SlideShare uma empresa Scribd logo
1 de 11
REDIS DATA MODEL SAMPLE
Terry’s Redis
1.LogWriter
• Problem domain : Collect all logs from distributed server and merge it into single log file
Server
Server
Redis
Key:’WAS:log’
Value : Log (Single String)
Append log to String
Log File
Flush to log file
Problem
String append bring memory re-
allocation. So every log write makes a
memory relocation
Log String
Log String
Log String
Server
Server
Key:’WAS:log’
:
Log File
Redis
(List)
lpush
rpop
Solution
Use List data type and push the log
and pop & write the log into log file
2.Visitor count
• Problem domain
– Count total event page visit #
– Count visit # per each event page
event:click:total
event:click:{event page# id}
visit #
visit #
event:click:{event page# id} visit #
:
Key
Value
(String Type)
incr
• Enhancement Request
– Count total event page visit # per day
– Count visit # per each event page per day
visit #
visit #
event:click:daily:total:{date}
event:click:daily:{date}:{event page# id}
event:click:daily:{date}:{event page# id} visit #
Key
Value
(String Type)
incr
2.Visitor count
• Problem
– It cannot find event start & end date because of that it is hard to find “key name”
• Solution
– Use hash data type
– Sort by using java.util.SortedHashMap
event:click:total:hash date visit #
date visit #
date visit #
Key Value (Hash)
event:click:total:hash:{eventid} date visit #
date visit #
date visit #
Total event page visit per day
Daily visit # per day for each event
page
hincrBy
java.util.SortedHashMap Sorted by date
Redis
3. Shopping Basket
• Problem domain
– Make shopping basket which can support
• add product
• remove product
• empty shopping basket
• list products in the shopping basket
• remove product which expires 3 days
{userNo}:cart:product
{
‘productNo’:’{productNo}’,
‘prodctName’:{productName}’,
‘quantity’:’{quantity}’
}
{userNo}:cart:productid:{productNo}
(개별상품 주문정보)
Value (String)
{ ‘productNo’,’productNo’,….}
{
‘productNo’:’{productNo}’,
‘prodctName’:{productName}’,
‘quantity’:’{quantity}’
}
{userNo}:cart:productid:{productNo}
(개별상품 주문정보)
setex(key,{EXPIRE
TIME(3days)},JSON VALUE);
Key
SimpleJson is used
org.json.simple
3. Shopping Basket
• Problem
– getProductList()
for(productsNo){
json=jedis.get(product)
result+=json
}
{userNo}:cart:product { ‘productNo’,’productNo’,….}
{
‘productNo’:’{productNo}’,
‘prodctName’:{productName}’,
‘quantity’:’{quantity}’
}
{userNo}:cart:productid:{productNo}
(개별상품 주문정보)
It makes # of calls to redis
• Solution
– Use Redis pipeline call
– p = redis.pipelined()
getProductList()
for(productsNo){
p.get(product)
}
List<Object> redisResult = p.syncAndReturnAll();
for(item:redisResult){
json.add(item)
}
4. Like it
• Problem domain
– Add Like to posing : sadd
– Remove Like from posting : srem
– Validate specific user’s Like :sismember
– Total count of Like in specific posting : scard
– Total count of Like in postings :pipleline (for postings) + scard
posting:like:{posting no}
Value (Set)
{userNo}
Key
{userNo}
{userNo}
:
Each value is unique in a Set
※ scard  160K scard/sec with pipe line
20개의 게시물별로 좋아요합을 출력하려면 160K/20 = 8000 TPS
If it needs more TPS, use read replica
5. Count unique visitor per day (not page view)
• Problem domain
– Capacity : it has 10M users
– Count unique vistor # per day
1 2 3 4 10
M….Key = unique:vistors:{date}
Value(String/Bit)
Map eash 10M user into bit
10M bit required = 1.9M per day
Redis.setbit(Key,{userNo},true);
Jedis.bitOffSet
CountUnqueVisitor # per day = Jedis.bitCount(Key)
5. Count unique visitor per day (not page view)
• Problem domain
– Capacity : it has 10M users
– Count unique vistor # per day
1 2 3 4 10
M….Key = unique:vistors:{date}
Value(String/Bit)
Map eash 10M user into bit
10M bit required = 1.9M per day
Redis.setbit(Key,{userNo},true);
Jedis.bitOffSet
CountUnqueVisitor # per day = Jedis.bitCount(Key)
5. Count unique visitor per day (not page view)
• Enhancement request
– Count unique visitor who visits every day in a week
• Solution
– AND operation in 1Week data and count bit
1 2 3 4 10
M….Key = unique:vistors:{date}
Value(String/Bit)
1 2 3 4 10
MKey = unique:vistors:{date}
1 2 3 4 10
MKey = unique:vistors:{date}
1 2 3 4 10
M….Key = unique:vistors:{date}
1 2 3 4 10
MKey = unique:vistors:{date}
1 2 3 4 10
MKey = unique:vistors:{date}
1 2 3 4 10
MKey = unique:vistors:{date}
1W
AND
bitop(BitOP.AND,{key},[unique:vistors:day1,
unique:vistors:day2,…])
1 2 3 4 10
MKey = {key}
Result =bitcount({key})
bitop From Redis
5. Count unique visitor per day (not page view)
• Enhancement request
– Get list of visitor who visited site every day.
– 근데 예제가 좀 이상함. AND 연산으로 구해서 1은 사용자만 구하면 될텐데.
• Solution
– Register Lua script and run it
• Register String sha1 = jedis.script.Load( (String)”LUA Script”);
• Run jedis.evalsha(sha1)
※ BitSet Order
– Bitset order between Redis and Program language(LUA) can be different (opposite direction)

