SlideShare uma empresa Scribd logo
1 de 55
Phase-field modeling of crystal nucleation II:
Comparison with simulations and experiments
aWigner Research Centre for Physics, H-1525 Budapest, P. O. Box 49, Hungary
bBCAST, Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.
L. Gránásy,a,b
Phase Field Workshop “Focus on Nucleation”,
26 Sep 2018, Center for Hierarchical Materials Design HQ, Northwestern
University, Evanston, IL, USA
The process to be modeled:
(MD simulation for the Lennard-Jones system by Frigyes Podmaniczky)
1
Nucleation:
Nuclei are defect-rich crystal-like domains forming on the nm scale:
Point defects, stacking faults, twin boundaries, capillary waves, etc.
Coloring: green – fcc-like, pink – hcp-like, liquid – transparent
I. Homogeneous nucleation in PF models:
(Solving the Euler-Lagrange equation (ELE))
- “standard” PF model (single component version of WB 1995)
- other models [g() and p() functions]
- comparison with experimental and MD results for Ni, LJ Ar, ice-water system
- binary crystal nucleation (ideal/regular solution)
- competing bcc/fcc nucleation in binary alloy (Fe-Ni)
   






  fdrIdrF
VV
2
2
33
2
...),,( 


)(Wgf Bulk free energy density:
2. Planar (1D equilibrium) interface:
(x) minimizes F  it satisfies
the Euler-Lagrange eq. i
i
y
x
yx
II
I
I
IIIF
























































 ][0
1D integral form of EL eq.:
(Cahn & Hilliard, JCP, 1958)









x
x
I
I

0
 22
1
4
1
)(  gQuartic double-well function:
1. Thermodynamics:
A. “Standard” phase-field theory
2
This form of g() can be obtained
from Ginzburg-Landau expansion
of the Helmholtz free energy for
BCC crystal symmetry.
(Shih et al. PRA, 1987)
Interfacial free energy:
 
26
)(2)(
2
21
0
22
W
d
d
dx
WgdxWg
dx
d
SL





 




















 


Interface profile:




























 %90%10
2
)9log(tanh1
2
1
22
1
tanh1
2
1
)(
d
x
x
W
x


Interface thickness:
)9log(
2
2
29.0
1.0
%90%10
W
d
d
dx
d









 
1D integral form of EL eq.:
(Cahn & Hilliard, JCP, 1958)









x
x
I
I

0
)9log(
3 %90%102 

dSL

%90%10
)9log(24


d
W SL
 )(
2
22


Wg
dx
d






3
To recover the HS behavior
(SL  T and d10%90% = const.), we replace
 2   2T
W  W T
3. Properties of homogeneous nuclei: EL eq. in 3d
The free energy density:
Double-well & interpolation functions:
Model g() p()
Standard PFT (WB)  22
1
4
1
   23
61510  
fpWTgf  )()( 
4
With data of Ni:
From bottom to top:
T/Tf = 0.35, 0.31, 0.27, 0.23,0.19, 0.15 (solid lines)
corresponding to
T (K) = 604, 535, 466, 397, 328, and 256
T/Tf = 0 (dashed line)
𝑓 = 𝑓𝐿 − 𝑓𝑆 > 0
With data of Ni:
From left to right:
T/Tf = 0.35, 0.31, 0.27, 0.23,0.19, 0.15
Radial PF profiles:
Critical radius vs. Tr
Re – equimolar surface
Rp – surface of tension
CNT – classical theory
DIT – diffuse intf. theory
Euler-Lagrange eq.: Simplification: isotropic SL  spherical symmetry (good approximation for metals)































)(12
0 22
2
f
rrr
IIF
Boundary cond.: r = 0: /r = 0
r = :  = 0
To obtain W*, substitute num. solution
into expression of the free energy.
5
Nucleation rate:
 kTWZOKJ nnSS /*exp**0hom,  
*2
;
6
;*)(4 *2
3/2
*
kTn
g
Z
D
nO at
nn



From MD simulations: K0  100 Wolde et al. JCP 1996
   SL ffpWTg
T
I  )()(
2
2
2


Free energy density:
6
   SL ffpWTg
T
I  )()(
2
2
2


Different g() and p() functions:
B. Other Phase-Field type models
1. Homogeneous nucleation in Ni (no adjustable parameters):
7
C. Applications of ELE & comparison with MC/MD/experiments
Complete set of data:
- W from MC umbrella sampling
- Experimental W: evaluated (J0,CNT) from undercooling
statistics obtained by chip calorimetry
- SL from MD (assumed to be isotropic)
- Thermodynamics from MD/experiment/Turnbull’s appr.
(Blokeloh et al. PRL, 2011)
Standard PF and
CNT with SL  T
work well
Gránásy et al., to be published
2. Ice-water system (assumption on nucleation prefactor):
8
Input from experiment and MD:
- Experimental data for JSS(T) are used
- Experimental thermodynamics (accurate left of dashed line)
- SL from Hardy’s GB groove measurements
- Diffusion coefficient from experiment
- Nucleation prefactor 100J0,CNT is assumed (MD: Wolde et al. JCP 1996)
Standard PF and
CNT with SL  T
work well
Gránásy et al., to be published
3. Modified Lennard-Jones system applied for Ar (no direct W* data):
9
Input from MD:
- Broughton-Gilmer type modified LJ system
(thermodynamics, SL, DL are known from MD)
(Broughton & Gilmer et al. JCP 1983, 1986)
- Nucleation prefactor from CNT was used
- Nucleation rates from MD
(Báez & Clancy JCP 1995)
Standard PF works,
CNT with SL=const.
fails
Gránásy et al. Phys. Rev. Lett. 2002
Notation:
CNT - classical nucleation theory (SL,eq)
SCCT - self-consistent classical theory (W* = W*CNT – W1,CNT)
PFT/S1 - PFT with standard g() & p() (single field)
PFT/S2 - PFT with standard g() & p() (two fields)
PFT/GL1 - PFT with GL g() & p() (single field)
PFT/GL2 - PFT with GL g() & p() (two fields)
4. Hard-sphere system: (complete set of data for test)
10
Assumption: isotropic interfacial free energy (spherical nucleus)
Standard PF and
CNT with SL  T
does not work!
Complete set of data:
- W from MC umbrella sampling (Auer & Frenkel, Nature, 2001)
- Thermodynamics from MD (EOS by Hall, JCP, 1970)
- Interfacial profiles from MD (Davidchack & Laird, JCP 1998)
10% - 90% thickness, d10%-90% ~ 3.2
- Interfacial free energy from MD (Davidchack & Laird, PRL, 2000)
orientation SL 2/kT
(111) 0.58  0.1
(100) 0.62  0.1
(110) 0.64  0.1
average 0.61
Revised value: SL 2/kT = 0.559 (Davidchack et al., JPCB, 2006)
SL& d10%-90%   2 & W
Tóth & Gránásy J. Phys. Chem. B 2009
5. Comparison of PF type models in the case of Ni:
11
- W* is weakly dependent on g()
- W* is strongly dependent on p()
Gránásy et al., to be published
Further theoretical
work is needed !
Thermodynamic properties:
Binary crystal-liquid
interface
Fields: (x) – structural order parameter
c(x) – concentration of species B
A. Regular solution:
Further simplification: Cp,L = Cp,S for all T (Turnbull’s linear approximation for f )
 )1log()1()log(
)1()(
)1( 100
,
0
, cccc
V
RT
V
ccT
cfcff
mm
LL
BLALL 


 )1log()1()log(
)1()(
)1( 100
,
0
, cccc
V
RT
V
ccT
cfcff
mm
SS
BSASS 


B. Ideal solution: 0and0 1100  SLSL
Free energy density for liquid (L) and solid (S) phases:
  Af
T
T
SpLpAfA HdTCCHTH
Af
,,,,
,
)(  
 
Af
Af
Af
T
T
SpLp
AfA
T
H
SdT
T
CC
STS
Af
,
,
,
,,
,
,
)(



 

