SlideShare uma empresa Scribd logo
1 de 22
Fluid Flow Equations
Fundamentals
โ€ข Three pilers of fluid dynamics
โ€ข Continuity : Mass is Conserved
โ€ข Momentum : Newtonโ€™s Second law
โ€ข Energy : Energy is conserved
Fluid dynamics is based on the mathematical statements of these three
physical principles.
Mass balance in a flowing fluid โ€“
Continuity
โ€“ Fluid of density แฟค and velocity u
The equation of mass balance is
(Rate of Mass flow in) โ€“ (Rate of Mass flow out) = Rate of
Accumulation
Balance Equations
1. Mass flux in x direction at the face x = ๐œŒ๐‘ข ๐‘ฅ
2. Mass flux in x direction at the face (x+dx) = ๐œŒ๐‘ข ๐‘ฅ+๐‘‘๐‘ฅ
Flux is defined as the rate of flow of quantity per unit area
Hence
3. Mass flow rate of the fluid entering the fluid element in x โ€“ direction =
๐œŒ๐‘ข ๐‘ฅโˆ†๐‘ฆโˆ†๐‘ง
4. Mass flow rate of the fluid leaving the fluid element in x โ€“ direction =
๐œŒ๐‘ข ๐‘ฅ+๐‘‘๐‘ฅโˆ†๐‘ฆโˆ†๐‘ง
5. Rate of Accumulation of momentum in the volume element = โˆ†๐‘ฅ โˆ†๐‘ฆ โˆ†๐‘ง
๐œ•๐œŒ
๐œ•๐‘ก
Similarly taking mass balance in โ€˜yโ€™ and โ€˜zโ€™ directions and substituting in general Mass
balance equation we will get
๐œŒ๐‘ข๐‘ฅ โˆ’ ๐œŒ๐‘ข๐‘ฅ+โˆ†๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง + ๐œŒ๐‘ฃ๐‘ฆ โˆ’ ๐œŒ๐‘ฃ๐‘ฆ+โˆ†๐‘ฆ โˆ†๐‘ฅโˆ†๐‘ง
+ ๐œŒ๐‘ค๐‘ง โˆ’ ๐œŒ๐‘ค๐‘ง+โˆ†๐‘ง โˆ†๐‘ฅโˆ†๐‘ฆ = โˆ†๐‘ฅ โˆ†๐‘ฆ โˆ†๐‘ง
๐œ•๐œŒ
๐œ•๐‘ก
Dividing by ฮ”x ฮ”y ฮ”z gives
๐œŒ๐‘ข๐‘ฅ โˆ’ ๐œŒ๐‘ข๐‘ฅ+โˆ†๐‘ฅ
โˆ†๐‘ฅ
+
๐œŒ๐‘ฃ๐‘ฆ โˆ’ ๐œŒ๐‘ฆ๐‘ฆ+โˆ†๐‘ฆ
โˆ†๐‘ฆ
+
๐œŒ๐‘ค๐‘ง โˆ’ ๐œŒ๐‘ค๐‘ง+โˆ†๐‘ง
โˆ†๐‘ง
=
๐œ•๐œŒ
๐œ•๐‘ก
Taking the limit of ฮ”x ฮ”y ฮ”z approach zero gives the differential equation for
conservation of mass
A.
๐œ•๐œŒ
๐œ•๐‘ก
= โˆ’
๐œ• ๐œŒ๐‘ข
๐œ•๐‘ฅ
+
๐œ• ๐œŒ๐‘ฃ
๐œ•๐‘ฆ
+
๐œ• ๐œŒ๐‘ค
๐œ•๐‘ง
= โˆ’ ๐›ป. ๐œŒ๐‘ฝ
๐œ•๐œŒ
๐œ•๐‘ก
+ ๐‘ข
๐œ•๐œŒ
๐œ•๐‘ฅ
+ ๐‘ฃ
๐œ•๐œŒ
๐œ•๐‘ฆ
+ ๐‘ค
๐œ•๐œŒ
๐œ•๐‘ง
= โˆ’ ๐œŒ
๐œ•๐‘ข
๐œ•๐‘ฅ
+
๐œ•๐‘ฃ
๐œ•๐‘ฆ
+
๐œ•๐‘ค
๐œ•๐‘ง
For incompressible fluids
๐‘ซ๐†
๐‘ซ๐’•
= โˆ’ ๐œŒ
๐œ•๐‘ข
๐œ•๐‘ฅ
+
๐œ•๐‘ฃ
๐œ•๐‘ฆ
+
๐œ•๐‘ค
๐œ•๐‘ง
= โˆ’๐œŒ ๐›ป. ๐‘ฝ
๐›ป. ๐‘ฝ =
๐œ•๐‘ข
๐œ•๐‘ฅ
+
๐œ•๐‘ฃ
๐œ•๐‘ฆ
+
๐œ•๐‘ค
๐œ•๐‘ง
= 0
Stream Line
โ€ข Imaginary line drawn in a force field that tangent drawn at any point indicates
the direction of velocity vector at that point and at that time.
โ€ข Properties
โ€ข There cannot be any movement of fluid across the streamlines
โ€ข Streamlines never intersect nor two of them cross each other
โ€ข Converging streamlines indicate the accelerating nature of fluid flow in a
direction.
โ€ข Tube of large or small cross section and of any convenient shape entirely
bounded by streamlines.
โ€ข No net flow through the walls of the stream tube.
โ€ข Mass flowrate through differential c/s area dS is denoted by
๐‘‘๐‘š = ๐œŒ ๐‘ข ๐‘‘๐‘†
โ€ข For conduit of cross sectional area S
๐‘š = ๐œŒ
๐‘†
๐‘ข ๐‘‘๐‘†
โ€ข Average velocity of the stream (แนผ) flowing through the c/s area is given by
แนผ =
๐‘š
๐œŒ๐‘†
=
1
๐‘† ๐‘†
๐‘ข ๐‘‘๐‘†
แนผ = volumetric flow rate per unit c. s area of condiut
แนผ =
๐‘ž
๐‘†
q = volumetric flow rate
Stream tube
Mass Velocity
ฯแนผ =
๐‘š
๐‘†
= ๐บ โ‰ก
๐‘˜๐‘”
๐‘š2 ๐‘ ๐‘’๐‘
โ€ข Advantage of using G is that it is independent of T and P at a steady flow (m) through
a constant cross section.
โ€ข Mass velocity can also be designated as the mass flux which represents the quantity
of material passing through unit area in unit time.
Differential momentum balance: Equations of motion
(Rate of Momentum Entering) โ€“ (Rate of Momentum leaving) + ( Sum of forces
acting on the system ) = Rate of Momentum Accumulation
1. Rate at which x component of momentum enters face x = ๐œŒ๐‘ข๐‘ข ๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง
2. Rate at which x component of momentum leaves face x+dx = ๐œŒ๐‘ข๐‘ข ๐‘ฅ+โˆ†๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง
3. Rate at which x component of momentum enters face y = ๐œŒ๐‘ฃ๐‘ข ๐‘ฆ โˆ†๐‘ฅโˆ†๐‘ง
Equations 1, 2 , 3 correspond to convective flow
๐œŒ๐‘ข๐‘ข ๐‘ฅ โˆ’ ๐œŒ๐‘ข๐‘ข ๐‘ฅ+โˆ†๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง + ๐œŒ๐‘ฃ๐‘ข ๐‘ฆ โˆ’ ๐œŒ๐‘ฃ๐‘ข ๐‘ฆ+โˆ†๐‘ฆ โˆ†๐‘ฅโˆ†๐‘ง
+ ๐œŒ๐‘ค๐‘ข ๐‘ง โˆ’ ๐œŒ๐‘ค๐‘ข ๐‘ง+โˆ†๐‘ง โˆ†๐‘ฅโˆ†๐‘ฆ + ฯ„๐‘ฅ๐‘ฅ ๐‘ฅ โˆ’ ฯ„๐‘ฅ๐‘ฅ ๐‘ฅ+โˆ†๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง
+ ฯ„๐‘ฆ๐‘ฅ ๐‘ฆ
โˆ’ ฯ„๐‘ฆ๐‘ฅ ๐‘ฆ+โˆ†๐‘ฆ
โˆ†๐‘ฅโˆ†๐‘ง + ฯ„๐‘ง๐‘ฅ ๐‘ง โˆ’ ฯ„๐‘ง๐‘ฅ ๐‘ง+โˆ†๐‘ง โˆ†๐‘ฆโˆ†๐‘ฅ + โˆ†๐‘ฆโˆ†๐‘ง ๐‘๐‘ฅ โˆ’ ๐‘๐‘ฅ+โˆ†๐‘ฅ
+ ๐œŒ๐‘”๐‘ฅโˆ†๐‘ฅโˆ†๐‘ฆโˆ†๐‘ง
=
๐œ•(๐œŒ๐‘ข)
๐œ•๐‘ก
โˆ†๐‘ฅโˆ†๐‘ฆโˆ†๐‘ง
Dividing by ฮ”x ฮ”y ฮ”z gives and taking the corresponding limit of ฮ”x ฮ”y ฮ”z tend to
zero
Writing similar expressions for convective flow and mass transport of x momentum through all the six faces & substituting
in Momentum balance equation
4. Rate at which x component of momentum enters face x by molecular transport
= ฯ„๐‘ฅ๐‘ฅ ๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง
5. Rate at which x component of momentum leaves face x+dx by molecular transport
= ฯ„๐‘ฅ๐‘ฅ ๐‘ฅ+โˆ†๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง
6. Rate at which x component of momentum enters face y by molecular transport = ฯ„๐‘ฆ๐‘ฅ ๐‘ฆ
โˆ†๐‘ฆโˆ†๐‘ง
A.
๐œ•๐œŒ๐‘ข
๐œ•๐‘ก
= โˆ’
๐œ• ๐œŒ๐‘ข๐‘ข
๐œ•๐‘ฅ
+
๐œ• ๐œŒ๐‘ฃ๐‘ข
๐œ•๐‘ฆ
+
๐œ• ๐œŒ๐‘ค๐‘ข
๐œ•๐‘ง
โˆ’
๐œ• ฯ„๐‘ฅ๐‘ฅ
๐œ•๐‘ฅ
+
๐œ• ฯ„๐‘ฆ๐‘ฅ
๐œ•๐‘ฆ
+
๐œ• ฯ„๐‘ง๐‘ฅ
๐œ•๐‘ง
โˆ’
๐œ•๐‘
๐œ•๐‘ฅ
+ ๐œŒ๐‘”๐‘ฅ
๐†
๐‘ซ๐’–
๐‘ซ๐’•
= โˆ’
๐œ•๐‘
๐œ•๐‘ฅ
โˆ’
๐œ• ฯ„๐‘ฅ๐‘ฅ
๐œ•๐‘ฅ
+
๐œ• ฯ„๐‘ฆ๐‘ฅ
๐œ•๐‘ฆ
+
๐œ• ฯ„๐‘ง๐‘ฅ
๐œ•๐‘ง
+ ๐œŒ๐‘”๐‘ฅ
๐†
๐‘ซ๐‘ฝ
๐‘ซ๐’•
= โˆ’๐›ป๐‘ โˆ’ ๐›ป. ฯ„ + ๐œŒg
Writing similar expressions for y and z components and adding them
For fluid of const. density and viscosity
B. ๐œŒ
๐œ•๐‘ข
๐œ•๐‘ก
+ ๐‘ข
๐œ•๐‘ข
๐œ•๐‘ฅ
+ ๐‘ฃ
๐œ•๐‘ข
๐œ•๐‘ฆ
+ ๐‘ค
๐œ•๐‘ข
๐œ•๐‘ง
= ฮผ
๐œ•2๐‘ข
๐œ•๐‘ฅ2 +
๐œ•2๐‘ข
๐œ•๐‘ฆ2 +
๐œ•2๐‘ข
๐œ•๐‘ง2 โˆ’
๐œ•๐‘
๐œ•๐‘ฅ
+ ๐œŒ๐‘”๐‘ฅ
C. ๐œŒ
๐œ•๐‘ฃ
๐œ•๐‘ก
+ ๐‘ข
๐œ•๐‘ฃ
๐œ•๐‘ฅ
+ ๐‘ฃ
๐œ•๐‘ฃ
๐œ•๐‘ฆ
+ ๐‘ค
๐œ•๐‘ฃ
๐œ•๐‘ง
= ฮผ
๐œ•2
๐‘ฃ
๐œ•๐‘ฅ2 +
๐œ•2
๐‘ฃ
๐œ•๐‘ฆ2 +
๐œ•2
๐‘ฃ
๐œ•๐‘ง2 โˆ’
๐œ•๐‘
๐œ•๐‘ฆ
+ ๐œŒ๐‘”๐‘ฆ
C. ๐œŒ
๐œ•๐‘ค
๐œ•๐‘ก
+ ๐‘ข
๐œ•๐‘ค
๐œ•๐‘ฅ
+ ๐‘ฃ
๐œ•๐‘ค
๐œ•๐‘ฆ
+ ๐‘ค
๐œ•๐‘ค
๐œ•๐‘ง
= ฮผ
๐œ•2๐‘ค
๐œ•๐‘ฅ2
+
๐œ•2๐‘ค
๐œ•๐‘ฆ2
+
๐œ•2๐‘ค
๐œ•๐‘ง2
โˆ’
๐œ•๐‘
๐œ•๐‘ง
+ ๐œŒ๐‘”๐‘ง
๐†
๐‘ซ๐‘ฝ
๐‘ซ๐’•
= โˆ’๐›ป๐‘ + ฮผ ๐›ป2๐‘ฝ + ๐œŒg
Navier โ€“ Stokes Equation
Vector form of Navier โ€“ Stokes Equation
Eulerโ€™s Equation
๐†
๐‘ซ๐‘ฝ
๐‘ซ๐’•
= โˆ’๐›ป๐‘ + ๐œŒg
Assumptions
โ€ข Fluid is incompressible
โ€ข Fluid is Inviscid (ideal)
โ€ข Fluid has zero viscosity
โ€ข Streamline and irrotational
flow
โ€ข Flow is steady
Macroscopic Momentum Balances
Mass flow rate = ; Velocity = u
Momentum flow rate =
Momentum carried by the fluid through c/s area dS in unit time
Variation in instantaneous velocity (u) along the flow section changes the
momentum flow rate estimations.
Momentum rate, estimated even from average velocity brings errors in
Momentum estimations
Momentum correction factor is being used in momentum balance equation;
estimated from principle of momentum flux.
Momentum Correction factor
For entire c/s for a constant density fluid
Steady and Unsteady flow
Flow parameters such as velocity, pressure, density does not change with
time in a steady flow.
๐œ•๐‘‰
๐œ•๐‘ก
= 0;
๐œ•๐‘
๐œ•๐‘ก
= 0;
๐œ•๐œŒ
๐œ•๐‘ก
= 0 For steady flow
๐œ•๐‘‰
๐œ•๐‘ก
โ‰  0;
๐œ•๐‘
๐œ•๐‘ก
โ‰  0;
๐œ•๐œŒ
๐œ•๐‘ก
โ‰  0 For unsteady flow
Uniform and non-uniform flow
Type of flow in which Velocity, pressure, density does not with respect to
spatial co-ordinates.
๐œ•๐‘‰
๐œ•๐‘ 
= 0;
๐œ•๐‘
๐œ•๐‘ 
= 0;
๐œ•๐œŒ
๐œ•๐‘ 
= 0 For uniform flow
๐œ•๐‘‰
๐œ•๐‘ 
โ‰  0;
๐œ•๐‘
๐œ•๐‘ 
โ‰  0;
๐œ•๐œŒ
๐œ•๐‘ 
โ‰  0 For non-uniform flow
Steady uniform flow Steady non-uniform flow
Unsteady uniform flow