Mais conteúdo relacionado

Mais procurados

Paris Redis Meetup Introduction
Paris Redis Meetup IntroductionParis Redis Meetup Introduction
Paris Redis Meetup IntroductionGregory Boissinot
 
Introduction to redis
Introduction to redisIntroduction to redis
Introduction to redisTanu Siwag
 
Linux Systems Performance 2016
Linux Systems Performance 2016Linux Systems Performance 2016
Linux Systems Performance 2016Brendan Gregg
 
Kicking ass with redis
Kicking ass with redisKicking ass with redis
Kicking ass with redisDvir Volk
 
쿠키런 1년, 서버개발 분투기
쿠키런 1년, 서버개발 분투기쿠키런 1년, 서버개발 분투기
쿠키런 1년, 서버개발 분투기Brian Hong
 
Elastic stack Presentation
Elastic stack PresentationElastic stack Presentation
Elastic stack PresentationAmr Alaa Yassen
 
Introduction to Redis
Introduction to RedisIntroduction to Redis
Introduction to RedisArnab Mitra
 
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]MongoDB
 
FIFA 온라인 3의 MongoDB 사용기
FIFA 온라인 3의 MongoDB 사용기FIFA 온라인 3의 MongoDB 사용기
FIFA 온라인 3의 MongoDB 사용기Jongwon Kim
 
Elk with Openstack
Elk with OpenstackElk with Openstack
Elk with OpenstackArun prasath
 
[2019] 200만 동접 게임을 위한 MySQL 샤딩
[2019] 200만 동접 게임을 위한 MySQL 샤딩[2019] 200만 동접 게임을 위한 MySQL 샤딩
[2019] 200만 동접 게임을 위한 MySQL 샤딩NHN FORWARD
 
RocksDB Performance and Reliability Practices
RocksDB Performance and Reliability PracticesRocksDB Performance and Reliability Practices
RocksDB Performance and Reliability PracticesYoshinori Matsunobu
 
Indexing with MongoDB
Indexing with MongoDBIndexing with MongoDB
Indexing with MongoDBMongoDB
 
Igor Nicoli: External scripts O poder do Zabbix em suas mãos
Igor Nicoli: External scripts O poder do Zabbix em suas mãosIgor Nicoli: External scripts O poder do Zabbix em suas mãos
Igor Nicoli: External scripts O poder do Zabbix em suas mãosZabbix BR
 
차곡차곡 쉽게 알아가는 Elasticsearch와 Node.js
차곡차곡 쉽게 알아가는 Elasticsearch와 Node.js차곡차곡 쉽게 알아가는 Elasticsearch와 Node.js
차곡차곡 쉽게 알아가는 Elasticsearch와 Node.jsHeeJung Hwang
 
Everything you always wanted to know about Redis but were afraid to ask
Everything you always wanted to know about Redis but were afraid to askEverything you always wanted to know about Redis but were afraid to ask
Everything you always wanted to know about Redis but were afraid to askCarlos Abalde
 
How to build massive service for advance
How to build massive service for advanceHow to build massive service for advance
How to build massive service for advanceDaeMyung Kang
 

Mais procurados (20)