Afm
AfAf
ASALA
TV
TTH
fff
,
,,0
,
0
,
)( 

12
D. Binary PF model for crystal nucleation in Ni-Cu system:
)()()()](1[)()(),( cfpcfpgcWcf SL  
C. Free energy surface:
Double-well &
interpolation functions:
 22
1
4
1
)(  g
 23
61510)(  p
1 Tf (K)
Hf
(GJ/m3)
Vm
(cm3/mol)
SL
(mJ/m2)
d10%-90%
(nm)
Cu 1358 1.78 7.4 228 1.596
Ni 1728 2.35 7.4 364 1
BA cWWccW  )1()(
)9log(
3 ,
%90%10
,
2
BABA
dSL 



BA
BA
SL
BA
d
W ,
%90%10
,
, )9log(24



A
B
B
A
d
d
SL
SL
%90%10
%90%10





13
Ideal solution: Application for the Cu-Ni system
  )()()()()](1[)()(
2
,
2
2
eLSL cccfpcfpgcWI  
Planar (1D equilibrium) interface :
Two fields: (x) & c(x) 
two Euler-Lagrange eqs.
c
c
I
c
I
c
I
c
F
IIF
andbetweeneq.implicit
0
































Boundary cond.:
x =  :  = 1 & c = cS,e
x =  :  = 0 & c = cL,e

Interfacial free energy:
  



 d
d
dx
cfdxcf
dx
d
eeSL  























1
0
22
)](,[2)](,[
2
Interface profile:
Interface thickness:





d
cf
d
d
dx
d
e
2/19.0
1.0
29.0
1.0
%90%10
)](,[ 






















d
cf
d
d
dx
xx
e
2/1
2
0
00
)](,[ 













  )()(ˆ)](ˆ,[)](ˆ,[)( ,,
,
eLLeL
c
L
cfcc
c
f
cfcff
eL



 
    )()(
)1/()(ˆ ,,,


pffgWW
RT
V
y
ecceccc
ABAB
m
y
eLeL
y
eL

 
  CfI  )(
2
2
2


eLc
L
c
f
,



 – Lagrange multiplier ensuring mass conservation
14
Two fields: (x) & c(x) 
two Euler-Lagrange eqs.
c
c
f
c
I
c
F
c
F
IIF
c
L
c
andbetweeneq.implicit
0
0,0,







  


















Boundary cond.:
r = 0:  = 0 & c = 0
r = :  = 0 & c = c
  )()(ˆ)](ˆ,[)](ˆ,[)(  




cfcc
c
f
cfcff L
c
L
















 )](ˆ,[2
2
2
2 cf
rrr
Crit. Fluctuation = Nucleus =
Extremum (saddle point) of F 
Solution of the Euler-Lagrange eqs.
    )()(
)1/()(ˆ


pffgWW
RT
V
y
ecceccc
ABAB
m
yy

 



3/12*
16
3





 



fW
eff
Boundary cond.: r = 0: /r = 0
r = :  = 0
15
Properties of nuclei: EL equation in 3D
- Multi Phase Field Theory: 3rd phase present at interfaces
- Folch & Plapp (2005): 3rd phase never present
- Physically motivated approach to free energy surface?
fcc
bcc
liquid






1
)1(
L
bcc
fcc
fcc
bcc
liquid
GL expansion:  gij() & pij()
  )()()](1[)()(
),()(),()](1[),,(


fccbccLbccfccbccLfccfccbcc
LfccfccbccLbccfccbcc
gpppp
TfpTfpTf




F  dV cij ij  ji 
2
 f i ,T 
i j









 i
i
  1&
Following DFT (Shen & Oxtoby, 1996), two structural
order parameters:
 - solid-liquid phase field,
 - solid-solid phase field (for fcc-bcc: Bain’s distortion)
E. Competing FCC and BCC nucleation (GL approach):
16
Results for Fe-Ni: almost all input data are accessible with sufficient accuracy
Ginzburg-Landau double-well & interpolation functions:
Transition g() p()
BCC-L
FCC-L
FCC-BCC
 22
1
4
1
 
 22
1
4
1
 
  343

 222
1
6
1
   24
23  
  343

(Tóth at al. PRL 2011)
Exception:
FCC-BCC  [169, 672] mJ/m2
17
II. Simulating homogeneous nucleation in PF models:
(solving the equations of motion (EOMs))
- binary crystal nucleation (ideal/regular solution)
- nucleation of phase-separation in liquid Al-Bi
1000  1000 grid
Phase field Concentration field
Equations of motion:
(Allen-Cahn + Cahn-Hilliard type)
fluxcfluxc
c
I
c
I
M
c
F
M
t
c
II
M
F
M
t
































































)'()'(2),()','( ttkTMtt    rrrr )'()'(2),()','( 2
ttkTMtt cfluxflux   rrrr
 
)()()()()()](1[
)()(
2
00
2
2
cfcc
c
f
cfpcfp
gcWI
L
L
SL 







Periodic boundary cond.
18
A. Simulation of nucleation in
binary system I: Cu-Ni (ideal solution)
Phase separation in liquid miscibility gap: Model C + flow
1. Free energy functional:
2. PFT equations:
3. Balance laws: Mass conservation
Momentum conservation
Non-classical stress tensor
0


v
t



P


gvv
t
v 

 )(
 












 
),()()](),()][(1[)()(
22
2
2
2
2
3
TcfpfTcfpTgcw
cΓ
T
rdF
LoriS
c





































































































ff
M
F
MvAv
t
c
f
c
f
cDc
RT
v
c
F
Mcv
t
c
ff
M
F
Mv
t
j
m
jc
)()(
)1()(
)(



Coupling to hydrodynamics: a’ la Anderson et al.
ΠIP 
























 


  HTpξΓTccΓTcccP cc )](1[)()(
2
1
)(
2
1 2222222

19
B. Simulation of nucleation in
binary system II: Al-Bi (regular solution) (Tegze et al. Mater. Sci. Eng. A 2005)
Marangoni motion
20
Phase separation in liquid miscibility gap:
Testing
J.Mainville et al. PRL (2001)
Liquid phase separation at the critical composition (Al-Bi):
21
T T
Flow accelerates droplet coagulation:
Left: No flow
Center: Flow + homogeneous T
Right: Flow + T towards the centerline
22
Liquid phase separation in (metastable) monotectic system (Al-Bi):
III. Nucleation vs. microstructure formation:
- quantitative PF modeling with nucleation
- PF modeling of Growth Front Nucleation
Complex patterns evolve
due to the interplay of
nucleation and growth.
23American Pale Ale Dirty Martini Vodka Tonic
Gin
Water Polycrystalline matter: Atmospheric sciences:
- technical alloys - aerosol formation (climate change)
- ceramics
- polymers
- minerals
- food products, etc.
In biology:
- bones, teeth
- kidney stone
- cholesterol in arteries
- amyloid plaques in Alzheimer’s disease
Also frozen drinks:
A. Complex polycrystalline structures:
1. Impinging single crystals:
2. Polycrystalline
growth forms:
(Growth Front
Nucleation = GFN)
3. Impinging polycrystalline particles:
24
B. Classification of polycrystalline microstructures
1. Diffusional instabilities:
2. Nucleation
- of growth centers
- homogeneous
- heterogeneous (on particles or walls)
- of new grains at the growth front (Growth Front Nucleation = GFN)
- heterogeneous (particle-induced)
- homogeneous (???)
with specific misorientation (fixed branching angle)
C. Contributing phenomena?
Crystal
Liquid
Mullins-Sekerka
instability
isotropic anisotropic
25
D. Possible solutions: multi-phase-field/multi-order-parameter theories
Separate field for individual grains …
Important works:
MOPT for grain coarsening:
L.Q. Chen & W. Yang, Phys. Rev. B (1994).
N. Moelans et al. PRL (2008).
MPFT for solidification:
I. Steinbach et al. Physica D (1996).
M. Plapp & R. Folch, PRE (2005).
P.C. Bollada et al. Physica D (2012).
H.K. Kim et al. Mod.Sim.Mater.Sci.Eng. (2012).
G.I. Tóth et al. PRB (2015).
M. Ohno et al. PRE (2017).
MPFT for solidification:
26
Advantages:
 All interfaces can be handled individually 
besides relative orientation, the inclination of the
interface can also be considered
Disadvantages:
 Thousands of fields might need to be handled
 Difficult to incorporate thermal fluctuations
 Not straightforward how to incorporate GFN
Further applications:
Miyoshi et al. npj Comput. Mater. (2017)MPFT: Grain coarsening
Hötzer et al. Acta Mater. (2016)MPFT: Spiraling eutectics
27
MOPT: Coarsening of 3-phase structure
Ravash et al. J. Mater. Sci. (2014)
MPFT: Geological problems Ankit et al. J. Geophys. Res. (2015)
E. Possible solutions: orientation-field theories (OFT)
Crystallographic orientations & grain boundaries???
Kobayashi, Warren, Carter: Physica D 2000:
- Non-conserved orientation field  to distinguish particles
of different cryst. orientation
fori  H
- Reasonable grain boundary dynamics
Gránásy, Börzsönyi, Pusztai: PRL 2002:
- Noise induced nucleation with orientation field in 2D
(orientation field in liquid fluctuates in time and space)
Pusztai, Bortel, Gránásy: EPL 2005:
- Noise induced nucleation with quaternion
representation of crystallographic orientation in 3D
(Equivalent formulation by Kobayashi & Warren, Physica D, 2005)
The | | theory:
28
Free energy (scalar):
- penalizes spatial change of 
- local functional [may depend on  , & derivatives, ( )2k ]
- invariant to rotation (explicit  dependence excluded)
Seek in form
n > 1 infinite broadening, unless one uses
n = 1 no such problem, BUT
Why this form? fori 
Hence our choice for the
orientational free energy density:
fori = HT p()
 Rotational invariance sacrificed!
“jello mould” potential
29
OFT for polycrystalline solidification: (Gránásy, Börzsönyi, Pusztai, PRL 2002)
Aim: - nucleation of grains with different orientation
We extend the orientation field  to liquid:
- constant  [0, 1] in solid
- fluctuates in time & space in liquid
New features:
- solid-type fluctuation in   orientational ordering
- orientational disorder can be trapped into solid (GFN)
 




