SlideShare uma empresa Scribd logo
1 de 62
Baixar para ler offline
The complexity of inversion of explicit Goldreich’s
         function by DPLL algorithms

             Dmitry Itsykson, Dmitry Sokolov

         Steklov Institute of Mathematics at St. Petersburg,
                         Academic University


                CSR 2011, Saint-Petersburg
                        June 15




                       Sokolov D.   1/9 | Inversion of Goldreich’s function
Goldreich’s function
  f   :   f0; 1gn 3 f0; 1gn




                              Sokolov D.   2/9 | Inversion of Goldreich’s function
Goldreich’s function
  f   :   f0; 1gn 3 f0; 1gn
 x1
 x2
 x3
      .       .
      .       .
      .       .
 xn
      X      Y




                              Sokolov D.   2/9 | Inversion of Goldreich’s function
Goldreich’s function
  f   :   f0; 1gn 3 f0; 1gn
 x1
 x2               P (xi1 ; xi2 ; : : : ; xid )
 x3
      .       .
      .       .
      .       .
 xn
      X      Y




                                     Sokolov D.   2/9 | Inversion of Goldreich’s function
Goldreich’s function
  f   :   f0; 1gn 3 f0; 1gn
 x1
 x2               P (xi1 ; xi2 ; : : : ; xid )
 x3                                                      G (X ; Y ; E ) is a bipartite
      .       .                                          graph;
      .       .
      .       .
 xn
      X      Y




                                     Sokolov D.   2/9 | Inversion of Goldreich’s function
Goldreich’s function
  f   :   f0; 1gn 3 f0; 1gn
 x1
 x2               P (xi1 ; xi2 ; : : : ; xid )
 x3                                                      G (X ; Y ; E ) is a bipartite
      .       .                                          graph;
      .
      .
              .
              .                                          Vy P Y        deg (y ) = d
 xn
      X      Y




                                     Sokolov D.   2/9 | Inversion of Goldreich’s function
Goldreich’s function
  f   :   f0; 1gn 3 f0; 1gn
 x1
 x2               P (xi1 ; xi2 ; : : : ; xid )
 x3                                                      G (X ; Y ; E ) is a bipartite
      .       .                                          graph;
      .
      .
              .
              .                                          Vy P Y        deg (y ) = d
 xn                                                      d is a constant.
      X      Y




                                     Sokolov D.   2/9 | Inversion of Goldreich’s function
Goldreich’s function
  f   :   f0; 1gn 3 f0; 1gn
 x1
 x2               P (xi1 ; xi2 ; : : : ; xid )
 x3                                                      G (X ; Y ; E ) is a bipartite
      .       .                                          graph;
      .
      .
              .
              .                                          Vy P Y        deg (y ) = d
 xn                                                      d is a constant.
   X     Y
  Goldreich’s conjecture:
       P is a random predicate;
       G is an expander;
  then function f is a one-way.




                                     Sokolov D.   2/9 | Inversion of Goldreich’s function
Goldreich’s function
  f   :   f0; 1gn 3 f0; 1gn
 x1
 x2               P (xi1 ; xi2 ; : : : ; xid )
 x3                                                      G (X ; Y ; E ) is a bipartite
      .       .                                          graph;
      .
      .
              .
              .                                          Vy P Y        deg (y ) = d
 xn                                                      d is a constant.
   X     Y
  Goldreich’s conjecture:
       P is a random predicate;
       G is an expander;
  then function f is a one-way.
           f is computed by constant depth circuit;




                                     Sokolov D.   2/9 | Inversion of Goldreich’s function
Goldreich’s function
  f   :   f0; 1gn 3 f0; 1gn
 x1
 x2               P (xi1 ; xi2 ; : : : ; xid )
 x3                                                      G (X ; Y ; E ) is a bipartite
      .       .                                          graph;
      .
      .
              .
              .                                          Vy P Y        deg (y ) = d
 xn                                                      d is a constant.
   X     Y
  Goldreich’s conjecture:
       P is a random predicate;
       G is an expander;
  then function f is a one-way.
           f is computed by constant depth circuit;
           [Applebaum, Ishai, Kushilevitz 2006] If one-way functions exist
           then there is a one-way function that can be computed by
           constant depth circuit.
                                     Sokolov D.   2/9 | Inversion of Goldreich’s function
DPLL algorithms

                                     
                xi   :=    c                      xi   :=   1 c
               H                                           HH
  xj   := c1          xj   :=   1   c1     xk   := c2              xk     :=   1   c2
         .
         .                 .
                           .                       .
                                                   .                  .
                                                                      .
         .                 .                       .                  .




                                  Sokolov D.     3/9 | Inversion of Goldreich’s function
DPLL algorithms

                                     
                xi   :=    c                      xi   :=   1 c
               H                                           HH
  xj   := c1          xj   :=   1   c1     xk   := c2              xk     :=   1   c2
         .
         .                 .
                           .                       .
                                                   .                  .
                                                                      .
         .                 .                       .                  .




                                  Sokolov D.     3/9 | Inversion of Goldreich’s function
DPLL algorithms

                                     
                xi   :=    c                      xi   :=   1 c
               H                                           HH
  xj   := c1          xj   :=   1   c1     xk   := c2              xk     :=   1   c2
         .
         .                 .
                           .                       .
                                                   .                  .
                                                                      .
         .                 .                       .                  .




                                  Sokolov D.     3/9 | Inversion of Goldreich’s function
DPLL algorithms

                                     
                xi   :=    c                      xi   :=   1 c
               H                                           HH
  xj   := c1          xj   :=   1   c1     xk   := c2              xk     :=   1   c2
         .
         .                 .
                           .                       .
                                                   .                  .
                                                                      .
         .                 .                       .                  .