Paris Redis Meetup Introduction
Paris Redis Meetup IntroductionParis Redis Meetup Introduction
Paris Redis Meetup Introduction
 
ELK Stack
ELK StackELK Stack
ELK Stack
 
Introduction to redis
Introduction to redisIntroduction to redis
Introduction to redis
 
Linux Systems Performance 2016
Linux Systems Performance 2016Linux Systems Performance 2016
Linux Systems Performance 2016
 
Kicking ass with redis
Kicking ass with redisKicking ass with redis
Kicking ass with redis
 
Elk
Elk Elk
Elk
 
쿠키런 1년, 서버개발 분투기
쿠키런 1년, 서버개발 분투기쿠키런 1년, 서버개발 분투기
쿠키런 1년, 서버개발 분투기
 
Elastic stack Presentation
Elastic stack PresentationElastic stack Presentation
Elastic stack Presentation
 
Introduction to Redis
Introduction to RedisIntroduction to Redis
Introduction to Redis
 
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
 
FIFA 온라인 3의 MongoDB 사용기
FIFA 온라인 3의 MongoDB 사용기FIFA 온라인 3의 MongoDB 사용기
FIFA 온라인 3의 MongoDB 사용기
 
Elk with Openstack
Elk with OpenstackElk with Openstack
Elk with Openstack
 
[2019] 200만 동접 게임을 위한 MySQL 샤딩
[2019] 200만 동접 게임을 위한 MySQL 샤딩[2019] 200만 동접 게임을 위한 MySQL 샤딩
[2019] 200만 동접 게임을 위한 MySQL 샤딩
 
Redis
RedisRedis
Redis
 
RocksDB Performance and Reliability Practices
RocksDB Performance and Reliability PracticesRocksDB Performance and Reliability Practices
RocksDB Performance and Reliability Practices
 
Indexing with MongoDB
Indexing with MongoDBIndexing with MongoDB
Indexing with MongoDB
 
Igor Nicoli: External scripts O poder do Zabbix em suas mãos
Igor Nicoli: External scripts O poder do Zabbix em suas mãosIgor Nicoli: External scripts O poder do Zabbix em suas mãos
Igor Nicoli: External scripts O poder do Zabbix em suas mãos
 
차곡차곡 쉽게 알아가는 Elasticsearch와 Node.js
차곡차곡 쉽게 알아가는 Elasticsearch와 Node.js차곡차곡 쉽게 알아가는 Elasticsearch와 Node.js
차곡차곡 쉽게 알아가는 Elasticsearch와 Node.js
 
Everything you always wanted to know about Redis but were afraid to ask
Everything you always wanted to know about Redis but were afraid to askEverything you always wanted to know about Redis but were afraid to ask
Everything you always wanted to know about Redis but were afraid to ask
 
How to build massive service for advance
How to build massive service for advanceHow to build massive service for advance
How to build massive service for advance
 

Semelhante a Redis data modeling examples

User Data Management with MongoDB
User Data Management with MongoDB User Data Management with MongoDB
User Data Management with MongoDB MongoDB
 
Marc s01 e02-crud-database
Marc s01 e02-crud-databaseMarc s01 e02-crud-database
Marc s01 e02-crud-databaseMongoDB
 
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...MongoDB
 
S01 e01 schema-design
S01 e01 schema-designS01 e01 schema-design
S01 e01 schema-designMongoDB
 
Norikra: SQL Stream Processing In Ruby
Norikra: SQL Stream Processing In RubyNorikra: SQL Stream Processing In Ruby
Norikra: SQL Stream Processing In RubySATOSHI TAGOMORI
 
Mobile 1: Mobile Apps with MongoDB
Mobile 1: Mobile Apps with MongoDBMobile 1: Mobile Apps with MongoDB
Mobile 1: Mobile Apps with MongoDBMongoDB
 
How to leverage what's new in MongoDB 3.6
How to leverage what's new in MongoDB 3.6How to leverage what's new in MongoDB 3.6
How to leverage what's new in MongoDB 3.6Maxime Beugnet
 
1140 p2 p04_and_1350_p2p05_and_1440_p2p06
1140 p2 p04_and_1350_p2p05_and_1440_p2p061140 p2 p04_and_1350_p2p05_and_1440_p2p06
1140 p2 p04_and_1350_p2p05_and_1440_p2p06MongoDB
 
Fast querying indexing for performance (4)
Fast querying   indexing for performance (4)Fast querying   indexing for performance (4)
Fast querying indexing for performance (4)MongoDB
 
