement (Hauteur, Diamètre, Angle de convergence, Eq. Surface, …)  Contraintes/Sollicitations  {
  • 3. Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014 2  Propriétés{ {  Analyse Mathématique  Eléments Finis  ANSYS{ }Coque  Confirmation/Infirmation des hypothèses  Optimisation  Dessin graphiqueCATIA  Processus de fabrication Deuxième séance En premier lieu, on a examiné les différentes données fournies dans le document Excel. Ceci a contribué à définir la géométrie, la température, la différence de pression par rapport à la variable X qui est la hauteur de la tuyère. Ensuite, en utilisant ces données on a fait d’autres graphiques pour la température. Il s’est avéré que cette fonction ne pouvait pas être bien approximée à une fonction polynomiale. Donc, on a réalisé une division de trois parties de l’ensemble étudié et on a obtenu les différentes équations d’approximation de la courbe pour chaque partie. On a trouvé par la suite les équations approximées à la différence de pression et à la géométrie de la surface moyenne du modèle. En ce qui suit, on a établi les graphiques de la différence de pression, sollicitation de température et rayon de la tuyère. Cependant, on s’est rendu compte que celui de la sollicitation de température n’est pas utile, puisque la sollicitation due à la pression est beaucoup plus grande que celle due à la température. y = -7E-09x3 + 6E-05x2 - 0,1735x + 150,81 R² = 0,9979 -3,00E+01 -2,00E+01 -1,00E+01 0,00E+00 1,00E+01 2,00E+01 3,00E+01 4,00E+01 5,00E+02 1,00E+03 1,50E+03 2,00E+03 2,50E+03 3,00E+03 3,50E+03 4,00E+03 Pression(mbar) X (mm) Différence de pression
  • 4. Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014 3 y = 1E-12x6 - 1E-08x5 + 3E-05x4 - 0,0448x3 + 38,144x2 - 17059x + 3E+06 R² = 0,9828 y = 3E-14x6 - 4E-10x5 + 2E-06x4 - 0,0042x3 + 5,8437x2 - 4306,1x + 1E+06 R² = 0,8527 y = -8E-15x6 + 2E-10x5 - 1E-06x4 + 0,0044x3 - 9,6964x2 + 11415x - 6E+06 R² = 0,9852 0,00E+00 2,00E+02 4,00E+02 6,00E+02 8,00E+02 1,00E+03 1,20E+03 1,40E+03 1,60E+03 1,80E+03 0,00E+00 5,00E+02 1,00E+03 1,50E+03 2,00E+03 2,50E+03 3,00E+03 3,50E+03 4,00E+03 Température(K) X (mm) Sollicitation de température Zone 1 Zone 2 Zone 3 y = -4E-05x2 + 0,3834x + 231,49 R² = 0,9997 0,00E+00 2,00E+02 4,00E+02 6,00E+02 8,00E+02 1,00E+03 1,20E+03 5,00E+02 1,00E+03 1,50E+03 2,00E+03 2,50E+03 3,00E+03 3,50E+03 4,00E+03 R(mm) X (mm) Rayon de la tuyère
  • 5. Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014 4 Il s’agit d’un modèle COQUE, qui fera la représentation de la surface moyenne de notre pièce. On ne travaillera pas avec un modèle 3D avec épaisseur parce que c’est une grandeur négligeable pour la modélisation de cette pièce, et de plus, la modélisation 3D présente des difficultés dans les calculs sous le logiciel ANSYS. En effet, on a supposé que le modèle est continu. Cette hypothèse résulte d’une connexion entre chacune des 3 parties. Cette union fait que l’ensemble pourra être choisi pour calculer le flambement. Cependant, pour les procédés de fabrication, il est obligatoire de séparer les différentes parties. En tenant compte de l‘axisymétrie de la pièce, on a pensé à simplifier le modèle. La pression et la température sont toujours axisymétriques. Cependant, le comportement de la pièce ne peut pas être étudié à travers cette symétrie, puisqu’on travaille avec de composites. Après avoir obtenu les équations d’approximation des graphiques, on a introduit les données de géométrie sous le logiciel CATIA V5 (figure 1) pour concevoir le modèle. On a suivi ces étapes :  Insertion de la table de données R=f(X)  Traçage de la courbe  Traçage des deux circonférences supérieure et inférieure de la pièce  Révolution de la courbe  Surface moyenne  Modèle Figure 1 Dessin Catia Finalement, on importe ce modèle sous ANSYS (Figure 2). Remarque : Il faut travailler avec une surface et non pas un volume car avec un système en 3D, les calculs seront très compliqués.