                                  Sokolov D.     3/9 | Inversion of Goldreich’s function
DPLL algorithms

                                     
                xi   :=    c                      xi   :=   1 c
               H                                           HH
  xj   := c1          xj   :=   1   c1     xk   := c2              xk     :=   1   c2
         .
         .                 .
                           .                       .
                                                   .                  .
                                                                      .
         .                 .                       .                  .




                                  Sokolov D.     3/9 | Inversion of Goldreich’s function
DPLL algorithms

                                     
                xi   :=    c                      xi   :=   1 c
               H                                           HH
  xj   := c1          xj   :=   1   c1     xk   := c2              xk     :=   1   c2
         .
         .                 .
                           .                       .
                                                   .                  .
                                                                      .
         .                 .                       .                  .

        Heuristic A chooses a variable for splitting.




                                  Sokolov D.     3/9 | Inversion of Goldreich’s function
DPLL algorithms

                                     
                xi   :=    c                      xi   :=   1 c
               H                                           HH
  xj   := c1          xj   :=   1   c1     xk   := c2              xk     :=   1   c2
         .
         .                 .
                           .                       .
                                                   .                  .
                                                                      .
         .                 .                       .                  .

        Heuristic A chooses a variable for splitting.
        Heuristic B chooses first value.




                                  Sokolov D.     3/9 | Inversion of Goldreich’s function
DPLL algorithms

                                       
                  xi   :=    c                      xi   :=   1 c
                 H                                           HH
  xj   := c1            xj   :=   1   c1     xk   := c2              xk     :=   1   c2
         .
         .                   .
                             .                       .
                                                     .                  .
                                                                        .
         .                   .                       .                  .

        Heuristic A chooses a variable for splitting.
        Heuristic B chooses first value.
        Simplification rules:
               unit clause elimination;
               pure literal rule.



                                    Sokolov D.     3/9 | Inversion of Goldreich’s function
Lower bounds for DPLL algorithms




                    Sokolov D.   4/9 | Inversion of Goldreich’s function
Lower bounds for DPLL algorithms

     Unsatisfiable formulas
         Exponential lower bounds for resolution refutations of
         unsatisfiable formulas translate to backtracking algorithms.
         [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000].




                         Sokolov D.   4/9 | Inversion of Goldreich’s function
Lower bounds for DPLL algorithms

     Unsatisfiable formulas
         Exponential lower bounds for resolution refutations of
         unsatisfiable formulas translate to backtracking algorithms.
         [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000].
     Satisfiable formulas
         If P = NP then there are no superpolynomial lower bounds for
         backtracking algorithms since heuristic B may choose correct
         value.




                           Sokolov D.   4/9 | Inversion of Goldreich’s function
Lower bounds for DPLL algorithms

     Unsatisfiable formulas
         Exponential lower bounds for resolution refutations of
         unsatisfiable formulas translate to backtracking algorithms.
         [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000].
     Satisfiable formulas
         If P = NP then there are no superpolynomial lower bounds for
         backtracking algorithms since heuristic B may choose correct
         value.
         Inverting of functions corresponds to satisfiable formulas.




                           Sokolov D.   4/9 | Inversion of Goldreich’s function
Lower bounds for DPLL algorithms

     Unsatisfiable formulas
         Exponential lower bounds for resolution refutations of
         unsatisfiable formulas translate to backtracking algorithms.
         [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000].
     Satisfiable formulas
         If P = NP then there are no superpolynomial lower bounds for
         backtracking algorithms since heuristic B may choose correct
         value.
         Inverting of functions corresponds to satisfiable formulas.
         [Nikolenko 2002], [Achilioptas, Beame, Molloy 2003-2004]
         exponential lower bound for specific backtracking algorithms.
         [Alekhnovich, Hirsch, Itsykson 2005] Exponential lower bound
         for myopic and drunken algorithms.




                           Sokolov D.   4/9 | Inversion of Goldreich’s function
Lower bounds for DPLL algorithms

     Unsatisfiable formulas
         Exponential lower bounds for resolution refutations of
         unsatisfiable formulas translate to backtracking algorithms.
         [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000].
     Satisfiable formulas
         If P = NP then there are no superpolynomial lower bounds for
         backtracking algorithms since heuristic B may choose correct
         value.
         Inverting of functions corresponds to satisfiable formulas.
         [Nikolenko 2002], [Achilioptas, Beame, Molloy 2003-2004]
         exponential lower bound for specific backtracking algorithms.
         [Alekhnovich, Hirsch, Itsykson 2005] Exponential lower bound
         for myopic and drunken algorithms.
         Exponential lower bound for inversion of Goldreich’s function
         by myopic [J. Cook et al. 2009] and drunken [Itsykson 2010]
         algorithms.


                           Sokolov D.   4/9 | Inversion of Goldreich’s function
Drunken and myopic algorithms




                    Sokolov D.   5/9 | Inversion of Goldreich’s function
Drunken and myopic algorithms

  Definition
  Drunken algorithms:
      A: any;
      B: random 50 : 50.




                           Sokolov D.   5/9 | Inversion of Goldreich’s function
Drunken and myopic algorithms

  Definition
  Drunken algorithms:
      A: any;
      B: random 50 : 50.

  Definition
  Myopic heuristic:




                           Sokolov D.   5/9 | Inversion of Goldreich’s function
Drunken and myopic algorithms

  Definition
  Drunken algorithms:
      A: any;
      B: random 50 : 50.