 F
M
t
Free energy:
Time evolution:
(non-conserved dynamics)
where  = ,0 [1  p()]
  )(pHTfori
30
Molecular dynamics of liquid crystallization in 2D: (with Yukawa potential by Z. Donkó)
31
Structural analysis (complex bond order parameter):
- j : angle towards j-th neighbor in lab. frame
- |g6| :  degree of order
- phase:  local crystallographic orientation
Voronoi analysis: 4 - grey; 5 - blue; 6 - yellow; 7 - red
Orientation map Voronoi map ||
MD
   xksMM   /atanand)2cos(1),( y0
0

 )2cos(1),( 0   kss
Phase field
Concentration

































...),()(
),()](1[)()(
)1(
Tc
c
f
p
Tc
c
f
pgWW
cDc
RT
v
c
S
L
AB
m


























22
)( 




 
s
TsHTpM
Orientation
(2D)
Equations of motion in 2D: (anisotropic, no SG term for c)
32
1. Homogeneous nucleation (of growth centers):
Transient before final orientation established:
orientation
 = 0.5
Noise induced:
composition phase field orientation
solidus liquidus solidliquid
 color code
The nucleus is made entirely of interface 33
F. Nucleation modes in orientation-field theories
2. Heterogeneous nucleation (of growth centers) with desired contact angle
L. Gránásy, T. Pusztai, D. Saylor, J. A. Warren, Phys. Rev. Lett. 2007
Note the capillary waves &
the corresponding
fluctuation of the contact angle!
Calculation for pure Ni :
- d10-90% = 2 nm
- exp = 364 mJ/m2
- x = 2 Å (1 pixel ~ 1 atom)
- fluctuation-dissipation noise
- thermal feedback
Boundary condition :
  )1()cos(
2
1
Su 

 





 n
 = 45 100  600
60
200  350
90
200  300
200  250120
34
Size dependence: 1 pixel 5 pixels 13 pixels 45 pixels
Orientation misfit:  = 0.1  = 0.2  = 0.3
Lateral disp. (pixels): x =  6 x =  3 x = 0 x = 3
 = 0
Experiment:
3. Heterogeneous Growth Front Nucleation:
Tip deflection at foreign particles
35
4. Homogeneous Growth Front Nucleation I.
Reduced orientational mobility (M  Drot)
(new mechanism: trapped disorder in )
Complex undercooled liquids:
Drot/Dtr ( M/M ) decreases with increasing T
“decoupling”
M/30
36
 = 90 60 45 30
x = 0.10 0.15 0.20 0.25
 
 
 













otherwise1
4
1
for2sin
otherwise1
4
3
for2sin
)1(
2
00
1
00
0
10
0
n
n
F
m
m
F
FxxF
H
fori



5. Homogeneous GFN II. (branching with fixed misorientation)
37
Phenomena incorporated into the PF model in 2D & 3D:
isotropic anisotropic
composition phase field orientation
38
Input data? (models with orientation field)
- Thermodynamic data (free energy of all phases)
- S-L interfacial energy
- S-L interface thickness
- Grain boundary energy
- Diffusion coefficients: M  Dtransl
Mc  Dinterdiffusion
M  Drot
- Structure related data:
anisotropy of interfacial / grain boundary energies
anisotropy of mobilities
39
Different length- & time scales for , c, .
  1-2 nm  ~ 1 Å resolution (10,000 x = 1 m)
Compromise to enable computations :
broad interface is used ( enhanced solute trapping, etc.)
1. Use a broad interface:
Positive: quantitative simulations for a broad interface hypothetical system.
Problem: we are interested in real materials.
2. Staying on atomistic scale:
Positive: proper solute trapping/interface kinetics & nucleation.
Problem: only small computations (e.g., no dendrites), or enormous computation power is needed
(+ adaptive mesh), we may hope for ~ 1 µm3
3. Broad interface:
Positive: anti-trapping currents a’la Karma  proper growth kinetics
for large sizes (up to mm)
Problem: nucleation is wrong. (E.g., cell volume is larger than the nucleus)
Remedy I: hom. nucleation has to be incorporated by hand
(barrier from the Euler-Lagrange equations + physical ).
Remedy II: particle induced freezing a’la Greer
(different way of incorporating nucleation by hand).
,
40
G. Limitations & strategies for quantitative computing
41
A. Impinging single crystals: Quantitative PF modeling of CET in Al45.5Ti54.5
IV. Applications
1500  300 grid number of particles ~ 200 / frame
0.75 mm  0.15 mm particle size (Gaussian) = (20 4) nm
- CALPHAD thermodynamics
- Anti-trapping current (Kim, Acta Mater., 2007)
- Greer’s free growth limited model
5 10 20 40
4
8
16
32
G (104 K/m)
4
8
16
32
V (104 m/s)
Comparison with Hunt’s model (2D)
color code
Particles represented by orientation pinning centers:
areas of random but fixed orientation
L. Gránásy, T. Pusztai, T. Börzsönyi
Research Institute for Solid State Physics
and Optics, Budapest, Hungary, 2002
Experiment: PEO/PMMA + clay
Simulation: 3000  3000 grid
Ferreiro et al., PRE (2002)
B. “Dizzy” dendrites
L. Gránásy et al. Nature Materials, Febr. 2003
42
C. Polycrystalline spherulites
Category 1
spherulite
Spherulites are almost everywhere
- Se
- cast iron (nodular)
- polymers/biopolymers
- metallic/oxide glasses
- eutectic systems
- urine (kidney stone)
- cholesterol
- insulin
- chocolate
43
Category 2
spherulite
Formation of Category 1 spherulites:
(a) Gradual transition from single crystal nucleus to Category 1 spherulite:
MD for hard-spheres:
(O’Malley & Snook, PRL 2003)
(b) Growth starts from polycrystalline nuclei:
[e.g., TMPS = poly-(tertramethyl-p-silphenylene)-siloxane
Magill, J. Appl. Phys. (1964)]
Interface breakdown
Polycrystalline nucleus
Experiment 44
Experiment
Simulation
Experiment
Simulation
Description of
morphology with a
few model params.
(anisotropies, branching
angle, MS well depth, …)
45
S = 1.5 1.8 1.9 1.95 2.0 2.1 2.2
200200400 grid
Triclinic crystal symmetry
Ellipsoidal symmetry of
kinetic anisotropy
Coloring: Inclination relative to
nucleated direction in deg.
S = 0.75 0.85 0.90 0.95 1.00 1.10
2D
46
From needle crystals to polycrystalline spherulites:
Experiments on orientation:
PF simulation:
Polarized transmission optical
microscope
Gatos et al. Macromol. (2007)
47
Spherulitic growth in channel:
Scratch:
Courtesy of V. Ferreiro
Holes:
Courtesy of M. Ferguson
Channel, scratch, holes:
D. Manipulating crystallization:
48
Lee et al. Adv. Mater. (2012)
200200400 grid
Orientation selector
Dendrite in toroidal shell
600200600 grid
400400400 grid
Dendrite in spherical shell
Confined space:
49
23p
IV. Summary:
I. Single-field PF models:
 “Standard” PF model works for Ni, water & Ar (LJ),
fails for the HS system
 Ginzburg-Landau model is accurate for HS, does
not work for the others
FURTHER WORK IS NEEDED!!!
III. Nucleation mechanisms in OF models:
 Homogeneous/heterogeneous
 Growth Front Nucleation: particle induced /
homogeneous/fixed-angle branching
II. Two- & three-field PF models:
 For Cu-Ni and Fe-Ni systems
reasonable agreement with
undercooling experiments
IV. Nucleation vs microstructure:
 Quantitative simulations with OF models
 Polycrystalline growth:
- particle-induced,
- random/fixed angle branching
Institute for Solid State Physics and Optics
WIGNER RESEARCH CENTRE FOR PHYSICS
Hungarian Academy of Sciences
H-1121 Budapest, Konkoly-Thege u. 29-33
Computational Materials Science Group in WRCP:
László Gránásy Prof. - team leader nucleation, PF, DFT, …
Tamás Pusztai Sci. Adv.. - nucleation, PF, topological defects
György Tegze Sen. Sci. - CFD, num. methods
Frigyes Podmaniczky PhD student - DFT, anisotropy, nucleation
László Rátkai PhD student - eutectics, LB flow
László Gránásy
Sci. Advisor
Tamás Pusztai
Sci. Advisor
Frigyes
Podmaniczky
PhD student
László Rátkai
PhD student
György Tegze
Senior Scientist
Computational Materials Science Group

