Anúncio
Anúncio

Mais conteúdo relacionado

Destaque(19)

Similar a Spatial regression model predicting Thailand’s election โดย อาจารย์ ดร. อานนท์ ศักดิ์วรวิชญ์ นางสาวรัชนีพร จันทร์สา(20)

Anúncio

Mais de BAINIDA(20)

Anúncio

Spatial regression model predicting Thailand’s election โดย อาจารย์ ดร. อานนท์ ศักดิ์วรวิชญ์ นางสาวรัชนีพร จันทร์สา

  1. The First NIDA Business Analytics and Data Sciences Contest/Conference วันที่ 1-2 กันยายน 2559 ณ อาคารนวมินทราธิราช สถาบันบัณฑิตพัฒนบริหารศาสตร์ https://businessanalyticsnida.wordpress.com https://www.facebook.com/BusinessAnalyticsNIDA/ -ผลเลือกตั้งจะออกมาเป็นเช่นไร หากรัฐธรรมนูญผ่าน -ทานายผลการเลือกตั้งด้วย Data Sciences ได้หรือไม่ -ปัจจัยด้านสังคมเศรษฐกิจ ภูมิศาสตร์ ประชากรศาสตร์ พฤติกรรมศาสตร์ ปัจจัยใดที่ทานายผลการเลือกตั้งได้ดี -พื้นที่เขตเลือกตั้งแบบใดมีแนวโน้มที่จะมีบัตรเสีย Vote No และ No Vote เพื่อไทย หรือประชาธิปัตย์ -แบบจาลองแบบไหนที่ใช้ทานายผลเลือกตั้ง สร้างได้อย่างไร Spatial regression model predicting Thailand’s election อาจารย์ ดร. อานนท์ ศักดิ์วรวิชญ์ นางสาวรัชนีพร จันทร์สา คณะสถิติประยุกต์ NIDA นวมินทราธิราช 4001 วันที่ 2 กันยายน 2559 13.30-14.00 น.
  2. Spatial regression model predicting Thailand’s election result. Arnond Sakworawich, Ph.D. Ratchaneeporn Jansa Graduate School of Applied Statistics National Institute of Development Administration, Bangkok, Thailand
  3. Abstract The purpose of the current research are to 1) investigate the spatial relationships of voting behaviors among each electorates, 2) investigate geographical, behavioral, socio-economic, and demographic components related to election results, and 3) build up the spatial negative binomial regression models predicting Thailand election results. Election results in 2005 and 2007 retrieved from Election Commission of Thailand (ECT) were used to predict % vote for no vote, vote No, voided ballot, as well as % vote for Democrat Party, Pheu Thai Party, Chartthaipattana Party, and Bhumjaithai Party as behavioral components for 2011 election results. Socio-economic and demographic variables were from socio-economic status survey in 2010 from National statistical office. Geographic variables were from department of land development and department of royal irrigation. Moran’s I statistics and the spatial negative binomial regression model were used to investigate the spatial autocorrelation of election results among electorates and the relationship between geographical, behavioral, socio- economic, and demographic components and election results. This current research will shed light on how to develop Thailand’s politics and it can also be applied for election and campaign management. The spatial negative binomial regression model can be used to predict an incoming election results by substitute 2011 election results with the near future election poll. Keyword: Election, Spatial Model, geography, social, economics, demography, behavior
  4. 84 ปี ประชาธิปไตยไทย ภาพ : บีบีซีไทย
  5. Attachai Ueranantasun, (2012). Analyzing National Elections of Thailand in 2005, 2007, and 2011 – Graphical Approach. International Journal of Business and Social Science Vol. 3 No. 19
  6. Objective 1)To investigate the spatial relationships of voting behaviors among each election district. 2)To investigate geographical, behavioral, socio-economic, and demographic components related to election results. 3)To build up the spatial regression models predicting Thailand election results.