Unsteady non-uniform flow
Ex: Flow through a channel at constant discharge Ex: Constant flow through expanding or diverging
section
Non practicable situation
Flow in a pipe through a valve.
Energy Equation for potential flow โ€“
Bernoulliโ€™s equation w/o friction
๐œŒ
๐œ•๐‘ข
๐œ•๐‘ก
+ ๐‘ข
๐œ•๐‘ข
๐œ•๐‘ฅ
+ ๐‘ฃ
๐œ•๐‘ข
๐œ•๐‘ฆ
+ ๐‘ค
๐œ•๐‘ข
๐œ•๐‘ง
= โˆ’
๐œ•๐‘
๐œ•๐‘ฅ
+ ๐œŒ๐‘”๐‘ฅ
For unidirectional flow component of velocity in y(v) and z(w) are zero
Multiplying remaining terms with u gives
๐œŒ๐‘ข
๐œ•๐‘ข
๐œ•๐‘ก
+ ๐‘ข
๐œ•๐‘ข
๐œ•๐‘ฅ
= โˆ’ ๐‘ข
๐œ•๐‘
๐œ•๐‘ฅ
+ ๐œŒ๐‘ข๐‘”๐‘ฅ
๐œŒ
๐œ•(
๐‘ข2
2 )
๐œ•๐‘ก
+ ๐‘ข
๐œ•(
๐‘ข2
2 )
๐œ•๐‘ฅ
= โˆ’ ๐‘ข
๐œ•๐‘
๐œ•๐‘ฅ
+ ๐œŒ๐‘ข๐‘”๐‘ฅ
Mechanical energy equation for unidirectional potential flow of fluids
of constant density and when flow rate varies with time
๐‘”๐‘ฅ = โˆ’๐‘” ๐‘๐‘œ๐‘ โˆ…
๐‘ = ๐‘๐‘Ž + ๐‘ฅ ๐‘๐‘œ๐‘ โˆ…
๐‘‘๐‘ = ๐‘๐‘œ๐‘ โˆ… ๐‘‘๐‘ฅ
cos โˆ… =
๐‘‘๐‘
๐‘‘๐‘ฅ
Steady flow
๐œŒ
๐‘‘(
๐‘ข2
2
)
๐‘‘๐‘ฅ
+ ๐‘ข
๐‘‘๐‘
๐‘‘๐‘ฅ
+ ๐œŒ๐‘ข๐‘” ๐‘๐‘œ๐‘ โˆ… = 0
๐‘‘(
๐‘ข2
2 )
๐‘‘๐‘ฅ
+
1
๐œŒ
๐‘‘๐‘
๐‘‘๐‘ฅ
+ ๐‘”
๐‘‘๐‘ง
๐‘‘๐‘ฅ
= 0
Integrating the equation between two stations โ€˜aโ€™ and โ€˜bโ€™
๐‘๐‘Ž
๐œŒ
+ ๐‘”๐‘๐‘Ž +
๐‘ข2
๐‘Ž
2
=
๐‘๐‘
๐œŒ
+ ๐‘”๐‘๐‘ +
๐‘ข2
๐‘
2
Bernoulliโ€™s equation without friction
๐‘
๐œŒ
=
๐‘
๐‘š2 ๐‘˜๐‘”
๐‘š3
=
๐‘ ๐‘š
๐‘˜๐‘”
๐‘ข2
2
=
๐‘š2
๐‘ 2
=
๐‘š2
๐‘ 2
๐‘˜๐‘”
๐‘˜๐‘”
=
๐‘๐‘š
๐‘˜๐‘” ๐‘”๐‘ =
๐‘š ๐‘š
๐‘ 2
=
๐‘š2
๐‘ 2
๐‘˜๐‘”
๐‘˜๐‘”
=
๐‘๐‘š
๐‘˜๐‘”
Total energy per unit mass of fluid at every point in a flow is constant
๐‘๐‘Ž
๐œŒ๐‘”
+ ๐‘๐‘Ž +
๐‘ข2
๐‘Ž
2๐‘”
=
๐‘๐‘
๐œŒ๐‘”
+ ๐‘๐‘ +
๐‘ข2
๐‘
2๐‘”
๐‘
๐œŒ๐‘”
=
๐‘
๐‘š2 ๐‘˜๐‘”
๐‘š3
๐‘š
๐‘ 2
=
๐‘
๐‘˜๐‘”
๐‘ 2
=
๐‘๐‘š
๐‘˜๐‘”๐‘š
๐‘ 2
=
๐‘ ๐‘š
๐‘
๐‘ข2
2๐‘”
=
๐‘š2
๐‘ 2 ๐‘š
๐‘ 2
= ๐‘š =
๐‘๐‘š
๐‘
๐‘ = m =
๐‘๐‘š
๐‘
Total energy per unit weight of fluid at every point in a flow is constant
๐‘๐‘Ž + ๐œŒ๐‘”๐‘๐‘Ž +
๐œŒ๐‘ข2
๐‘Ž
2
= ๐‘๐‘ + ๐œŒ๐‘”๐‘๐‘ +
๐œŒ๐‘ข2
๐‘
2
๐‘ =
๐‘
๐‘š2
=
๐‘ ๐‘š
๐‘š2๐‘š
=
๐‘ ๐‘š
๐‘š3
๐œŒ๐‘ข2
2
=
๐‘˜๐‘” ๐‘š2
๐‘š3๐‘ 2 =
๐‘ ๐‘š
๐‘š3
๐œŒ๐‘”๐‘ =
๐‘˜๐‘” ๐‘š ๐‘š
๐‘š3๐‘ 2 =
๐‘ ๐‘š
๐‘š3
Total energy per unit volume of fluid at every point in a flow is constant
Bernoulliโ€™s equation: Corrections for effects of solid boundaries
โ€ข Problems in engineering involve streams which are influenced by solid
boundary
โ€ข Flow of fluid through a pipe where entire stream is in boundary layer
flow
โ€ข Practical Situation involves correction terms in Bernoulliโ€™s equation
for
1. Kinetic energy
2. Existence of fluid friction
Kinetic energy
Element of c/s area ds
Mass flow rate through the c/s = ฯu ds
Energy flow rate through c/s area
๐‘‘ร‹๐‘˜ = ๐œŒ๐‘ข ๐‘‘๐‘  โˆ—
๐‘ข2
2
Total rate of flow of Kinetic Energy through c/s S is
ร‹๐‘˜ =
๐œŒ
2
โˆ—
๐‘ 
๐‘  ๐‘ข3๐‘‘๐‘†
Term which replaces u2/2 in Bernoulliโ€™s equation is
ร‹๐‘˜
๐‘š
= ๐‘ 
๐‘  ๐‘ข3
๐‘‘๐‘†
2 ๐‘ 
๐‘  ๐‘ข ๐‘‘๐‘†
= ๐‘ 
๐‘  ๐‘ข3
๐‘‘๐‘†
2 แนผ๐‘†
K.E correction factor
โˆ แนผ2
2
=
ร‹๐‘˜
๐‘š
= ๐‘ 
๐‘ข3
๐‘‘๐‘†
2 แนผ๐‘†
โˆ = ๐‘ 
๐‘ข3
๐‘‘๐‘†
แนผ3๐‘†
Correction factor for fluid friction
๐‘๐‘Ž
๐œŒ
+ ๐‘”๐‘๐‘Ž +
๐›ผ๐‘Ž๐‘‰2
๐‘Ž
2
=
๐‘๐‘
๐œŒ
+ ๐‘”๐‘๐‘ +
๐›ผ๐‘๐‘‰2
๐‘
2
+ โ„Ž๐‘“
โ€ข Whenever flow occurs friction is generated and hf denote the
friction generated per unit mass of fluid (conversion of
mechanical energy into heat) that occurs when fluid flows
between two stations)
โ€ข hf is positive value; it will be zero for potential flow
โ€ข Skin friction โ€“ friction generated in unseparated boundary layers
โ€ข Form friction โ€“ boundary layers separate and form wakes,
additional energy dissipation appears in the wake
Pump work in Bernoulli Equation
๐‘Š
๐‘ โˆ’ โ„Ž๐‘“๐‘ = ฮท๐‘Š
๐‘
๐‘Š
๐‘- work done by pump per unit mass of fluid
โ„Ž๐‘“๐‘- friction generated in the pump per unit mass of fluid
ฮท < 1
๐‘๐‘Ž
๐œŒ
+ ๐‘”๐‘๐‘Ž +
๐›ผ๐‘Ž๐‘‰2
๐‘Ž
2
+ ฮท๐‘Š
๐‘ =
๐‘๐‘
๐œŒ
+ ๐‘”๐‘๐‘ +
๐›ผ๐‘๐‘‰2
๐‘
2
+ โ„Ž๐‘“

