SlideShare uma empresa Scribd logo
1 de 15
Baixar para ler offline
Chapter 3
Exercise Solutions

EX3.1
VTN = 1 V , VGS = 3 V , VDS = 4.5 V
VDS = 4.5 > VDS ( sat ) = VGS − VTN = 3 − 1 = 2 V
Transistor biased in the saturation region
I D = K n (VGS − VTN ) ⇒ 0.8 = K n ( 3 − 1) ⇒ K n = 0.2 mA / V 2
                       2                    2


(a) VGS = 2 V, VDS = 4.5 V
Saturation region:
I D = ( 0.2 )( 2 − 1) ⇒ I D = 0.2 mA
                   2


(b) VGS = 3 V, VDS = 1 V
Nonsaturation region:
I D = ( 0.2 ) ⎡ 2 ( 3 − 1)(1) − (1) ⎤ ⇒ I D = 0.6 mA
                                   2
              ⎣                      ⎦

EX3.2
    VTP = −2 V , VSG = 3 V
VSD ( sat ) = VSG + VTP = 3 − 2 = 1 V
(a)    VSD = 0.5 V ⇒ Nonsaturation
(b)    VSD = 2 V ⇒ Saturation
(c)    VSD = 5 V ⇒ Saturation

EX3.3
     ⎛ R2 ⎞               ⎛ 160 ⎞
VG = ⎜         ⎟ (VDD ) = ⎜           ⎟ (10 ) = 3.636 V = VGS
     ⎝ R1 + R2 ⎠          ⎝ 160 + 280 ⎠
I D = 0.25 ( 3.636 − 2 ) = 0.669 mA
                           2


VDS = 10 − ( 0.669 )(10 ) = 3.31 V
P = I DVDS = ( 0.669 )( 3.31) = 2.21 mW

EX3.4
I DQ = K P (VSG + VTP )
                           2



1.2 = 0.4 (VSG − 1.2 ) ⇒ VSG = 2.932 V
                       2


      ⎛ R1 ⎞             1
VSG = ⎜         ⎟ VDD =     ⋅ VTTN − VDD
      ⎝ R1 + R2 ⎠        R2
Note K = kΩ
         1
2.932 =     ( 200 )(10 ) ⇒ R2 = 682 K
         R2
 682 R1
         = 200 ⇒ R1 = 283 K
682 + R1
       10 − 4
RD =          =5K
        1.2

EX3.5
         ⎛ R2 ⎞                   ⎛ 40 ⎞
(a) VG = ⎜          ⎟ (10 ) − 5 = ⎜         ⎟ (10 ) − 5 = −1 V
         ⎝ R1 + R2 ⎠              ⎝ 40 + 60 ⎠
    V − ( −5 )
               = K n (VGS − VTN )
                                   2
ID = S
       RS
VS = VG − VGS
( 5 − 1) − VGS = ( 0.5 )(1) (VGS − 2VGS + 1)
                               2


0.5VGS − 3.5 = 0 VGS = 7 VGS = 2.646 V
     2             2


I D = ( 0.5 )( 2.646 − 1) ⇒ I D = 1.354 mA
                         2


VDS = 10 − (1.354 )( 3) = 5.937 V
        4 − VGS = K n (1)(VGS − VTN )
                                        2
(b)
(1) K n = (1.05 )( 0.5 ) = 0.525
(2) K n = ( 0.95)( 0.5 ) = 0.475
(3) VTN = (1.05 )(1) = 1.05 V
(4) VTN = ( 0.95 )(1) = 0.95 V
(1)-(3)      4 − VGS = 0.525 (VGS − 2.1VGS + 1.1025 )
                                2


             0.525VGS − 0.1025VGS − 3.421 = 0
                    2


                     0.1025 ± 0.010506 + 7.1841
             VGS =                              = 2.652 V
                              2 ( 0.525 )
 I D = 0.525 ( 2.652 − 1.05 ) = 1.348 mA
                             2


VDS = 10 − (1.348 )( 3) = 5.957 V
(2)-(4)
 4 − VGS = 0.475 (VGS − 1.9VGS + 0.9025 )
                     2


0.475VGS + 0.0975VGS − 3.5713 = 0
       2


        −0.0975 ± 0.00950625 + 6.78547
VGS =
                   2 ( 0.475 )
VGS = 2.641 V
 I D = 0.475 ( 2.641 − 0.95 ) = 1.359 mA
                             2


VDS = 10 − (1.359 )( 3) = 5.924 V
(1)-(4)
4 −VGS = ( 0.525) (VGS −1.9VGS + 0.9025)
                     2


0.525 VGS + 0.0025VGS − 3.5262 = 0
        2


        −0.0025 ± 0.00000625 + 7.40502
VGS =
                   2 ( 0.525)
      = 2.5893 V
 I D = ( 0.525)( 2.5893 − 0.95) = 1.411
                                 2


VDS = 10 − I D ( 3) = 5.7678 V
(2)-(3)
 4 − VGS = 0.475 (VGS − 2.1VGS +1.1025 )
                       2


0.475VGS + 0.0025VGS − 3.4763 = 0
       2


        −0.0025 ± 0.00000625 + 6.60499
VGS =
                   2(0.475)
VGS   = 2.7027
 I D = (0.475)(2.7027 − 1.05) 2 = 1.2973 mA
VDS = 10 − I D (3) = 6.108 V
1.297 ≤ I DQ ≤ 1.411 mA
5.768 ≤ VDS ≤ 6.108 V

EX3.6
⎛ R2 ⎞
VG = ⎜          ⎟ (10 ) − 5
     ⎝ R1 + R2 ⎠
     ⎛ 200 ⎞
   =⎜       ⎟ (10 ) − 5 = 0.714 V
     ⎝ 350 ⎠
VS = 5 − I D RS = 5 − (1.2 ) I D
So
VSG = VS − VG = 5 − (1.2 ) I D − 0.714
    = 4.286 − (1.2 ) I D
       4.286 − VSG
ID =
           1.2
I D = K p (VSG + VTP )
                            2



                                            (
4.286 − VSG = (1.2 )( 0.25 ) × VSG − 2VSG ( −1) + ( −1)
                                 2                            2
                                                                  )
4.286 − VSG = ( 0.3) V − 0.6VSG + 0.3
                                 2
                                SG

0.3VSG + 0.4VSG − 3.986 = 0
     2



                      ( 0.4 )       + 4 ( 0.3)( 3.986 )
                                2
        −0.4 ±
VSG =
                            2 ( 0.3)
Must use + sign ⇒ VSG = 3.04 V
I D = ( 0.25 )( 3.04 − 1) ⇒ I D = 1.04 mA
                                    2



VSD = 10 − I D ( RS + RD ) = 10 − (1.04 )(1.2 + 4 ) ⇒ VSD = 4.59 V
VSD > VSD ( sat ) , Yes

EX3.7
VSD = 10 − I DQ ( RS + RP )
VSD = 10 − K P (VSG + VTP ) ( RS + RP )
                                        2


Set VSD = VSG + VTP
VSG + VTP = 10 − ( 0.25 )(VSG + VTP ) ( 5.2 )
                                                 2



1.3 (VSG + VTP ) + (VSG + VTP ) − 10 = 0
                  2



                 −1 ± 1 + 4 (1.3)(10 )
(VSG + VTP ) =
                                2 (1.3)
                = 2.415 V
VSG = 3.415 V       ( 3.42 V )
VSD = 2.415 V ( 2.42 V )
 I D = ( 0.25 )( 2.415 ) = 1.46 mA
                         2




EX3.8
     ⎛ R2 ⎞                  ⎛ 240 ⎞
VG = ⎜         ⎟ (10 ) − 5 = ⎜           ⎟ (10 ) − 5
     ⎝ R1 + R2 ⎠             ⎝ 240 + 270 ⎠
VG = −0.294 V
       VS − ( −5 )        VG − VGS + 5
                                       = K n (VGS − VTN )
                                                          2
ID =                  =
           RS                  RS
              ⎛ 0.08 ⎞
4.706 − VGS = ⎜      ⎟ ( 4 )( 3.9 ) (VGS − 2.4VGS + 1.44 )
                                       2

              ⎝ 2 ⎠
0.624VGS − 0.4976VGS − 3.80744 = 0
       2
0.4976 ± 0.2476 + 9.50337
VGS =
                2 ( 0.624 )
VGS = 2.90 V
      ⎛ 0.08 ⎞
              ⎟ ( 4 )( 2.90 − 1.2 ) ⇒ I D = 0.463 mA
                                   2
 ID = ⎜
      ⎝   2 ⎠
VDS = 10 − I D ( 3.9 + 10 ) ⇒ VDS = 3.57 V

EX3.9
     10 − VSG
              and I D = K p (VSG + VTP )
                                         2
ID =
        RS
0.12 = ( 0.050 )(VSG − 0.8 )
                               2


 VSG = 2.35 V
     10 − 2.35
RS =            ⇒ RS = 63.75 kΩ
        0.12
VSD = 8 = 20 − I D ( RS + RD )
  8 = 20 − ( 0.12 )( 63.75 ) − ( 0.12 ) RD
        20 − ( 0.12 )( 63.75 ) − 8
 RD =                                ⇒ RD = 36.25 kΩ
                    0.12
(1)    KP    = ( 0.05 )(1.05 ) = 0.0525
(2)    KP    = ( 0.05 )( 0.95 ) = 0.0475
(3)    VTP   = −0.8 (1.05 ) = −0.84 V
(4)    VTP   = −0.8 ( 0.95 ) = −0.76 V
               10 − VSG
                          = K P (VSG + VTP )
                                             2
        ID   =
                   RS
(1)-(3)
10 − VSG = ( 63.75 )( 0.0525 ) ⎡VSG − 1.68VSG + 0.7056 ⎤
                               ⎣
                                  2
                                                       ⎦
3.347VSG − 4.623VSG − 7.6384 = 0
       2


