SlideShare uma empresa Scribd logo
1 de 34
Baixar para ler offline
CHAPTER 2 :Real Number System
The real number system evolved over time by expanding the notion of what we mean
by the word “number.” At first, “number” meant something you could count, like how many
sheep a farmer owns. These are called the natural numbers, or sometimes the counting
numbers.
2.1 Real Number
Counting Number / Natural Number
N = { 1 , 2 , 3 , 4 , … }
• The use of three dots at the end of the list is a common mathematical notation to
indicate that the list keeps going forever.
Whole Numbers
• Natural Numbers together with “zero”
W = { }0 , 1 , 2 , 3 , 4 , ...
Integer Number (I)
• Whole numbers plus negatives
{ }I ..., 3 , 2 , 1 , 0 , 1 , 2 , 3 ,...= − − −
{ }I 0 , 1 , 2 , 3 ,...= ± ± ±
Rational Number (Q)
a
Q = x x = ; a I , b I and b 0
b
 
∈ ∈ ≠ 
 
• All numbers of the form a
b
, where a and b are integers (but b cannot be zero)
• Rational numbers include what we usually call fractions
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 2
• Notice that the word “rational” contains the word “ratio,” which should remind you
of fractions.
• The bottom of the fraction is called the denominator. Think of it as the
denomination—it tells you what size fraction we are talking about: fourths, fifths, etc.
• The top of the fraction is called the numerator. It tells you how many fourths, fifths,
or whatever.
• RESTRICTION: The denominator cannot be zero! (But the numerator can)
• Fractions can be numbers smaller than 1, like 1/2 or 3/4 (called proper fractions : In
the numerator is smaller than the denominator)
• Fractions can be numbers bigger than 1, like one-and-a-quarter, which we could also
write as 5/4 (called improper fractions : the numerator is bigger than the denominator)
• One way of expressing the improper fraction 5/4 is as the mixed number 1
1
4
,
which is read as “one and one-fourth.”
• The step for write Mixed Number to Improper Fraction ;
1. Multiply the integer part with the bottom of the fraction part.
2. Add the result to the top of the fraction.
• The step for write Improper Fraction to Mixed Number
1. Do the division to get the integer part
2. Put the remainder over the old denominator to get the fractional part
•••• Equivalent Fractions
Equivalent fractions are fractions that have the same value, for example
1 2 3 4
2 4 6 8
= = = etc.
• All integers can also be thought of as rational numbers, with a denominator of 1:
for example 3
3
1
= , 5
5
1
−
− =
• This means that all the previous sets of numbers (natural numbers, whole numbers,
and integers) are subsets of the rational numbers.
Now it might seem as though the set of rational numbers would cover every possible
case, but that is not so. There are numbers that cannot be expressed as a fraction, and these
numbers are called irrational because they are not rational.
• Integer 2 , 5, 0 , 3 , 7− −
• Fraction 2 11
,
3 17
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 3
• Periodic Decimal 0.2 , 0.3 , 0.47&
Irrational Number (Q′ )
• Cannot be expressed as a ratio of integers.
• As decimals they never repeat or terminate (rationals always do one or the other)
Examples:
Rational (terminates)
2
= 0.66666
3
& Rational (repeats)
5
= 0.45454545
11
& & Rational (repeats)
5
= 0.714285714285
