SlideShare uma empresa Scribd logo
1 de 10
Baixar para ler offline
Robert Erlandson, M. A. Kelly, C.A. Hibbitts, J. Boldt and K. Sotzen
JHU Applied Physics Laboratory
Capt Andrew Tran
Air Force Space and Missiles Center / WM
Compact Terrestrial Weather
Sensing for Small Satellites
and Hosted Payload
12 August 2013
Theater	
  weather	
  imagery	
  constructed	
  from	
  
EO/IR	
  0.65-­‐,	
  0.90-­‐,	
  and	
  10.8-­‐μm	
  channels	
  
	
  
(hEp://cimss.ssec.wisc.edu/goes/blog/
poesavhrr-­‐in-­‐awips)	
  	
  
Challenge	
  
§  DMSP	
  Satellites	
  reach	
  end	
  of	
  life	
  
around	
  2020.	
  	
  The	
  Air	
  Force	
  SMC	
  
seeks	
  affordable	
  space-­‐based	
  
terrestrial	
  weather	
  soluUons	
  to	
  meet	
  
DoD	
  weather	
  requirements	
  
	
  
Desired	
  Sensor	
  A1ributes	
  
§  Capable	
  
§  Cost	
  EffecUve	
  
§  Compact	
  
MSIS	
  
Field	
  of	
  View	
  
2
Theater Weather Imaging
METOC Requirements
JROCM	
  91-­‐012	
  Lists	
  Top	
  Two	
  Capability	
  Gaps	
  noted	
  by	
  arrows	
  
3
Multi-Spectral Imaging System
Bands
Camera Wave-Bands Requirement
VNIR 500-900 nm Low Light Imaging (Night)
VNIR 400-430 nm TW Imagery, Cloud, Aerosol, Smoke, Dust
VNIR 605-685 nm TW Imagery, Cloud, Snow, Aerosol, Vegetation
VNIR 845-885 nm Cloud, Vegetation
SWIR 1.58-1.64 µm Cloud, Aerosol, Snow
LWIR-1 8.3-8.8 µm Cloud, Ash, Fog/Stratus, Multi-layer Cloud
LWIR-2 10.8-11.3 µm TW Imagery, Cloud, Snow, SST, LST, Multi-layer Cloud
LWIR-3 11.8-12.3 µm Imagery, Cloud, Snow, SST, LST, Fog/Stratus
4
Multi-Spectral Imaging Sensor
Uncooled LWIR Sensors Summary
Compact and Cost Effective
Leverages uncooled COTS camera technology to
provide an affordable EO/IR weather sensor
Modified COTS Camera
- Digital Time Delayed Integration to Increase SNR
- Space Qualified Electronics
- Radiation Testing
Benefits
-  No Active Cooling Required
-  Small Form Factor
-  Sensitivity for Weather Applications
LWIR	
  Uncooled	
  Micro-­‐Bolometer	
  
6
Multi-Spectral Imaging System
Uncooled LWIR Sensor Specifications
LWIR Sensor Summary
Cameras 3
Filter Bands 8.4µm,10.8µm,12µm
Pixel Dimensions 17 µm
Array Size 1024 x 768
FOV 40° x 40°
Spatial Resolution 760m (nadir)
• Detector:	
  1024	
  x	
  768	
  pixels	
  	
  
• Uncooled	
  Microbolometer	
  Array	
  	
  
• CharacterizaUon	
  of	
  Camera	
  in	
  
Progress	
  
• Conducted	
  radiaUon	
  tests	
  of	
  
the	
  sensor,	
  concluding	
  that	
  
the	
  detector	
  can	
  withstand	
  a	
  
total	
  dose	
  of	
  20	
  krads.	
  	
  	
  
7
q  Employs separate optics and detectors for each waveband.
q  Supports Straight Forward Technology Insertion
q  Size:
•  16 x 4 x 4 inches
•  Weight: 10 kg
MSIS – Sensor Packaging
Band	
   Center	
  
λ	
  (um)	
  
FWHM	
  
(um)	
  