  7. Demographic - % Male, %Female - Average Age - Age Standard Deviation - %Religion - Population Density Socio-economic components -Average monthly Income per capita -Poverty Rate -Gini coefficient of monthly income -Average monthly expenditures per capita -Gini coefficient of monthly expenditures -%Occupation Category -%Type of business -Work Status Category -Education Level Geographic - Land Use % of Urban and Built-up land % of Agricultural land % of Forest land % of Water Body % of Miscellaneous land - % of Irrigation Area - Region Spatial Autocorrelation - Moran’s I % of Voting (2011) - % of PeauThai - % of Democrat - % of Chat Thai Pat - % of Poom Jai Thai - % of Vote No - % of No Vote - % of Voided ballots % of Voting (2005,2007) % TRT 2005 % Democrat 2005 % ChatThai 2005 % MaHaChon 2005 % Other Party 2005 % PPP 2007 % Democratic 2007 % Chatthai 2007 % Pueapandin 2007 % Ruamjaithai Chatpattana 2007 % Matchimathipahai 2007 - % of Vote No - % of No Vote - % of Voided ballots
  8. Source of data • Office of the Election Commission of Thailand • National Statistical Office Thailand • Land Development Department • Royal Irrigation Department
  9. Party 2548 TotalElectorate Party list ThairukThai 308 67 375 Democrats 71 25 96 ChatThai 18 8 26 Mahachon 3 0 3 Total 400 100 500 Electorate Party list National Election of Thailand in 2548
  10. Party 2550 Total Electorat e Party list PPP 199 34 233 Democrats 132 33 165 ChatThai 33 4 37 PueaPanDin 17 7 24 RuamJaiThaiChatPattana 8 1 9 MatchimmaThipaThai 7 0 7 PraChaRat 4 1 5 Total 400 80 480 National Election of Thailand in 2550 Electorate Party list
  11. Party 2554 TotalElectorate Party list PueaThai 204 61 265 Democrats 115 44 159 PhumJaiThai 29 5 34 ChatThaiPattana 15 4 19 ChatPattana PueaPanDin 5 2 7 PalungChon 6 1 7 RukPraThesThai 0 4 4 MaTuPhum 1 1 2 RukSanti 0 1 1 Mahachon 0 1 1 PrachathipathaiMai 0 1 1 Total 375 125 500 National Election of Thailand in 2554 Electorate Party list
  12. "Everything is related to everything else, but near things are more related than distant things.” Tobler W., (1970) "A computer movie simulating urban growth in the Detroit region". Economic Geography, 46(2): 234-240. Geographer Waldo R. Tobler’s stated in the first law of geography:
  13. Spatial Autocorrelation Geographer Waldo R. Tobler’s stated in the first law of geography: "Everything is related to everything else, but near things are more related than distant things.” Source: http://resources.arcgis.com/en/help/main/10.1 /index.html#//005p00000006000000
  14. PueaThai Vote Share in 2554 (Electorate) Moran's I for PueaThai Vote Share in 2011 (Moran’ s I =0.7287) Local Spatial Autocorrelation (LISA) for PueaThai Vote Share in 2011
  15. Democrat Vote Share in 2554 (Electorate) Moran's I for Democrats Vote Share in 2011 (Moran’ s I =0.7864) Local Spatial Autocorrelation (LISA) for Democrats Vote Share in 2011
  16. ChatThaiPhatThana Vote Share in 2554 (Electorate) Moran's I for ChatThaiPhattana Vote Share in 2011 (Moran’ s I =0.2822) Local Spatial Autocorrelation (LISA) for ChatThaiPhattana Vote Share in 2011