7
& & Rational (repeats)
Irrational (never repeats or terminates)
Irrational (never repeats or terminates)
The Real Numbers(R)
•••• Rationals + Irrationals
•••• All points on the number line
• Or all possible distances on the number line
When we put the irrational numbers together with the rational numbers, we finally have
the complete set of real numbers. Any number that represents an amount of something, such as
a weight, a volume, or the distance between two points, will always be a real number. The
following diagram illustrates the relationships of the sets that make up the real numbers.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 4
Imaginary Number
a+bi ; a,b R and b 0∈ ≠
2+3i , 4 5i− , 1 3i− , 2i
Union of Real Number and Imaginary Number called Complex Number.
Properties for real number system
1) Reflexive Property ;
• If a R∈ then a = a
• Example ; 3 = 3 , 2 = 2π π , 2x = 2x , 1+2x = 1+2x etc.
2) Symetric Property ;
• If a = b then b = a
• Example ; If 5 2x= then 2x = 5
If 12 4 3x= − then 4 3x = 12−
If 5 2 + 3= then 2 + 3 = 5 etc.
3) Transitive Property ;
• If a = b and b = c then a = c
• Example ; If 2x + 1 = 10 + 12 and 10 + 12 = 22 then 2x + 1 = 22
If 2x 5 = x + 1− and x + 1 = 7 then 2x 1 = 7− etc.
4) Addition by the equal number ;
• If a = b then a + c = b + c
• Example ; If a = 5 then a + 3 = 5 + 3
If ( ) ( ) ( )2x + 5 = 10 then 2x + 5 + 5 = 10 + 5− − etc.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 5
5) Multiplication by the equal number ;
• If a = b then ac = bc
• Example ; If a = 3 then a 2 = 3 2× ×
If ( ) ( )2x = 8 then 3 2x = 3 8 etc.
6) If a + c = b + c then a = b
7) If ac = bc and c 0≠ then a = b
Addition Property for real number system
1) Closure Property
• If Ra∈ , Rb∈ then Rba ∈+
2) Commutative Property
• If Ra∈ , Rb∈ then abba +=+
3) Associative Property
• If RcandRb,Ra ∈∈∈ then ( ) ( )cbacba ++=++
• Example ; 1. consider ( )532 ++ and ( ) 532 ++
Hence ( ) 1082532 =+=++
and ( ) 1055532 =+=++
so ( )532 ++ = ( ) 532 ++ etc.
4) Identity (0)
• There is R0∈ for all Ra∈ such that a0aa0 =+=+
• Example ; 0 + 2 = 2 + 0 = 2
20220 =+=+ etc.
5) Inverse ( a− )
• For all Ra∈ there exists Ra ∈− such that ( ) ( ) 0aaaa =+−=−+
• Example ; 1. Consider addition inverse of 2
Hence ( ) ( ) 02222 =+−=−+ so addition inverse of 2 is 2−
2. Consider addition inverse of 5−
Hence ( ) ( )( ) ( )( ) ( ) 05555 =−+−−=−−+−
so addition inverse of 5− is ( )5−− , and ( ) 55 =−− etc.
Cancallation Property ( ก ก)
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 6
Multiplication Property for real number system
1) Closure Property
• If Ra∈ , Rb∈ then Rab∈
2) Commutative Property
• If Ra∈ , Rb∈ then baab =
3) Associative Property
• If RcandRb,Ra ∈∈∈ then ( ) ( )bcacab =
4) Identity (1)
• There is R1∈ for all Ra∈ such that ( ) ( ) a1aa1 ==
• Example ; ( ) ( ) 21221 ==
( ) ( )( ) 21221 == etc.
5) Inverse ( 1
a−
)
• For all Ra∈ and 0a ≠ there exists Ra 1
∈−
such that ( ) ( ) 1aaaa 11
== −−
• multiplication inverse of a is 1
a−
and
a
1
a 1
=−
hence ( ) ( ) 1a
a
1
a
1
a =





=





so multiplication inverse of a is
a
1
• Example ; 1. Consider multiplication inverse of 2
hence ( ) ( ) 12
2
1
2
1
2 =





=





so multiplication inverse of 2 is
2
1
2. Consider addition inverse of
5
1
Hence ( ) ( ) 1
5
1
55
5
1
=