  Definition
  Myopic heuristic:
      sees structure of the formula;




                           Sokolov D.   5/9 | Inversion of Goldreich’s function
Drunken and myopic algorithms

  Definition
  Drunken algorithms:
      A: any;
      B: random 50 : 50.

  Definition
  Myopic heuristic:
      sees structure of the formula;
      doesn’t see negation signs;




                           Sokolov D.   5/9 | Inversion of Goldreich’s function
Drunken and myopic algorithms

  Definition
  Drunken algorithms:
         A: any;
         B: random 50 : 50.

  Definition
  Myopic heuristic:
         sees structure of the formula;
         doesn’t see negation signs;
         requests negations in K    =   n1  clause.
   (x1 • x3 • x5)
   (x2 • x3)
   (x2 • x4 • x5 )
   (x1 • x4 • x6 )

                              Sokolov D.    5/9 | Inversion of Goldreich’s function
Drunken and myopic algorithms

  Definition
  Drunken algorithms:
         A: any;
         B: random 50 : 50.

  Definition
  Myopic heuristic:
         sees structure of the formula;
         doesn’t see negation signs;
         requests negations in K    =   n1  clause.
   (x1 • x3 • x5)
   (x2 • x3)
   (x2 • x4 • x5 )
   (x1 • x4 • x6 )

                              Sokolov D.    5/9 | Inversion of Goldreich’s function
Drunken and myopic algorithms

  Definition
  Drunken algorithms:
         A: any;
         B: random 50 : 50.

  Definition
  Myopic heuristic:
         sees structure of the formula;
         doesn’t see negation signs;
         requests negations in K    =   n1  clause.
   (x1 • x3 • x5)
   (x2 • x3)
   (x2 • x4 • x5 )
   (x1 • x4 • x6 )

                              Sokolov D.    5/9 | Inversion of Goldreich’s function
Drunken and myopic algorithms

  Definition
  Drunken algorithms:
         A: any;
         B: random 50 : 50.

  Definition
  Myopic heuristic:
         sees structure of the formula;
         doesn’t see negation signs;
         requests negations in K     =   n1  clause.
   (x1 • x3 • x5)        (x1 • x3 • x5)
   (x2 • x3)       A     (x2 • Xx3)
   (x2 • x4 • x5 )       (x2 • x4 • x5 )
   (x1 • x4 • x6 )       (x1 • Xx4 • x6 )

                               Sokolov D.    5/9 | Inversion of Goldreich’s function
Myopic algorithms




                    Sokolov D.   6/9 | Inversion of Goldreich’s function
Myopic algorithms

  Definition
  Myopic algorithm:
      A; B are myopic heuristics.




                          Sokolov D.   6/9 | Inversion of Goldreich’s function
Myopic algorithms

  Definition
  Myopic algorithm:
      A; B are myopic heuristics.

      [Alekhnovich, Hirsch, Itsykson 2005]
           P is a linear predicate.
           G is a random graph.




                            Sokolov D.   6/9 | Inversion of Goldreich’s function
Myopic algorithms

  Definition
  Myopic algorithm:
      A; B are myopic heuristics.

      [Alekhnovich, Hirsch, Itsykson 2005]
           P is a linear predicate.
           G is a random graph.
      [J. Cook, Etesami, Miller, Trevisan 2009]




                            Sokolov D.   6/9 | Inversion of Goldreich’s function
Myopic algorithms

  Definition
  Myopic algorithm:
      A; B are myopic heuristics.

      [Alekhnovich, Hirsch, Itsykson 2005]
           P is a linear predicate.
           G is a random graph.
      [J. Cook, Etesami, Miller, Trevisan 2009]
           P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd .
           In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ).




                              Sokolov D.    6/9 | Inversion of Goldreich’s function
Myopic algorithms

  Definition
  Myopic algorithm:
      A; B are myopic heuristics.

      [Alekhnovich, Hirsch, Itsykson 2005]
           P is a linear predicate.
           G is a random graph.
      [J. Cook, Etesami, Miller, Trevisan 2009]
           P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd .
           In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ).
     Disadvantages:




                              Sokolov D.    6/9 | Inversion of Goldreich’s function
Myopic algorithms

  Definition
  Myopic algorithm:
      A; B are myopic heuristics.

      [Alekhnovich, Hirsch, Itsykson 2005]
           P is a linear predicate.
           G is a random graph.
      [J. Cook, Etesami, Miller, Trevisan 2009]
           P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd .
           In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ).
     Disadvantages:
          G is a random graph.




                              Sokolov D.    6/9 | Inversion of Goldreich’s function
Myopic algorithms

  Definition
  Myopic algorithm:
      A; B are myopic heuristics.

      [Alekhnovich, Hirsch, Itsykson 2005]
           P is a linear predicate.
           G is a random graph.
      [J. Cook, Etesami, Miller, Trevisan 2009]
           P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd .
           In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ).
     Disadvantages:
          G is a random graph.
          K is a constant.



                              Sokolov D.    6/9 | Inversion of Goldreich’s function
Myopic algorithms

  Definition
  Myopic algorithm:
      A; B are myopic heuristics.

      [Alekhnovich, Hirsch, Itsykson 2005]
           P is a linear predicate.
           G is a random graph.
      [J. Cook, Etesami, Miller, Trevisan 2009]
           P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd .
           In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ).
     Disadvantages:                             In our work:
          G is a random graph.
          K is a constant.
          Too complicated
          proof.
                              Sokolov D.    6/9 | Inversion of Goldreich’s function
Myopic algorithms

  Definition
  Myopic algorithm:
      A; B are myopic heuristics.