Mais conteúdo relacionado

Mais procurados

Hydrogen Spectra explained
Hydrogen Spectra explainedHydrogen Spectra explained
Hydrogen Spectra explainedRowdy Boeyink
 
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS).pptx
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS).pptxELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS).pptx
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS).pptxTHE CREATORS ACADEMY
 
Modern phyiscs lecture 1
Modern phyiscs lecture 1Modern phyiscs lecture 1
Modern phyiscs lecture 1ahmed salman
 
Fermi surface and de haas van alphen effect ppt
Fermi surface and de haas van alphen effect pptFermi surface and de haas van alphen effect ppt
Fermi surface and de haas van alphen effect ppttedoado
 
CAPE Chemistry Unit 2 Paper 1 July 2008
CAPE Chemistry Unit 2 Paper 1 July 2008CAPE Chemistry Unit 2 Paper 1 July 2008
CAPE Chemistry Unit 2 Paper 1 July 2008Zara_Mohammed
 
Diffraction of X-rays by crystals
Diffraction of X-rays by crystalsDiffraction of X-rays by crystals
Diffraction of X-rays by crystalsAteeq Sindhu
 
Polarizable & non polarizable Electrodes
Polarizable & non polarizable ElectrodesPolarizable & non polarizable Electrodes
Polarizable & non polarizable ElectrodesTalha Liaqat
 
MCQ on Planck constant.pdf
MCQ on Planck constant.pdfMCQ on Planck constant.pdf
MCQ on Planck constant.pdfSaiKalyani11
 
The 5th state of matter - Bose–einstein condensate
The 5th state of matter - Bose–einstein condensate The 5th state of matter - Bose–einstein condensate
The 5th state of matter - Bose–einstein condensate y11hci0255
 
csonn t1 atoms, molecules and stoichiometry
csonn t1 atoms, molecules and stoichiometrycsonn t1 atoms, molecules and stoichiometry
csonn t1 atoms, molecules and stoichiometrycheeshengonn
 

Mais procurados (18)

Hexagonal HCP
Hexagonal HCPHexagonal HCP
Hexagonal HCP
 
De Broglie hypothesis
De Broglie hypothesisDe Broglie hypothesis
De Broglie hypothesis
 
Compton effect
Compton effectCompton effect
Compton effect
 
Electrochemical CO2 reduction in acidic electrolyte.pptx
Electrochemical CO2 reduction in acidic electrolyte.pptxElectrochemical CO2 reduction in acidic electrolyte.pptx
Electrochemical CO2 reduction in acidic electrolyte.pptx
 
Defects and x ray diffraction
Defects and x ray diffraction Defects and x ray diffraction
Defects and x ray diffraction
 
Hydrogen Spectra explained
Hydrogen Spectra explainedHydrogen Spectra explained
Hydrogen Spectra explained
 
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS).pptx
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS).pptxELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS).pptx
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS).pptx
 
Modern phyiscs lecture 1
Modern phyiscs lecture 1Modern phyiscs lecture 1
Modern phyiscs lecture 1
 
Fermi surface and de haas van alphen effect ppt
Fermi surface and de haas van alphen effect pptFermi surface and de haas van alphen effect ppt
Fermi surface and de haas van alphen effect ppt
 
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OESAnalytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
 
CAPE Chemistry Unit 2 Paper 1 July 2008
CAPE Chemistry Unit 2 Paper 1 July 2008CAPE Chemistry Unit 2 Paper 1 July 2008
CAPE Chemistry Unit 2 Paper 1 July 2008
 
Diffraction of X-rays by crystals
Diffraction of X-rays by crystalsDiffraction of X-rays by crystals
Diffraction of X-rays by crystals
 
Polarizable & non polarizable Electrodes
Polarizable & non polarizable ElectrodesPolarizable & non polarizable Electrodes
Polarizable & non polarizable Electrodes
 
MCQ on Planck constant.pdf
MCQ on Planck constant.pdfMCQ on Planck constant.pdf
MCQ on Planck constant.pdf
 
Introduction criticalpnenomena
Introduction criticalpnenomenaIntroduction criticalpnenomena
Introduction criticalpnenomena
 
Wave mechanics
Wave mechanicsWave mechanics
Wave mechanics
 
The 5th state of matter - Bose–einstein condensate
The 5th state of matter - Bose–einstein condensate The 5th state of matter - Bose–einstein condensate
The 5th state of matter - Bose–einstein condensate
 
csonn t1 atoms, molecules and stoichiometry
csonn t1 atoms, molecules and stoichiometrycsonn t1 atoms, molecules and stoichiometry
csonn t1 atoms, molecules and stoichiometry
 

Semelhante a Phase-field modeling of crystal nucleation II: Comparison with simulations and experiments

Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...PFHub PFHub
 
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTURE
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTUREANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTURE
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTUREijistjournal
 
Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processDaniel Wheeler
 
Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processPFHub PFHub
 
Daresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptxDaresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptxRohitNukte
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersOndrej Cernotik
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesDaisuke Satow
 
Fractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-ChâtelFractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-ChâtelDavid L. Griscom
 
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODSFINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODSBMRS Meeting
 
Non-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic fieldNon-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic fieldAnkurDas60
 
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTURE
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTUREANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTURE
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTUREijistjournal
 
Lecture: Interatomic Potentials Enabled by Machine Learning
Lecture: Interatomic Potentials Enabled by Machine LearningLecture: Interatomic Potentials Enabled by Machine Learning
Lecture: Interatomic Potentials Enabled by Machine LearningDanielSchwalbeKoda
 
A circular cylindrical dipole antenna
A circular cylindrical dipole antennaA circular cylindrical dipole antenna
A circular cylindrical dipole antennaYong Heui Cho
 

Semelhante a Phase-field modeling of crystal nucleation II: Comparison with simulations and experiments (20)

Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...
 