Mais conteรบdo relacionado

Mais procurados

Bernoulliโ€™s equation
Bernoulliโ€™s equationBernoulliโ€™s equation
Bernoulliโ€™s equation
Sajjad Ahmad
ย 
Kinematics of fluid flow & itโ€™s application.
Kinematics of fluid flow & itโ€™s application.Kinematics of fluid flow & itโ€™s application.
Kinematics of fluid flow & itโ€™s application.
NIKHIL PAKWANNE
ย 

Mais procurados (20)

Energy quations and its application
Energy quations and its applicationEnergy quations and its application
Energy quations and its application
ย 
Fluid Mechanics Chapter 6. Boundary Layer Concept
Fluid Mechanics Chapter 6. Boundary Layer ConceptFluid Mechanics Chapter 6. Boundary Layer Concept
Fluid Mechanics Chapter 6. Boundary Layer Concept
ย 
Laminar flow
Laminar flowLaminar flow
Laminar flow
ย 
kinematics of fluids basics
kinematics of fluids basicskinematics of fluids basics
kinematics of fluids basics
ย 
Darcy weisbach formula
Darcy weisbach formulaDarcy weisbach formula
Darcy weisbach formula
ย 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
ย 
Fluid flow
Fluid flowFluid flow
Fluid flow
ย 
venturi meter
venturi meterventuri meter
venturi meter
ย 
Types of fluid flow best ppt
Types of fluid flow best pptTypes of fluid flow best ppt
Types of fluid flow best ppt
ย 
Properties of Fluids
Properties of FluidsProperties of Fluids
Properties of Fluids
ย 
Bernoulliโ€™s equation
Bernoulliโ€™s equationBernoulliโ€™s equation
Bernoulliโ€™s equation
ย 
Types of fluid flow
Types of fluid flowTypes of fluid flow
Types of fluid flow
ย 
Flow through pipes ppt
Flow through pipes pptFlow through pipes ppt
Flow through pipes ppt
ย 
Boundary layer
Boundary layerBoundary layer
Boundary layer
ย 
Fluid mechanics for chermical engineering students
Fluid mechanics  for chermical  engineering studentsFluid mechanics  for chermical  engineering students
Fluid mechanics for chermical engineering students
ย 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
ย 
Kinematics of fluid flow & itโ€™s application.
Kinematics of fluid flow & itโ€™s application.Kinematics of fluid flow & itโ€™s application.
Kinematics of fluid flow & itโ€™s application.
ย 
Fluid-Control Volume
Fluid-Control VolumeFluid-Control Volume
Fluid-Control Volume
ย 
CE 6451 FMM Unit 1 Properties of fluids
CE 6451 FMM  Unit 1 Properties of fluidsCE 6451 FMM  Unit 1 Properties of fluids
CE 6451 FMM Unit 1 Properties of fluids
ย 
Potential flow
Potential flowPotential flow
Potential flow
ย 