  17. PhumJaiThai Vote Share in 2554 (Electorate) Moran's I for PhumJaiThai Vote Share in 2011 (Moran’ s I =0.3482) Local Spatial Autocorrelation (LISA) for PhumJaiThai Vote Share in 2011
  18. PueaThai Vote Share in 2554 (Party List) Moran's I for PueaThai Vote Share in 2011 (Moran’ s I =0.8786) Local Spatial Autocorrelation (LISA) for PueaThai Vote Share in 2011
  19. Democrat Vote Share in 2554 (Party List) Moran's I for Democrats Vote Share in 2011 (Moran’ s I =0.8803) Local Spatial Autocorrelation (LISA) for Democrats Vote Share in 2011
  20. ChatThaiPhatThana Vote Share in 2554(Party List) Moran's I for ChatThaiPhattana Vote Share in 2011 (Moran’ s I =0.24872) Local Spatial Autocorrelation (LISA) for ChatThaiPhattana Vote Share in 2011
  21. PhumJaiThai Vote Share in 2554 (Party List) Moran's I for PhumJaiThai Vote Share in 2011 (Moran’ s I =0.5391) Local Spatial Autocorrelation (LISA) for PhumJaiThai Vote Share in 2011
  22. Demography M SD %PT54 %Dem54 %PJT54 %CTP54 %Other Party54 %Voided Ballot54 %VoteNo54 %Novote 54 Density/Square km 832.29 1995.40 -.05 .22 -.20 -.12 -.07 -.59 .55 .24 PrctFemale 50.75 1.22 -.09 .21 -.17 .01 -.14 -.51 .46 -.17 % Buddhist 94.30 16.50 .36 -.22 .06 -.03 -.15 -.03 -.03 .17 % Islam 5.10 16.46 -.37 .22 -.05 .03 .16 .03 .01 -.18 % Population age less than 15 years 20.80 5.14 -.04 -.11 .16 .03 .13 .38 -.43 .28 Average age 36.75 3.24 .18 -.16 .01 .12 -.10 .17 -.07 -.19 Age Standard Deviation 21.24 1.53 .08 -.26 .23 .15 .03 .56 -.50 .11
  23. Education Variables M SD %PT54 %Dem54 %PJT54 %CTP54 %Other Payty54 %Voided Ballot54 %VoteNo54 %Novote 54 % Never attend school 8.64 4.55 -.12 .03 .01 .06 .02 .39 -.12 -.06 % Pre primary school 4.89 1.92 -.06 -.03 .12 .01 .05 .24 -.28 .12 % Primary school 48.31 9.74 .28 -.35 .18 .07 .06 .58 -.64 .09 % Post secondary school 3.22 2.01 -.23 .32 -.14 -.04 -.12 -.51 .48 -.19 % Bachelor Degree 8.64 5.76 -.10 .21 -.12 -.08 -.10 -.58 .52 .02 % Master Degree 1.08 1.33 .01 .04 -.07 -.05 .00 -.43 .36 .12
  24. Income and Inequality M SD %PT54 %Dem54 %PJT54 %CTP54 %Other Party54 %Voided Ballot54 %VoteNo54 %Novote 54 Average Income 5970.01 2960.63 -.20 .42 -.25 -.14 -.13 -.70 .53 .09 Poverty rate 8.90 12.12 .00 -.09 .17 -.05 .03 .30 -.15 .00 Gini coefficient of total Income 56.21 75.03 -.12 .05 -.04 -.06 .18 -.05 .27 -.10 Average total expenditures 4688.62 1751.55 -.16 .43 -.30 -.18 -.15 -.80 .64 .01 Gini coefficient of total expenditures 28.16 3.49 -.05 .05 .14 -.08 -.13 .08 .00 -.06
  25. Employment Status M SD %PT54 %Dem54 %PJT54 %CTP54 %Other Payty54 %Voided Ballot54 %VoteNo54 %Novote54 % economically inactive 20.95 5.20 -.01 .09 -.15 .05 -.10 -.35 .42 -.12 % Employer 2.34 2.18 -.19 .22 -.02 .01 -.15 -.13 .17 -.13 % Own account worker 20.07 6.82 .26 -.30 .11 .08 .03 .58 -.56 .06 % Contributing family worker 10.72 5.52 .27 -.37 .19 .06 .10 .49 -.55 .21 % State enterprise employee 0.48 0.68 -.06 .16 -.12 -.03 -.09 -.32 .33 .02 % Private company employee 18.47 10.54 -.26 .40 -.21 -.17 -.04 -.62 .62 -.22 % Housewife 5.35 2.62 -.35 .40 -.21 .03 -.08 -.44 .50 -.12 % Students 5.33 2.13 .02 .06 -.03 -.05 -.09 -.28 .23 .03 % Children elderly person 6.83 2.79 .25 -.26 -.02 .12 .04 .15 -.09 -.07 % Unemployed 0.55 0.70 .04 .05 -.10 -.03 -.07 -.19 .24 -.09