=





so multiplication inverse of
5
1
is 5
6) Distributive Property
• If RcandRb,Ra ∈∈∈ then ( ) bcabcba +=+ and ( ) bcaccba +=+
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 7
Example : Given a and b are real number a b = a + b 5⊕ − Find
1) Identity
2) Inverse of 10
Find Identity
Let x is identity
x a⊕ = a
x + a 5− = a
x = 5
Find Inverse of 10
Let y is Inverse of 10
y 10⊕ = 5
y + 10 − 5 = 5
y = 0
Example : Change the number to fraction
1. 0.252525...
Let x = 0.252525...  (1)
(1) × 100 ; 100x = 25.252525...  (2)
(2) – (1) ; 99x = 25
x = 25
99
Therefore0.252525... = 25
99
2. 0.45326& &
Let x = 0.45326326326  (1)
(1)×100 ; 100x = 45.326326326  (2)
(1)×100,000 ; 100,000x = 45326.326326326...  (3)
(3) – (2) ; 99900x = 45326 45−
99900x = 45281
x = 45281
99900
Therefore0.45326326326... = 45281
99900
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 8
3. 2.354&
Let x = 2.35444...  (1)
(1)×100 ; 100x = 235.444...  (2)
(1)×1,000 ; 1,000x = 2354.444...  (3)
(3) – (2) ; 900x = 2119
x = 2119
900
Therefore 2.354& = 2119
900
Example : Given a * b = a + b + 4 where a , b ∈ R. Find the property of operation *
And find inverse of 5
1. Closure Property
If a ∈ R and b ∈ R then a * b = a + b + 4 ∈ R
5 ∈ R and 7 ∈ R , 5 7∗ = 5 7 4+ + = 16 ∈ R
2. Commutative Property
a * b = a + b + 4
= b + a + 4
= b * a
3. Associative Property
(a * b) * c = (a + b + 4) * c a * (b * c) = a * (b + c + 4)
= (a + b + 4) + c + 4 = a + (b + c + 4) +4
= a + b + 4 + c + 4 = a + b + c + 4 + 4
= a + b + c + 8 = a + b + c + 8
(a * b) * c = a * (b * c)
4. Identity
Let x is identity
x * a = a
x + a + 4 = a
x = 4−
Therefore identity is 4−
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 9
5. Inverse
Let y is inverse of 5
y * 5 = 4− ( identity)
y + 5 + 4 = 4−
y = 13−
Therefore inverse of 5 is 13−
2.2 Fundamental Theorem For Real Number System
Theorem 2.2.1 ; cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก)
Given a , b , c ∈ R
(1) if a + c = b + c then a = b
( 2) If a + b = a + c then b = c
Theorem 2.2.2 ; cancallation property for multiplication (กLMNOPQQกRSLTMOUกLMWXY)
Given a , b , c ∈ R
(1) if ac = bc and c ≠ 0 then a = b
( 2) If ab = ac and a ≠ 0 then b = c
Theorem 2.2.3 ; multiplied by 0 (กLMWXYPZV[ 0)
If a ∈ R then ( ) ( )= =a 0 0 a 0
Theorem 2.2.4 ; multiplied by −1 (กLMWXYPZV[ − 1)
If a ∈ R then a(−1) = (−1)a = −a
Theorem 2.2.5 ; 89:;<=>?@กBC 0
Given a , b∈R , If ab = 0 then a = 0 or b = 0
Theorem 2.2.6 ;
Given a ∈R , If a ≠ 0 then 1
a−
≠ 0
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 10
Theorem 2.2.7 ; ( inverse of the inverse )
(1) If a ∈R then ( ) aa =−−
(2) If a ∈R and a ≠ 0 then ( ) aa
11
=
−−
Theorem 2.2.8 ;
Given a , b ∈R , where a ≠ 0 and b ≠ 0 then
( ) 11111
baabab −−−−−
==
Theorem 2.2.9 ;
Given a , b ∈R then ;
(1) ( )ba− = ab−
(2) ( )ba − = ab−
(3) ( )( )ba −− = ab
Subtraction And Division For Real Number
Subtraction for real number
Definetion ;
Given a , b ∈ R then ( )− −a b = a + b