      [Alekhnovich, Hirsch, Itsykson 2005]
           P is a linear predicate.
           G is a random graph.
      [J. Cook, Etesami, Miller, Trevisan 2009]
           P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd .
           In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ).
     Disadvantages:                             In our work:
          G is a random graph.                          G is based on
                                                        expander.
          K is a constant.
          Too complicated
          proof.
                              Sokolov D.    6/9 | Inversion of Goldreich’s function
Myopic algorithms

  Definition
  Myopic algorithm:
      A; B are myopic heuristics.

      [Alekhnovich, Hirsch, Itsykson 2005]
           P is a linear predicate.
           G is a random graph.
      [J. Cook, Etesami, Miller, Trevisan 2009]
           P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd .
           In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ).
     Disadvantages:                             In our work:
          G is a random graph.                          G is based on
                                                        expander.
          K is a constant.
                                                        K   =   n1  .
          Too complicated
          proof.
                              Sokolov D.    6/9 | Inversion of Goldreich’s function
Myopic algorithms

  Definition
  Myopic algorithm:
      A; B are myopic heuristics.

      [Alekhnovich, Hirsch, Itsykson 2005]
           P is a linear predicate.
           G is a random graph.
      [J. Cook, Etesami, Miller, Trevisan 2009]
           P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd .
           In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ).
     Disadvantages:                             In our work:
          G is a random graph.                          G is based on
                                                        expander.
          K is a constant.
                                                        K   =   n1  .
          Too complicated
          proof.                                        “Simple” proof.
                              Sokolov D.    6/9 | Inversion of Goldreich’s function
Our results

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd ), Q is an
  arbitrary, k  d =4.




                                 Sokolov D.   7/9 | Inversion of Goldreich’s function
Our results

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd ), Q is an
  arbitrary, k  d =4.
  Theorem
  There exists an explicit graph G such that every myopic or drunken
                                    
(1)
  DPLL algorithm makes at least 2n       steps on “f (x ) = f (a)” for
  almost all a P f0; 1g n.




                                 Sokolov D.   7/9 | Inversion of Goldreich’s function
Our results

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd ), Q is an
  arbitrary, k  d =4.
  Theorem
  There exists an explicit graph G such that every myopic or drunken
                                    
(1)
  DPLL algorithm makes at least 2n       steps on “f (x ) = f (a)” for
  almost all a P f0; 1g n.



        G is based on expander instead of random graph.




                                 Sokolov D.   7/9 | Inversion of Goldreich’s function
Our results

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd ), Q is an
  arbitrary, k  d =4.
  Theorem
  There exists an explicit graph G such that every myopic or drunken
                                    
(1)
  DPLL algorithm makes at least 2n       steps on “f (x ) = f (a)” for
  almost all a P f0; 1g n.



        G is based on expander instead of random graph.
        For drunken algorithms the proof follows [Itsykson, CSR-2010]




                                 Sokolov D.   7/9 | Inversion of Goldreich’s function
Our results

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd ), Q is an
  arbitrary, k  d =4.
  Theorem
  There exists an explicit graph G such that every myopic or drunken
                                    
(1)
  DPLL algorithm makes at least 2n       steps on “f (x ) = f (a)” for
  almost all a P f0; 1g n.



        G is based on expander instead of random graph.
        For drunken algorithms the proof follows [Itsykson, CSR-2010]
        For myopic
              we simplify previous proof and
              K = n1 



                                 Sokolov D.   7/9 | Inversion of Goldreich’s function
Graph construction

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd )




                                Sokolov D.    8/9 | Inversion of Goldreich’s function
Graph construction

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd )



     G

         G is an expander;




                                Sokolov D.    8/9 | Inversion of Goldreich’s function
Graph construction

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd )

                  +



     G

         G is an expander;




                                Sokolov D.    8/9 | Inversion of Goldreich’s function
Graph construction

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd )

                  +



     G                          T

         G is an expander;
         G + T has full rank. Vy       P Y  T;        deg (y ) = 1;




                                Sokolov D.    8/9 | Inversion of Goldreich’s function
Graph construction

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd )

                  +                           +



     G                          T

         G is an expander;
         G + T has full rank. Vy       P Y  T;        deg (y ) = 1;
             G   +T   is an expander.




                                Sokolov D.    8/9 | Inversion of Goldreich’s function
Graph construction

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd )

                  +                            +

                                                        n
     G                          T                                R

         G is an expander;
         G + T has full rank. Vy       P Y  T;        deg (y ) = 1;
             G   +T   is an expander.
         R contains nonlinear edges.         jfx j x P X ;     deg (x ) T= 0gj           n .
             G   +T +R     is an expander.




                                Sokolov D.     8/9 | Inversion of Goldreich’s function
Graph construction

  P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k   ¨ Q (xd  k +1; : : : ; xd )

                  +                            +

                                                        n
     G                          T                                R

         G is an expander;
         G + T has full rank. Vy       P Y  T;        deg (y ) = 1;
             G   +T   is an expander.
         R contains nonlinear edges.         jfx j x P X ;     deg (x ) T= 0gj           n .
             G + T + R is an expander.
                                              
             Size of preimages no more than 2n .
                                                          
  We can invert fG +T +R ;P in time poly (n)2n , but this is still much!

                                Sokolov D.     8/9 | Inversion of Goldreich’s function
Plan of the proof




                    Sokolov D.   9/9 | Inversion of Goldreich’s function
Plan of the proof



      Lower bounds for unsatisfiable formulas.