Vis	
   .412	
   .03	
  
VIS	
   .645	
   .08	
  
NIR	
   .865	
   .04	
  
SWIR	
   1.610	
   .06	
  
LWIR	
   8.4	
   0.8	
  
LWIR	
   10.8	
   1.0	
  
LWIR	
   12.0	
   1.0	
  
Low	
  Light	
  
Imager	
  
0.75	
   0.5	
  
VNIR	
  
LLI	
  
LWIR	
  
SWIR	
  
Coverage Analysis
6 Orbital Planes - 6 Satellites Per Plane
Sensor
Field of View
§  Assumptions:
q  Sensor FOV: 40 Degree FOV
q  Total Number of Sensors: 36
q  Orbital Planes: 6
q  Sensor Per Plane: 6
§  Conclusions:
q  Coverage Complements
Geostationary Weather Satellites
q  Ground Repeat Time Depends on
Satellite Precession
q  380 m in Vis-SWIR (760m LWIR)
§  Assumptions:
q  Sensor FOV: 80 Degree FOV
q  Total Number of Sensors: 12
q  Orbital Planes: 3
q  Sensors Per Plane: 2
q  Sensors Per Satellite: 2
7/17/13 9
Coverage Analysis
3 Orbital Planes - 2 Satellites Per Plane
§  Conclusions:
q  Coverage Complements
Geostationary Weather Satellites
q  Ground Repeat Time Depends
on Satellite Precession
q  Resolution: 380m Vis/NIR/SWIR
(760m LWIR)
Equatorial	
  View	
   Polar	
  View	
  
10
MSIS Challenge
§  DMSP Satellites reach end of life around 2020. The Air Force SMC seeks
affordable space-based terrestrial weather solutions to meet DoD weather
requirements
MSIS Sensor Attributes
§  Capable
•  Addresses Key DoD Weather Gaps
§  Cost Effective
•  Uses Uncooled and Body Fixed Sensors to Reduce Complexity and Size
§  Compact
•  Enables Use of Small Satellites and Hosted Payload Opportunities
•  Small Satellite Approach Enables Satellite Constellation
•  Constellation Provides Opportunity to Meeting Key Latency and Revisit Rate
Requirements
Summary

Mais conteúdo relacionado

Mais procurados

IGARSS_DESDynI_2011.pptx
IGARSS_DESDynI_2011.pptxIGARSS_DESDynI_2011.pptx
IGARSS_DESDynI_2011.pptxgrssieee
 
Galaxy Cluster Gas Motions and Astro-H: Predictions and Challenges from Simul...
Galaxy Cluster Gas Motions and Astro-H: Predictions and Challenges from Simul...Galaxy Cluster Gas Motions and Astro-H: Predictions and Challenges from Simul...
Galaxy Cluster Gas Motions and Astro-H: Predictions and Challenges from Simul...John ZuHone
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORgrssieee
 
ground penetrating radar
ground penetrating radarground penetrating radar
ground penetrating radarGauravate
 
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.pptNineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.pptgrssieee
 
Humanitarian Demining with Ultra Wide Band Ground Penetrating Radar
Humanitarian Demining with Ultra Wide Band Ground Penetrating RadarHumanitarian Demining with Ultra Wide Band Ground Penetrating Radar
Humanitarian Demining with Ultra Wide Band Ground Penetrating Radaralvaromunozmayordomo
 
Evaluating the effect of soil moisture, surface temperature and humidity vari...
Evaluating the effect of soil moisture, surface temperature and humidity vari...Evaluating the effect of soil moisture, surface temperature and humidity vari...
Evaluating the effect of soil moisture, surface temperature and humidity vari...Yomna Mahmoud Ibrahim Hassan
 
Landmine detection using impulse ground penetrating radar
Landmine  detection  using         impulse  ground  penetrating radarLandmine  detection  using         impulse  ground  penetrating radar
Landmine detection using impulse ground penetrating radarPRADEEP Cheekatla
 
Landmines Detection
Landmines DetectionLandmines Detection
Landmines Detectionkulrao
 
Ground penetrating radar
Ground penetrating radarGround penetrating radar
Ground penetrating radarkasarlanaga
 
GROUND PENETRATING RADAR(GPR) ppt
GROUND PENETRATING RADAR(GPR) ppt GROUND PENETRATING RADAR(GPR) ppt
GROUND PENETRATING RADAR(GPR) ppt Himanshu Yadav
 
Landmines Detection by Robots presentation
Landmines Detection by Robots  presentationLandmines Detection by Robots  presentation
Landmines Detection by Robots presentationAhmed Abdelaziz
 
Validation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.pptValidation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.pptgrssieee
 
ground penetration rader
ground  penetration raderground  penetration rader
ground penetration raderAmir Khan
 