Theorem 2.2.10 ; distributive property for subtraction (กLM]ก]^RSLTMOUกLM_U)
Given a , b , c ∈R then ;
(1) ( )−a b c = −ab ac
(2) ( )−a b c = −ac bc
(3) ( )( )− −a b c = −ab + ac
Theorem 2.2.11 ; cancallation property for subtraction (กLMNOPQQกRSLTMOUกLM_U)
Given a , b , c ∈ R
(1) if − −a b = a c then b = c
(2) If − −a b = c b then a = c
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 11
Devision for real number
Definetion ;
Given a , b ∈ R , where b ≠ 0 then ( )−1a
= a b
b
Theorem 2.2.12 ;
Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then
( ) − − − −−
= =1 1 1 11
ab b a a b
Theorem 2.2.13 ;
Given a , b , c ∈R , where b ≠ 0 and then ( )a ca
c =
b b
Theorem 2.2.14 ;
Given a , b ∈R , where b ≠ 0 then
−
−
−
a a a
= =
b b b
Theorem 2.2.15 ;
Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then
( )a
ab =
c bc
Theorem 2.2.16 ;
Given a , b , c , d ∈ R , where b ≠ 0 and d ≠ 0 then
+
a c ad + bc
=
b d bd
Theorem 2.2.17 ;
Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then
−
−
a c ad bc
=
b d bd
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 12
Theorem 2.2.18 ;
Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then
( )( )a c ac
=
b d bd
Theorem 2.2.19 ;
Given a , b ∈R , where a ≠ 0 and b ≠ 0 then
( )
−1
a b
=
b a
Theorem 2.2.20 ;
Given a , b , c , d ∈R , where b ≠ 0 , c ≠ 0 and d ≠ 0 then
( )
( )
a
adb =
c bc
d
Theorem 2.2.21 ;
Given a , b , c ∈ R , where b ≠ 0 then
(1) If
a
= c
b
then a = bc
(2) If a = bc then
a
= c
b
Theorem 2.2.22 ;
Given a , b , c ∈ R , where b ≠ 0 then
a
= c
b
if and only if a = bc
Theorem 2.2.23 ;
Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then
( )
a ac
=
b b
c
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 13
2.3 Solving polynomial equations of one variable
polynomial equations of one variable is an equation of the form
−
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , where na , −n 1a , … , 1a , 0a are
real numbers , which are constants , x is variable and n is an integer or zero.
Solving equations by factorization(ก@GHกIJKก@GLMNก@GHNกOBPQGRกSC)
Example 1 : Find the solution set of equation − − + =3 2
4x 3x 64x 48 0
Solution Since − − +3 2
4x 3x 64x 48 = 0
( ) ( )− − −3 2
4x 3x 64x 48 = 0
( ) ( )− − −2
x 4x 3 16 4x 3 = 0
( )( )− −2
x 16 4x 3 = 0
( )( )( )+ − −x 4 x 4 4x 3 = 0
So −x 4 = 0 or +x 4 = 0 or −4x 3 = 0
So x = 4 or x = −4 or x =
3
4
The solution set is { }−
3
4 , , 4
4
Solving equations by remainder theorem (ก@GHกIJKก@GLMN>TUVWC>=XU=Y9ZS)
P(x) is polynomial −
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , which n is a positive
integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 . If division p(x) by
−x c , which c is real number then remainder is equal to p(c)
Example 2 : Find the remainder when division + −3
9x 4x 1 by −
1
x
2
Solution Given p(x) = + −3
9x 4x 1
By remainder theorem ; when division p(x) by −
1
x
2
then the remainder
is p( )1
2
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 14