Semelhante a Fluid flow Equations.pptx

Module-3_FLUID KINEMATICS AND DYNAMICS.ppt
Module-3_FLUID KINEMATICS AND DYNAMICS.pptModule-3_FLUID KINEMATICS AND DYNAMICS.ppt
Module-3_FLUID KINEMATICS AND DYNAMICS.ppt
payal_vinitshah
ย 
Intro totransportphenomenanew
Intro totransportphenomenanewIntro totransportphenomenanew
Intro totransportphenomenanew
ilovepurin
ย 
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptxViscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Muhammad Dzaky Fawwaz
ย 

Semelhante a Fluid flow Equations.pptx (20)

FM CHAPTER 4.pptx
FM CHAPTER 4.pptxFM CHAPTER 4.pptx
FM CHAPTER 4.pptx
ย 
Module-3_FLUID KINEMATICS AND DYNAMICS.ppt
Module-3_FLUID KINEMATICS AND DYNAMICS.pptModule-3_FLUID KINEMATICS AND DYNAMICS.ppt
Module-3_FLUID KINEMATICS AND DYNAMICS.ppt
ย 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gate
ย 
Review of basic Aerodynamics.pdf
Review of basic Aerodynamics.pdfReview of basic Aerodynamics.pdf
Review of basic Aerodynamics.pdf
ย 
Fluid mechanics - Motion of Fluid Particles and Stream
Fluid mechanics - Motion of Fluid Particles and StreamFluid mechanics - Motion of Fluid Particles and Stream
Fluid mechanics - Motion of Fluid Particles and Stream
ย 
Motion of fluid particles and streams
Motion of fluid particles and streamsMotion of fluid particles and streams
Motion of fluid particles and streams
ย 
Flow in Pipes
Flow in PipesFlow in Pipes
Flow in Pipes
ย 
Chapter 4.pptx
Chapter 4.pptxChapter 4.pptx
Chapter 4.pptx
ย 
Continuity - Momentum Algabraic eqns.pptx
Continuity - Momentum Algabraic eqns.pptxContinuity - Momentum Algabraic eqns.pptx
Continuity - Momentum Algabraic eqns.pptx
ย 
Unit 1 CE8394 FMM
Unit 1 CE8394 FMMUnit 1 CE8394 FMM
Unit 1 CE8394 FMM
ย 
Intro totransportphenomenanew
Intro totransportphenomenanewIntro totransportphenomenanew
Intro totransportphenomenanew
ย 
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptxViscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
ย 
FluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfFluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdf
ย 
Part 2 Revision.pdf
Part 2 Revision.pdfPart 2 Revision.pdf
Part 2 Revision.pdf
ย 
Unit41.pptx
Unit41.pptxUnit41.pptx
Unit41.pptx
ย 
Couette flow
Couette flowCouette flow
Couette flow
ย 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
ย 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
ย 
recap (1).pptx
recap (1).pptxrecap (1).pptx
recap (1).pptx
ย 
Fluid Mechanics Chapter 4. Differential relations for a fluid flow
Fluid Mechanics Chapter 4. Differential relations for a fluid flowFluid Mechanics Chapter 4. Differential relations for a fluid flow
Fluid Mechanics Chapter 4. Differential relations for a fluid flow
ย 

รšltimo

Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
KreezheaRecto
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
sivaprakash250
ย 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
ย 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
ย 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
ย 
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 

รšltimo (20)

Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
ย 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
ย 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
ย 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
ย 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
ย 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
ย 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
ย 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
ย 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
ย 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
ย 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
ย 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
ย 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
ย 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
ย 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
ย 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
ย 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
ย 
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
ย 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
ย 