H213949
H213949H213949
H213949
 
PhD work on Graphene Transistor
PhD work on Graphene TransistorPhD work on Graphene Transistor
PhD work on Graphene Transistor
 
Proceeding - PANIC
Proceeding - PANICProceeding - PANIC
Proceeding - PANIC
 
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTURE
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTUREANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTURE
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTURE
 
Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation process
 
Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation process
 
Daresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptxDaresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptx
 
07 campanelli pvpmmw-8th
07 campanelli pvpmmw-8th07 campanelli pvpmmw-8th
07 campanelli pvpmmw-8th
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducers
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
 
Mazurov ferrara2014
Mazurov ferrara2014Mazurov ferrara2014
Mazurov ferrara2014
 
Fractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-ChâtelFractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-Châtel
 
Manhpowerpoint
ManhpowerpointManhpowerpoint
Manhpowerpoint
 
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODSFINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
 
Non-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic fieldNon-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic field
 
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTURE
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTUREANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTURE
ANALYTICAL AND NUMERICAL MODELING OF VTH AND S FOR NEW CG MOSFET STRUCTURE
 
Lecture: Interatomic Potentials Enabled by Machine Learning
Lecture: Interatomic Potentials Enabled by Machine LearningLecture: Interatomic Potentials Enabled by Machine Learning
Lecture: Interatomic Potentials Enabled by Machine Learning
 
YSchutz_PPTWin
YSchutz_PPTWinYSchutz_PPTWin
YSchutz_PPTWin
 
A circular cylindrical dipole antenna
A circular cylindrical dipole antennaA circular cylindrical dipole antenna
A circular cylindrical dipole antenna
 

Mais de Daniel Wheeler

Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaDaniel Wheeler
 
Multi-phase-field simulations with OpenPhase
Multi-phase-field simulations with OpenPhaseMulti-phase-field simulations with OpenPhase
Multi-phase-field simulations with OpenPhaseDaniel Wheeler
 
Educating Researchers Using the CHiMaD Benchmark Problems
Educating Researchers Using the CHiMaD Benchmark ProblemsEducating Researchers Using the CHiMaD Benchmark Problems
Educating Researchers Using the CHiMaD Benchmark ProblemsDaniel Wheeler
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsDaniel Wheeler
 
Using an Explicit Nucleation Model in PRISIMS-PF to Predict Precipate Microst...
Using an Explicit Nucleation Model in PRISIMS-PF to Predict Precipate Microst...Using an Explicit Nucleation Model in PRISIMS-PF to Predict Precipate Microst...
Using an Explicit Nucleation Model in PRISIMS-PF to Predict Precipate Microst...Daniel Wheeler
 
PFHub: Phase Field Community Hub
PFHub: Phase Field Community HubPFHub: Phase Field Community Hub
PFHub: Phase Field Community HubDaniel Wheeler
 
CHiMaD Hackathon 2: University of Michigan
CHiMaD Hackathon 2: University of MichiganCHiMaD Hackathon 2: University of Michigan
CHiMaD Hackathon 2: University of MichiganDaniel Wheeler
 
CHiMaD Hackathon 2: Team mcgill
CHiMaD Hackathon 2: Team mcgillCHiMaD Hackathon 2: Team mcgill
CHiMaD Hackathon 2: Team mcgillDaniel Wheeler
 
CHiMaD Hackathon 2: Pennsylvania State University
CHiMaD Hackathon 2: Pennsylvania State UniversityCHiMaD Hackathon 2: Pennsylvania State University
CHiMaD Hackathon 2: Pennsylvania State UniversityDaniel Wheeler
 
CHiMaD Phase Field Hackathon 2: University of Connecticut
CHiMaD Phase Field Hackathon 2: University of ConnecticutCHiMaD Phase Field Hackathon 2: University of Connecticut
CHiMaD Phase Field Hackathon 2: University of ConnecticutDaniel Wheeler
 
Simulation Management and Execution Control
Simulation Management and Execution ControlSimulation Management and Execution Control
Simulation Management and Execution ControlDaniel Wheeler
 

Mais de Daniel Wheeler (18)

Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in India
 
Update on Benchmark 7
Update on Benchmark 7Update on Benchmark 7
Update on Benchmark 7
 
Multi-phase-field simulations with OpenPhase
Multi-phase-field simulations with OpenPhaseMulti-phase-field simulations with OpenPhase
Multi-phase-field simulations with OpenPhase
 
Educating Researchers Using the CHiMaD Benchmark Problems
Educating Researchers Using the CHiMaD Benchmark ProblemsEducating Researchers Using the CHiMaD Benchmark Problems
Educating Researchers Using the CHiMaD Benchmark Problems
 
Benchmark 6 Update
Benchmark 6 UpdateBenchmark 6 Update
Benchmark 6 Update
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methods
 
Using an Explicit Nucleation Model in PRISIMS-PF to Predict Precipate Microst...
Using an Explicit Nucleation Model in PRISIMS-PF to Predict Precipate Microst...Using an Explicit Nucleation Model in PRISIMS-PF to Predict Precipate Microst...
Using an Explicit Nucleation Model in PRISIMS-PF to Predict Precipate Microst...
 
PFHub: Phase Field Community Hub
PFHub: Phase Field Community HubPFHub: Phase Field Community Hub
PFHub: Phase Field Community Hub
 
CHiMaD Hackathon 2: University of Michigan
CHiMaD Hackathon 2: University of MichiganCHiMaD Hackathon 2: University of Michigan
CHiMaD Hackathon 2: University of Michigan
 
CHiMaD Hackathon 2
CHiMaD Hackathon 2CHiMaD Hackathon 2
CHiMaD Hackathon 2
 
CHiMaD Hackathon 2: Team mcgill
CHiMaD Hackathon 2: Team mcgillCHiMaD Hackathon 2: Team mcgill
CHiMaD Hackathon 2: Team mcgill
 
CHiMaD Hackathon 2: Pennsylvania State University
CHiMaD Hackathon 2: Pennsylvania State UniversityCHiMaD Hackathon 2: Pennsylvania State University
CHiMaD Hackathon 2: Pennsylvania State University
 
CHiMaD Phase Field Hackathon 2: University of Connecticut
CHiMaD Phase Field Hackathon 2: University of ConnecticutCHiMaD Phase Field Hackathon 2: University of Connecticut
CHiMaD Phase Field Hackathon 2: University of Connecticut
 
Simulation Management and Execution Control
Simulation Management and Execution ControlSimulation Management and Execution Control
Simulation Management and Execution Control
 
Pfii u mich
Pfii u michPfii u mich
Pfii u mich
 
Team3 pres
Team3 presTeam3 pres
Team3 pres
 
Team2 pres
Team2 presTeam2 pres
Team2 pres
 
Results oct.16.2015
Results oct.16.2015Results oct.16.2015
Results oct.16.2015
 

Último

Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionPriyansha Singh
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 

Último (20)

Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorption
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 

Phase-field modeling of crystal nucleation II: Comparison with simulations and experiments