Data_Modeling_MongoDB.pdf
Data_Modeling_MongoDB.pdfData_Modeling_MongoDB.pdf
Data_Modeling_MongoDB.pdfjill734733
 
Digital analytics with R - Sydney Users of R Forum - May 2015
Digital analytics with R - Sydney Users of R Forum - May 2015Digital analytics with R - Sydney Users of R Forum - May 2015
Digital analytics with R - Sydney Users of R Forum - May 2015Johann de Boer
 
1403 app dev series - session 5 - analytics
1403   app dev series - session 5 - analytics1403   app dev series - session 5 - analytics
1403 app dev series - session 5 - analyticsMongoDB
 
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation
Webinar: Applikationsentwicklung mit MongoDB: Teil 5: Reporting & AggregationWebinar: Applikationsentwicklung mit MongoDB: Teil 5: Reporting & Aggregation
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & AggregationMongoDB
 
Indexing Strategies to Help You Scale
Indexing Strategies to Help You ScaleIndexing Strategies to Help You Scale
Indexing Strategies to Help You ScaleMongoDB
 
2006 - Basta!: Advanced server controls
2006 - Basta!: Advanced server controls2006 - Basta!: Advanced server controls
2006 - Basta!: Advanced server controlsDaniel Fisher
 
Advanced Schema Design Patterns
Advanced Schema Design PatternsAdvanced Schema Design Patterns
Advanced Schema Design PatternsMongoDB
 

Semelhante a Redis data modeling examples (20)

User Data Management with MongoDB
User Data Management with MongoDB User Data Management with MongoDB
User Data Management with MongoDB
 
Marc s01 e02-crud-database
Marc s01 e02-crud-databaseMarc s01 e02-crud-database
Marc s01 e02-crud-database
 
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
 
S01 e01 schema-design
S01 e01 schema-designS01 e01 schema-design
S01 e01 schema-design
 
Norikra: SQL Stream Processing In Ruby
Norikra: SQL Stream Processing In RubyNorikra: SQL Stream Processing In Ruby
Norikra: SQL Stream Processing In Ruby
 
Mobile 1: Mobile Apps with MongoDB
Mobile 1: Mobile Apps with MongoDBMobile 1: Mobile Apps with MongoDB
Mobile 1: Mobile Apps with MongoDB
 
How to leverage what's new in MongoDB 3.6
How to leverage what's new in MongoDB 3.6How to leverage what's new in MongoDB 3.6
How to leverage what's new in MongoDB 3.6
 
1140 p2 p04_and_1350_p2p05_and_1440_p2p06
1140 p2 p04_and_1350_p2p05_and_1440_p2p061140 p2 p04_and_1350_p2p05_and_1440_p2p06
1140 p2 p04_and_1350_p2p05_and_1440_p2p06
 
Fast querying indexing for performance (4)
Fast querying   indexing for performance (4)Fast querying   indexing for performance (4)
Fast querying indexing for performance (4)
 
Super spike
Super spikeSuper spike
Super spike
 
Data_Modeling_MongoDB.pdf
Data_Modeling_MongoDB.pdfData_Modeling_MongoDB.pdf
Data_Modeling_MongoDB.pdf
 
Learning with F#
Learning with F#Learning with F#
Learning with F#
 
Amazon DynamoDB Design Workshop
Amazon DynamoDB Design WorkshopAmazon DynamoDB Design Workshop
Amazon DynamoDB Design Workshop
 
Digital analytics with R - Sydney Users of R Forum - May 2015
Digital analytics with R - Sydney Users of R Forum - May 2015Digital analytics with R - Sydney Users of R Forum - May 2015
Digital analytics with R - Sydney Users of R Forum - May 2015
 
DynamoDB Design Workshop
DynamoDB Design WorkshopDynamoDB Design Workshop
DynamoDB Design Workshop
 
1403 app dev series - session 5 - analytics
1403   app dev series - session 5 - analytics1403   app dev series - session 5 - analytics
1403 app dev series - session 5 - analytics
 
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation
Webinar: Applikationsentwicklung mit MongoDB: Teil 5: Reporting & AggregationWebinar: Applikationsentwicklung mit MongoDB: Teil 5: Reporting & Aggregation
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation
 
Indexing Strategies to Help You Scale
Indexing Strategies to Help You ScaleIndexing Strategies to Help You Scale
Indexing Strategies to Help You Scale
 