Fluid flow Equations.pptx

  • 2. Fundamentals โ€ข Three pilers of fluid dynamics โ€ข Continuity : Mass is Conserved โ€ข Momentum : Newtonโ€™s Second law โ€ข Energy : Energy is conserved Fluid dynamics is based on the mathematical statements of these three physical principles.
  • 3. Mass balance in a flowing fluid โ€“ Continuity โ€“ Fluid of density แฟค and velocity u The equation of mass balance is (Rate of Mass flow in) โ€“ (Rate of Mass flow out) = Rate of Accumulation
  • 4. Balance Equations 1. Mass flux in x direction at the face x = ๐œŒ๐‘ข ๐‘ฅ 2. Mass flux in x direction at the face (x+dx) = ๐œŒ๐‘ข ๐‘ฅ+๐‘‘๐‘ฅ Flux is defined as the rate of flow of quantity per unit area Hence 3. Mass flow rate of the fluid entering the fluid element in x โ€“ direction = ๐œŒ๐‘ข ๐‘ฅโˆ†๐‘ฆโˆ†๐‘ง 4. Mass flow rate of the fluid leaving the fluid element in x โ€“ direction = ๐œŒ๐‘ข ๐‘ฅ+๐‘‘๐‘ฅโˆ†๐‘ฆโˆ†๐‘ง 5. Rate of Accumulation of momentum in the volume element = โˆ†๐‘ฅ โˆ†๐‘ฆ โˆ†๐‘ง ๐œ•๐œŒ ๐œ•๐‘ก Similarly taking mass balance in โ€˜yโ€™ and โ€˜zโ€™ directions and substituting in general Mass balance equation we will get
  • 5. ๐œŒ๐‘ข๐‘ฅ โˆ’ ๐œŒ๐‘ข๐‘ฅ+โˆ†๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง + ๐œŒ๐‘ฃ๐‘ฆ โˆ’ ๐œŒ๐‘ฃ๐‘ฆ+โˆ†๐‘ฆ โˆ†๐‘ฅโˆ†๐‘ง + ๐œŒ๐‘ค๐‘ง โˆ’ ๐œŒ๐‘ค๐‘ง+โˆ†๐‘ง โˆ†๐‘ฅโˆ†๐‘ฆ = โˆ†๐‘ฅ โˆ†๐‘ฆ โˆ†๐‘ง ๐œ•๐œŒ ๐œ•๐‘ก Dividing by ฮ”x ฮ”y ฮ”z gives ๐œŒ๐‘ข๐‘ฅ โˆ’ ๐œŒ๐‘ข๐‘ฅ+โˆ†๐‘ฅ โˆ†๐‘ฅ + ๐œŒ๐‘ฃ๐‘ฆ โˆ’ ๐œŒ๐‘ฆ๐‘ฆ+โˆ†๐‘ฆ โˆ†๐‘ฆ + ๐œŒ๐‘ค๐‘ง โˆ’ ๐œŒ๐‘ค๐‘ง+โˆ†๐‘ง โˆ†๐‘ง = ๐œ•๐œŒ ๐œ•๐‘ก Taking the limit of ฮ”x ฮ”y ฮ”z approach zero gives the differential equation for conservation of mass A. ๐œ•๐œŒ ๐œ•๐‘ก = โˆ’ ๐œ• ๐œŒ๐‘ข ๐œ•๐‘ฅ + ๐œ• ๐œŒ๐‘ฃ ๐œ•๐‘ฆ + ๐œ• ๐œŒ๐‘ค ๐œ•๐‘ง = โˆ’ ๐›ป. ๐œŒ๐‘ฝ ๐œ•๐œŒ ๐œ•๐‘ก + ๐‘ข ๐œ•๐œŒ ๐œ•๐‘ฅ + ๐‘ฃ ๐œ•๐œŒ ๐œ•๐‘ฆ + ๐‘ค ๐œ•๐œŒ ๐œ•๐‘ง = โˆ’ ๐œŒ ๐œ•๐‘ข ๐œ•๐‘ฅ + ๐œ•๐‘ฃ ๐œ•๐‘ฆ + ๐œ•๐‘ค ๐œ•๐‘ง
  • 6. For incompressible fluids ๐‘ซ๐† ๐‘ซ๐’• = โˆ’ ๐œŒ ๐œ•๐‘ข ๐œ•๐‘ฅ + ๐œ•๐‘ฃ ๐œ•๐‘ฆ + ๐œ•๐‘ค ๐œ•๐‘ง = โˆ’๐œŒ ๐›ป. ๐‘ฝ ๐›ป. ๐‘ฝ = ๐œ•๐‘ข ๐œ•๐‘ฅ + ๐œ•๐‘ฃ ๐œ•๐‘ฆ + ๐œ•๐‘ค ๐œ•๐‘ง = 0 Stream Line โ€ข Imaginary line drawn in a force field that tangent drawn at any point indicates the direction of velocity vector at that point and at that time. โ€ข Properties โ€ข There cannot be any movement of fluid across the streamlines โ€ข Streamlines never intersect nor two of them cross each other โ€ข Converging streamlines indicate the accelerating nature of fluid flow in a direction.
  • 7. โ€ข Tube of large or small cross section and of any convenient shape entirely bounded by streamlines. โ€ข No net flow through the walls of the stream tube. โ€ข Mass flowrate through differential c/s area dS is denoted by ๐‘‘๐‘š = ๐œŒ ๐‘ข ๐‘‘๐‘† โ€ข For conduit of cross sectional area S ๐‘š = ๐œŒ ๐‘† ๐‘ข ๐‘‘๐‘† โ€ข Average velocity of the stream (แนผ) flowing through the c/s area is given by แนผ = ๐‘š ๐œŒ๐‘† = 1 ๐‘† ๐‘† ๐‘ข ๐‘‘๐‘† แนผ = volumetric flow rate per unit c. s area of condiut แนผ = ๐‘ž ๐‘† q = volumetric flow rate Stream tube
  • 8. Mass Velocity ฯแนผ = ๐‘š ๐‘† = ๐บ โ‰ก ๐‘˜๐‘” ๐‘š2 ๐‘ ๐‘’๐‘ โ€ข Advantage of using G is that it is independent of T and P at a steady flow (m) through a constant cross section. โ€ข Mass velocity can also be designated as the mass flux which represents the quantity of material passing through unit area in unit time.
  • 9. Differential momentum balance: Equations of motion (Rate of Momentum Entering) โ€“ (Rate of Momentum leaving) + ( Sum of forces acting on the system ) = Rate of Momentum Accumulation 1. Rate at which x component of momentum enters face x = ๐œŒ๐‘ข๐‘ข ๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง 2. Rate at which x component of momentum leaves face x+dx = ๐œŒ๐‘ข๐‘ข ๐‘ฅ+โˆ†๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง 3. Rate at which x component of momentum enters face y = ๐œŒ๐‘ฃ๐‘ข ๐‘ฆ โˆ†๐‘ฅโˆ†๐‘ง Equations 1, 2 , 3 correspond to convective flow