        4.623 ± 21.372 + 102.263
VSG =
                2 ( 3.347 )
VSG = 2.352 V ⇒ I D ≅ 0.120 mA
VSD ≈ 8.0 V
(2)-(4)
10 − VSG = ( 63.75 )( 0.0475 ) ⎡VSG − 1.52VSG + 0.5776 ⎤
                               ⎣
                                  2
                                                       ⎦
3.028VSG − 3.603VSG − 8.251 = 0
       2


        3.603 ± 12.9816 + 99.936
VSG =
                2 ( 3.028 )
VSG = 2.35 V
 I D ≈ 0.120
VSD ≈ 8.0
(1)-(4)
10 − VSG = ( 63.75 )( 0.0525 ) ⎡VSG − 1.52VSG + 0.5776 ⎤
                               ⎣
                                  2
                                                       ⎦
3.347VSG − 4.087VSG − 8.06685 = 0
       2
4.087 ± 16.7036 + 107.999
VSG =
                2 ( 3.347 )
VSG = 2.279 V
 I D = 0.121 mA
VSD = 7.89 V
(2)-(3)
10 − VSG = ( 63.75 )( 0.0475 ) ⎡VSG − 1.68VSG + 0.7056 ⎤
                               ⎣
                                  2
                                                       ⎦
3.028VSG − 4.0873VSG − 7.8634 = 0
       2


        4.0873 ± 16.706 + 95.242
VSG =
                2 ( 3.028 )
VSG = 2.422 V
 I D = 0.119 mA
VSD = 8.11 V
Summary 0.119 ≤ I D ≤ 0.121 mA
         7.89 ≤ VSD ≤ 8.11 V

EX3.10
     V − VGS
                     I D = K n (VGS − VTN )
                                              2
I D = DD     ,
         RS
10 − VGS = (10 )( 0.2 ) (VGS − 2VGSVTN + VTN )
                           2               2


10 − VGS = 2VGS − 8VGS + 8
              2


2VGS − 7VGS − 2 = 0
   2



             (7) + 4 ( 2) 2
                2
        7±
VGS =
              2 ( 2)
Use + sign: VGS = VDS = 3.77 V
   10 − 3.77
ID =          ⇒ I D = 0.623 mA
       10
Power = I DVDS = ( 0.623)( 3.77 ) ⇒ Power = 2.35 mW

EX3.11
(a) VI = 4 V, Driver in Non ⋅ Sat.
K nD ⎣ 2 (VI − VTND ) VO − VO2 ⎦ = K nL [VDD − VO − VTNL ]
     ⎡                         ⎤
                                                          2



5 ⎡ 2 ( 4 − 1) VD − VD ⎤ = ( 5 − VD − 1) = ( 4 − VO ) = 16 − 8VO + VO2
                     2                2               2
  ⎣                    ⎦
6VD − 38VO + 16 = 0
  2


       38 ± 1444 − 384
VD =
            2 ( 6)
VD = 0.454 V
(b) VI = 2 V Driver: Sat
K nD [VI − VTND ] = K nL [VDD − VO − VTNL ]
                 2                                2



5 [ 2 − 1] = [5 − VO − 1]
         2               2



  5 = 4 − VO ⇒ VO = 1.76 V

EX3.12
If the transistor is biased in the saturation region
I D = K n (VGS − VTN ) = K n ( −VTN )
                               2         2



I D = ( 0.25 )( 2.5 ) ⇒ I D = 1.56 mA
                       2



VDS = VDD − I D RS = 10 − (1.56 )( 4 ) ⇒ VDS = 3.75
VDS > VGS − VTN = −VTN
3.75 > − ( −2.5 )
Yes — biased in the saturation region
Power = I DVDS = (1.56 )( 3.75 ) ⇒ Power = 5.85 mW

EX3.13
(a) For VI = 5 V, Load in saturation and driver in nonsaturation.
 I DD = I DL
K nD ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = K nL ( −VTNL )
                                                    2
     ⎣                         ⎦
 K nD ⎡                                    K
        2 5 − 1)( 0.25 ) − ( 0.25 ) ⎤ = 4 ⇒ nD = 2.06
      ⎣ (
                                   2

 K nL                                ⎦     K nL
(b)
 I DL = K nL ( −VTNL ) ⇒ 0.2 = K nL ⎡ − ( −2 ) ⎤
                           2                        2
                                    ⎣          ⎦
K nL = 50 μ A / V 2 and K nD = 103 μ A / V 2

EX3.14
For M N
I DN = I DP
K n (VGSN − VTN ) = K p (Vscop + VTP )
                   2                         2



VGSN = 1 + ( 5 − 3.25 − 1) = 1.75 V = VI
Vo = VDSN ( sat ) = 1.75 − 1 ⇒ Vo = 0.75 V
For M P : VI = 1.75 V
              VDD − VO = VSD ( sat ) = VSGP + VTP = ( 5 − 3.25 ) − 1 = 0.75 V
              So Vot = 5 − 0.75 ⇒ Vot = 4.25 V

EX3.15
For RD = 10 k Ω, VDD = 5 V, and Vo = 1 V
      5 −1
ID =         = 0.4 mA
       10
I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤
          ⎣
                                  2
                                     ⎦
I D = 0.4 = K n ⎡ 2 ( 5 − 1)(1) − (1) ⎤ ⇒ K n = 0.057 mA / V 2
                                     2
                ⎣                      ⎦
P = I D ⋅ VDS = ( 0.4 )(1) ⇒ P = 0.4 mW

EX3.16
a.  V1 = 5 V, V2 = 0, M 2 cutoff ⇒ I D 2 = 0
                                         5 − VO
I D = K n ⎣ 2 (VI − VTN ) VO − VO2 ⎦ =
          ⎡                        ⎤
                                           RD
( 0.05 )( 30 ) ⎡ 2 ( 5 − 1)V0 − V02 ⎤ = 5 − V0
               ⎣                    ⎦
1.5V02 − 13V0 + 5 = 0

               (13) − 4 (1.5 )( 5)
                    2
        13 ±
V0 =                               ⇒ V0 = 0.40 V
                 2 (1.5 )
              5 − 0.40
I R = I D1 =           ⇒ I R = I D1 = 0.153 mA
                 30
b.      V1 = V2 = 5 V
5 − VO
  RD
               {
       = 2 K n ⎡ 2 (VI − VTN ) VO − VO2 ⎤
               ⎣                        ⎦         }
5 − V0 = 2 ( 0.05 )( 30 ) ⎡ 2 ( 5 − 1)V0 − V02 ⎤
                          ⎣                    ⎦
3V02 − 25V0 + 5 = 0

               ( 25) − 4 ( 3)( 5 )
                    2
        25 ±
V0 =                               ⇒ V0 = 0.205 V
                  2 ( 3)
        5 − 0.205
IR =                ⇒ I R = 0.160 mA
             30
I D1   = I D 2 = 0.080 mA

EX3.17
M 2 & M 3 watched ⇒ I Q1 = I REF 1 = 0.4 mA
0.4 = 0.3 (VGS 3 − 1) ⇒ VGS 3 = VGS 2 = 2.15 V
                        2



0.4 = 0.6 (VGS 1 − 1) ⇒ VGS1 = 1.82 V
                        2




EX3.18
      ⎛ 0.04 ⎞
             ⎟ (15 )(VSGC − 0.6 )
                                  2
0.1 = ⎜
      ⎝ 2 ⎠
VSGC = 1.177 V = VSGB
      ⎛ 0.04 ⎞ ⎛ W ⎞
             ⎟ ⎜ ⎟ (1.177 − 0.6 )
                                  2
0.2 = ⎜
      ⎝ 2 ⎠ ⎝ L ⎠B
        ⎛W ⎞
        ⎜ ⎟ = 30
        ⎝ L ⎠B
      ⎛ 0.04 ⎞
             ⎟ ( 25 )(VSGA − 0.6 )
                                   2
0.2 = ⎜
      ⎝ 2 ⎠
      VSGA = 1.23 V

EX3.19
            I REF = K n 3 (VGS 3 − VTN ) = K n 4 (VGS 4 − VTN )
                                       2                          2
(a)
            VGS 3 = 2 V ⇒ VGS 4 = 3 V
                    K                   K      1
        ( 2 − 1) = n 4 ( 3 − 1) ⇒ n 4 =
                2                 2

                    K n3                K n3 4
              I Q = K n 2 (VGS 2 − VTN )
                                           2
(b)
        But VGS 2 = VGS 3 = 2 V
               0.1 = K n 2 ( 2 − 1) ⇒
                                  2
                                               K n 2 = 0.1 mA / V 2

        0.2 = K n 3 ( 2 − 1) ⇒ K n 3 = 0.2 mA / V 2
                            2
(c)
        0.2 = K n 4 ( 3 − 1) ⇒ K n 4 = 0.05 mA / V 2
                            2




EX3.20
5
VS 2 = 5 − 5 = 0         RS 2 =                 = 16.7 K
                                            0.3
I D 2 = K n 2 (VGS 2 − VTN 2 )
                                        2



0.3 = 0.2 (VGS 2 − 1.2 ) ⇒ VGS 2 = 2.425 V ⇒ VG 2 = VGS 2 + VS = 2.425 V
                                2


        5 − 2.425
RD1 =              = 25.8 K
            0.1
VS 1 = VG 2 − VDSQ1 = 2.425 − 5 = −2.575 V
         −2.575 − ( −5 )
RS 1 =                      ⇒ RS 1 = 24.3 K
               0.1
I D1 = K n1 (VGS 1 − VTN 1 )
                                    2



0.1 = 0.5 (VGS1 − 1.2 ) ⇒ VGS 1 = 1.647 V
                            2


VG1 = VGS 1 + VS 1 = 1.647 + ( −2.575 ) ⇒ VG1 = −0.928 V
      ⎛ R2 ⎞                 1
VG1 = ⎜         ⎟ (10 ) − 5 = ⋅ RTN ⋅ (10 ) − 5
      ⎝ R1 + R2 ⎠            R1
           1
−0.928 = ( 200 )(10 ) − 5 ⇒ R1 = 491 K
           R1
           491 R2
                   = 200 ⇒ R2 = 337 K
          491 + R2