                         Sokolov D.   9/9 | Inversion of Goldreich’s function
Plan of the proof



      Lower bounds for unsatisfiable formulas.
          G is an expander.
          P is almost linear.
          Lower bounds for resolution proofs




                          Sokolov D.   9/9 | Inversion of Goldreich’s function
Plan of the proof



      Lower bounds for unsatisfiable formulas.
          G is an expander.
          P is almost linear.
          Lower bounds for resolution proofs
      With probability 1   2 
(n) after several steps current formula
      becomes unsatisfiable.




                          Sokolov D.   9/9 | Inversion of Goldreich’s function
Plan of the proof



      Lower bounds for unsatisfiable formulas.
          G is an expander.
          P is almost linear.
          Lower bounds for resolution proofs
      With probability 1   2 
(n) after several steps current formula
      becomes unsatisfiable.
          G is an expander.
          f is almost bijection.
          Myopic algorithm can’t recognize different absolute terms.




                          Sokolov D.   9/9 | Inversion of Goldreich’s function

Mais conteúdo relacionado

Mais de CSR2011

Csr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigorievCsr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigoriev
CSR2011
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoff
CSR2011
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoff
CSR2011
 
Csr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudanCsr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudan
CSR2011
 
Csr2011 june18 15_45_avron
Csr2011 june18 15_45_avronCsr2011 june18 15_45_avron
Csr2011 june18 15_45_avron
CSR2011
 
Csr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyenCsr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyen
CSR2011
 
Csr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskinCsr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskin
CSR2011
 
Csr2011 june18 11_30_remila
Csr2011 june18 11_30_remilaCsr2011 june18 11_30_remila
Csr2011 june18 11_30_remila
CSR2011
 
Csr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanovCsr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanov
CSR2011
 
Csr2011 june17 16_30_blin
Csr2011 june17 16_30_blinCsr2011 june17 16_30_blin
Csr2011 june17 16_30_blin
CSR2011
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
CSR2011
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
CSR2011
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morin
CSR2011
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyi
CSR2011
 
Csr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCsr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonati
CSR2011
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatov
CSR2011
 
Csr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminskiCsr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminski
CSR2011
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatov
CSR2011
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morin
CSR2011
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyi
CSR2011
 

Mais de CSR2011 (20)

Csr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigorievCsr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigoriev
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoff
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoff
 
Csr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudanCsr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudan
 
Csr2011 june18 15_45_avron
Csr2011 june18 15_45_avronCsr2011 june18 15_45_avron
Csr2011 june18 15_45_avron
 
Csr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyenCsr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyen
 
Csr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskinCsr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskin
 
Csr2011 june18 11_30_remila
Csr2011 june18 11_30_remilaCsr2011 june18 11_30_remila
Csr2011 june18 11_30_remila
 
Csr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanovCsr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanov
 
Csr2011 june17 16_30_blin
Csr2011 june17 16_30_blinCsr2011 june17 16_30_blin
Csr2011 june17 16_30_blin
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morin
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyi
 
Csr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCsr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonati
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatov
 
Csr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminskiCsr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminski
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatov
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morin
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyi
 