  • 10. ๐œŒ๐‘ข๐‘ข ๐‘ฅ โˆ’ ๐œŒ๐‘ข๐‘ข ๐‘ฅ+โˆ†๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง + ๐œŒ๐‘ฃ๐‘ข ๐‘ฆ โˆ’ ๐œŒ๐‘ฃ๐‘ข ๐‘ฆ+โˆ†๐‘ฆ โˆ†๐‘ฅโˆ†๐‘ง + ๐œŒ๐‘ค๐‘ข ๐‘ง โˆ’ ๐œŒ๐‘ค๐‘ข ๐‘ง+โˆ†๐‘ง โˆ†๐‘ฅโˆ†๐‘ฆ + ฯ„๐‘ฅ๐‘ฅ ๐‘ฅ โˆ’ ฯ„๐‘ฅ๐‘ฅ ๐‘ฅ+โˆ†๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง + ฯ„๐‘ฆ๐‘ฅ ๐‘ฆ โˆ’ ฯ„๐‘ฆ๐‘ฅ ๐‘ฆ+โˆ†๐‘ฆ โˆ†๐‘ฅโˆ†๐‘ง + ฯ„๐‘ง๐‘ฅ ๐‘ง โˆ’ ฯ„๐‘ง๐‘ฅ ๐‘ง+โˆ†๐‘ง โˆ†๐‘ฆโˆ†๐‘ฅ + โˆ†๐‘ฆโˆ†๐‘ง ๐‘๐‘ฅ โˆ’ ๐‘๐‘ฅ+โˆ†๐‘ฅ + ๐œŒ๐‘”๐‘ฅโˆ†๐‘ฅโˆ†๐‘ฆโˆ†๐‘ง = ๐œ•(๐œŒ๐‘ข) ๐œ•๐‘ก โˆ†๐‘ฅโˆ†๐‘ฆโˆ†๐‘ง Dividing by ฮ”x ฮ”y ฮ”z gives and taking the corresponding limit of ฮ”x ฮ”y ฮ”z tend to zero Writing similar expressions for convective flow and mass transport of x momentum through all the six faces & substituting in Momentum balance equation 4. Rate at which x component of momentum enters face x by molecular transport = ฯ„๐‘ฅ๐‘ฅ ๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง 5. Rate at which x component of momentum leaves face x+dx by molecular transport = ฯ„๐‘ฅ๐‘ฅ ๐‘ฅ+โˆ†๐‘ฅ โˆ†๐‘ฆโˆ†๐‘ง 6. Rate at which x component of momentum enters face y by molecular transport = ฯ„๐‘ฆ๐‘ฅ ๐‘ฆ โˆ†๐‘ฆโˆ†๐‘ง
  • 11. A. ๐œ•๐œŒ๐‘ข ๐œ•๐‘ก = โˆ’ ๐œ• ๐œŒ๐‘ข๐‘ข ๐œ•๐‘ฅ + ๐œ• ๐œŒ๐‘ฃ๐‘ข ๐œ•๐‘ฆ + ๐œ• ๐œŒ๐‘ค๐‘ข ๐œ•๐‘ง โˆ’ ๐œ• ฯ„๐‘ฅ๐‘ฅ ๐œ•๐‘ฅ + ๐œ• ฯ„๐‘ฆ๐‘ฅ ๐œ•๐‘ฆ + ๐œ• ฯ„๐‘ง๐‘ฅ ๐œ•๐‘ง โˆ’ ๐œ•๐‘ ๐œ•๐‘ฅ + ๐œŒ๐‘”๐‘ฅ ๐† ๐‘ซ๐’– ๐‘ซ๐’• = โˆ’ ๐œ•๐‘ ๐œ•๐‘ฅ โˆ’ ๐œ• ฯ„๐‘ฅ๐‘ฅ ๐œ•๐‘ฅ + ๐œ• ฯ„๐‘ฆ๐‘ฅ ๐œ•๐‘ฆ + ๐œ• ฯ„๐‘ง๐‘ฅ ๐œ•๐‘ง + ๐œŒ๐‘”๐‘ฅ ๐† ๐‘ซ๐‘ฝ ๐‘ซ๐’• = โˆ’๐›ป๐‘ โˆ’ ๐›ป. ฯ„ + ๐œŒg Writing similar expressions for y and z components and adding them For fluid of const. density and viscosity B. ๐œŒ ๐œ•๐‘ข ๐œ•๐‘ก + ๐‘ข ๐œ•๐‘ข ๐œ•๐‘ฅ + ๐‘ฃ ๐œ•๐‘ข ๐œ•๐‘ฆ + ๐‘ค ๐œ•๐‘ข ๐œ•๐‘ง = ฮผ ๐œ•2๐‘ข ๐œ•๐‘ฅ2 + ๐œ•2๐‘ข ๐œ•๐‘ฆ2 + ๐œ•2๐‘ข ๐œ•๐‘ง2 โˆ’ ๐œ•๐‘ ๐œ•๐‘ฅ + ๐œŒ๐‘”๐‘ฅ C. ๐œŒ ๐œ•๐‘ฃ ๐œ•๐‘ก + ๐‘ข ๐œ•๐‘ฃ ๐œ•๐‘ฅ + ๐‘ฃ ๐œ•๐‘ฃ ๐œ•๐‘ฆ + ๐‘ค ๐œ•๐‘ฃ ๐œ•๐‘ง = ฮผ ๐œ•2 ๐‘ฃ ๐œ•๐‘ฅ2 + ๐œ•2 ๐‘ฃ ๐œ•๐‘ฆ2 + ๐œ•2 ๐‘ฃ ๐œ•๐‘ง2 โˆ’ ๐œ•๐‘ ๐œ•๐‘ฆ + ๐œŒ๐‘”๐‘ฆ
  • 12. C. ๐œŒ ๐œ•๐‘ค ๐œ•๐‘ก + ๐‘ข ๐œ•๐‘ค ๐œ•๐‘ฅ + ๐‘ฃ ๐œ•๐‘ค ๐œ•๐‘ฆ + ๐‘ค ๐œ•๐‘ค ๐œ•๐‘ง = ฮผ ๐œ•2๐‘ค ๐œ•๐‘ฅ2 + ๐œ•2๐‘ค ๐œ•๐‘ฆ2 + ๐œ•2๐‘ค ๐œ•๐‘ง2 โˆ’ ๐œ•๐‘ ๐œ•๐‘ง + ๐œŒ๐‘”๐‘ง ๐† ๐‘ซ๐‘ฝ ๐‘ซ๐’• = โˆ’๐›ป๐‘ + ฮผ ๐›ป2๐‘ฝ + ๐œŒg Navier โ€“ Stokes Equation Vector form of Navier โ€“ Stokes Equation Eulerโ€™s Equation ๐† ๐‘ซ๐‘ฝ ๐‘ซ๐’• = โˆ’๐›ป๐‘ + ๐œŒg Assumptions โ€ข Fluid is incompressible โ€ข Fluid is Inviscid (ideal) โ€ข Fluid has zero viscosity โ€ข Streamline and irrotational flow โ€ข Flow is steady
  • 13. Macroscopic Momentum Balances Mass flow rate = ; Velocity = u Momentum flow rate = Momentum carried by the fluid through c/s area dS in unit time Variation in instantaneous velocity (u) along the flow section changes the momentum flow rate estimations. Momentum rate, estimated even from average velocity brings errors in Momentum estimations Momentum correction factor is being used in momentum balance equation; estimated from principle of momentum flux.
  • 14. Momentum Correction factor For entire c/s for a constant density fluid
  • 15. Steady and Unsteady flow Flow parameters such as velocity, pressure, density does not change with time in a steady flow. ๐œ•๐‘‰ ๐œ•๐‘ก = 0; ๐œ•๐‘ ๐œ•๐‘ก = 0; ๐œ•๐œŒ ๐œ•๐‘ก = 0 For steady flow ๐œ•๐‘‰ ๐œ•๐‘ก โ‰  0; ๐œ•๐‘ ๐œ•๐‘ก โ‰  0; ๐œ•๐œŒ ๐œ•๐‘ก โ‰  0 For unsteady flow Uniform and non-uniform flow Type of flow in which Velocity, pressure, density does not with respect to spatial co-ordinates. ๐œ•๐‘‰ ๐œ•๐‘  = 0; ๐œ•๐‘ ๐œ•๐‘  = 0; ๐œ•๐œŒ ๐œ•๐‘  = 0 For uniform flow ๐œ•๐‘‰ ๐œ•๐‘  โ‰  0; ๐œ•๐‘ ๐œ•๐‘  โ‰  0; ๐œ•๐œŒ ๐œ•๐‘  โ‰  0 For non-uniform flow Steady uniform flow Steady non-uniform flow Unsteady uniform flow Unsteady non-uniform flow Ex: Flow through a channel at constant discharge Ex: Constant flow through expanding or diverging section Non practicable situation Flow in a pipe through a valve.