EX3.21
VS1 = I D RS − 5 = (0.25)(16) − 5 = −1 V
I DQ = K n (VGS1 − VTN ) 2 ⇒ 0.25 = 0.5(VGS 1 − 0.8) 2 ⇒ VGS 1 = 1.507 V
VG1 = VGS 1 + VS 1 = 1.507 − 1 = 0.507 V
       ⎛       R3     ⎞                R3
VG1 = ⎜               ⎟ (5) ⇒ 0.507 =     (5) ⇒ R3 = 50.7 K
       ⎝ R1 + R2 + R3 ⎠               500
VS 2 = VS 1 + VDS1 = −1 + 2.5 = 1.5 V
VG 2 = VS 2 + VGS = 1.5 + 1.507 = 3.007 V
       ⎛ R2 + R3 ⎞                    ⎛ R2 + R3 ⎞
VG 2 = ⎜              ⎟ (5) ⇒ 3.007 = ⎜         ⎟ (5)
       ⎝ R1 + R2 + R3 ⎠               ⎝ 500 ⎠
R2 + R3 = 300.7
      R2 = 300.7 − 50.7 ⇒ R2 = 250 K
R1 = 500 − 250 − 50.7 ⇒ R1 = 199.3 K
VD 2 = VS 2 + VDS 2 = 1.5 + 2.5 = 4 V
            5−4
      RD =         ⇒ RD = 4 K
             0.25

EX3.22
VDS ( sat ) = VGS − VP = −1.2 − ( −4.5 ) ⇒ VDS ( sat ) = 3.3 V

                            ⎛ ( −1.2 ) ⎞
                        2                             2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟ = 12 ⎜ 1 −        ⇒ I D = 6.45 mA
                            ⎜ ( −4.5 ) ⎟
                                       ⎟
            ⎝    VP ⎠       ⎝          ⎠

EX3.23
Assume the transistor is biased in the saturation region.
2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                           2
       ⎛      V      ⎞
8 = 18 ⎜ 1 − GS ⎟ ⇒ VGS = −1.17 V ⇒ VS = −VGS = 1.17
       ⎜ ( −3.5 ) ⎟
       ⎝             ⎠
VD = 15 − ( 8 )( 0.8 ) = 8.6
VDS = 8.6 − (1.17 ) = 7.43 V
VDS = 7.43 > VGS − VP = −1.17 − ( −3.5 ) = 2.33
Yes, the transistor is biased in the saturation region.

EX3.24
I D = 2.5 mA
                           2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                       2
        ⎛     V ⎞
2.5 = 6 ⎜1 − GS ⎟ ⇒ VGS = −1.42 V
        ⎜ ( −4 ) ⎟
        ⎝          ⎠
VS = I D RS − 5 = ( 2.5 )( 0.25 ) − 5
VS = −4.375
 VDS = 6 ⇒ VD = 6 − 4.375 = 1.625
      5 − 1625
RD =            ⇒ RD = 1.35 kΩ
          2.5
 ( 20 )
          2

              = 2 ⇒ R1 + R2 = 200 kΩ
R1 + R2
VG = VGS + VS = −1.42 − 4.375 = −5.795
     ⎛ R2 ⎞
VG = ⎜         ⎟ ( 20 ) − 10
     ⎝ R1 + R2 ⎠
          ⎛ R ⎞
−5.795 = ⎜ 2 ⎟ ( 20 ) − 10 ⇒ R2 = 42.05 kΩ → 42 kΩ
          ⎝ 200 ⎠
R1 = 157.95 kΩ → 158 kΩ

EX3.25
                       0 − VS VGS
VS = −VGS . I D =            =
                         RS    RS
                           2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                       ⎛ V       V2 ⎞
                       2
VGS     ⎛ V ⎞
    = 6 ⎜ 1 − GS ⎟ = 6 ⎜ 1 − GS + GS ⎟
 1      ⎝     4 ⎠      ⎝     2    16 ⎠
0.375VGS − 4VGS + 6 = 0
       2


          4 ± 16 − 4 ( 0.375 )( 6 )
VGS =
                  2 ( 0.375 )
VGS = 8.86 or VGS = 1.806 V
  impossible

       VGS
ID =       = 1.806 mA
       RS
VD = I D RD − 5 = (1.81)( 0.4 ) − 5 = −4.278
VSD = VS − V0 = −1.81 − ( −4.276 ) ⇒ VSD = 2.47 V
VSD ( sat ) = VP − VGS = 4 − 1.81 = 2.19
So VSD > VSD ( sat )

EX3.26
                    R1 R2
Rin = R1 R2 =              = 100 kΩ
                   R1 + R2
I DQ = 5 mA, VS = − I DQ RS = − ( 5 )(1.2 ) = −6 V
VSDQ = 12 V ⇒ VD = VS − VSDQ
                        = −6 − 12 = −18 V
        −18 − ( −20 )
 RD =                   ⇒ RD = 0.4 kΩ
               5
                         2
             ⎛ V ⎞
                                             2
                                ⎛ V ⎞
I DQ = I DSS ⎜ 1 − GS ⎟ ⇒ 5 = 8 ⎜ 1 − GS ⎟
             ⎝    VP ⎠          ⎝     4 ⎠
VGS = 0.838 V
 VG = VGS + VS = 0.838 − 6 = −5.162
      ⎛ R2 ⎞
 VG = ⎜         ⎟ ( −20 )
      ⎝ R1 + R2 ⎠
           1
−5.162 = (100 )( −20 ) ⇒ R1 = 387 kΩ
          R1
 R1 R2
        = 100 ⇒ ( 387 ) R2 = 100 ( 387 ) + 100 R2
R1 + R2
( 387 − 100 ) R2 = (100 )( 387 ) ⇒ R2 = 135 kΩ

TYU3.1
(a)        VTN = 1.2 V , VGS = 2 V
    V DS ( sat ) = VGS − VTN = 2 − 1.2 = 0.8 V
(i) VDS = 0.4 ⇒ Nonsaturation
(ii) VDS = 1 ⇒ Saturation
(iii) VDS = 5 ⇒ Saturation
(b)          VTN = −1.2 V , VGS = 2 V
      V DS ( sat ) = VGS − VTN = 2 − ( −1.2 ) = 3.2 V
(i) VDS = 0.4 ⇒ Nonsaturation
(ii) VDS = 1 ⇒ Nonsaturation
(iii) VDS = 5 ⇒ Saturation

TYU3.2
            W μ n Cox
(a)     Kn =
                2L
            ∈ox ( 3.9 ) ( 8.85 × 10 )
                                    −14

      Cox =      =               −8
                                        = 7.67 × 10−8 F / cm
            tox       450 × 10
               (100 )( 500 ) ( 7.67 ×10−8 )
        Kn =                                ⇒ K n = 0.274 mA / V 2
                         2 (7)
(b) VTN = 1.2 V, VGS = 2 V
(i)    VDS = 0.4 V ⇒ Nonsaturation
       I D = ( 0.274 ) ⎡ 2 ( 2 − 1.2 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ I D = 0.132 mA
                                                       2
                       ⎣                                 ⎦
(ii)   VDS = 1 V ⇒ Saturation
       I D = ( 0.274 )( 2 − 1.2 ) ⇒ I D = 0.175 mA
                                   2



(iii) VDS = 5 V ⇒ Saturation
       I D = ( 0.274 )( 2 − 1.2 ) ⇒ I D = 0.175 mA
                                   2



       VTN = −1.2 V , VGS = 2 V
(i)    VDS = 0.4 V ⇒ Nonsaturation
       I D = ( 0.274 ) ⎡ 2 ( 2 + 1.2 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ I D = 0.658 mA
                                                       2
                       ⎣                                 ⎦
(ii)   VDS = 1 V ⇒ Nonsaturation
      I D = ( 0.274 ) ⎡ 2 ( 2 + 1.2 )(1) − (1) ⎤ ⇒ I D = 1.48 mA
                                              2
                      ⎣                         ⎦
(iii) VDS = 5 V ⇒ Saturation
       I D = ( 0.274 )( 2 + 1.2 ) ⇒ I D = 2.81 mA
                                   2




TYU3.3
(a) VSD (sat) = VSG + VTP = 2 − 1.2 = 0.8 V
       (i) Non Sat (ii) Sat      (iii) Sat
(b) VSD (sat) = 2 + 1.2 = 3.2 V
       (i) Non Sat (ii) Non Sat         (iii) Sat

TYU3.4
(a)
      ⎛ W ⎞ ⎛ μ p Cox ⎞       (3.9)(8.85 × 10−14 )
 KP = ⎜ ⎟ ⎜           ⎟ Cox =
      ⎝ L ⎠⎝ Z ⎠                  350 × 10−8
                            = 9.861× 10−8

       (40) ⎛ ( 300 ) ( 9.861× 10           )⎞
                                       −8

KP =        ⎜                                ⎟
        (2) ⎜             2                  ⎟
            ⎝                                ⎠
K P = 0.296 mA / V
                      2


(b)
(i)    I D = (0.296) ⎡ 2(2 − 1.2)(0.4) − (0.4) 2 ⎤
                     ⎣                           ⎦
          = 0.142 mA
       I D = (0.296) [ 2 − 1.2] ⇒ I D = 0.189 mA
                                2
(ii)
(iii) ID = 0.189 mA
(i) I D = (0.296) ⎡ 2 ( 2 + 1.2 )( 0.4 ) − ( 0.4 ) ⎤
                                                  2
                   ⎣                                ⎦
          = 0.710 mA
       I D = (0.296) ⎡ 2 ( 2 + 1.2 )(1) − (1) ⎤
                                             2
(ii)
                     ⎣                         ⎦
           =1.60 mA
(iii) I D = ( 0.296 )( 2 + 1.2 )
                                   2


          = 3.03 mA

TYU3.5
(a)   λ = 0, VDS ( sat ) = 2.5 − 0.8 = 1.7 V
      For VDS = 2 V , VDS = 10 V ⇒ Saturation Region
      I D = ( 0.1)( 2.5 − 0.8 ) ⇒ I D = 0.289 mA
                                      2



(b)   λ = 0.02 V −1
      I D = K n (VGS − VTN ) (1 + λVDS )
                                  2