Ground Penetrating Radar : Basic and Applications for Civil Engineering
Ground Penetrating Radar : Basic and Applications for Civil EngineeringGround Penetrating Radar : Basic and Applications for Civil Engineering
Ground Penetrating Radar : Basic and Applications for Civil EngineeringKorea Expressway Corporation
 
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERSMO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERSgrssieee
 
S-wave Velocity Based On Microtremor Array
S-wave Velocity Based On Microtremor ArrayS-wave Velocity Based On Microtremor Array
S-wave Velocity Based On Microtremor ArrayAli Osman Öncel
 

Mais procurados (20)

IGARSS_DESDynI_2011.pptx
IGARSS_DESDynI_2011.pptxIGARSS_DESDynI_2011.pptx
IGARSS_DESDynI_2011.pptx
 
Scansioni 3D sott'acqua?
Scansioni 3D sott'acqua?Scansioni 3D sott'acqua?
Scansioni 3D sott'acqua?
 
Oceansat
OceansatOceansat
Oceansat
 
Galaxy Cluster Gas Motions and Astro-H: Predictions and Challenges from Simul...
Galaxy Cluster Gas Motions and Astro-H: Predictions and Challenges from Simul...Galaxy Cluster Gas Motions and Astro-H: Predictions and Challenges from Simul...
Galaxy Cluster Gas Motions and Astro-H: Predictions and Challenges from Simul...
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
 
Ocean- sat for Oceanography
Ocean- sat for Oceanography Ocean- sat for Oceanography
Ocean- sat for Oceanography
 
ground penetrating radar
ground penetrating radarground penetrating radar
ground penetrating radar
 
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.pptNineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
 
Humanitarian Demining with Ultra Wide Band Ground Penetrating Radar
Humanitarian Demining with Ultra Wide Band Ground Penetrating RadarHumanitarian Demining with Ultra Wide Band Ground Penetrating Radar
Humanitarian Demining with Ultra Wide Band Ground Penetrating Radar
 
Evaluating the effect of soil moisture, surface temperature and humidity vari...
Evaluating the effect of soil moisture, surface temperature and humidity vari...Evaluating the effect of soil moisture, surface temperature and humidity vari...
Evaluating the effect of soil moisture, surface temperature and humidity vari...
 
Landmine detection using impulse ground penetrating radar
Landmine  detection  using         impulse  ground  penetrating radarLandmine  detection  using         impulse  ground  penetrating radar
Landmine detection using impulse ground penetrating radar
 
Landmines Detection
Landmines DetectionLandmines Detection
Landmines Detection
 
Ground penetrating radar
Ground penetrating radarGround penetrating radar
Ground penetrating radar
 
GROUND PENETRATING RADAR(GPR) ppt
GROUND PENETRATING RADAR(GPR) ppt GROUND PENETRATING RADAR(GPR) ppt
GROUND PENETRATING RADAR(GPR) ppt
 
Landmines Detection by Robots presentation
Landmines Detection by Robots  presentationLandmines Detection by Robots  presentation
Landmines Detection by Robots presentation
 
Validation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.pptValidation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.ppt
 
ground penetration rader
ground  penetration raderground  penetration rader
ground penetration rader
 
Ground Penetrating Radar : Basic and Applications for Civil Engineering
Ground Penetrating Radar : Basic and Applications for Civil EngineeringGround Penetrating Radar : Basic and Applications for Civil Engineering
Ground Penetrating Radar : Basic and Applications for Civil Engineering
 
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERSMO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
 
S-wave Velocity Based On Microtremor Array
S-wave Velocity Based On Microtremor ArrayS-wave Velocity Based On Microtremor Array
S-wave Velocity Based On Microtremor Array
 

Semelhante a SSC13-IV-8

3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptxgrssieee
 
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptxgrssieee
 
AROSAT Mission and Spacecraft Configuration_rev3
AROSAT Mission and Spacecraft Configuration_rev3AROSAT Mission and Spacecraft Configuration_rev3
AROSAT Mission and Spacecraft Configuration_rev3Stefano Coltellacci
 
1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptx1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptxgrssieee
 
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...Jim Jenkins
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERgrssieee
 
Remote sensing - Scanners
Remote sensing - ScannersRemote sensing - Scanners
Remote sensing - ScannersPramoda Raj
 
IGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.pptIGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.pptgrssieee
 
Devils Logic PDR presentation
Devils Logic PDR presentationDevils Logic PDR presentation
Devils Logic PDR presentationShota Ichikawa
 
5 IGARSS_SThomas2011.ppt
5 IGARSS_SThomas2011.ppt5 IGARSS_SThomas2011.ppt
5 IGARSS_SThomas2011.pptgrssieee
 
5 IGARSS_SThomas2011.ppt
5 IGARSS_SThomas2011.ppt5 IGARSS_SThomas2011.ppt
5 IGARSS_SThomas2011.pptgrssieee
 
Solid State Phased Array Weather Radar
Solid State Phased Array Weather RadarSolid State Phased Array Weather Radar
Solid State Phased Array Weather RadarDavid Kane
 
Platforms of Remote sensing and GIS
Platforms of Remote sensing and GISPlatforms of Remote sensing and GIS
Platforms of Remote sensing and GISMouna Guru
 
AROSAT_updated-spacesegment_presentation_NO_loghi
AROSAT_updated-spacesegment_presentation_NO_loghiAROSAT_updated-spacesegment_presentation_NO_loghi
AROSAT_updated-spacesegment_presentation_NO_loghiStefano Coltellacci
 

Semelhante a SSC13-IV-8 (20)

3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
 
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
3 Blackwell_IGARSS11_2860_MO3.T04.3.pptx
 
AROSAT Mission and Spacecraft Configuration_rev3
AROSAT Mission and Spacecraft Configuration_rev3AROSAT Mission and Spacecraft Configuration_rev3
AROSAT Mission and Spacecraft Configuration_rev3
 
1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptx1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptx
 
Kannan RS.ppt
Kannan RS.pptKannan RS.ppt
Kannan RS.ppt
 
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
 
Remote sensing - Scanners
Remote sensing - ScannersRemote sensing - Scanners
Remote sensing - Scanners
 
IGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.pptIGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.ppt
 
Devils Logic PDR presentation
Devils Logic PDR presentationDevils Logic PDR presentation
Devils Logic PDR presentation
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
Gems
GemsGems
Gems
 
Goddard 2015: Mark Clampin, NASA
Goddard 2015: Mark Clampin, NASAGoddard 2015: Mark Clampin, NASA
Goddard 2015: Mark Clampin, NASA
 
Gps
GpsGps
Gps
 
5 IGARSS_SThomas2011.ppt
5 IGARSS_SThomas2011.ppt5 IGARSS_SThomas2011.ppt
5 IGARSS_SThomas2011.ppt
 
5 IGARSS_SThomas2011.ppt
5 IGARSS_SThomas2011.ppt5 IGARSS_SThomas2011.ppt
5 IGARSS_SThomas2011.ppt
 
Solid State Phased Array Weather Radar
Solid State Phased Array Weather RadarSolid State Phased Array Weather Radar
Solid State Phased Array Weather Radar
 
Remote Sensin
Remote SensinRemote Sensin
Remote Sensin
 
Platforms of Remote sensing and GIS
Platforms of Remote sensing and GISPlatforms of Remote sensing and GIS
Platforms of Remote sensing and GIS
 
AROSAT_updated-spacesegment_presentation_NO_loghi
AROSAT_updated-spacesegment_presentation_NO_loghiAROSAT_updated-spacesegment_presentation_NO_loghi
AROSAT_updated-spacesegment_presentation_NO_loghi
 