Csr2011 june15 11_30_sokolov

  • 1. The complexity of inversion of explicit Goldreich’s function by DPLL algorithms Dmitry Itsykson, Dmitry Sokolov Steklov Institute of Mathematics at St. Petersburg, Academic University CSR 2011, Saint-Petersburg June 15 Sokolov D. 1/9 | Inversion of Goldreich’s function
  • 2. Goldreich’s function f : f0; 1gn 3 f0; 1gn Sokolov D. 2/9 | Inversion of Goldreich’s function
  • 3. Goldreich’s function f : f0; 1gn 3 f0; 1gn x1 x2 x3 . . . . . . xn X Y Sokolov D. 2/9 | Inversion of Goldreich’s function
  • 4. Goldreich’s function f : f0; 1gn 3 f0; 1gn x1 x2 P (xi1 ; xi2 ; : : : ; xid ) x3 . . . . . . xn X Y Sokolov D. 2/9 | Inversion of Goldreich’s function
  • 5. Goldreich’s function f : f0; 1gn 3 f0; 1gn x1 x2 P (xi1 ; xi2 ; : : : ; xid ) x3 G (X ; Y ; E ) is a bipartite . . graph; . . . . xn X Y Sokolov D. 2/9 | Inversion of Goldreich’s function
  • 6. Goldreich’s function f : f0; 1gn 3 f0; 1gn x1 x2 P (xi1 ; xi2 ; : : : ; xid ) x3 G (X ; Y ; E ) is a bipartite . . graph; . . . . Vy P Y deg (y ) = d xn X Y Sokolov D. 2/9 | Inversion of Goldreich’s function
  • 7. Goldreich’s function f : f0; 1gn 3 f0; 1gn x1 x2 P (xi1 ; xi2 ; : : : ; xid ) x3 G (X ; Y ; E ) is a bipartite . . graph; . . . . Vy P Y deg (y ) = d xn d is a constant. X Y Sokolov D. 2/9 | Inversion of Goldreich’s function
  • 8. Goldreich’s function f : f0; 1gn 3 f0; 1gn x1 x2 P (xi1 ; xi2 ; : : : ; xid ) x3 G (X ; Y ; E ) is a bipartite . . graph; . . . . Vy P Y deg (y ) = d xn d is a constant. X Y Goldreich’s conjecture: P is a random predicate; G is an expander; then function f is a one-way. Sokolov D. 2/9 | Inversion of Goldreich’s function
  • 9. Goldreich’s function f : f0; 1gn 3 f0; 1gn x1 x2 P (xi1 ; xi2 ; : : : ; xid ) x3 G (X ; Y ; E ) is a bipartite . . graph; . . . . Vy P Y deg (y ) = d xn d is a constant. X Y Goldreich’s conjecture: P is a random predicate; G is an expander; then function f is a one-way. f is computed by constant depth circuit; Sokolov D. 2/9 | Inversion of Goldreich’s function
  • 10. Goldreich’s function f : f0; 1gn 3 f0; 1gn x1 x2 P (xi1 ; xi2 ; : : : ; xid ) x3 G (X ; Y ; E ) is a bipartite . . graph; . . . . Vy P Y deg (y ) = d xn d is a constant. X Y Goldreich’s conjecture: P is a random predicate; G is an expander; then function f is a one-way. f is computed by constant depth circuit; [Applebaum, Ishai, Kushilevitz 2006] If one-way functions exist then there is a one-way function that can be computed by constant depth circuit. Sokolov D. 2/9 | Inversion of Goldreich’s function
  • 11. DPLL algorithms xi := c xi := 1 c H HH xj := c1 xj := 1   c1 xk := c2 xk := 1   c2 . . . . . . . . . . . . Sokolov D. 3/9 | Inversion of Goldreich’s function
  • 12. DPLL algorithms xi := c xi := 1 c H HH xj := c1 xj := 1   c1 xk := c2 xk := 1   c2 . . . . . . . . . . . . Sokolov D. 3/9 | Inversion of Goldreich’s function
  • 13. DPLL algorithms xi := c xi := 1 c H HH xj := c1 xj := 1   c1 xk := c2 xk := 1   c2 . . . . . . . . . . . . Sokolov D. 3/9 | Inversion of Goldreich’s function
  • 14. DPLL algorithms xi := c xi := 1 c H HH xj := c1 xj := 1   c1 xk := c2 xk := 1   c2 . . . . . . . . . . . . Sokolov D. 3/9 | Inversion of Goldreich’s function
  • 15. DPLL algorithms xi := c xi := 1 c H HH xj := c1 xj := 1   c1 xk := c2 xk := 1   c2 . . . . . . . . . . . . Sokolov D. 3/9 | Inversion of Goldreich’s function
  • 16. DPLL algorithms xi := c xi := 1 c H HH xj := c1 xj := 1   c1 xk := c2 xk := 1   c2 . . . . . . . . . . . . Heuristic A chooses a variable for splitting. Sokolov D. 3/9 | Inversion of Goldreich’s function
  • 17. DPLL algorithms xi := c xi := 1 c H HH xj := c1 xj := 1   c1 xk := c2 xk := 1   c2 . . . . . . . . . . . . Heuristic A chooses a variable for splitting. Heuristic B chooses first value. Sokolov D. 3/9 | Inversion of Goldreich’s function
  • 18. DPLL algorithms xi := c xi := 1 c H HH xj := c1 xj := 1   c1 xk := c2 xk := 1   c2 . . . . . . . . . . . . Heuristic A chooses a variable for splitting. Heuristic B chooses first value. Simplification rules: unit clause elimination; pure literal rule. Sokolov D. 3/9 | Inversion of Goldreich’s function
  • 19. Lower bounds for DPLL algorithms Sokolov D. 4/9 | Inversion of Goldreich’s function
  • 20. Lower bounds for DPLL algorithms Unsatisfiable formulas Exponential lower bounds for resolution refutations of unsatisfiable formulas translate to backtracking algorithms. [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000]. Sokolov D. 4/9 | Inversion of Goldreich’s function
  • 21. Lower bounds for DPLL algorithms Unsatisfiable formulas Exponential lower bounds for resolution refutations of unsatisfiable formulas translate to backtracking algorithms. [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000]. Satisfiable formulas If P = NP then there are no superpolynomial lower bounds for backtracking algorithms since heuristic B may choose correct value. Sokolov D. 4/9 | Inversion of Goldreich’s function
  • 22. Lower bounds for DPLL algorithms Unsatisfiable formulas Exponential lower bounds for resolution refutations of unsatisfiable formulas translate to backtracking algorithms. [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000]. Satisfiable formulas If P = NP then there are no superpolynomial lower bounds for backtracking algorithms since heuristic B may choose correct value. Inverting of functions corresponds to satisfiable formulas. Sokolov D. 4/9 | Inversion of Goldreich’s function
  • 23. Lower bounds for DPLL algorithms Unsatisfiable formulas Exponential lower bounds for resolution refutations of unsatisfiable formulas translate to backtracking algorithms. [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000]. Satisfiable formulas If P = NP then there are no superpolynomial lower bounds for backtracking algorithms since heuristic B may choose correct value. Inverting of functions corresponds to satisfiable formulas. [Nikolenko 2002], [Achilioptas, Beame, Molloy 2003-2004] exponential lower bound for specific backtracking algorithms. [Alekhnovich, Hirsch, Itsykson 2005] Exponential lower bound for myopic and drunken algorithms. Sokolov D. 4/9 | Inversion of Goldreich’s function