p( )1
2
= ( ) ( )+ −
3
1 1
9 4 1
2 2
=
17
8
Therefore the remainder is
17
8
Factor Theorem (>TUVWC>OBPQGRกSC)
P(x) is polynomial −
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , which n is
a positive integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 .
−x c is factor of p(x) if and only if p(c) = 0
RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) hP[ijZklmnoUkpqmpT_rQidกMYodoc kSLPO^doc
1. TLNOVaMeกQU c bQ^ 0a koskSLiTZ p(c) = 0
2. dSL cx − taTLMfT`dLg p(x) u_TLM]epavdfT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x) Q[Xw 1
3. xZLu_TLMidbZQ 2 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoกกy[ก
NOVaMeกQUNLgbOcdNQdidbZQ 1 _e 2 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU
NLgkospMo[dgL_ZV
Example 3 : Show that −x 2 is factor of − + +3 2
x 5x 2x 8
Solution Given p(x) = − + +3 2
x 5x 2x 8
p(2) = − + +3 2
2 5(2) 2(2) 8
= 8 20 4 8− + +
= 0
So −x 2 is factor of − + +3 2
x 5x 2x 8
From the example , −x 2 is factor of − + +3 2
x 5x 2x 8.
When divide − + +3 2
x 5x 2x 8 by −x 2 ,
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 15
2
3 2
3 2
2
2
x 3x 4
x 2 x 5x 2x 8
x 2x
3x 2x
3x 6x
4x 8
4x 8
− −
− − + +
−
− +
− +
− +
− +
So − + +3 2
x 5x 2x 8 = ( )( )2
x 2 x 3x 4− − −
And 2
x 3x 4− − = ( )( )x 1 x 4+ −
Therefore − + +3 2
x 5x 2x 8= ( )( )( )x 2 x 1 x 4− + −
Rational Factor Theorem (>TUVWC>OBPQGRกSCOGGกNR)
P(x) is polynomial −
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , where n is
a positive integer , na , −n 1a , … , 1a , 0a are integer , where na ≠ 0 .
If
m
k
x − is factor of p(x), where m and n are integer , where m ≠ 0 and gcd. of
m and k is 1 then na divided by m perfect and 0a divided by k perfect .
Note : gcd = greatest common divisor ( T.M.g. = TLMMwVggLก)
RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) PO^doc
1. TL
m
k
hP[fz]LMYL m _e k ]LกNOVaMeกQUbQ^ na _e 0a NLg_SLPOU _e
T.M.g. bQ^ m _e k pkwLกOU 1
2. kPRQUVwL p(
m
k
) pkwLกOU 0 TMrQtgw xZL p(
m
k
) = 0 ]etPZ
m
k
x − pavdNOVaMeกQU
bQ^ p(x) idกMYokostgwgo
m
k
koskSLiTZ p(
m
k
) = 0 RP^VwL fT`dLg p(x) tgwgo
NOVaMeกQUkospavdfT`dLgPoกMoTd|s^idMXa
m
k
x −
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 16
3. dSL
m
k
x − }|s^pavdNOVaMeกQUbQ^fT`dLg p(x) taTLMfT`dLg p(x) u_TLM]epavd
fT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x)
4. xZLu_TLMidbZQ 3 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoก กy[กNOV
aMeกQUNLgbOcdNQdidbZQ 1 , 2 _e 3 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU
NLgkospMo[dgL_ZV
Example 4 : Factorise of 35x16x12x 23
−−+
Solution Given p(x) = 35x16x12x 23
−−+
Since integers which divide 3− perfect are 1± , 3± (]SLdVdkosTLM 3− _^NOV)
And integers which divide 12 perfect are 1± , 2± , 3± , 4± , 6± , 12±
(]SLdVdkosTLM 12 _^NOV)
So
k
m
which p(
m
k
) = 0 is the number of the following numbers
1± , 3± ,
1
2
± ,
3
2
± ,
1
3
± ,
1
4
± ,
3
4
± ,
1
6
± ,
1
12
±
( ]SLdVdpT_wLdoc NOVpqm WrQ]SLdVdkospavdNOVaMeกQUbQ^ 3− _eNOVRwVd WrQ ]SLdVd