SSC13-IV-8

  • 1. Robert Erlandson, M. A. Kelly, C.A. Hibbitts, J. Boldt and K. Sotzen JHU Applied Physics Laboratory Capt Andrew Tran Air Force Space and Missiles Center / WM Compact Terrestrial Weather Sensing for Small Satellites and Hosted Payload 12 August 2013
  • 2. Theater  weather  imagery  constructed  from   EO/IR  0.65-­‐,  0.90-­‐,  and  10.8-­‐μm  channels     (hEp://cimss.ssec.wisc.edu/goes/blog/ poesavhrr-­‐in-­‐awips)     Challenge   §  DMSP  Satellites  reach  end  of  life   around  2020.    The  Air  Force  SMC   seeks  affordable  space-­‐based   terrestrial  weather  soluUons  to  meet   DoD  weather  requirements     Desired  Sensor  A1ributes   §  Capable   §  Cost  EffecUve   §  Compact   MSIS   Field  of  View   2 Theater Weather Imaging
  • 3. METOC Requirements JROCM  91-­‐012  Lists  Top  Two  Capability  Gaps  noted  by  arrows   3
  • 4. Multi-Spectral Imaging System Bands Camera Wave-Bands Requirement VNIR 500-900 nm Low Light Imaging (Night) VNIR 400-430 nm TW Imagery, Cloud, Aerosol, Smoke, Dust VNIR 605-685 nm TW Imagery, Cloud, Snow, Aerosol, Vegetation VNIR 845-885 nm Cloud, Vegetation SWIR 1.58-1.64 µm Cloud, Aerosol, Snow LWIR-1 8.3-8.8 µm Cloud, Ash, Fog/Stratus, Multi-layer Cloud LWIR-2 10.8-11.3 µm TW Imagery, Cloud, Snow, SST, LST, Multi-layer Cloud LWIR-3 11.8-12.3 µm Imagery, Cloud, Snow, SST, LST, Fog/Stratus 4
  • 5. Multi-Spectral Imaging Sensor Uncooled LWIR Sensors Summary Compact and Cost Effective Leverages uncooled COTS camera technology to provide an affordable EO/IR weather sensor Modified COTS Camera - Digital Time Delayed Integration to Increase SNR - Space Qualified Electronics - Radiation Testing Benefits -  No Active Cooling Required -  Small Form Factor -  Sensitivity for Weather Applications LWIR  Uncooled  Micro-­‐Bolometer  
  • 6. 6 Multi-Spectral Imaging System Uncooled LWIR Sensor Specifications LWIR Sensor Summary Cameras 3 Filter Bands 8.4µm,10.8µm,12µm Pixel Dimensions 17 µm Array Size 1024 x 768 FOV 40° x 40° Spatial Resolution 760m (nadir) • Detector:  1024  x  768  pixels     • Uncooled  Microbolometer  Array     • CharacterizaUon  of  Camera  in   Progress   • Conducted  radiaUon  tests  of   the  sensor,  concluding  that   the  detector  can  withstand  a   total  dose  of  20  krads.      
  • 7. 7 q  Employs separate optics and detectors for each waveband. q  Supports Straight Forward Technology Insertion q  Size: •  16 x 4 x 4 inches •  Weight: 10 kg MSIS – Sensor Packaging Band   Center   λ  (um)   FWHM   (um)   Vis   .412   .03   VIS   .645   .08   NIR   .865   .04   SWIR   1.610   .06   LWIR   8.4   0.8   LWIR   10.8   1.0   LWIR   12.0   1.0   Low  Light   Imager   0.75   0.5   VNIR   LLI   LWIR   SWIR  
  • 8. Coverage Analysis 6 Orbital Planes - 6 Satellites Per Plane Sensor Field of View §  Assumptions: q  Sensor FOV: 40 Degree FOV q  Total Number of Sensors: 36 q  Orbital Planes: 6 q  Sensor Per Plane: 6 §  Conclusions: q  Coverage Complements Geostationary Weather Satellites q  Ground Repeat Time Depends on Satellite Precession q  380 m in Vis-SWIR (760m LWIR)
  • 9. §  Assumptions: q  Sensor FOV: 80 Degree FOV q  Total Number of Sensors: 12 q  Orbital Planes: 3 q  Sensors Per Plane: 2 q  Sensors Per Satellite: 2 7/17/13 9 Coverage Analysis 3 Orbital Planes - 2 Satellites Per Plane §  Conclusions: q  Coverage Complements Geostationary Weather Satellites q  Ground Repeat Time Depends on Satellite Precession q  Resolution: 380m Vis/NIR/SWIR (760m LWIR) Equatorial  View   Polar  View  
  • 10. 10 MSIS Challenge §  DMSP Satellites reach end of life around 2020. The Air Force SMC seeks affordable space-based terrestrial weather solutions to meet DoD weather requirements MSIS Sensor Attributes §  Capable •  Addresses Key DoD Weather Gaps §  Cost Effective •  Uses Uncooled and Body Fixed Sensors to Reduce Complexity and Size §  Compact •  Enables Use of Small Satellites and Hosted Payload Opportunities •  Small Satellite Approach Enables Satellite Constellation •  Constellation Provides Opportunity to Meeting Key Latency and Revisit Rate Requirements Summary