  • 1. Phase-field modeling of crystal nucleation II: Comparison with simulations and experiments aWigner Research Centre for Physics, H-1525 Budapest, P. O. Box 49, Hungary bBCAST, Brunel University, Uxbridge, Middlesex UB8 3PH, U.K. L. Gránásy,a,b Phase Field Workshop “Focus on Nucleation”, 26 Sep 2018, Center for Hierarchical Materials Design HQ, Northwestern University, Evanston, IL, USA
  • 2. The process to be modeled: (MD simulation for the Lennard-Jones system by Frigyes Podmaniczky) 1 Nucleation: Nuclei are defect-rich crystal-like domains forming on the nm scale: Point defects, stacking faults, twin boundaries, capillary waves, etc. Coloring: green – fcc-like, pink – hcp-like, liquid – transparent
  • 3. I. Homogeneous nucleation in PF models: (Solving the Euler-Lagrange equation (ELE)) - “standard” PF model (single component version of WB 1995) - other models [g() and p() functions] - comparison with experimental and MD results for Ni, LJ Ar, ice-water system - binary crystal nucleation (ideal/regular solution) - competing bcc/fcc nucleation in binary alloy (Fe-Ni)
  • 4.             fdrIdrF VV 2 2 33 2 ...),,(    )(Wgf Bulk free energy density: 2. Planar (1D equilibrium) interface: (x) minimizes F  it satisfies the Euler-Lagrange eq. i i y x yx II I I IIIF                                                          ][0 1D integral form of EL eq.: (Cahn & Hilliard, JCP, 1958)          x x I I  0  22 1 4 1 )(  gQuartic double-well function: 1. Thermodynamics: A. “Standard” phase-field theory 2 This form of g() can be obtained from Ginzburg-Landau expansion of the Helmholtz free energy for BCC crystal symmetry. (Shih et al. PRA, 1987)
  • 5. Interfacial free energy:   26 )(2)( 2 21 0 22 W d d dx WgdxWg dx d SL                                Interface profile:                              %90%10 2 )9log(tanh1 2 1 22 1 tanh1 2 1 )( d x x W x   Interface thickness: )9log( 2 2 29.0 1.0 %90%10 W d d dx d            1D integral form of EL eq.: (Cahn & Hilliard, JCP, 1958)          x x I I  0 )9log( 3 %90%102   dSL  %90%10 )9log(24   d W SL  )( 2 22   Wg dx d       3 To recover the HS behavior (SL  T and d10%90% = const.), we replace  2   2T W  W T
  • 6. 3. Properties of homogeneous nuclei: EL eq. in 3d The free energy density: Double-well & interpolation functions: Model g() p() Standard PFT (WB)  22 1 4 1    23 61510   fpWTgf  )()(  4 With data of Ni: From bottom to top: T/Tf = 0.35, 0.31, 0.27, 0.23,0.19, 0.15 (solid lines) corresponding to T (K) = 604, 535, 466, 397, 328, and 256 T/Tf = 0 (dashed line) 𝑓 = 𝑓𝐿 − 𝑓𝑆 > 0
  • 7. With data of Ni: From left to right: T/Tf = 0.35, 0.31, 0.27, 0.23,0.19, 0.15 Radial PF profiles: Critical radius vs. Tr Re – equimolar surface Rp – surface of tension CNT – classical theory DIT – diffuse intf. theory Euler-Lagrange eq.: Simplification: isotropic SL  spherical symmetry (good approximation for metals)                                )(12 0 22 2 f rrr IIF Boundary cond.: r = 0: /r = 0 r = :  = 0 To obtain W*, substitute num. solution into expression of the free energy. 5 Nucleation rate:  kTWZOKJ nnSS /*exp**0hom,   *2 ; 6 ;*)(4 *2 3/2 * kTn g Z D nO at nn    From MD simulations: K0  100 Wolde et al. JCP 1996    SL ffpWTg T I  )()( 2 2 2   Free energy density:
  • 8. 6    SL ffpWTg T I  )()( 2 2 2   Different g() and p() functions: B. Other Phase-Field type models
  • 9. 1. Homogeneous nucleation in Ni (no adjustable parameters): 7 C. Applications of ELE & comparison with MC/MD/experiments Complete set of data: - W from MC umbrella sampling - Experimental W: evaluated (J0,CNT) from undercooling statistics obtained by chip calorimetry - SL from MD (assumed to be isotropic) - Thermodynamics from MD/experiment/Turnbull’s appr. (Blokeloh et al. PRL, 2011) Standard PF and CNT with SL  T work well Gránásy et al., to be published
  • 10. 2. Ice-water system (assumption on nucleation prefactor): 8 Input from experiment and MD: - Experimental data for JSS(T) are used - Experimental thermodynamics (accurate left of dashed line) - SL from Hardy’s GB groove measurements - Diffusion coefficient from experiment - Nucleation prefactor 100J0,CNT is assumed (MD: Wolde et al. JCP 1996) Standard PF and CNT with SL  T work well Gránásy et al., to be published
  • 11. 3. Modified Lennard-Jones system applied for Ar (no direct W* data): 9 Input from MD: - Broughton-Gilmer type modified LJ system (thermodynamics, SL, DL are known from MD) (Broughton & Gilmer et al. JCP 1983, 1986) - Nucleation prefactor from CNT was used - Nucleation rates from MD (Báez & Clancy JCP 1995) Standard PF works, CNT with SL=const. fails Gránásy et al. Phys. Rev. Lett. 2002
  • 12. Notation: CNT - classical nucleation theory (SL,eq) SCCT - self-consistent classical theory (W* = W*CNT – W1,CNT) PFT/S1 - PFT with standard g() & p() (single field) PFT/S2 - PFT with standard g() & p() (two fields) PFT/GL1 - PFT with GL g() & p() (single field) PFT/GL2 - PFT with GL g() & p() (two fields) 4. Hard-sphere system: (complete set of data for test) 10 Assumption: isotropic interfacial free energy (spherical nucleus) Standard PF and CNT with SL  T does not work! Complete set of data: - W from MC umbrella sampling (Auer & Frenkel, Nature, 2001) - Thermodynamics from MD (EOS by Hall, JCP, 1970) - Interfacial profiles from MD (Davidchack & Laird, JCP 1998) 10% - 90% thickness, d10%-90% ~ 3.2 - Interfacial free energy from MD (Davidchack & Laird, PRL, 2000) orientation SL 2/kT (111) 0.58  0.1 (100) 0.62  0.1 (110) 0.64  0.1 average 0.61 Revised value: SL 2/kT = 0.559 (Davidchack et al., JPCB, 2006) SL& d10%-90%   2 & W Tóth & Gránásy J. Phys. Chem. B 2009
  • 13. 5. Comparison of PF type models in the case of Ni: 11 - W* is weakly dependent on g() - W* is strongly dependent on p() Gránásy et al., to be published Further theoretical work is needed !
  • 14. Thermodynamic properties: Binary crystal-liquid interface Fields: (x) – structural order parameter c(x) – concentration of species B A. Regular solution: Further simplification: Cp,L = Cp,S for all T (Turnbull’s linear approximation for f )  )1log()1()log( )1()( )1( 100 , 0 , cccc V RT V ccT cfcff mm LL BLALL     )1log()1()log( )1()( )1( 100 , 0 , cccc V RT V ccT cfcff mm SS BSASS    B. Ideal solution: 0and0 1100  SLSL Free energy density for liquid (L) and solid (S) phases:   Af T T SpLpAfA HdTCCHTH Af ,,,, , )(     Af Af Af T T SpLp AfA T H SdT T CC STS Af , , , ,, , , )(       Afm AfAf ASALA TV TTH fff , ,,0 , 0 , )(   12 D. Binary PF model for crystal nucleation in Ni-Cu system:
  • 15. )()()()](1[)()(),( cfpcfpgcWcf SL   C. Free energy surface: Double-well & interpolation functions:  22 1 4 1 )(  g  23 61510)(  p 1 Tf (K) Hf (GJ/m3) Vm (cm3/mol) SL (mJ/m2) d10%-90% (nm) Cu 1358 1.78 7.4 228 1.596 Ni 1728 2.35 7.4 364 1 BA cWWccW  )1()( )9log( 3 , %90%10 , 2 BABA dSL     BA BA SL BA d W , %90%10 , , )9log(24    A B B A d d SL SL %90%10 %90%10      13 Ideal solution: Application for the Cu-Ni system
  • 16.   )()()()()](1[)()( 2 , 2 2 eLSL cccfpcfpgcWI   Planar (1D equilibrium) interface : Two fields: (x) & c(x)  two Euler-Lagrange eqs. c c I c I c I c F IIF andbetweeneq.implicit 0                                 Boundary cond.: x =  :  = 1 & c = cS,e x =  :  = 0 & c = cL,e  Interfacial free energy:        d d dx cfdxcf dx d eeSL                          1 0 22 )](,[2)](,[ 2 Interface profile: Interface thickness:      d cf d d dx d e 2/19.0 1.0 29.0 1.0 %90%10 )](,[                        d cf d d dx xx e 2/1 2 0 00 )](,[                 )()(ˆ)](ˆ,[)](ˆ,[)( ,, , eLLeL c L cfcc c f cfcff eL          )()( )1/()(ˆ ,,,   pffgWW RT V y ecceccc ABAB m y eLeL y eL      CfI  )( 2 2 2   eLc L c f ,     – Lagrange multiplier ensuring mass conservation 14