  26. % work in agriculture sector 19.60 13.87 .21 -.28 .15 .05 .07 .66 -.68 .06 % work in Fishery sector 0.53 1.54 -.31 .36 -.08 -.06 -.06 -.10 .11 -.10 % work in manufacturing sector 7.32 7.13 .01 .12 -.11 -.09 -.08 -.37 .34 -.26 % work in wholesale and retail sector 11.10 4.67 -.24 .21 -.06 -.01 .01 -.39 .47 -.07 % work in hotel and restaurant sector 4.11 3.20 -.21 .22 -.11 -.03 .01 -.42 .55 .05 % work in transportation sector 1.69 1.73 -.17 .28 -.18 -.11 -.01 -.62 .56 .05 % work in fiinancial Intermediary sector 0.56 0.80 -.06 .19 -.18 -.05 -.07 -.49 .45 .10 % work in realty sector 1.13 1.71 -.02 .24 -.22 -.10 -.13 -.60 .43 .13 % work in community service sector 1.99 1.46 -.10 .11 -.02 -.06 .01 -.30 .34 -.04 % work in private households 0.42 0.69 .03 .08 -.10 -.11 -.01 -.35 .33 .19 Employment Sector M SD %PT54 %Dem54 %PJT54 %CTP54 %Other Party54 %Voided Ballot54 %VoteNo 54 %Novote 54
  27. % Legislators and senior officers occupation 0.49 0.63 .19 -.24 .12 -.03 .10 .13 -.20 .16 % Corporate managers occupation 0.49 0.78 .03 .07 -.07 -.03 -.13 -.39 .28 .11 % Physical, mathematical, engineering occupation 0.22 0.49 -.02 .15 -.15 -.07 -.06 -.46 .37 .05 % Other professionals occupation 0.53 0.82 -.01 .09 -.06 -.05 -.05 -.41 .29 .04 % Physical & engineering technicians occupation 0.77 1.18 -.05 .13 -.11 -.03 -.07 -.38 .39 -.18 % Other technicians occupation 1.24 1.40 -.06 .25 -.20 -.14 -.08 -.58 .50 .09 % Office clerks occupation 1.99 1.68 -.12 .24 -.15 -.07 -.09 -.56 .51 -.10 % Customer services occupation 0.43 0.68 -.09 .15 -.14 -.12 .07 -.36 .39 .04 % Personal protective services occupation 2.25 1.59 -.14 .14 -.07 .00 -.02 -.30 .40 .09 % Models and sales representative occupation 9.14 4.11 -.33 .21 -.01 .04 .03 -.29 .48 -.07 Occupations M SD %PT54 %Dem54 %PJT54 %CTP54 %Other Party54 %Voided Ballot54 %VoteNo 54 %Novote 54
  28. % Agricultural with market skill occupation 12.86 11.12 -.10 .03 -.01 .11 .05 .49 -.43 -.10 % Sufficient agricultural occupation 4.33 7.99 .42 -.43 .23 -.13 .08 .23 -.47 .34 % Agricultural labourers occupation 2.21 3.27 .09 -.12 .05 .08 -.06 .45 -.21 -.21 % Metal and machinery occupation 1.81 1.37 -.11 .17 -.10 -.06 -.02 -.37 .34 -.10 % Stationary machine occupation 0.23 0.57 -.05 .03 .05 -.06 -.02 -.10 .16 -.21 % Machine assemblers occupation 1.81 3.05 .04 .02 -.08 -.07 .04 -.26 .22 -.16 % Drivers occupation 2.26 1.64 -.17 .26 -.13 -.15 .01 -.57 .50 .02 % Sales services occupation 3.57 2.27 -.03 .14 -.10 -.09 -.07 -.45 .40 .04 Occupations M SD %PT54 %Dem54 %PJT54 %CTP54 %Other Party54 %Voided Ballot54 %VoteNo 54 %Novote 54
  29. % Agricultural land use 55.86 24.79 .04 -.27 .29 .15 .07 .37 -.42 .08 % Forest area 19.88 22.30 .02 .03 -.07 .01 -.03 .46 -.22 -.32 % Miscellaneous land use 4.52 3.98 -.08 .11 -.10 -.09 .14 -.25 .10 .09 % Urban area 16.81 24.64 -.04 .22 -.22 -.13 -.06 -.73 .60 .18 % Water area 1.98 3.03 -.02 -.03 .13 -.03 .01 .12 -.27 .13 % Irrigation area 21.36 33.37 -.03 .11 -.11 .11 -.17 -.40 .32 -.13 North region 0.10 0.29 .25 -.11 -.06 -.04 -.13 .25 -.10 -.37 West region 0.05 0.22 -.14 .17 .01 -.02 -.11 .07 .14 -.16 Northeast region 0.34 0.47 .47 -.61 .33 -.08 .25 .22 -.51 .42 East region 0.07 0.25 -.11 .09 -.08 -.07 .15 -.06 .20 -.09 Central region 0.22 0.41 -.03 -.04 -.01 .29 -.17 .05 .13 -.09 South region 0.14 0.35 -.66 .63 -.16 -.03 .01 -.11 .09 -.17 Geography M SD %PT54 %Dem54 %PJT54 %CTP54 %OtherParty54 %VoidedBallot54 %VoteNo54 %Novote54