2006 - Basta!: Advanced server controls
2006 - Basta!: Advanced server controls2006 - Basta!: Advanced server controls
2006 - Basta!: Advanced server controls
 
Advanced Schema Design Patterns
Advanced Schema Design PatternsAdvanced Schema Design Patterns
Advanced Schema Design Patterns
 

Mais de Terry Cho

Kubernetes #6 advanced scheduling
Kubernetes #6   advanced schedulingKubernetes #6   advanced scheduling
Kubernetes #6 advanced schedulingTerry Cho
 
Kubernetes #4 volume &amp; stateful set
Kubernetes #4   volume &amp; stateful setKubernetes #4   volume &amp; stateful set
Kubernetes #4 volume &amp; stateful setTerry Cho
 
Kubernetes #3 security
Kubernetes #3   securityKubernetes #3   security
Kubernetes #3 securityTerry Cho
 
Kubernetes #2 monitoring
Kubernetes #2   monitoring Kubernetes #2   monitoring
Kubernetes #2 monitoring Terry Cho
 
Kubernetes #1 intro
Kubernetes #1   introKubernetes #1   intro
Kubernetes #1 introTerry Cho
 
머신러닝으로 얼굴 인식 모델 개발 삽질기
머신러닝으로 얼굴 인식 모델 개발 삽질기머신러닝으로 얼굴 인식 모델 개발 삽질기
머신러닝으로 얼굴 인식 모델 개발 삽질기Terry Cho
 
5. 솔루션 카달로그
5. 솔루션 카달로그5. 솔루션 카달로그
5. 솔루션 카달로그Terry Cho
 
4. 대용량 아키텍쳐 설계 패턴
4. 대용량 아키텍쳐 설계 패턴4. 대용량 아키텍쳐 설계 패턴
4. 대용량 아키텍쳐 설계 패턴Terry Cho
 
3. 마이크로 서비스 아키텍쳐
3. 마이크로 서비스 아키텍쳐3. 마이크로 서비스 아키텍쳐
3. 마이크로 서비스 아키텍쳐Terry Cho
 
서비스 지향 아키텍쳐 (SOA)
서비스 지향 아키텍쳐 (SOA)서비스 지향 아키텍쳐 (SOA)
서비스 지향 아키텍쳐 (SOA)Terry Cho
 
1. 아키텍쳐 설계 프로세스
1. 아키텍쳐 설계 프로세스1. 아키텍쳐 설계 프로세스
1. 아키텍쳐 설계 프로세스Terry Cho
 
애자일 스크럼과 JIRA
애자일 스크럼과 JIRA 애자일 스크럼과 JIRA
애자일 스크럼과 JIRA Terry Cho
 
REST API 설계
REST API 설계REST API 설계
REST API 설계Terry Cho
 
모바일 개발 트랜드
모바일 개발 트랜드모바일 개발 트랜드
모바일 개발 트랜드Terry Cho
 
소프트웨어 개발 트랜드 및 MSA (마이크로 서비스 아키텍쳐)의 이해
소프트웨어 개발 트랜드 및 MSA (마이크로 서비스 아키텍쳐)의 이해소프트웨어 개발 트랜드 및 MSA (마이크로 서비스 아키텍쳐)의 이해
소프트웨어 개발 트랜드 및 MSA (마이크로 서비스 아키텍쳐)의 이해Terry Cho
 
Micro Service Architecture의 이해
Micro Service Architecture의 이해Micro Service Architecture의 이해
Micro Service Architecture의 이해Terry Cho
 
머신 러닝 입문 #1-머신러닝 소개와 kNN 소개
머신 러닝 입문 #1-머신러닝 소개와 kNN 소개머신 러닝 입문 #1-머신러닝 소개와 kNN 소개
머신 러닝 입문 #1-머신러닝 소개와 kNN 소개Terry Cho
 
R 프로그래밍-향상된 데이타 조작
R 프로그래밍-향상된 데이타 조작R 프로그래밍-향상된 데이타 조작
R 프로그래밍-향상된 데이타 조작Terry Cho
 
R 프로그래밍 기본 문법
R 프로그래밍 기본 문법R 프로그래밍 기본 문법
R 프로그래밍 기본 문법Terry Cho
 
R 기본-데이타형 소개
R 기본-데이타형 소개R 기본-데이타형 소개
R 기본-데이타형 소개Terry Cho
 

Mais de Terry Cho (20)