      For VDS = 2 V
      I D = ( 0.1)( 2.5 − 0.8 ) ⎡1 + ( 0.02 )( 2 ) ⎤ ⇒ I D = 0.300 mA
                                      2
                                ⎣                  ⎦
      VDS = 10 V
      I D = ( 0.1) ⎡( 2.5 − 0.8 ) (1 + ( 0.02 )(10 ) ) ⎤ ⇒ I D = 0.347 mA
                                 2
                   ⎣                                   ⎦
(c)   For part (a), λ = 0 ⇒ ro = ∞
For part (b), λ = 0.02 V −1 ,
                                 −1                            −1
ro = ⎡λ K n (VGS − VTN ) ⎤ = ⎡( 0.02 )( 0.1)( 2.5 − 0.8 ) ⎤
                        2                                2
                                                                    or ro = 173 k Ω
     ⎣                    ⎦  ⎣                             ⎦

TYU3.6
VTN = VTNO + γ ⎡ 2φ f + VSB − 2φ f ⎤
               ⎣                   ⎦
2φ f = 0.70 V , VTNO = 1 V
(a)   VSB = 0 ⇒, VTN = 1 V
(b)   VSB = 1 V , VTN = 1 + ( 0.35 ) ⎣ 0.7 + 1 − 0.7 ⎦ ⇒ VTN = 1.16 V
                                     ⎡               ⎤

(c)   VSB = 4 V , VTN = 1 + ( 0.35 ) ⎡ 0.7 + 4 − 0.7 ⎤ ⇒ VTN = 1.47 V
                                     ⎣                ⎦

TYU3.7
I D = K n (VGS − VTN )
                         2



0.4 = 0.25 (VGS − 0.8 ) ⇒ VGS = 2.06 V
                             2


      ⎛ R2 ⎞
VGS = ⎜         ⎟ VDD
      ⎝ R1 + R2 ⎠
        ⎛ R ⎞
2.06 = ⎜ 2 ⎟ ( 7.5 ) ⇒ R2 = 68.8 kΩ
        ⎝ 250 ⎠
R1 = 181.2 kΩ
VDS = 4 = VDD − I D RD
      7.5 − 4
RD =          ⇒ RD = 8.75 kΩ
        0.4
VDS > VDS ( sat ) , Yes

TYU3.8
VS − ( −5 )
ID =                   and VS = −VGS
            RS
            5 − VGS
So RS =
              0.1
I D = K n (VGS − VTN )
                              2



0.1 = ( 0.080 )(VGS − 1.2 ) ⇒ VGS = 2.32 V
                                       2


          5 − 2.32
So RS =            ⇒ RS = 26.8 kΩ
             0.1
VDS = VD − VS ⇒ VD = VDS + VS = 4.5 − 2.32
VD = 2.18
     5 − VD 5 − 2.18
RD =       =         ⇒ RD = 28.2 kΩ
       ID      0.1
VDS > VDS ( sat ) , Yes

TYU3.9
For VDS = 2.2 V
     5 − 2.2
ID =         ⇒ I D = 0.56 mA
        5
I D = K n (VGS − VTN )
                              2



0.56 = K n ( 2.2 − 1)
                          2


                                  W μ n Cox
K n = 0.389 mA / V =                ⋅
                                  L    2
W ( 389 )( 2 )   W
  =            ⇒   = 19.4
L    ( 40 )      L

TYU3.10
(a) The transition point is

VIt =
                                   (
        VDD − VTNL + VTND 1 + K nD / K nL              )
                      1 + K nD /K nL

=
             (
     5 − 1 + 1 1 + 0.05/ 0.01              )
       1 + 0.05/ 0.01
  7.236
=         ⇒ VIt = 2.236 V
  3.236
VOt = VIt − VTND = 2.24 − 1 ⇒ VOt = 1.24 V
(b) We may write
I D = K n D (VGSD − VTND ) = ( 0.05 )( 2.236 − 1) ⇒ I D = 76.4 μ A
                                   2                       2




TYU3.11

VIt =
                                   (
        VDD − VTNL + VTND 1 + K nD /K nL           )
                      1 + K nD /K nL

2.5 =
                 (
        5 − 1 + 1 1 + K nD /K nL               )
              1 + K nD /K nL
                                                               5 − 2.5
2.5 + 2.5 K nD /K nL = 5 + K nD /K nL ⇒ K nD /K nL =                   = 1.67 ⇒ K nD /K nL = 2.78
                                                                 1.5
b.      For VI = 5, driver in nonsaturated region.
I DD = I DL
K nD ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = K nL (VGSL − VTNL )
                                                         2
     ⎣                         ⎦
K nD
     ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = [VDD − VO − VTNL ]
                                                     2

K nL ⎣                         ⎦

2.78 ⎡ 2 ( 5 − 1) V0 − V02 ⎤ = [5 − V0 − 1]
                                            2
     ⎣                     ⎦
22.24V0 − 2.78V02 = ( 4 − V0 )
                                   2


                         = 16 − 8V0 + V02
3.78V02 − 30.24V0 + 16 = 0

                  ( 30.24 ) − 4 ( 3.78 )(16 )
                             2
       30.24 ±
V0 =                                          ⇒ V0 = 0.57 V
                      2 ( 3.78 )

TYU3.12
We have VDS = 1.2 V < VGS − VTN = −VTN = 1.8 V
Transistor is biased in the nonsaturation region.
                                                V − VDS 5 − 1.2
I D = K n ⎣ 2 (VGS − VTN ) VDS − VDS ⎦ and I D = DD
          ⎡                       2
                                     ⎤                 =        ⇒ I D = 0.475 mA
                                                    RS     8
0.475 = K n ⎡ 2 ( 0 − ( −1.8 ) ) (1.2 ) − (1.2 ) ⎤
                                                2
            ⎣                                    ⎦
0.475 = K n ( 2.88 ) ⇒ K n = 0.165 mA/V 2
    W μ n Cox
Kn =  ⋅
    L     2
W ( 165 )( 2 )   W
  =            ⇒   = 9.43
L     35         L

TYU3.13
(a) Transition point for the load transistor – Driver is in the saturation region.
 I DD = I DL
K nD (VGSD − VTND ) = K nL (VGSL − VTNL )
                     2                          2


VDSL ( sat ) = VGSL − VTNL = −VTNL ⇒ VDSL = VDD − VOt = 2 V
Then VOt = 5 − 2 = 3 V , VOt = 3 V
  K nD
       (VIt − 1) = ( −VTNL )
  K nL
  0.08
       (VIt − 1) = 2 ⇒ VIt = 1.89 V
  0.01
(b) For the driver:
VOt = VIt − VTND
VIt = 1.89 V , VOt = 0.89 V

TYU3.14
 I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤
           ⎣
                                   2
                                      ⎦
     = ( 0.050 ) ⎡ 2 (10 − 0.7 )( 0.35 ) − ( 0.35 ) ⎤
                                                   2
                 ⎣                                   ⎦
 I D = 0.319 mA
       VDD − Vo 10 − 0.35
RD =           =          ⇒ RD = 30.3 kΩ
          ID     0.319

TYU3.15
(a) Transistor biased in the nonsaturation region
5 − 1.5 − VDS
ID =                 = 12
             R
I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤
          ⎣
                                  2
                                     ⎦
12 = 4 ⎡ 2 ( 5 − 0.8 ) VDS − VDS ⎤
       ⎣
                              2
                                 ⎦
4VDS − 33.6VDS + 12 = 0 ⇒ VDS = 0.374 V
  2


              5 − 1.5 − 0.374
Then R =                      ⇒ R = 261 Ω
                     12

TYU3.16
              5 − VO
a.     ID =          = K n ⎡ 2 (V2 − VTN ) VO − VO2 ⎤
                           ⎣                        ⎦
                RD
       5 − ( 0.10 )
                      = K n ⎡ 2 ( 5 − 1)( 0.10 ) − ( 0.10 ) ⎤ ⇒ K n = 0.248 mA / V 2
                                                           2

           25               ⎣                                ⎦
       5 − V0
b.            = 2 ( 0.248 ) ⎡ 2 ( 5 − 1) V0 − V02 ⎤
                            ⎣                     ⎦
         25
       5 − V0 = 12.4 ⎡8V0 − V0 ⎤
                      ⎣
                                 2
                                   ⎦
       12.4V02 − 100.2V0 + 5 = 0

                          (100.2 ) − 4 (12.4 )( 5 )
                                  2
              100.2 ±
       V0 =                                         ⇒ V0 = 0.0502 V
                            2 (12.4 )

TYU3.17
I DQ = K (VGS − VTN ) ⇒ 5 = 50 (VGS − 0.15 ) ⇒ VGS = 0.466 V
                     2                      2



VS = ( 0.005 )(10 ) = 0.050 V ⇒ VGG = VGS + VS = 0.466 + 0.050 ⇒ VGG = 0.516 V
VD = 5 − ( 0.005 )(100 ) ⇒ VD = 4.5 V
VDS = VD − VS = 4.5 − 0.050 ⇒ VDS = 4.45 V

TYU3.18
 I D = K ⎡ 2 (VGS − VTN ) VDS − VDS ⎤
         ⎣
                                 2
                                    ⎦
    = 100 ⎡ 2 ( 0.7 − 0.2 )( 0.1) − ( 0.1) ⎤
                                          2
          ⎣                                 ⎦
 ID = 9 μA
       2.5 − 0.1
RD =             ⇒ RD = 267 kΩ
        0.009

Mais conteúdo relacionado

Destaque (15)

Ch15s
Ch15sCh15s
Ch15s
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch16p
Ch16pCh16p
Ch16p
 
Ch07p
Ch07pCh07p
Ch07p
 
Ch01p
Ch01pCh01p
Ch01p
 
Ch13p
Ch13pCh13p
Ch13p
 
Ch01s
Ch01sCh01s
Ch01s
 
Ch06p
Ch06pCh06p
Ch06p
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch05s
Ch05sCh05s
Ch05s
 
Ch13s
Ch13sCh13s
Ch13s
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch02p
Ch02pCh02p
Ch02p
 
Ch09p
Ch09pCh09p
Ch09p
 
Ch11s
Ch11sCh11s
Ch11s
 

Semelhante a Ch03p

Semelhante a Ch03p (20)

Ch10p
Ch10pCh10p
Ch10p
 
Ch11p
Ch11pCh11p
Ch11p
 
Ch08p
Ch08pCh08p
Ch08p
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Pdik 12542
Pdik 12542Pdik 12542
Pdik 12542
 
Ch08s
Ch08sCh08s
Ch08s
 
Correction subcircuits.pdf
Correction subcircuits.pdfCorrection subcircuits.pdf
Correction subcircuits.pdf
 
Sesión 05
Sesión 05Sesión 05
Sesión 05
 
Ch06s
Ch06sCh06s
Ch06s
 
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
 
Ch15p
Ch15pCh15p
Ch15p
 
Original PolarHV HiPerFET Power MOSFET IXFH44N50P 44N50 TO-3P 44A 500V New IX...
Original PolarHV HiPerFET Power MOSFET IXFH44N50P 44N50 TO-3P 44A 500V New IX...Original PolarHV HiPerFET Power MOSFET IXFH44N50P 44N50 TO-3P 44A 500V New IX...
Original PolarHV HiPerFET Power MOSFET IXFH44N50P 44N50 TO-3P 44A 500V New IX...
 