  30. % ThairukThai 48 58.86 18.87 .84 -.78 .26 -.14 .07 .16 -.33 .27 % Democrat 48 22.24 20.79 -.76 .90 -.29 -.13 -.13 -.38 .40 -.21 % Chat Thai 48 6.22 8.78 -.02 -.24 .01 .55 -.03 .15 -.02 -.01 % MaHaChon 48 4.21 4.74 .10 -.34 .15 .10 .25 .32 -.23 .00 % Other Party 48 4.37 2.64 .04 -.12 .12 .00 .04 .58 -.43 -.13 % Voided ballot 48 3.00 1.03 -.25 -.02 .05 .21 .16 .61 -.18 -.26 % Vote No 48 2.29 1.31 -.07 .13 -.10 -.17 .05 -.44 .53 -.17 % No Vote 48 27.37 5.82 .36 -.42 .16 -.03 .18 .17 -.42 .82 Past Behavior (Election 48) M SD %PT54 %Dem54 %PJT54 %CTP54 %OtherParty54 %VoidedBallot54 %VoteNo54 %Novote54
  31. % Palungprachachon 50 29.18 14.23 .75 -.53 .07 -.16 -.06 .02 -.23 .22 % Democratic 50 24.56 21.59 -.68 .91 -.36 -.20 -.16 -.46 .50 -.19 % Chatthai 50 7.21 11.57 -.02 -.24 -.05 .59 .02 .13 -.06 -.03 % Pueapandin 50 7.77 9.26 .20 -.37 .19 -.09 .34 .20 -.39 .13 % Ruamjaithai Chatpattana 50 3.73 6.45 .06 -.24 .09 -.03 .33 .21 -.12 .13 % Matchimathipahai 50 4.58 6.02 .04 -.23 .35 .06 -.07 .28 -.11 .00 % Voided 50 2.54 1.05 -.21 -.02 .06 .33 -.07 .52 -.08 -.21 % Vote No 50 4.56 1.85 -.08 .21 -.16 -.17 -.05 -.48 .64 -.23 % No Vote 50 25.38 4.99 .25 -.26 .07 -.10 .17 -.18 -.04 .72 Past Behavior (Election 50) M SD %PT54 %Dem54 %PJT54 %CTP54 %OtherParty54 %VoidedBallot54 %VoteNo54 %Novote54
  32. % PT 54 40.44 19.63 1.00 -.65 -.01 -.14 -.16 .14 -.36 .28 % Dem54 28.75 22.52 -.65 1.00 -.46 -.22 -.25 -.42 .45 -.19 % PJT 54 10.01 14.26 -.01 -.46 1.00 -.15 -.09 .24 -.26 .00 % CTP 54 4.34 10.88 -.14 -.22 -.15 1.00 -.09 .28 -.12 -.08 % Other Payty 54 6.67 11.23 -.16 -.25 -.09 -.09 1.00 .07 -.05 .05 % Voided Ballot 54 4.90 1.64 .14 -.42 .24 .28 .07 1.00 -.56 -.10 % Vote No 54 2.71 1.57 -.36 .45 -.26 -.12 -.05 -.56 1.00 -.12 % No Vote 54 24.96 4.37 .28 -.19 .00 -.08 .05 -.10 -.12 1.00 Variables M SD %PT54 %Dem54 %PJT54 %CTP54 %Other Party54 %Voided Ballot54 %VoteNo54 %Novote 54
  33. Y = β0 + λ WY + Xβ + ε Y = β0 + Xβ + ρWε + ξ ξ is “white noise” Spatial Lag Regression Model Spatial Error Regression Model residuals in neighboring locations (Wε) OLS SPATIAL LAG SPATIAL ERROR Baller, R., L. Anselin, S. Messner, G. Deane and D. Hawkins. 2001. Structural covariates of US County homicide rates: incorporating spatial effects,. Criminology , 39, 561-590
  34. Variable Coefficient SE z-value p-value Constant -5.88 2.87 -2.05 .040 North region 6.66 2.66 2.50 .012 % ThairukThai 48 0.66 0.05 14.04 .000 % Palungprachachon 50 0.31 0.05 5.87 .000 % Housewife -0.45 0.21 -2.14 .033 Lambda 0.47 0.07 7.19 .000 R-squared 0.80 -2LL 2707.72 AIC 2717.73 BIC 2737.36 2554
  35. Variable Coefficient SE z-value p-value Constant 8.30 1.20 6.91 .000 Northeast region -4.82 1.39 -3.48 .001 % Democrat 48 0.43 0.06 7.73 .000 % Democrats 50 0.51 0.05 9.49 .000 Lambda 0.23 0.08 3.00 .003 R-squared 0.87 -2LL 2640.34 AIC 2648.35 BIC 2664.06 2554