kospavdNOVaMeกQUbQ^ 12 hP[kos T.M.g. bQ^NOVpqm_eNOVRwVd WrQ 1)
Consider p(
1
2
) = 3 21 1 1
12( ) 16( ) 5( ) 3
2 2 2
+ − −
=
12 16 5
3
8 4 2
+ − −
= 0
So
1
x
2
− is a factor of p(x)
Devide 35x16x12x 23
−−+ by
1
x
2
− then quotient is 2
12x 22x 6+ +
So 35x16x12x 23
−−+ = 21
(x )(12x 22x 6)
2
− + +
= 21
(x )(2)(6x 11x 3)
2
− + +
= 2
(2x 1)(6x 11x 3)− + +
= (2x 1)(3x 1)(2x 3)− + +
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 17
Example 5 : Solve the equation 35x16x12x 23
−−+
Solution Given p(x) = 35x16x12x 23
−−+
From example 4 ; 35x16x12x 23
−−+ = (2x 1)(3x 1)(2x 3)− + +
Since 35x16x12x 23
−−+ = 0
(2x 1)(3x 1)(2x 3)− + + = 0
So 2x 1− = 0 or 3x 1+ = 0 or 2x 3+ = 0
x =
1
2
or x =
1
3
− or x =
3
2
−
Example 6 : If 2 is real number .Prove that 2 is irrational number.
Prove 2 is the solution of equation x = 2
So 2 is the solution of equation 2
x = 2
or
2
x 2 = 0−  (1)
From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 2± }
but 2 ∉ { 1± , 2± }. So 2 is not rational number.
And since 2 is real number so 2 is irrational number.
Example 7 : If 2 5+ is real number .Prove that 2 5+ is irrational number.
Prove 2 5+ is the solution of x = 2 5+
So 2 5+ is the solution of x 2 = 5−
Or
2
x 2 2 x 2 = 5− + ([กกSL_O^RQ^kOc^RQ^bZL^)
2
x 3 = 2 2x−
4 2 2
x 6x 9 = 8x− + ([กกSL_O^RQ^kOc^RQ^bZL^)
4 2
x 14x 9 = 0− +  (1)
From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 3± , 9± }
but 2 5+ ∉ { 1± , 3± , 9± }. So 2 5+ is not rational number.
Since 2 5+ is real number so 2 5+ is irrational number.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 18
2.4 Inequality
Definition ;
1) a > b if and only if −a b > 0
2) a < b if and only if −a b < 0
3) ≥a b means a > b or a = b
4) a b≤ means a < b or a = b
5) a < b < c means a < b and b < c
6) ≤ ≤a b c means ≤a b and ≤b c
7) < ≤a b c means <a b and ≤b c
8) ≤a b < c means ≤a b and b < c
9) ≠a b if and only if ( )− 2
a b > 0
Properties of inequality
I1 : Trichotomy Property (RgUONztNMVz€LW)
If a and b are real numbers then a = b , a < b and a > b , it is actually
only one.
I2 : Transitive Property (RgUONzกLMxwL[kQP)
Given a , b and c are real numbers.
(1) a < b and b < c then a < c
(2) ≤a b and ≤b c then ≤a c
(3) a > b and b > c then a > c
(4) ≥a b and ≥b c then ≥a c
I3 : property of number when compared with 0 (RgUONzbQ^]SLdVdpgrsQpaMo[Upko[UกOU 0)
Given a is real number.
(1) a is positive number if and only if a > 0.
(2) a is negative number if and only if a < 0.
(3) a is not positive number if and only if ≤a 0.
(4) a is not negative number if and only if ≥a 0.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 19
I4 : RgUONzกMtgwpavd]SLdVd_U_eกLMpavd]SLdVdUVก
(1) If a is real number then ≥2
a 0
(2) If a is real number and a ≠ 0 then >2
a 0
I5 : Addition by the equal number (RgUONzกLMUVกPZV[]SLdVdpkwLกOd)
Given a , b and c are real numbers.
(1) If a < b then a + c < b + c
(2) If ≤a b then ≤a + c b + c
(3) If a > b then a + c > b + c
(4) If ≥a b then ≥a + c b + c