  • 6. Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014 5 Figure 2 Modélisation Ansys Troisième séance Après avoir fixé un modèle utile pour faire les calculs de flambement, on doit travailler avec deux matériaux différents. La première version (Sepcarb Novoltex FPTM0530551A) est un composite multicouche dont on connait les propriétés de l’ensemble. Tandis que la deuxième version (Sepcarb Naxeco, couche aiguilletée) est un composite dont les propriétés données correspondent aux plis. Il faut donc, calculer le numéro de plis que l’on va utiliser et l’orientation. Figure 3 Maillage du modèle
  • 7. Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014 6 Quant au premier matériau, on a choisi une orientation de zéro degrés et comme les propriétés de l’ensemble sont connues, il ne faut que les mettre comme si elle n’était pas une pièce composite. La première épaisseur choisie a été de 12 mm. Par rapport à la deuxième version, on a besoin d’orienter les plis dans deux directions différentes +45º et -45º, pour que le matériau répond à la condition d’orthotropie. Et puis, il faut préciser les propriétés pour chaque pli. Comme première option, on a pris douze plis orthogonaux de 1 mm d’épaisseur chacun. Comme élément fini on a choisi le « Shell 121 3D » qui, selon Ansys, est utile pour les composites avec épaisseur négligeable et ce qui aboutit à une déformation logarithmique. Au moment du maillage on a introduit un raffinement de 3, parce que celui de 5 était trop précis ce qui demande plus de temps pour calculer la solution. (Figure 3). Sur la circonférence la plus petite, il faut mettre un encastrement pour éliminer tous les degrés de liberté, contrairement à l’autre extrémité qui reste libre. (Figure 4) Pour finir, la pression est donnée selon la fonction mathématique que l’on a calculée sous Excel. Figure 4 Encastrement
  • 8. Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014 7 Finalement, les résultats peuvent être calculés avec toutes les données que l’on vient d’expliquer. (Figure 5) Figure 5 Calcul des résultats Quatrième séance En calculant les modes de flambement et la charge critique, on peut optimiser la structure. Un facteur de sécurité plus petit que 1 montre que la charge que l’on a introduite est déjà plus grande que la charge critique de flambement avec l’épaisseur et les matériaux utilisés. Cependant, plus le coefficient de sécurité est trop élevé, plus le matériau sera gaspillé. Nous considérons un coefficient d’une valeur de 1,5 est cohérent en cherchant toujours une masse minimale. En premier lieu, on a introduit les valeurs du matériau multicouche. Avec ces données, on a trouvé un facteur de sécurité de 1,69, qui correspond au mode de flambement illustré dans la figure suivante. (Figure 6).
  • 9. Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014 8 Figure 6 Mode 1 flambement. Composite multicouche Le facteur de sécurité a une valeur proche à 1,5. Ce qui correspond aux conditions mentionnées ci-dessus. Cela est une valeur optimisée en gardant la même épaisseur de toute la pièce. Une optimisation ultérieure sera faite en changeant l’épaisseur. En ce qui concerne le second matériau, on a trouvé un coefficient initial de sécurité de 2,11 pour les conditions initiales (Figure 7). On a considéré que cette valeur est trop élevée et c’est pourquoi on a réduit le nombre de plis. Figure 7 Composite 12 plis
  • 10. Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014 9 Comme une optimisation possible on a choisi un composite de 8 plis. Cette fois-là, il s’est avéré que le facteur de sécurité est plus petit que 1, donc il est évident qu’il faut augmenter maintenant le nombre de plis. (Figure 8). Figure 8 8 plis 1 mm Finalement, avec 10 plis de 1 mm, on aboutit à un facteur de 1,34, qui atteint donc nos objectifs. (Figure 9). Figure 9 10 plis 1 mm
  • 11. Etude du dimensionnement du divergent RL10-B2 INAES 2013 2014 10 Conclusion On choisit alors la deuxième version : en effet, l’épaisseur est plus petite que pour la première version pour arriver à un coefficient de sécurité similaire. La tuyère étant réalisée en trois parties, il serait judicieux d’avoir trois épaisseurs différentes pour chaque partie. Nous n’avons malheureusement pas pu mener cette étude à son terme par manque de temps. Figure 10 Modélisation de la structure en trois parties Remarque : A la fin de la dernière séance on s’est rendu compte qu’il y avait un problème de conception du modèle sous Catia. Spécifiquement, on a défini la surface moyenne par un balayage autour d’un cercle, au lieu d’une révolution autour d’un axe. Cela nous a empêché de trouver une bonne solution de la charge critique de flambage, puisque la distribution est perturbée par la construction définie précédemment. On s’est arrêté à cause de cette erreur pendant plus de 7 heures et on a trouvé la solution 45 minutes avant la fin de la séance.