  • 17. Two fields: (x) & c(x)  two Euler-Lagrange eqs. c c f c I c F c F IIF c L c andbetweeneq.implicit 0 0,0,                             Boundary cond.: r = 0:  = 0 & c = 0 r = :  = 0 & c = c   )()(ˆ)](ˆ,[)](ˆ,[)(       cfcc c f cfcff L c L                  )](ˆ,[2 2 2 2 cf rrr Crit. Fluctuation = Nucleus = Extremum (saddle point) of F  Solution of the Euler-Lagrange eqs.     )()( )1/()(ˆ   pffgWW RT V y ecceccc ABAB m yy       3/12* 16 3           fW eff Boundary cond.: r = 0: /r = 0 r = :  = 0 15 Properties of nuclei: EL equation in 3D
  • 18. - Multi Phase Field Theory: 3rd phase present at interfaces - Folch & Plapp (2005): 3rd phase never present - Physically motivated approach to free energy surface? fcc bcc liquid       1 )1( L bcc fcc fcc bcc liquid GL expansion:  gij() & pij()   )()()](1[)()( ),()(),()](1[),,(   fccbccLbccfccbccLfccfccbcc LfccfccbccLbccfccbcc gpppp TfpTfpTf     F  dV cij ij  ji  2  f i ,T  i j           i i   1& Following DFT (Shen & Oxtoby, 1996), two structural order parameters:  - solid-liquid phase field,  - solid-solid phase field (for fcc-bcc: Bain’s distortion) E. Competing FCC and BCC nucleation (GL approach): 16
  • 19. Results for Fe-Ni: almost all input data are accessible with sufficient accuracy Ginzburg-Landau double-well & interpolation functions: Transition g() p() BCC-L FCC-L FCC-BCC  22 1 4 1    22 1 4 1     343   222 1 6 1    24 23     343  (Tóth at al. PRL 2011) Exception: FCC-BCC  [169, 672] mJ/m2 17
  • 20. II. Simulating homogeneous nucleation in PF models: (solving the equations of motion (EOMs)) - binary crystal nucleation (ideal/regular solution) - nucleation of phase-separation in liquid Al-Bi
  • 21. 1000  1000 grid Phase field Concentration field Equations of motion: (Allen-Cahn + Cahn-Hilliard type) fluxcfluxc c I c I M c F M t c II M F M t                                                                 )'()'(2),()','( ttkTMtt    rrrr )'()'(2),()','( 2 ttkTMtt cfluxflux   rrrr   )()()()()()](1[ )()( 2 00 2 2 cfcc c f cfpcfp gcWI L L SL         Periodic boundary cond. 18 A. Simulation of nucleation in binary system I: Cu-Ni (ideal solution)
  • 22. Phase separation in liquid miscibility gap: Model C + flow 1. Free energy functional: 2. PFT equations: 3. Balance laws: Mass conservation Momentum conservation Non-classical stress tensor 0   v t    P   gvv t v    )(                 ),()()](),()][(1[)()( 22 2 2 2 2 3 TcfpfTcfpTgcw cΓ T rdF LoriS c                                                                                                      ff M F MvAv t c f c f cDc RT v c F Mcv t c ff M F Mv t j m jc )()( )1()( )(    Coupling to hydrodynamics: a’ la Anderson et al. ΠIP                                HTpξΓTccΓTcccP cc )](1[)()( 2 1 )( 2 1 2222222  19 B. Simulation of nucleation in binary system II: Al-Bi (regular solution) (Tegze et al. Mater. Sci. Eng. A 2005)
  • 23. Marangoni motion 20 Phase separation in liquid miscibility gap: Testing
  • 24. J.Mainville et al. PRL (2001) Liquid phase separation at the critical composition (Al-Bi): 21
  • 25. T T Flow accelerates droplet coagulation: Left: No flow Center: Flow + homogeneous T Right: Flow + T towards the centerline 22 Liquid phase separation in (metastable) monotectic system (Al-Bi):
  • 26. III. Nucleation vs. microstructure formation: - quantitative PF modeling with nucleation - PF modeling of Growth Front Nucleation
  • 27. Complex patterns evolve due to the interplay of nucleation and growth. 23American Pale Ale Dirty Martini Vodka Tonic Gin Water Polycrystalline matter: Atmospheric sciences: - technical alloys - aerosol formation (climate change) - ceramics - polymers - minerals - food products, etc. In biology: - bones, teeth - kidney stone - cholesterol in arteries - amyloid plaques in Alzheimer’s disease Also frozen drinks: A. Complex polycrystalline structures:
  • 28. 1. Impinging single crystals: 2. Polycrystalline growth forms: (Growth Front Nucleation = GFN) 3. Impinging polycrystalline particles: 24 B. Classification of polycrystalline microstructures
  • 29. 1. Diffusional instabilities: 2. Nucleation - of growth centers - homogeneous - heterogeneous (on particles or walls) - of new grains at the growth front (Growth Front Nucleation = GFN) - heterogeneous (particle-induced) - homogeneous (???) with specific misorientation (fixed branching angle) C. Contributing phenomena? Crystal Liquid Mullins-Sekerka instability isotropic anisotropic 25
  • 30. D. Possible solutions: multi-phase-field/multi-order-parameter theories Separate field for individual grains … Important works: MOPT for grain coarsening: L.Q. Chen & W. Yang, Phys. Rev. B (1994). N. Moelans et al. PRL (2008). MPFT for solidification: I. Steinbach et al. Physica D (1996). M. Plapp & R. Folch, PRE (2005). P.C. Bollada et al. Physica D (2012). H.K. Kim et al. Mod.Sim.Mater.Sci.Eng. (2012). G.I. Tóth et al. PRB (2015). M. Ohno et al. PRE (2017). MPFT for solidification: 26 Advantages:  All interfaces can be handled individually  besides relative orientation, the inclination of the interface can also be considered Disadvantages:  Thousands of fields might need to be handled  Difficult to incorporate thermal fluctuations  Not straightforward how to incorporate GFN
  • 31. Further applications: Miyoshi et al. npj Comput. Mater. (2017)MPFT: Grain coarsening Hötzer et al. Acta Mater. (2016)MPFT: Spiraling eutectics 27 MOPT: Coarsening of 3-phase structure Ravash et al. J. Mater. Sci. (2014) MPFT: Geological problems Ankit et al. J. Geophys. Res. (2015)
  • 32. E. Possible solutions: orientation-field theories (OFT) Crystallographic orientations & grain boundaries??? Kobayashi, Warren, Carter: Physica D 2000: - Non-conserved orientation field  to distinguish particles of different cryst. orientation fori  H - Reasonable grain boundary dynamics Gránásy, Börzsönyi, Pusztai: PRL 2002: - Noise induced nucleation with orientation field in 2D (orientation field in liquid fluctuates in time and space) Pusztai, Bortel, Gránásy: EPL 2005: - Noise induced nucleation with quaternion representation of crystallographic orientation in 3D (Equivalent formulation by Kobayashi & Warren, Physica D, 2005) The | | theory: 28
  • 33. Free energy (scalar): - penalizes spatial change of  - local functional [may depend on  , & derivatives, ( )2k ] - invariant to rotation (explicit  dependence excluded) Seek in form n > 1 infinite broadening, unless one uses n = 1 no such problem, BUT Why this form? fori  Hence our choice for the orientational free energy density: fori = HT p()  Rotational invariance sacrificed! “jello mould” potential 29
  • 34. OFT for polycrystalline solidification: (Gránásy, Börzsönyi, Pusztai, PRL 2002) Aim: - nucleation of grains with different orientation We extend the orientation field  to liquid: - constant  [0, 1] in solid - fluctuates in time & space in liquid New features: - solid-type fluctuation in   orientational ordering - orientational disorder can be trapped into solid (GFN)        F M t Free energy: Time evolution: (non-conserved dynamics) where  = ,0 [1  p()]   )(pHTfori 30