Khb 7d0n65f2 datasheet
Khb 7d0n65f2 datasheetKhb 7d0n65f2 datasheet
Khb 7d0n65f2 datasheet
 
Ch12p
Ch12pCh12p
Ch12p
 
Shi20396 ch14
Shi20396 ch14Shi20396 ch14
Shi20396 ch14
 
Calculation template
Calculation templateCalculation template
Calculation template
 
Petroleo 404 DEBER
Petroleo 404 DEBERPetroleo 404 DEBER
Petroleo 404 DEBER
 
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...
 
Original N-Channel Mosfet IXTP80N10 IXTP80N10T 80N10 80A 100V TO-220 New IXYS
Original N-Channel Mosfet IXTP80N10 IXTP80N10T 80N10 80A 100V TO-220 New IXYSOriginal N-Channel Mosfet IXTP80N10 IXTP80N10T 80N10 80A 100V TO-220 New IXYS
Original N-Channel Mosfet IXTP80N10 IXTP80N10T 80N10 80A 100V TO-220 New IXYS
 

Mais de Bilal Sarwar (7)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch14p
Ch14pCh14p
Ch14p
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch09s
Ch09sCh09s
Ch09s
 
Ch05p
Ch05pCh05p
Ch05p
 

Último

Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
FIDO Alliance
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
panagenda
 
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
FIDO Alliance
 

Último (20)

Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
 
Using IESVE for Room Loads Analysis - UK & Ireland
Using IESVE for Room Loads Analysis - UK & IrelandUsing IESVE for Room Loads Analysis - UK & Ireland
Using IESVE for Room Loads Analysis - UK & Ireland
 
Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptx
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
 
Event-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream ProcessingEvent-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream Processing
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentation
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data Science
 
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!
 
Intro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджераIntro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджера
 
JavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate GuideJavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate Guide
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
 
Intro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptxIntro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptx
 
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
 
WebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM PerformanceWebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM Performance
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
UiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewUiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overview
 