  36. Variable Coefficient SE z-value p-value Constant -6.47 1.43 -4.51 .000 % ChatThai 48 0.32 0.07 4.67 .000 % Chat Thai 50 0.37 0.05 7.18 .000 % Voided Ballot 1.26 0.28 4.51 .000 Lambda 0.09 0.08 1.01 .311 R-squared 0.43 -2LL 2641.7 AIC 2649.69 BIC 2665.40 2554
  37. Variable Coefficient SE z-value p-value Constant 8.74 2.15 4.07 .000 Northeast region 6.14 2.38 2.58 .010 % Democratic 50 -0.12 0.05 -2.51 .012 % Matchimathipahai 50 0.48 0.12 4.12 .000 Lambda 0.39 0.07 5.53 .000 R-squared 0.30 -2LL 2933.68 AIC 2941.69 BIC 2957.39 2554
  38. Variable Coefficient SE z-value p-value Constant -4.15 2.37 -1.75 .080 Density/Sqkm 0.00 0.00 2.71 .007 % Female 0.13 0.05 2.85 .004 % Primary school -0.02 0.01 -2.78 .006 % Contributing family worker 0.03 0.01 2.48 .013 % work in agriculture sector -0.03 0.01 -4.56 .000 % Urban area 0.04 0.01 7.04 .000 % Vote No 48 0.17 0.04 4.04 .000 % Vote No 50 0.09 0.04 2.32 .020 Lambda 0.87 0.03 30.11 .000 R-squared 0.78 -2LL 914.68 AIC 932.67 BIC 968.02 2554
  39. Variable Coefficient SE z-value p-value Constant 2.44 0.83 2.93 .003 % Contributing family worker -0.04 0.01 -3.54 .000 % work in agriculture sector 0.04 0.00 7.78 .000 Age Standard Deviation 0.09 0.03 2.82 .005 Average total expenditures 0.00 0.00 -7.31 .000 %Voided Ballot 48 0.44 0.05 8.22 .000 %Voided Ballot 50 0.16 0.04 3.62 .000 Lambda 0.65 0.05 12.69 .000 R-squared 0.85 -2LL 753.82 AIC 767.82 BIC 795.31 2554
  40. Variable Coefficient SE z-value p-value Constant 5.43 0.86 6.28 .000 Northeast region -1.10 0.42 -2.63 .009 North region -1.27 0.60 -2.12 .034 % No Vote 48 0.51 0.03 16.20 .000 % No Vote 50 0.24 0.03 7.39 .000 Lambda 0.46 0.07 6.95 .000 R-squared 0.80 -2LL 1586.5 AIC 1596.51 BIC 1616.14 2554
  41. -Spatial autocorrelation cannot be ignored when we want to study election in Thailand. - Spatial autocorrelation for PhueThai party is way higher than Democrat party. - Spatial autocorrelation for party list is way higher than Electorate. - Regionalism strongly influences election results. -Socio-economic, demographic, geographic, and past behavioral factors are related to voting behaviors. - Past voting behaviors is the best predictor of future voting result. - It is harder to predict voting result for small and medium sized political party. - Urban, city, middle income, educated, working profession, and females tend to Vote NO. - Low income, work in agricultural sector, without contributing family business tend to have VOIDED ballots. - Northerners and Northeasterners tends to participate in election more than other regions. - Two large party is majority of Party list Voting. Conclusion and Discussion
  42. -Spatial regression models predicting party list voting result - Develop model to predict future voting result when public election polls is available. - Political development and socio-economic development Future Research
  43. The 2010 Household Socio-Economic Survey Whole Kingdom. National Statistical Office (NSO) • Area Survey: Whole Kingdom (both municipal and non-municipal areas) • Duration: January to December, 2010 • Sample: 52,000 Households
Anúncio