  • 16. Energy Equation for potential flow โ€“ Bernoulliโ€™s equation w/o friction ๐œŒ ๐œ•๐‘ข ๐œ•๐‘ก + ๐‘ข ๐œ•๐‘ข ๐œ•๐‘ฅ + ๐‘ฃ ๐œ•๐‘ข ๐œ•๐‘ฆ + ๐‘ค ๐œ•๐‘ข ๐œ•๐‘ง = โˆ’ ๐œ•๐‘ ๐œ•๐‘ฅ + ๐œŒ๐‘”๐‘ฅ For unidirectional flow component of velocity in y(v) and z(w) are zero Multiplying remaining terms with u gives ๐œŒ๐‘ข ๐œ•๐‘ข ๐œ•๐‘ก + ๐‘ข ๐œ•๐‘ข ๐œ•๐‘ฅ = โˆ’ ๐‘ข ๐œ•๐‘ ๐œ•๐‘ฅ + ๐œŒ๐‘ข๐‘”๐‘ฅ ๐œŒ ๐œ•( ๐‘ข2 2 ) ๐œ•๐‘ก + ๐‘ข ๐œ•( ๐‘ข2 2 ) ๐œ•๐‘ฅ = โˆ’ ๐‘ข ๐œ•๐‘ ๐œ•๐‘ฅ + ๐œŒ๐‘ข๐‘”๐‘ฅ Mechanical energy equation for unidirectional potential flow of fluids of constant density and when flow rate varies with time
  • 17. ๐‘”๐‘ฅ = โˆ’๐‘” ๐‘๐‘œ๐‘ โˆ… ๐‘ = ๐‘๐‘Ž + ๐‘ฅ ๐‘๐‘œ๐‘ โˆ… ๐‘‘๐‘ = ๐‘๐‘œ๐‘ โˆ… ๐‘‘๐‘ฅ cos โˆ… = ๐‘‘๐‘ ๐‘‘๐‘ฅ Steady flow ๐œŒ ๐‘‘( ๐‘ข2 2 ) ๐‘‘๐‘ฅ + ๐‘ข ๐‘‘๐‘ ๐‘‘๐‘ฅ + ๐œŒ๐‘ข๐‘” ๐‘๐‘œ๐‘ โˆ… = 0 ๐‘‘( ๐‘ข2 2 ) ๐‘‘๐‘ฅ + 1 ๐œŒ ๐‘‘๐‘ ๐‘‘๐‘ฅ + ๐‘” ๐‘‘๐‘ง ๐‘‘๐‘ฅ = 0 Integrating the equation between two stations โ€˜aโ€™ and โ€˜bโ€™
  • 18. ๐‘๐‘Ž ๐œŒ + ๐‘”๐‘๐‘Ž + ๐‘ข2 ๐‘Ž 2 = ๐‘๐‘ ๐œŒ + ๐‘”๐‘๐‘ + ๐‘ข2 ๐‘ 2 Bernoulliโ€™s equation without friction ๐‘ ๐œŒ = ๐‘ ๐‘š2 ๐‘˜๐‘” ๐‘š3 = ๐‘ ๐‘š ๐‘˜๐‘” ๐‘ข2 2 = ๐‘š2 ๐‘ 2 = ๐‘š2 ๐‘ 2 ๐‘˜๐‘” ๐‘˜๐‘” = ๐‘๐‘š ๐‘˜๐‘” ๐‘”๐‘ = ๐‘š ๐‘š ๐‘ 2 = ๐‘š2 ๐‘ 2 ๐‘˜๐‘” ๐‘˜๐‘” = ๐‘๐‘š ๐‘˜๐‘” Total energy per unit mass of fluid at every point in a flow is constant ๐‘๐‘Ž ๐œŒ๐‘” + ๐‘๐‘Ž + ๐‘ข2 ๐‘Ž 2๐‘” = ๐‘๐‘ ๐œŒ๐‘” + ๐‘๐‘ + ๐‘ข2 ๐‘ 2๐‘” ๐‘ ๐œŒ๐‘” = ๐‘ ๐‘š2 ๐‘˜๐‘” ๐‘š3 ๐‘š ๐‘ 2 = ๐‘ ๐‘˜๐‘” ๐‘ 2 = ๐‘๐‘š ๐‘˜๐‘”๐‘š ๐‘ 2 = ๐‘ ๐‘š ๐‘ ๐‘ข2 2๐‘” = ๐‘š2 ๐‘ 2 ๐‘š ๐‘ 2 = ๐‘š = ๐‘๐‘š ๐‘ ๐‘ = m = ๐‘๐‘š ๐‘ Total energy per unit weight of fluid at every point in a flow is constant ๐‘๐‘Ž + ๐œŒ๐‘”๐‘๐‘Ž + ๐œŒ๐‘ข2 ๐‘Ž 2 = ๐‘๐‘ + ๐œŒ๐‘”๐‘๐‘ + ๐œŒ๐‘ข2 ๐‘ 2 ๐‘ = ๐‘ ๐‘š2 = ๐‘ ๐‘š ๐‘š2๐‘š = ๐‘ ๐‘š ๐‘š3 ๐œŒ๐‘ข2 2 = ๐‘˜๐‘” ๐‘š2 ๐‘š3๐‘ 2 = ๐‘ ๐‘š ๐‘š3 ๐œŒ๐‘”๐‘ = ๐‘˜๐‘” ๐‘š ๐‘š ๐‘š3๐‘ 2 = ๐‘ ๐‘š ๐‘š3 Total energy per unit volume of fluid at every point in a flow is constant
  • 19. Bernoulliโ€™s equation: Corrections for effects of solid boundaries โ€ข Problems in engineering involve streams which are influenced by solid boundary โ€ข Flow of fluid through a pipe where entire stream is in boundary layer flow โ€ข Practical Situation involves correction terms in Bernoulliโ€™s equation for 1. Kinetic energy 2. Existence of fluid friction
  • 20. Kinetic energy Element of c/s area ds Mass flow rate through the c/s = ฯu ds Energy flow rate through c/s area ๐‘‘ร‹๐‘˜ = ๐œŒ๐‘ข ๐‘‘๐‘  โˆ— ๐‘ข2 2 Total rate of flow of Kinetic Energy through c/s S is ร‹๐‘˜ = ๐œŒ 2 โˆ— ๐‘  ๐‘  ๐‘ข3๐‘‘๐‘† Term which replaces u2/2 in Bernoulliโ€™s equation is ร‹๐‘˜ ๐‘š = ๐‘  ๐‘  ๐‘ข3 ๐‘‘๐‘† 2 ๐‘  ๐‘  ๐‘ข ๐‘‘๐‘† = ๐‘  ๐‘  ๐‘ข3 ๐‘‘๐‘† 2 แนผ๐‘†
  • 21. K.E correction factor โˆ แนผ2 2 = ร‹๐‘˜ ๐‘š = ๐‘  ๐‘ข3 ๐‘‘๐‘† 2 แนผ๐‘† โˆ = ๐‘  ๐‘ข3 ๐‘‘๐‘† แนผ3๐‘† Correction factor for fluid friction ๐‘๐‘Ž ๐œŒ + ๐‘”๐‘๐‘Ž + ๐›ผ๐‘Ž๐‘‰2 ๐‘Ž 2 = ๐‘๐‘ ๐œŒ + ๐‘”๐‘๐‘ + ๐›ผ๐‘๐‘‰2 ๐‘ 2 + โ„Ž๐‘“ โ€ข Whenever flow occurs friction is generated and hf denote the friction generated per unit mass of fluid (conversion of mechanical energy into heat) that occurs when fluid flows between two stations) โ€ข hf is positive value; it will be zero for potential flow โ€ข Skin friction โ€“ friction generated in unseparated boundary layers โ€ข Form friction โ€“ boundary layers separate and form wakes, additional energy dissipation appears in the wake
  • 22. Pump work in Bernoulli Equation ๐‘Š ๐‘ โˆ’ โ„Ž๐‘“๐‘ = ฮท๐‘Š ๐‘ ๐‘Š ๐‘- work done by pump per unit mass of fluid โ„Ž๐‘“๐‘- friction generated in the pump per unit mass of fluid ฮท < 1 ๐‘๐‘Ž ๐œŒ + ๐‘”๐‘๐‘Ž + ๐›ผ๐‘Ž๐‘‰2 ๐‘Ž 2 + ฮท๐‘Š ๐‘ = ๐‘๐‘ ๐œŒ + ๐‘”๐‘๐‘ + ๐›ผ๐‘๐‘‰2 ๐‘ 2 + โ„Ž๐‘“