Kubernetes #6 advanced scheduling
Kubernetes #6   advanced schedulingKubernetes #6   advanced scheduling
Kubernetes #6 advanced scheduling
 
Kubernetes #4 volume &amp; stateful set
Kubernetes #4   volume &amp; stateful setKubernetes #4   volume &amp; stateful set
Kubernetes #4 volume &amp; stateful set
 
Kubernetes #3 security
Kubernetes #3   securityKubernetes #3   security
Kubernetes #3 security
 
Kubernetes #2 monitoring
Kubernetes #2   monitoring Kubernetes #2   monitoring
Kubernetes #2 monitoring
 
Kubernetes #1 intro
Kubernetes #1   introKubernetes #1   intro
Kubernetes #1 intro
 
머신러닝으로 얼굴 인식 모델 개발 삽질기
머신러닝으로 얼굴 인식 모델 개발 삽질기머신러닝으로 얼굴 인식 모델 개발 삽질기
머신러닝으로 얼굴 인식 모델 개발 삽질기
 
5. 솔루션 카달로그
5. 솔루션 카달로그5. 솔루션 카달로그
5. 솔루션 카달로그
 
4. 대용량 아키텍쳐 설계 패턴
4. 대용량 아키텍쳐 설계 패턴4. 대용량 아키텍쳐 설계 패턴
4. 대용량 아키텍쳐 설계 패턴
 
3. 마이크로 서비스 아키텍쳐
3. 마이크로 서비스 아키텍쳐3. 마이크로 서비스 아키텍쳐
3. 마이크로 서비스 아키텍쳐
 
서비스 지향 아키텍쳐 (SOA)
서비스 지향 아키텍쳐 (SOA)서비스 지향 아키텍쳐 (SOA)
서비스 지향 아키텍쳐 (SOA)
 
1. 아키텍쳐 설계 프로세스
1. 아키텍쳐 설계 프로세스1. 아키텍쳐 설계 프로세스
1. 아키텍쳐 설계 프로세스
 
애자일 스크럼과 JIRA
애자일 스크럼과 JIRA 애자일 스크럼과 JIRA
애자일 스크럼과 JIRA
 
REST API 설계
REST API 설계REST API 설계
REST API 설계
 
모바일 개발 트랜드
모바일 개발 트랜드모바일 개발 트랜드
모바일 개발 트랜드
 
소프트웨어 개발 트랜드 및 MSA (마이크로 서비스 아키텍쳐)의 이해
소프트웨어 개발 트랜드 및 MSA (마이크로 서비스 아키텍쳐)의 이해소프트웨어 개발 트랜드 및 MSA (마이크로 서비스 아키텍쳐)의 이해
소프트웨어 개발 트랜드 및 MSA (마이크로 서비스 아키텍쳐)의 이해
 
Micro Service Architecture의 이해
Micro Service Architecture의 이해Micro Service Architecture의 이해
Micro Service Architecture의 이해
 
머신 러닝 입문 #1-머신러닝 소개와 kNN 소개
머신 러닝 입문 #1-머신러닝 소개와 kNN 소개머신 러닝 입문 #1-머신러닝 소개와 kNN 소개
머신 러닝 입문 #1-머신러닝 소개와 kNN 소개
 
R 프로그래밍-향상된 데이타 조작
R 프로그래밍-향상된 데이타 조작R 프로그래밍-향상된 데이타 조작
R 프로그래밍-향상된 데이타 조작
 
R 프로그래밍 기본 문법
R 프로그래밍 기본 문법R 프로그래밍 기본 문법
R 프로그래밍 기본 문법
 
R 기본-데이타형 소개
R 기본-데이타형 소개R 기본-데이타형 소개
R 기본-데이타형 소개
 

Último

Insurance management system project report.pdf
Insurance management system project report.pdfInsurance management system project report.pdf
Insurance management system project report.pdfKamal Acharya
 
Introduction to Arduino Programming: Features of Arduino
Introduction to Arduino Programming: Features of ArduinoIntroduction to Arduino Programming: Features of Arduino
Introduction to Arduino Programming: Features of ArduinoAbhimanyu Sangale
 
Artificial Intelligence Bayesian Reasoning
Artificial Intelligence Bayesian ReasoningArtificial Intelligence Bayesian Reasoning
Artificial Intelligence Bayesian Reasoninghotman30312
 
15-Minute City: A Completely New Horizon
15-Minute City: A Completely New Horizon15-Minute City: A Completely New Horizon
15-Minute City: A Completely New HorizonMorshed Ahmed Rahath
 
Interfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfInterfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfragupathi90
 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfJNTUA
 
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...Lovely Professional University
 
Introduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AIIntroduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AISheetal Jain
 
E-Commerce Shopping using MERN Stack where different modules are present
E-Commerce Shopping using MERN Stack where different modules are presentE-Commerce Shopping using MERN Stack where different modules are present
E-Commerce Shopping using MERN Stack where different modules are presentjatinraor66
 
How to Design and spec harmonic filter.pdf
How to Design and spec harmonic filter.pdfHow to Design and spec harmonic filter.pdf
How to Design and spec harmonic filter.pdftawat puangthong
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..MaherOthman7
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsMathias Magdowski
 
Supermarket billing system project report..pdf
Supermarket billing system project report..pdfSupermarket billing system project report..pdf
Supermarket billing system project report..pdfKamal Acharya
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualBalamuruganV28
 
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWINGBRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWINGKOUSTAV SARKAR
 
Quiz application system project report..pdf
Quiz application system project report..pdfQuiz application system project report..pdf
Quiz application system project report..pdfKamal Acharya
 
Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...Prakhyath Rai
 
Lab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxLab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxRashidFaridChishti
 
Theory for How to calculation capacitor bank
Theory for How to calculation capacitor bankTheory for How to calculation capacitor bank
Theory for How to calculation capacitor banktawat puangthong
 
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...Complex plane, Modulus, Argument, Graphical representation of a complex numbe...
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...MohammadAliNayeem
 

Último (20)

Insurance management system project report.pdf
Insurance management system project report.pdfInsurance management system project report.pdf
Insurance management system project report.pdf
 
Introduction to Arduino Programming: Features of Arduino
Introduction to Arduino Programming: Features of ArduinoIntroduction to Arduino Programming: Features of Arduino
Introduction to Arduino Programming: Features of Arduino
 
Artificial Intelligence Bayesian Reasoning
Artificial Intelligence Bayesian ReasoningArtificial Intelligence Bayesian Reasoning
Artificial Intelligence Bayesian Reasoning
 
15-Minute City: A Completely New Horizon
15-Minute City: A Completely New Horizon15-Minute City: A Completely New Horizon
15-Minute City: A Completely New Horizon
 
Interfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfInterfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdf
 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdf
 
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
 
Introduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AIIntroduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AI
 
E-Commerce Shopping using MERN Stack where different modules are present
E-Commerce Shopping using MERN Stack where different modules are presentE-Commerce Shopping using MERN Stack where different modules are present
E-Commerce Shopping using MERN Stack where different modules are present
 
How to Design and spec harmonic filter.pdf
How to Design and spec harmonic filter.pdfHow to Design and spec harmonic filter.pdf
How to Design and spec harmonic filter.pdf
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
Supermarket billing system project report..pdf
Supermarket billing system project report..pdfSupermarket billing system project report..pdf
Supermarket billing system project report..pdf
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
 
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWINGBRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
 
Quiz application system project report..pdf
Quiz application system project report..pdfQuiz application system project report..pdf
Quiz application system project report..pdf
 
Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...
 
Lab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxLab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docx
 
Theory for How to calculation capacitor bank
Theory for How to calculation capacitor bankTheory for How to calculation capacitor bank
Theory for How to calculation capacitor bank
 
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...Complex plane, Modulus, Argument, Graphical representation of a complex numbe...
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...
 