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage Intacct
 

Ch03p

  • 1. Chapter 3 Exercise Solutions EX3.1 VTN = 1 V , VGS = 3 V , VDS = 4.5 V VDS = 4.5 > VDS ( sat ) = VGS − VTN = 3 − 1 = 2 V Transistor biased in the saturation region I D = K n (VGS − VTN ) ⇒ 0.8 = K n ( 3 − 1) ⇒ K n = 0.2 mA / V 2 2 2 (a) VGS = 2 V, VDS = 4.5 V Saturation region: I D = ( 0.2 )( 2 − 1) ⇒ I D = 0.2 mA 2 (b) VGS = 3 V, VDS = 1 V Nonsaturation region: I D = ( 0.2 ) ⎡ 2 ( 3 − 1)(1) − (1) ⎤ ⇒ I D = 0.6 mA 2 ⎣ ⎦ EX3.2 VTP = −2 V , VSG = 3 V VSD ( sat ) = VSG + VTP = 3 − 2 = 1 V (a) VSD = 0.5 V ⇒ Nonsaturation (b) VSD = 2 V ⇒ Saturation (c) VSD = 5 V ⇒ Saturation EX3.3 ⎛ R2 ⎞ ⎛ 160 ⎞ VG = ⎜ ⎟ (VDD ) = ⎜ ⎟ (10 ) = 3.636 V = VGS ⎝ R1 + R2 ⎠ ⎝ 160 + 280 ⎠ I D = 0.25 ( 3.636 − 2 ) = 0.669 mA 2 VDS = 10 − ( 0.669 )(10 ) = 3.31 V P = I DVDS = ( 0.669 )( 3.31) = 2.21 mW EX3.4 I DQ = K P (VSG + VTP ) 2 1.2 = 0.4 (VSG − 1.2 ) ⇒ VSG = 2.932 V 2 ⎛ R1 ⎞ 1 VSG = ⎜ ⎟ VDD = ⋅ VTTN − VDD ⎝ R1 + R2 ⎠ R2 Note K = kΩ 1 2.932 = ( 200 )(10 ) ⇒ R2 = 682 K R2 682 R1 = 200 ⇒ R1 = 283 K 682 + R1 10 − 4 RD = =5K 1.2 EX3.5 ⎛ R2 ⎞ ⎛ 40 ⎞ (a) VG = ⎜ ⎟ (10 ) − 5 = ⎜ ⎟ (10 ) − 5 = −1 V ⎝ R1 + R2 ⎠ ⎝ 40 + 60 ⎠ V − ( −5 ) = K n (VGS − VTN ) 2 ID = S RS VS = VG − VGS
  • 2. ( 5 − 1) − VGS = ( 0.5 )(1) (VGS − 2VGS + 1) 2 0.5VGS − 3.5 = 0 VGS = 7 VGS = 2.646 V 2 2 I D = ( 0.5 )( 2.646 − 1) ⇒ I D = 1.354 mA 2 VDS = 10 − (1.354 )( 3) = 5.937 V 4 − VGS = K n (1)(VGS − VTN ) 2 (b) (1) K n = (1.05 )( 0.5 ) = 0.525 (2) K n = ( 0.95)( 0.5 ) = 0.475 (3) VTN = (1.05 )(1) = 1.05 V (4) VTN = ( 0.95 )(1) = 0.95 V (1)-(3) 4 − VGS = 0.525 (VGS − 2.1VGS + 1.1025 ) 2 0.525VGS − 0.1025VGS − 3.421 = 0 2 0.1025 ± 0.010506 + 7.1841 VGS = = 2.652 V 2 ( 0.525 ) I D = 0.525 ( 2.652 − 1.05 ) = 1.348 mA 2 VDS = 10 − (1.348 )( 3) = 5.957 V (2)-(4) 4 − VGS = 0.475 (VGS − 1.9VGS + 0.9025 ) 2 0.475VGS + 0.0975VGS − 3.5713 = 0 2 −0.0975 ± 0.00950625 + 6.78547 VGS = 2 ( 0.475 ) VGS = 2.641 V I D = 0.475 ( 2.641 − 0.95 ) = 1.359 mA 2 VDS = 10 − (1.359 )( 3) = 5.924 V (1)-(4) 4 −VGS = ( 0.525) (VGS −1.9VGS + 0.9025) 2 0.525 VGS + 0.0025VGS − 3.5262 = 0 2 −0.0025 ± 0.00000625 + 7.40502 VGS = 2 ( 0.525) = 2.5893 V I D = ( 0.525)( 2.5893 − 0.95) = 1.411 2 VDS = 10 − I D ( 3) = 5.7678 V (2)-(3) 4 − VGS = 0.475 (VGS − 2.1VGS +1.1025 ) 2 0.475VGS + 0.0025VGS − 3.4763 = 0 2 −0.0025 ± 0.00000625 + 6.60499 VGS = 2(0.475) VGS = 2.7027 I D = (0.475)(2.7027 − 1.05) 2 = 1.2973 mA VDS = 10 − I D (3) = 6.108 V 1.297 ≤ I DQ ≤ 1.411 mA 5.768 ≤ VDS ≤ 6.108 V EX3.6
  • 3. ⎛ R2 ⎞ VG = ⎜ ⎟ (10 ) − 5 ⎝ R1 + R2 ⎠ ⎛ 200 ⎞ =⎜ ⎟ (10 ) − 5 = 0.714 V ⎝ 350 ⎠ VS = 5 − I D RS = 5 − (1.2 ) I D So VSG = VS − VG = 5 − (1.2 ) I D − 0.714 = 4.286 − (1.2 ) I D 4.286 − VSG ID = 1.2 I D = K p (VSG + VTP ) 2 ( 4.286 − VSG = (1.2 )( 0.25 ) × VSG − 2VSG ( −1) + ( −1) 2 2 ) 4.286 − VSG = ( 0.3) V − 0.6VSG + 0.3 2 SG 0.3VSG + 0.4VSG − 3.986 = 0 2 ( 0.4 ) + 4 ( 0.3)( 3.986 ) 2 −0.4 ± VSG = 2 ( 0.3) Must use + sign ⇒ VSG = 3.04 V I D = ( 0.25 )( 3.04 − 1) ⇒ I D = 1.04 mA 2 VSD = 10 − I D ( RS + RD ) = 10 − (1.04 )(1.2 + 4 ) ⇒ VSD = 4.59 V VSD > VSD ( sat ) , Yes EX3.7 VSD = 10 − I DQ ( RS + RP ) VSD = 10 − K P (VSG + VTP ) ( RS + RP ) 2 Set VSD = VSG + VTP VSG + VTP = 10 − ( 0.25 )(VSG + VTP ) ( 5.2 ) 2 1.3 (VSG + VTP ) + (VSG + VTP ) − 10 = 0 2 −1 ± 1 + 4 (1.3)(10 ) (VSG + VTP ) = 2 (1.3) = 2.415 V VSG = 3.415 V ( 3.42 V ) VSD = 2.415 V ( 2.42 V ) I D = ( 0.25 )( 2.415 ) = 1.46 mA 2 EX3.8 ⎛ R2 ⎞ ⎛ 240 ⎞ VG = ⎜ ⎟ (10 ) − 5 = ⎜ ⎟ (10 ) − 5 ⎝ R1 + R2 ⎠ ⎝ 240 + 270 ⎠ VG = −0.294 V VS − ( −5 ) VG − VGS + 5 = K n (VGS − VTN ) 2 ID = = RS RS ⎛ 0.08 ⎞ 4.706 − VGS = ⎜ ⎟ ( 4 )( 3.9 ) (VGS − 2.4VGS + 1.44 ) 2 ⎝ 2 ⎠ 0.624VGS − 0.4976VGS − 3.80744 = 0 2
  • 4. 0.4976 ± 0.2476 + 9.50337 VGS = 2 ( 0.624 ) VGS = 2.90 V ⎛ 0.08 ⎞ ⎟ ( 4 )( 2.90 − 1.2 ) ⇒ I D = 0.463 mA 2 ID = ⎜ ⎝ 2 ⎠ VDS = 10 − I D ( 3.9 + 10 ) ⇒ VDS = 3.57 V EX3.9 10 − VSG and I D = K p (VSG + VTP ) 2 ID = RS 0.12 = ( 0.050 )(VSG − 0.8 ) 2 VSG = 2.35 V 10 − 2.35 RS = ⇒ RS = 63.75 kΩ 0.12 VSD = 8 = 20 − I D ( RS + RD ) 8 = 20 − ( 0.12 )( 63.75 ) − ( 0.12 ) RD 20 − ( 0.12 )( 63.75 ) − 8 RD = ⇒ RD = 36.25 kΩ 0.12 (1) KP = ( 0.05 )(1.05 ) = 0.0525 (2) KP = ( 0.05 )( 0.95 ) = 0.0475 (3) VTP = −0.8 (1.05 ) = −0.84 V (4) VTP = −0.8 ( 0.95 ) = −0.76 V 10 − VSG = K P (VSG + VTP ) 2 ID = RS (1)-(3) 10 − VSG = ( 63.75 )( 0.0525 ) ⎡VSG − 1.68VSG + 0.7056 ⎤ ⎣ 2 ⎦ 3.347VSG − 4.623VSG − 7.6384 = 0 2 4.623 ± 21.372 + 102.263 VSG = 2 ( 3.347 ) VSG = 2.352 V ⇒ I D ≅ 0.120 mA VSD ≈ 8.0 V (2)-(4) 10 − VSG = ( 63.75 )( 0.0475 ) ⎡VSG − 1.52VSG + 0.5776 ⎤ ⎣ 2 ⎦ 3.028VSG − 3.603VSG − 8.251 = 0 2 3.603 ± 12.9816 + 99.936 VSG = 2 ( 3.028 ) VSG = 2.35 V I D ≈ 0.120 VSD ≈ 8.0 (1)-(4) 10 − VSG = ( 63.75 )( 0.0525 ) ⎡VSG − 1.52VSG + 0.5776 ⎤ ⎣ 2 ⎦ 3.347VSG − 4.087VSG − 8.06685 = 0 2
  • 5. 4.087 ± 16.7036 + 107.999 VSG = 2 ( 3.347 ) VSG = 2.279 V I D = 0.121 mA VSD = 7.89 V (2)-(3) 10 − VSG = ( 63.75 )( 0.0475 ) ⎡VSG − 1.68VSG + 0.7056 ⎤ ⎣ 2 ⎦ 3.028VSG − 4.0873VSG − 7.8634 = 0 2 4.0873 ± 16.706 + 95.242 VSG = 2 ( 3.028 ) VSG = 2.422 V I D = 0.119 mA VSD = 8.11 V Summary 0.119 ≤ I D ≤ 0.121 mA 7.89 ≤ VSD ≤ 8.11 V EX3.10 V − VGS I D = K n (VGS − VTN ) 2 I D = DD , RS 10 − VGS = (10 )( 0.2 ) (VGS − 2VGSVTN + VTN ) 2 2 10 − VGS = 2VGS − 8VGS + 8 2 2VGS − 7VGS − 2 = 0 2 (7) + 4 ( 2) 2 2 7± VGS = 2 ( 2) Use + sign: VGS = VDS = 3.77 V 10 − 3.77 ID = ⇒ I D = 0.623 mA 10 Power = I DVDS = ( 0.623)( 3.77 ) ⇒ Power = 2.35 mW EX3.11 (a) VI = 4 V, Driver in Non ⋅ Sat. K nD ⎣ 2 (VI − VTND ) VO − VO2 ⎦ = K nL [VDD − VO − VTNL ] ⎡ ⎤ 2 5 ⎡ 2 ( 4 − 1) VD − VD ⎤ = ( 5 − VD − 1) = ( 4 − VO ) = 16 − 8VO + VO2 2 2 2 ⎣ ⎦ 6VD − 38VO + 16 = 0 2 38 ± 1444 − 384 VD = 2 ( 6) VD = 0.454 V (b) VI = 2 V Driver: Sat K nD [VI − VTND ] = K nL [VDD − VO − VTNL ] 2 2 5 [ 2 − 1] = [5 − VO − 1] 2 2 5 = 4 − VO ⇒ VO = 1.76 V EX3.12 If the transistor is biased in the saturation region