  • 24. Lower bounds for DPLL algorithms Unsatisfiable formulas Exponential lower bounds for resolution refutations of unsatisfiable formulas translate to backtracking algorithms. [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000]. Satisfiable formulas If P = NP then there are no superpolynomial lower bounds for backtracking algorithms since heuristic B may choose correct value. Inverting of functions corresponds to satisfiable formulas. [Nikolenko 2002], [Achilioptas, Beame, Molloy 2003-2004] exponential lower bound for specific backtracking algorithms. [Alekhnovich, Hirsch, Itsykson 2005] Exponential lower bound for myopic and drunken algorithms. Exponential lower bound for inversion of Goldreich’s function by myopic [J. Cook et al. 2009] and drunken [Itsykson 2010] algorithms. Sokolov D. 4/9 | Inversion of Goldreich’s function
  • 25. Drunken and myopic algorithms Sokolov D. 5/9 | Inversion of Goldreich’s function
  • 26. Drunken and myopic algorithms Definition Drunken algorithms: A: any; B: random 50 : 50. Sokolov D. 5/9 | Inversion of Goldreich’s function
  • 27. Drunken and myopic algorithms Definition Drunken algorithms: A: any; B: random 50 : 50. Definition Myopic heuristic: Sokolov D. 5/9 | Inversion of Goldreich’s function
  • 28. Drunken and myopic algorithms Definition Drunken algorithms: A: any; B: random 50 : 50. Definition Myopic heuristic: sees structure of the formula; Sokolov D. 5/9 | Inversion of Goldreich’s function
  • 29. Drunken and myopic algorithms Definition Drunken algorithms: A: any; B: random 50 : 50. Definition Myopic heuristic: sees structure of the formula; doesn’t see negation signs; Sokolov D. 5/9 | Inversion of Goldreich’s function
  • 30. Drunken and myopic algorithms Definition Drunken algorithms: A: any; B: random 50 : 50. Definition Myopic heuristic: sees structure of the formula; doesn’t see negation signs; requests negations in K = n1  clause. (x1 • x3 • x5) (x2 • x3) (x2 • x4 • x5 ) (x1 • x4 • x6 ) Sokolov D. 5/9 | Inversion of Goldreich’s function
  • 31. Drunken and myopic algorithms Definition Drunken algorithms: A: any; B: random 50 : 50. Definition Myopic heuristic: sees structure of the formula; doesn’t see negation signs; requests negations in K = n1  clause. (x1 • x3 • x5) (x2 • x3) (x2 • x4 • x5 ) (x1 • x4 • x6 ) Sokolov D. 5/9 | Inversion of Goldreich’s function
  • 32. Drunken and myopic algorithms Definition Drunken algorithms: A: any; B: random 50 : 50. Definition Myopic heuristic: sees structure of the formula; doesn’t see negation signs; requests negations in K = n1  clause. (x1 • x3 • x5) (x2 • x3) (x2 • x4 • x5 ) (x1 • x4 • x6 ) Sokolov D. 5/9 | Inversion of Goldreich’s function
  • 33. Drunken and myopic algorithms Definition Drunken algorithms: A: any; B: random 50 : 50. Definition Myopic heuristic: sees structure of the formula; doesn’t see negation signs; requests negations in K = n1  clause. (x1 • x3 • x5) (x1 • x3 • x5) (x2 • x3) A (x2 • Xx3) (x2 • x4 • x5 ) (x2 • x4 • x5 ) (x1 • x4 • x6 ) (x1 • Xx4 • x6 ) Sokolov D. 5/9 | Inversion of Goldreich’s function
  • 34. Myopic algorithms Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 35. Myopic algorithms Definition Myopic algorithm: A; B are myopic heuristics. Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 36. Myopic algorithms Definition Myopic algorithm: A; B are myopic heuristics. [Alekhnovich, Hirsch, Itsykson 2005] P is a linear predicate. G is a random graph. Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 37. Myopic algorithms Definition Myopic algorithm: A; B are myopic heuristics. [Alekhnovich, Hirsch, Itsykson 2005] P is a linear predicate. G is a random graph. [J. Cook, Etesami, Miller, Trevisan 2009] Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 38. Myopic algorithms Definition Myopic algorithm: A; B are myopic heuristics. [Alekhnovich, Hirsch, Itsykson 2005] P is a linear predicate. G is a random graph. [J. Cook, Etesami, Miller, Trevisan 2009] P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd . In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ). Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 39. Myopic algorithms Definition Myopic algorithm: A; B are myopic heuristics. [Alekhnovich, Hirsch, Itsykson 2005] P is a linear predicate. G is a random graph. [J. Cook, Etesami, Miller, Trevisan 2009] P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd . In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ). Disadvantages: Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 40. Myopic algorithms Definition Myopic algorithm: A; B are myopic heuristics. [Alekhnovich, Hirsch, Itsykson 2005] P is a linear predicate. G is a random graph. [J. Cook, Etesami, Miller, Trevisan 2009] P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd . In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ). Disadvantages: G is a random graph. Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 41. Myopic algorithms Definition Myopic algorithm: A; B are myopic heuristics. [Alekhnovich, Hirsch, Itsykson 2005] P is a linear predicate. G is a random graph. [J. Cook, Etesami, Miller, Trevisan 2009] P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd . In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ). Disadvantages: G is a random graph. K is a constant. Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 42. Myopic algorithms Definition Myopic algorithm: A; B are myopic heuristics. [Alekhnovich, Hirsch, Itsykson 2005] P is a linear predicate. G is a random graph. [J. Cook, Etesami, Miller, Trevisan 2009] P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd . In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ). Disadvantages: In our work: G is a random graph. K is a constant. Too complicated proof. Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 43. Myopic algorithms Definition Myopic algorithm: A; B are myopic heuristics. [Alekhnovich, Hirsch, Itsykson 2005] P is a linear predicate. G is a random graph. [J. Cook, Etesami, Miller, Trevisan 2009] P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd . In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ). Disadvantages: In our work: G is a random graph. G is based on expander. K is a constant. Too complicated proof. Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 44. Myopic algorithms Definition Myopic algorithm: A; B are myopic heuristics. [Alekhnovich, Hirsch, Itsykson 2005] P is a linear predicate. G is a random graph. [J. Cook, Etesami, Miller, Trevisan 2009] P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd . In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ). Disadvantages: In our work: G is a random graph. G is based on expander. K is a constant. K = n1  . Too complicated proof. Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 45. Myopic algorithms Definition Myopic algorithm: A; B are myopic heuristics. [Alekhnovich, Hirsch, Itsykson 2005] P is a linear predicate. G is a random graph. [J. Cook, Etesami, Miller, Trevisan 2009] P = x1 + x2 + ¡ ¡ ¡ + xd  2 + xd  1 xd . In fact: P = x1 + x2 + ¡ ¡ ¡ + xd  k + Q (xd  k +1 ; : : : ; xd ). Disadvantages: In our work: G is a random graph. G is based on expander. K is a constant. K = n1  . Too complicated proof. “Simple” proof. Sokolov D. 6/9 | Inversion of Goldreich’s function
  • 46. Our results P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ), Q is an arbitrary, k d =4. Sokolov D. 7/9 | Inversion of Goldreich’s function
  • 47. Our results P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ), Q is an arbitrary, k d =4. Theorem There exists an explicit graph G such that every myopic or drunken (1) DPLL algorithm makes at least 2n steps on “f (x ) = f (a)” for almost all a P f0; 1g n. Sokolov D. 7/9 | Inversion of Goldreich’s function
  • 48. Our results P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ), Q is an arbitrary, k d =4. Theorem There exists an explicit graph G such that every myopic or drunken (1) DPLL algorithm makes at least 2n steps on “f (x ) = f (a)” for almost all a P f0; 1g n. G is based on expander instead of random graph. Sokolov D. 7/9 | Inversion of Goldreich’s function
  • 49. Our results P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ), Q is an arbitrary, k d =4. Theorem There exists an explicit graph G such that every myopic or drunken (1) DPLL algorithm makes at least 2n steps on “f (x ) = f (a)” for almost all a P f0; 1g n. G is based on expander instead of random graph. For drunken algorithms the proof follows [Itsykson, CSR-2010] Sokolov D. 7/9 | Inversion of Goldreich’s function
  • 50. Our results P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ), Q is an arbitrary, k d =4. Theorem There exists an explicit graph G such that every myopic or drunken (1) DPLL algorithm makes at least 2n steps on “f (x ) = f (a)” for almost all a P f0; 1g n. G is based on expander instead of random graph. For drunken algorithms the proof follows [Itsykson, CSR-2010] For myopic we simplify previous proof and K = n1  Sokolov D. 7/9 | Inversion of Goldreich’s function
  • 51. Graph construction P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ) Sokolov D. 8/9 | Inversion of Goldreich’s function
  • 52. Graph construction P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ) G G is an expander; Sokolov D. 8/9 | Inversion of Goldreich’s function
  • 53. Graph construction P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ) + G G is an expander; Sokolov D. 8/9 | Inversion of Goldreich’s function
  • 54. Graph construction P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ) + G T G is an expander; G + T has full rank. Vy P Y T; deg (y ) = 1; Sokolov D. 8/9 | Inversion of Goldreich’s function
  • 55. Graph construction P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ) + + G T G is an expander; G + T has full rank. Vy P Y T; deg (y ) = 1; G +T is an expander. Sokolov D. 8/9 | Inversion of Goldreich’s function
  • 56. Graph construction P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ) + + n G T R G is an expander; G + T has full rank. Vy P Y T; deg (y ) = 1; G +T is an expander. R contains nonlinear edges. jfx j x P X ; deg (x ) T= 0gj n . G +T +R is an expander. Sokolov D. 8/9 | Inversion of Goldreich’s function
  • 57. Graph construction P (x1 ; : : : ; xd ) = x1 ¨ x2 ¨ : : : ¨ xd  k ¨ Q (xd  k +1; : : : ; xd ) + + n G T R G is an expander; G + T has full rank. Vy P Y T; deg (y ) = 1; G +T is an expander. R contains nonlinear edges. jfx j x P X ; deg (x ) T= 0gj n . G + T + R is an expander. Size of preimages no more than 2n . We can invert fG +T +R ;P in time poly (n)2n , but this is still much! Sokolov D. 8/9 | Inversion of Goldreich’s function
  • 58. Plan of the proof Sokolov D. 9/9 | Inversion of Goldreich’s function
  • 59. Plan of the proof Lower bounds for unsatisfiable formulas. Sokolov D. 9/9 | Inversion of Goldreich’s function
  • 60. Plan of the proof Lower bounds for unsatisfiable formulas. G is an expander. P is almost linear. Lower bounds for resolution proofs Sokolov D. 9/9 | Inversion of Goldreich’s function
  • 61. Plan of the proof Lower bounds for unsatisfiable formulas. G is an expander. P is almost linear. Lower bounds for resolution proofs With probability 1   2  (n) after several steps current formula becomes unsatisfiable. Sokolov D. 9/9 | Inversion of Goldreich’s function
  • 62. Plan of the proof Lower bounds for unsatisfiable formulas. G is an expander. P is almost linear. Lower bounds for resolution proofs With probability 1   2  (n) after several steps current formula becomes unsatisfiable. G is an expander. f is almost bijection. Myopic algorithm can’t recognize different absolute terms. Sokolov D. 9/9 | Inversion of Goldreich’s function