  • 35. Molecular dynamics of liquid crystallization in 2D: (with Yukawa potential by Z. Donkó) 31 Structural analysis (complex bond order parameter): - j : angle towards j-th neighbor in lab. frame - |g6| :  degree of order - phase:  local crystallographic orientation Voronoi analysis: 4 - grey; 5 - blue; 6 - yellow; 7 - red Orientation map Voronoi map || MD
  • 36.    xksMM   /atanand)2cos(1),( y0 0   )2cos(1),( 0   kss Phase field Concentration                                  ...),()( ),()](1[)()( )1( Tc c f p Tc c f pgWW cDc RT v c S L AB m                           22 )(        s TsHTpM Orientation (2D) Equations of motion in 2D: (anisotropic, no SG term for c) 32
  • 37. 1. Homogeneous nucleation (of growth centers): Transient before final orientation established: orientation  = 0.5 Noise induced: composition phase field orientation solidus liquidus solidliquid  color code The nucleus is made entirely of interface 33 F. Nucleation modes in orientation-field theories
  • 38. 2. Heterogeneous nucleation (of growth centers) with desired contact angle L. Gránásy, T. Pusztai, D. Saylor, J. A. Warren, Phys. Rev. Lett. 2007 Note the capillary waves & the corresponding fluctuation of the contact angle! Calculation for pure Ni : - d10-90% = 2 nm - exp = 364 mJ/m2 - x = 2 Å (1 pixel ~ 1 atom) - fluctuation-dissipation noise - thermal feedback Boundary condition :   )1()cos( 2 1 Su           n  = 45 100  600 60 200  350 90 200  300 200  250120 34
  • 39. Size dependence: 1 pixel 5 pixels 13 pixels 45 pixels Orientation misfit:  = 0.1  = 0.2  = 0.3 Lateral disp. (pixels): x =  6 x =  3 x = 0 x = 3  = 0 Experiment: 3. Heterogeneous Growth Front Nucleation: Tip deflection at foreign particles 35
  • 40. 4. Homogeneous Growth Front Nucleation I. Reduced orientational mobility (M  Drot) (new mechanism: trapped disorder in ) Complex undercooled liquids: Drot/Dtr ( M/M ) decreases with increasing T “decoupling” M/30 36
  • 41.  = 90 60 45 30 x = 0.10 0.15 0.20 0.25                    otherwise1 4 1 for2sin otherwise1 4 3 for2sin )1( 2 00 1 00 0 10 0 n n F m m F FxxF H fori    5. Homogeneous GFN II. (branching with fixed misorientation) 37
  • 42. Phenomena incorporated into the PF model in 2D & 3D: isotropic anisotropic composition phase field orientation 38
  • 43. Input data? (models with orientation field) - Thermodynamic data (free energy of all phases) - S-L interfacial energy - S-L interface thickness - Grain boundary energy - Diffusion coefficients: M  Dtransl Mc  Dinterdiffusion M  Drot - Structure related data: anisotropy of interfacial / grain boundary energies anisotropy of mobilities 39
  • 44. Different length- & time scales for , c, .   1-2 nm  ~ 1 Å resolution (10,000 x = 1 m) Compromise to enable computations : broad interface is used ( enhanced solute trapping, etc.) 1. Use a broad interface: Positive: quantitative simulations for a broad interface hypothetical system. Problem: we are interested in real materials. 2. Staying on atomistic scale: Positive: proper solute trapping/interface kinetics & nucleation. Problem: only small computations (e.g., no dendrites), or enormous computation power is needed (+ adaptive mesh), we may hope for ~ 1 µm3 3. Broad interface: Positive: anti-trapping currents a’la Karma  proper growth kinetics for large sizes (up to mm) Problem: nucleation is wrong. (E.g., cell volume is larger than the nucleus) Remedy I: hom. nucleation has to be incorporated by hand (barrier from the Euler-Lagrange equations + physical ). Remedy II: particle induced freezing a’la Greer (different way of incorporating nucleation by hand). , 40 G. Limitations & strategies for quantitative computing
  • 45. 41 A. Impinging single crystals: Quantitative PF modeling of CET in Al45.5Ti54.5 IV. Applications 1500  300 grid number of particles ~ 200 / frame 0.75 mm  0.15 mm particle size (Gaussian) = (20 4) nm - CALPHAD thermodynamics - Anti-trapping current (Kim, Acta Mater., 2007) - Greer’s free growth limited model 5 10 20 40 4 8 16 32 G (104 K/m) 4 8 16 32 V (104 m/s) Comparison with Hunt’s model (2D)
  • 46. color code Particles represented by orientation pinning centers: areas of random but fixed orientation L. Gránásy, T. Pusztai, T. Börzsönyi Research Institute for Solid State Physics and Optics, Budapest, Hungary, 2002 Experiment: PEO/PMMA + clay Simulation: 3000  3000 grid Ferreiro et al., PRE (2002) B. “Dizzy” dendrites L. Gránásy et al. Nature Materials, Febr. 2003 42
  • 47. C. Polycrystalline spherulites Category 1 spherulite Spherulites are almost everywhere - Se - cast iron (nodular) - polymers/biopolymers - metallic/oxide glasses - eutectic systems - urine (kidney stone) - cholesterol - insulin - chocolate 43 Category 2 spherulite
  • 48. Formation of Category 1 spherulites: (a) Gradual transition from single crystal nucleus to Category 1 spherulite: MD for hard-spheres: (O’Malley & Snook, PRL 2003) (b) Growth starts from polycrystalline nuclei: [e.g., TMPS = poly-(tertramethyl-p-silphenylene)-siloxane Magill, J. Appl. Phys. (1964)] Interface breakdown Polycrystalline nucleus Experiment 44
  • 49. Experiment Simulation Experiment Simulation Description of morphology with a few model params. (anisotropies, branching angle, MS well depth, …) 45
  • 50. S = 1.5 1.8 1.9 1.95 2.0 2.1 2.2 200200400 grid Triclinic crystal symmetry Ellipsoidal symmetry of kinetic anisotropy Coloring: Inclination relative to nucleated direction in deg. S = 0.75 0.85 0.90 0.95 1.00 1.10 2D 46 From needle crystals to polycrystalline spherulites:
  • 51. Experiments on orientation: PF simulation: Polarized transmission optical microscope Gatos et al. Macromol. (2007) 47
  • 52. Spherulitic growth in channel: Scratch: Courtesy of V. Ferreiro Holes: Courtesy of M. Ferguson Channel, scratch, holes: D. Manipulating crystallization: 48 Lee et al. Adv. Mater. (2012)
  • 53. 200200400 grid Orientation selector Dendrite in toroidal shell 600200600 grid 400400400 grid Dendrite in spherical shell Confined space: 49
  • 54. 23p IV. Summary: I. Single-field PF models:  “Standard” PF model works for Ni, water & Ar (LJ), fails for the HS system  Ginzburg-Landau model is accurate for HS, does not work for the others FURTHER WORK IS NEEDED!!! III. Nucleation mechanisms in OF models:  Homogeneous/heterogeneous  Growth Front Nucleation: particle induced / homogeneous/fixed-angle branching II. Two- & three-field PF models:  For Cu-Ni and Fe-Ni systems reasonable agreement with undercooling experiments IV. Nucleation vs microstructure:  Quantitative simulations with OF models  Polycrystalline growth: - particle-induced, - random/fixed angle branching
  • 55. Institute for Solid State Physics and Optics WIGNER RESEARCH CENTRE FOR PHYSICS Hungarian Academy of Sciences H-1121 Budapest, Konkoly-Thege u. 29-33 Computational Materials Science Group in WRCP: László Gránásy Prof. - team leader nucleation, PF, DFT, … Tamás Pusztai Sci. Adv.. - nucleation, PF, topological defects György Tegze Sen. Sci. - CFD, num. methods Frigyes Podmaniczky PhD student - DFT, anisotropy, nucleation László Rátkai PhD student - eutectics, LB flow László Gránásy Sci. Advisor Tamás Pusztai Sci. Advisor Frigyes Podmaniczky PhD student László Rátkai PhD student György Tegze Senior Scientist Computational Materials Science Group