  • 6. I D = K n (VGS − VTN ) = K n ( −VTN ) 2 2 I D = ( 0.25 )( 2.5 ) ⇒ I D = 1.56 mA 2 VDS = VDD − I D RS = 10 − (1.56 )( 4 ) ⇒ VDS = 3.75 VDS > VGS − VTN = −VTN 3.75 > − ( −2.5 ) Yes — biased in the saturation region Power = I DVDS = (1.56 )( 3.75 ) ⇒ Power = 5.85 mW EX3.13 (a) For VI = 5 V, Load in saturation and driver in nonsaturation. I DD = I DL K nD ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = K nL ( −VTNL ) 2 ⎣ ⎦ K nD ⎡ K 2 5 − 1)( 0.25 ) − ( 0.25 ) ⎤ = 4 ⇒ nD = 2.06 ⎣ ( 2 K nL ⎦ K nL (b) I DL = K nL ( −VTNL ) ⇒ 0.2 = K nL ⎡ − ( −2 ) ⎤ 2 2 ⎣ ⎦ K nL = 50 μ A / V 2 and K nD = 103 μ A / V 2 EX3.14 For M N I DN = I DP K n (VGSN − VTN ) = K p (Vscop + VTP ) 2 2 VGSN = 1 + ( 5 − 3.25 − 1) = 1.75 V = VI Vo = VDSN ( sat ) = 1.75 − 1 ⇒ Vo = 0.75 V For M P : VI = 1.75 V VDD − VO = VSD ( sat ) = VSGP + VTP = ( 5 − 3.25 ) − 1 = 0.75 V So Vot = 5 − 0.75 ⇒ Vot = 4.25 V EX3.15 For RD = 10 k Ω, VDD = 5 V, and Vo = 1 V 5 −1 ID = = 0.4 mA 10 I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤ ⎣ 2 ⎦ I D = 0.4 = K n ⎡ 2 ( 5 − 1)(1) − (1) ⎤ ⇒ K n = 0.057 mA / V 2 2 ⎣ ⎦ P = I D ⋅ VDS = ( 0.4 )(1) ⇒ P = 0.4 mW EX3.16 a. V1 = 5 V, V2 = 0, M 2 cutoff ⇒ I D 2 = 0 5 − VO I D = K n ⎣ 2 (VI − VTN ) VO − VO2 ⎦ = ⎡ ⎤ RD ( 0.05 )( 30 ) ⎡ 2 ( 5 − 1)V0 − V02 ⎤ = 5 − V0 ⎣ ⎦
  • 7. 1.5V02 − 13V0 + 5 = 0 (13) − 4 (1.5 )( 5) 2 13 ± V0 = ⇒ V0 = 0.40 V 2 (1.5 ) 5 − 0.40 I R = I D1 = ⇒ I R = I D1 = 0.153 mA 30 b. V1 = V2 = 5 V 5 − VO RD { = 2 K n ⎡ 2 (VI − VTN ) VO − VO2 ⎤ ⎣ ⎦ } 5 − V0 = 2 ( 0.05 )( 30 ) ⎡ 2 ( 5 − 1)V0 − V02 ⎤ ⎣ ⎦ 3V02 − 25V0 + 5 = 0 ( 25) − 4 ( 3)( 5 ) 2 25 ± V0 = ⇒ V0 = 0.205 V 2 ( 3) 5 − 0.205 IR = ⇒ I R = 0.160 mA 30 I D1 = I D 2 = 0.080 mA EX3.17 M 2 & M 3 watched ⇒ I Q1 = I REF 1 = 0.4 mA 0.4 = 0.3 (VGS 3 − 1) ⇒ VGS 3 = VGS 2 = 2.15 V 2 0.4 = 0.6 (VGS 1 − 1) ⇒ VGS1 = 1.82 V 2 EX3.18 ⎛ 0.04 ⎞ ⎟ (15 )(VSGC − 0.6 ) 2 0.1 = ⎜ ⎝ 2 ⎠ VSGC = 1.177 V = VSGB ⎛ 0.04 ⎞ ⎛ W ⎞ ⎟ ⎜ ⎟ (1.177 − 0.6 ) 2 0.2 = ⎜ ⎝ 2 ⎠ ⎝ L ⎠B ⎛W ⎞ ⎜ ⎟ = 30 ⎝ L ⎠B ⎛ 0.04 ⎞ ⎟ ( 25 )(VSGA − 0.6 ) 2 0.2 = ⎜ ⎝ 2 ⎠ VSGA = 1.23 V EX3.19 I REF = K n 3 (VGS 3 − VTN ) = K n 4 (VGS 4 − VTN ) 2 2 (a) VGS 3 = 2 V ⇒ VGS 4 = 3 V K K 1 ( 2 − 1) = n 4 ( 3 − 1) ⇒ n 4 = 2 2 K n3 K n3 4 I Q = K n 2 (VGS 2 − VTN ) 2 (b) But VGS 2 = VGS 3 = 2 V 0.1 = K n 2 ( 2 − 1) ⇒ 2 K n 2 = 0.1 mA / V 2 0.2 = K n 3 ( 2 − 1) ⇒ K n 3 = 0.2 mA / V 2 2 (c) 0.2 = K n 4 ( 3 − 1) ⇒ K n 4 = 0.05 mA / V 2 2 EX3.20
  • 8. 5 VS 2 = 5 − 5 = 0 RS 2 = = 16.7 K 0.3 I D 2 = K n 2 (VGS 2 − VTN 2 ) 2 0.3 = 0.2 (VGS 2 − 1.2 ) ⇒ VGS 2 = 2.425 V ⇒ VG 2 = VGS 2 + VS = 2.425 V 2 5 − 2.425 RD1 = = 25.8 K 0.1 VS 1 = VG 2 − VDSQ1 = 2.425 − 5 = −2.575 V −2.575 − ( −5 ) RS 1 = ⇒ RS 1 = 24.3 K 0.1 I D1 = K n1 (VGS 1 − VTN 1 ) 2 0.1 = 0.5 (VGS1 − 1.2 ) ⇒ VGS 1 = 1.647 V 2 VG1 = VGS 1 + VS 1 = 1.647 + ( −2.575 ) ⇒ VG1 = −0.928 V ⎛ R2 ⎞ 1 VG1 = ⎜ ⎟ (10 ) − 5 = ⋅ RTN ⋅ (10 ) − 5 ⎝ R1 + R2 ⎠ R1 1 −0.928 = ( 200 )(10 ) − 5 ⇒ R1 = 491 K R1 491 R2 = 200 ⇒ R2 = 337 K 491 + R2 EX3.21 VS1 = I D RS − 5 = (0.25)(16) − 5 = −1 V I DQ = K n (VGS1 − VTN ) 2 ⇒ 0.25 = 0.5(VGS 1 − 0.8) 2 ⇒ VGS 1 = 1.507 V VG1 = VGS 1 + VS 1 = 1.507 − 1 = 0.507 V ⎛ R3 ⎞ R3 VG1 = ⎜ ⎟ (5) ⇒ 0.507 = (5) ⇒ R3 = 50.7 K ⎝ R1 + R2 + R3 ⎠ 500 VS 2 = VS 1 + VDS1 = −1 + 2.5 = 1.5 V VG 2 = VS 2 + VGS = 1.5 + 1.507 = 3.007 V ⎛ R2 + R3 ⎞ ⎛ R2 + R3 ⎞ VG 2 = ⎜ ⎟ (5) ⇒ 3.007 = ⎜ ⎟ (5) ⎝ R1 + R2 + R3 ⎠ ⎝ 500 ⎠ R2 + R3 = 300.7 R2 = 300.7 − 50.7 ⇒ R2 = 250 K R1 = 500 − 250 − 50.7 ⇒ R1 = 199.3 K VD 2 = VS 2 + VDS 2 = 1.5 + 2.5 = 4 V 5−4 RD = ⇒ RD = 4 K 0.25 EX3.22 VDS ( sat ) = VGS − VP = −1.2 − ( −4.5 ) ⇒ VDS ( sat ) = 3.3 V ⎛ ( −1.2 ) ⎞ 2 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ = 12 ⎜ 1 − ⇒ I D = 6.45 mA ⎜ ( −4.5 ) ⎟ ⎟ ⎝ VP ⎠ ⎝ ⎠ EX3.23 Assume the transistor is biased in the saturation region.
  • 9. 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 8 = 18 ⎜ 1 − GS ⎟ ⇒ VGS = −1.17 V ⇒ VS = −VGS = 1.17 ⎜ ( −3.5 ) ⎟ ⎝ ⎠ VD = 15 − ( 8 )( 0.8 ) = 8.6 VDS = 8.6 − (1.17 ) = 7.43 V VDS = 7.43 > VGS − VP = −1.17 − ( −3.5 ) = 2.33 Yes, the transistor is biased in the saturation region. EX3.24 I D = 2.5 mA 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 2.5 = 6 ⎜1 − GS ⎟ ⇒ VGS = −1.42 V ⎜ ( −4 ) ⎟ ⎝ ⎠ VS = I D RS − 5 = ( 2.5 )( 0.25 ) − 5 VS = −4.375 VDS = 6 ⇒ VD = 6 − 4.375 = 1.625 5 − 1625 RD = ⇒ RD = 1.35 kΩ 2.5 ( 20 ) 2 = 2 ⇒ R1 + R2 = 200 kΩ R1 + R2 VG = VGS + VS = −1.42 − 4.375 = −5.795 ⎛ R2 ⎞ VG = ⎜ ⎟ ( 20 ) − 10 ⎝ R1 + R2 ⎠ ⎛ R ⎞ −5.795 = ⎜ 2 ⎟ ( 20 ) − 10 ⇒ R2 = 42.05 kΩ → 42 kΩ ⎝ 200 ⎠ R1 = 157.95 kΩ → 158 kΩ EX3.25 0 − VS VGS VS = −VGS . I D = = RS RS 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ ⎛ V V2 ⎞ 2 VGS ⎛ V ⎞ = 6 ⎜ 1 − GS ⎟ = 6 ⎜ 1 − GS + GS ⎟ 1 ⎝ 4 ⎠ ⎝ 2 16 ⎠ 0.375VGS − 4VGS + 6 = 0 2 4 ± 16 − 4 ( 0.375 )( 6 ) VGS = 2 ( 0.375 ) VGS = 8.86 or VGS = 1.806 V impossible VGS ID = = 1.806 mA RS
  • 10. VD = I D RD − 5 = (1.81)( 0.4 ) − 5 = −4.278 VSD = VS − V0 = −1.81 − ( −4.276 ) ⇒ VSD = 2.47 V VSD ( sat ) = VP − VGS = 4 − 1.81 = 2.19 So VSD > VSD ( sat ) EX3.26 R1 R2 Rin = R1 R2 = = 100 kΩ R1 + R2 I DQ = 5 mA, VS = − I DQ RS = − ( 5 )(1.2 ) = −6 V VSDQ = 12 V ⇒ VD = VS − VSDQ = −6 − 12 = −18 V −18 − ( −20 ) RD = ⇒ RD = 0.4 kΩ 5 2 ⎛ V ⎞ 2 ⎛ V ⎞ I DQ = I DSS ⎜ 1 − GS ⎟ ⇒ 5 = 8 ⎜ 1 − GS ⎟ ⎝ VP ⎠ ⎝ 4 ⎠ VGS = 0.838 V VG = VGS + VS = 0.838 − 6 = −5.162 ⎛ R2 ⎞ VG = ⎜ ⎟ ( −20 ) ⎝ R1 + R2 ⎠ 1 −5.162 = (100 )( −20 ) ⇒ R1 = 387 kΩ R1 R1 R2 = 100 ⇒ ( 387 ) R2 = 100 ( 387 ) + 100 R2 R1 + R2 ( 387 − 100 ) R2 = (100 )( 387 ) ⇒ R2 = 135 kΩ TYU3.1 (a) VTN = 1.2 V , VGS = 2 V V DS ( sat ) = VGS − VTN = 2 − 1.2 = 0.8 V (i) VDS = 0.4 ⇒ Nonsaturation (ii) VDS = 1 ⇒ Saturation (iii) VDS = 5 ⇒ Saturation (b) VTN = −1.2 V , VGS = 2 V V DS ( sat ) = VGS − VTN = 2 − ( −1.2 ) = 3.2 V (i) VDS = 0.4 ⇒ Nonsaturation (ii) VDS = 1 ⇒ Nonsaturation (iii) VDS = 5 ⇒ Saturation TYU3.2 W μ n Cox (a) Kn = 2L ∈ox ( 3.9 ) ( 8.85 × 10 ) −14 Cox = = −8 = 7.67 × 10−8 F / cm tox 450 × 10 (100 )( 500 ) ( 7.67 ×10−8 ) Kn = ⇒ K n = 0.274 mA / V 2 2 (7) (b) VTN = 1.2 V, VGS = 2 V