Redis data modeling examples

  • 1. REDIS DATA MODEL SAMPLE Terry’s Redis
  • 2. 1.LogWriter • Problem domain : Collect all logs from distributed server and merge it into single log file Server Server Redis Key:’WAS:log’ Value : Log (Single String) Append log to String Log File Flush to log file Problem String append bring memory re- allocation. So every log write makes a memory relocation Log String Log String Log String Server Server Key:’WAS:log’ : Log File Redis (List) lpush rpop Solution Use List data type and push the log and pop & write the log into log file
  • 3. 2.Visitor count • Problem domain – Count total event page visit # – Count visit # per each event page event:click:total event:click:{event page# id} visit # visit # event:click:{event page# id} visit # : Key Value (String Type) incr • Enhancement Request – Count total event page visit # per day – Count visit # per each event page per day visit # visit # event:click:daily:total:{date} event:click:daily:{date}:{event page# id} event:click:daily:{date}:{event page# id} visit # Key Value (String Type) incr
  • 4. 2.Visitor count • Problem – It cannot find event start & end date because of that it is hard to find “key name” • Solution – Use hash data type – Sort by using java.util.SortedHashMap event:click:total:hash date visit # date visit # date visit # Key Value (Hash) event:click:total:hash:{eventid} date visit # date visit # date visit # Total event page visit per day Daily visit # per day for each event page hincrBy java.util.SortedHashMap Sorted by date Redis
  • 5. 3. Shopping Basket • Problem domain – Make shopping basket which can support • add product • remove product • empty shopping basket • list products in the shopping basket • remove product which expires 3 days {userNo}:cart:product { ‘productNo’:’{productNo}’, ‘prodctName’:{productName}’, ‘quantity’:’{quantity}’ } {userNo}:cart:productid:{productNo} (개별상품 주문정보) Value (String) { ‘productNo’,’productNo’,….} { ‘productNo’:’{productNo}’, ‘prodctName’:{productName}’, ‘quantity’:’{quantity}’ } {userNo}:cart:productid:{productNo} (개별상품 주문정보) setex(key,{EXPIRE TIME(3days)},JSON VALUE); Key SimpleJson is used org.json.simple
  • 6. 3. Shopping Basket • Problem – getProductList() for(productsNo){ json=jedis.get(product) result+=json } {userNo}:cart:product { ‘productNo’,’productNo’,….} { ‘productNo’:’{productNo}’, ‘prodctName’:{productName}’, ‘quantity’:’{quantity}’ } {userNo}:cart:productid:{productNo} (개별상품 주문정보) It makes # of calls to redis • Solution – Use Redis pipeline call – p = redis.pipelined() getProductList() for(productsNo){ p.get(product) } List<Object> redisResult = p.syncAndReturnAll(); for(item:redisResult){ json.add(item) }
  • 7. 4. Like it • Problem domain – Add Like to posing : sadd – Remove Like from posting : srem – Validate specific user’s Like :sismember – Total count of Like in specific posting : scard – Total count of Like in postings :pipleline (for postings) + scard posting:like:{posting no} Value (Set) {userNo} Key {userNo} {userNo} : Each value is unique in a Set ※ scard  160K scard/sec with pipe line 20개의 게시물별로 좋아요합을 출력하려면 160K/20 = 8000 TPS If it needs more TPS, use read replica
  • 8. 5. Count unique visitor per day (not page view) • Problem domain – Capacity : it has 10M users – Count unique vistor # per day 1 2 3 4 10 M….Key = unique:vistors:{date} Value(String/Bit) Map eash 10M user into bit 10M bit required = 1.9M per day Redis.setbit(Key,{userNo},true); Jedis.bitOffSet CountUnqueVisitor # per day = Jedis.bitCount(Key)
  • 9. 5. Count unique visitor per day (not page view) • Problem domain – Capacity : it has 10M users – Count unique vistor # per day 1 2 3 4 10 M….Key = unique:vistors:{date} Value(String/Bit) Map eash 10M user into bit 10M bit required = 1.9M per day Redis.setbit(Key,{userNo},true); Jedis.bitOffSet CountUnqueVisitor # per day = Jedis.bitCount(Key)
  • 10. 5. Count unique visitor per day (not page view) • Enhancement request – Count unique visitor who visits every day in a week • Solution – AND operation in 1Week data and count bit 1 2 3 4 10 M….Key = unique:vistors:{date} Value(String/Bit) 1 2 3 4 10 MKey = unique:vistors:{date} 1 2 3 4 10 MKey = unique:vistors:{date} 1 2 3 4 10 M….Key = unique:vistors:{date} 1 2 3 4 10 MKey = unique:vistors:{date} 1 2 3 4 10 MKey = unique:vistors:{date} 1 2 3 4 10 MKey = unique:vistors:{date} 1W AND bitop(BitOP.AND,{key},[unique:vistors:day1, unique:vistors:day2,…]) 1 2 3 4 10 MKey = {key} Result =bitcount({key}) bitop From Redis
  • 11. 5. Count unique visitor per day (not page view) • Enhancement request – Get list of visitor who visited site every day. – 근데 예제가 좀 이상함. AND 연산으로 구해서 1은 사용자만 구하면 될텐데. • Solution – Register Lua script and run it • Register String sha1 = jedis.script.Load( (String)”LUA Script”); • Run jedis.evalsha(sha1) ※ BitSet Order – Bitset order between Redis and Program language(LUA) can be different (opposite direction)