  • 11. (i) VDS = 0.4 V ⇒ Nonsaturation I D = ( 0.274 ) ⎡ 2 ( 2 − 1.2 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ I D = 0.132 mA 2 ⎣ ⎦ (ii) VDS = 1 V ⇒ Saturation I D = ( 0.274 )( 2 − 1.2 ) ⇒ I D = 0.175 mA 2 (iii) VDS = 5 V ⇒ Saturation I D = ( 0.274 )( 2 − 1.2 ) ⇒ I D = 0.175 mA 2 VTN = −1.2 V , VGS = 2 V (i) VDS = 0.4 V ⇒ Nonsaturation I D = ( 0.274 ) ⎡ 2 ( 2 + 1.2 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ I D = 0.658 mA 2 ⎣ ⎦ (ii) VDS = 1 V ⇒ Nonsaturation I D = ( 0.274 ) ⎡ 2 ( 2 + 1.2 )(1) − (1) ⎤ ⇒ I D = 1.48 mA 2 ⎣ ⎦ (iii) VDS = 5 V ⇒ Saturation I D = ( 0.274 )( 2 + 1.2 ) ⇒ I D = 2.81 mA 2 TYU3.3 (a) VSD (sat) = VSG + VTP = 2 − 1.2 = 0.8 V (i) Non Sat (ii) Sat (iii) Sat (b) VSD (sat) = 2 + 1.2 = 3.2 V (i) Non Sat (ii) Non Sat (iii) Sat TYU3.4 (a) ⎛ W ⎞ ⎛ μ p Cox ⎞ (3.9)(8.85 × 10−14 ) KP = ⎜ ⎟ ⎜ ⎟ Cox = ⎝ L ⎠⎝ Z ⎠ 350 × 10−8 = 9.861× 10−8 (40) ⎛ ( 300 ) ( 9.861× 10 )⎞ −8 KP = ⎜ ⎟ (2) ⎜ 2 ⎟ ⎝ ⎠ K P = 0.296 mA / V 2 (b) (i) I D = (0.296) ⎡ 2(2 − 1.2)(0.4) − (0.4) 2 ⎤ ⎣ ⎦ = 0.142 mA I D = (0.296) [ 2 − 1.2] ⇒ I D = 0.189 mA 2 (ii) (iii) ID = 0.189 mA (i) I D = (0.296) ⎡ 2 ( 2 + 1.2 )( 0.4 ) − ( 0.4 ) ⎤ 2 ⎣ ⎦ = 0.710 mA I D = (0.296) ⎡ 2 ( 2 + 1.2 )(1) − (1) ⎤ 2 (ii) ⎣ ⎦ =1.60 mA (iii) I D = ( 0.296 )( 2 + 1.2 ) 2 = 3.03 mA TYU3.5
  • 12. (a) λ = 0, VDS ( sat ) = 2.5 − 0.8 = 1.7 V For VDS = 2 V , VDS = 10 V ⇒ Saturation Region I D = ( 0.1)( 2.5 − 0.8 ) ⇒ I D = 0.289 mA 2 (b) λ = 0.02 V −1 I D = K n (VGS − VTN ) (1 + λVDS ) 2 For VDS = 2 V I D = ( 0.1)( 2.5 − 0.8 ) ⎡1 + ( 0.02 )( 2 ) ⎤ ⇒ I D = 0.300 mA 2 ⎣ ⎦ VDS = 10 V I D = ( 0.1) ⎡( 2.5 − 0.8 ) (1 + ( 0.02 )(10 ) ) ⎤ ⇒ I D = 0.347 mA 2 ⎣ ⎦ (c) For part (a), λ = 0 ⇒ ro = ∞ For part (b), λ = 0.02 V −1 , −1 −1 ro = ⎡λ K n (VGS − VTN ) ⎤ = ⎡( 0.02 )( 0.1)( 2.5 − 0.8 ) ⎤ 2 2 or ro = 173 k Ω ⎣ ⎦ ⎣ ⎦ TYU3.6 VTN = VTNO + γ ⎡ 2φ f + VSB − 2φ f ⎤ ⎣ ⎦ 2φ f = 0.70 V , VTNO = 1 V (a) VSB = 0 ⇒, VTN = 1 V (b) VSB = 1 V , VTN = 1 + ( 0.35 ) ⎣ 0.7 + 1 − 0.7 ⎦ ⇒ VTN = 1.16 V ⎡ ⎤ (c) VSB = 4 V , VTN = 1 + ( 0.35 ) ⎡ 0.7 + 4 − 0.7 ⎤ ⇒ VTN = 1.47 V ⎣ ⎦ TYU3.7 I D = K n (VGS − VTN ) 2 0.4 = 0.25 (VGS − 0.8 ) ⇒ VGS = 2.06 V 2 ⎛ R2 ⎞ VGS = ⎜ ⎟ VDD ⎝ R1 + R2 ⎠ ⎛ R ⎞ 2.06 = ⎜ 2 ⎟ ( 7.5 ) ⇒ R2 = 68.8 kΩ ⎝ 250 ⎠ R1 = 181.2 kΩ VDS = 4 = VDD − I D RD 7.5 − 4 RD = ⇒ RD = 8.75 kΩ 0.4 VDS > VDS ( sat ) , Yes TYU3.8
  • 13. VS − ( −5 ) ID = and VS = −VGS RS 5 − VGS So RS = 0.1 I D = K n (VGS − VTN ) 2 0.1 = ( 0.080 )(VGS − 1.2 ) ⇒ VGS = 2.32 V 2 5 − 2.32 So RS = ⇒ RS = 26.8 kΩ 0.1 VDS = VD − VS ⇒ VD = VDS + VS = 4.5 − 2.32 VD = 2.18 5 − VD 5 − 2.18 RD = = ⇒ RD = 28.2 kΩ ID 0.1 VDS > VDS ( sat ) , Yes TYU3.9 For VDS = 2.2 V 5 − 2.2 ID = ⇒ I D = 0.56 mA 5 I D = K n (VGS − VTN ) 2 0.56 = K n ( 2.2 − 1) 2 W μ n Cox K n = 0.389 mA / V = ⋅ L 2 W ( 389 )( 2 ) W = ⇒ = 19.4 L ( 40 ) L TYU3.10 (a) The transition point is VIt = ( VDD − VTNL + VTND 1 + K nD / K nL ) 1 + K nD /K nL = ( 5 − 1 + 1 1 + 0.05/ 0.01 ) 1 + 0.05/ 0.01 7.236 = ⇒ VIt = 2.236 V 3.236 VOt = VIt − VTND = 2.24 − 1 ⇒ VOt = 1.24 V (b) We may write I D = K n D (VGSD − VTND ) = ( 0.05 )( 2.236 − 1) ⇒ I D = 76.4 μ A 2 2 TYU3.11 VIt = ( VDD − VTNL + VTND 1 + K nD /K nL ) 1 + K nD /K nL 2.5 = ( 5 − 1 + 1 1 + K nD /K nL ) 1 + K nD /K nL 5 − 2.5 2.5 + 2.5 K nD /K nL = 5 + K nD /K nL ⇒ K nD /K nL = = 1.67 ⇒ K nD /K nL = 2.78 1.5 b. For VI = 5, driver in nonsaturated region.
  • 14. I DD = I DL K nD ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = K nL (VGSL − VTNL ) 2 ⎣ ⎦ K nD ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = [VDD − VO − VTNL ] 2 K nL ⎣ ⎦ 2.78 ⎡ 2 ( 5 − 1) V0 − V02 ⎤ = [5 − V0 − 1] 2 ⎣ ⎦ 22.24V0 − 2.78V02 = ( 4 − V0 ) 2 = 16 − 8V0 + V02 3.78V02 − 30.24V0 + 16 = 0 ( 30.24 ) − 4 ( 3.78 )(16 ) 2 30.24 ± V0 = ⇒ V0 = 0.57 V 2 ( 3.78 ) TYU3.12 We have VDS = 1.2 V < VGS − VTN = −VTN = 1.8 V Transistor is biased in the nonsaturation region. V − VDS 5 − 1.2 I D = K n ⎣ 2 (VGS − VTN ) VDS − VDS ⎦ and I D = DD ⎡ 2 ⎤ = ⇒ I D = 0.475 mA RS 8 0.475 = K n ⎡ 2 ( 0 − ( −1.8 ) ) (1.2 ) − (1.2 ) ⎤ 2 ⎣ ⎦ 0.475 = K n ( 2.88 ) ⇒ K n = 0.165 mA/V 2 W μ n Cox Kn = ⋅ L 2 W ( 165 )( 2 ) W = ⇒ = 9.43 L 35 L TYU3.13 (a) Transition point for the load transistor – Driver is in the saturation region. I DD = I DL K nD (VGSD − VTND ) = K nL (VGSL − VTNL ) 2 2 VDSL ( sat ) = VGSL − VTNL = −VTNL ⇒ VDSL = VDD − VOt = 2 V Then VOt = 5 − 2 = 3 V , VOt = 3 V K nD (VIt − 1) = ( −VTNL ) K nL 0.08 (VIt − 1) = 2 ⇒ VIt = 1.89 V 0.01 (b) For the driver: VOt = VIt − VTND VIt = 1.89 V , VOt = 0.89 V TYU3.14 I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤ ⎣ 2 ⎦ = ( 0.050 ) ⎡ 2 (10 − 0.7 )( 0.35 ) − ( 0.35 ) ⎤ 2 ⎣ ⎦ I D = 0.319 mA VDD − Vo 10 − 0.35 RD = = ⇒ RD = 30.3 kΩ ID 0.319 TYU3.15 (a) Transistor biased in the nonsaturation region
  • 15. 5 − 1.5 − VDS ID = = 12 R I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤ ⎣ 2 ⎦ 12 = 4 ⎡ 2 ( 5 − 0.8 ) VDS − VDS ⎤ ⎣ 2 ⎦ 4VDS − 33.6VDS + 12 = 0 ⇒ VDS = 0.374 V 2 5 − 1.5 − 0.374 Then R = ⇒ R = 261 Ω 12 TYU3.16 5 − VO a. ID = = K n ⎡ 2 (V2 − VTN ) VO − VO2 ⎤ ⎣ ⎦ RD 5 − ( 0.10 ) = K n ⎡ 2 ( 5 − 1)( 0.10 ) − ( 0.10 ) ⎤ ⇒ K n = 0.248 mA / V 2 2 25 ⎣ ⎦ 5 − V0 b. = 2 ( 0.248 ) ⎡ 2 ( 5 − 1) V0 − V02 ⎤ ⎣ ⎦ 25 5 − V0 = 12.4 ⎡8V0 − V0 ⎤ ⎣ 2 ⎦ 12.4V02 − 100.2V0 + 5 = 0 (100.2 ) − 4 (12.4 )( 5 ) 2 100.2 ± V0 = ⇒ V0 = 0.0502 V 2 (12.4 ) TYU3.17 I DQ = K (VGS − VTN ) ⇒ 5 = 50 (VGS − 0.15 ) ⇒ VGS = 0.466 V 2 2 VS = ( 0.005 )(10 ) = 0.050 V ⇒ VGG = VGS + VS = 0.466 + 0.050 ⇒ VGG = 0.516 V VD = 5 − ( 0.005 )(100 ) ⇒ VD = 4.5 V VDS = VD − VS = 4.5 − 0.050 ⇒ VDS = 4.45 V TYU3.18 I D = K ⎡ 2 (VGS − VTN ) VDS − VDS ⎤ ⎣ 2 ⎦ = 100 ⎡ 2 ( 0.7 − 0.2 )( 0.1) − ( 0.1) ⎤ 2 ⎣ ⎦ ID = 9 μA 2.5 − 0.1 RD = ⇒ RD = 267 kΩ 0.009