I6 : cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก)
Given a , b and c are real numbers.
(1) If a + c < b + c then a < b
(2) If ≤a + c b + c then ≤a b
(3) If a + c > b + c then a > b
(4) If ≥a + c b + c then ≥a b
I7 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVdUVก
Given a , b and c are real numbers.
(1) If a < b and c > o then ac < bc
(2) If ≤a b c > o then ≤ac bc
(3) If a > b c > o then ac > bc
(4) If ≥a b c > o then ≥ac bc
I8 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVd_U
Given a , b and c are real numbers.
(1) If a < b and c < o then ac > bc
(2) If ≤a b c < o then ≥ac bc
(3) If a > b c < o then ac < bc
(4) If ≥a b c < o then ≤ac bc
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 20
I9 : RgUONzกLMNOPQQกbQ^]SLdVdUVกbQ^กLMWXY
Given a , b and c are real numbers.
(1) If ac < bc and c > o then a < b
(2) If ≤ac bc c > o then ≤a b
(3) If ac > bc c > o then a > b
(4) If ≥ac bc c > o then ≥a b
I10 : RgUONzกLMNOPQQกbQ^]SLdVd_UbQ^กLMWXY
Given a , b and c are real numbers.
(1) If ac < bc and c < o then a > b
(2) If ≤ac bc c < o then ≥a b
(3) If ac > bc c < o then a < b
(4) If ≥ac bc c < o then ≤a b
More Summaries
1) No Reflexive (tgwgoRgUONzกLMpkwLกOd)
2) No Symmetric (tgwgoRgUONzRggLNM)
3) If a b< and c d< then a c b d+ < +
4) If a b< and c d< then a d b c− < −
5) If 0 a b< < and 0 c d< < then ac bd<
6) 0a b< < and 0c d< < then ac bd>
7) If 0 a b< < and 0 c d< < then a b
d c
<
8) If 0a b< < and 0c d< < then a b
d c
>
9) If 0 a b< < then 2 2
a b<
10) If 0a b< < then 2 2
a b>
11) If 0 a b< < then 1 1
a b
>
12) If 0a b< < then 1 1
a b
>
13) If 0ab > and a b< then 1 1
a b
>
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 21
2.5 Interval
Given a R∈ , b R∈ and a b<
1) ( ),a b = { }x a x b< <
2) [ ],a b = { }x a x b≤ ≤
3) ( ],a b = { }x a x b< ≤
4) [ ),a b = { }a x<bx ≤
5) ( ),a ∞ = { }x x a>
6) [ ),a ∞ = { }x x a≥
7) ( ),a−∞ = { }x x a<
8) ( ],a−∞ = { }x x a≤
9) ( ),−∞ ∞ = R
Example 1 : Given A = ( )1,7 , B = [ ]3,4− , C = [ )0,6
1) A B∪ = [ )3,7− 2) B C∪ = [ )3,6−
3) A B C∪ ∪ = [ )3,7− 4) A B∩ = ( ]1,4
5) B C∩ = [ ]0,4 6) A B C∩ ∩ = ( ]1,4
7) ( )A B C∪ ∩ = [ )0,6 8) ( )A B C∩ ∪ = ( )1,6
9) A B− = ( )4,7 10) B C− [ )3,0−
11) ( )A B C− − = [ )6,7 12) ( )A B C∪ − j [ ) [ )3,0 6,7− ∪
0
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 22
Example 2 : Given 1
,2nA n
n
 
= − 
 
; n I∈ . Find ( )1 2 3A A A∪ −
( ]1 = 1,2A −
2
1
= ,4
2
A
 
− 
 
3
1
= ,6
3
A
 
− 
 
Therefore ( )1 2 3
1
= 1,
3
A A A
 
∪ − − − 
 
.
Example 3 : Given 2
,3nA n
n
 
= − 
 
; n I∈ . Find ( )3 5 2A A A∩ −
( ]1 = 1,6A −
2
2
= ,9
3
A
 
− 
 
3
2
= ,15
5
A
 
− 
 
Therefore ( ) [ ]3 5 2 = 6,9A A A∩ − .
Example 4 : Given 5 10 and 3 8x y< < ≤ ≤
1) 8 < < 18x y+
2) 3 < < 7x y− −
3) 15 < < 80x y⋅
4) 5 10
< <
8 3
x
y
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 23
Example 5 : Given 5 2 and -3 1x y− < < − ≤ ≤ −
1) 8 < < -3x y− +
2) 4 < < 1x y− −
3) 2 < < 15x y⋅
4) 2
< < 5
3
x
y
Example 6 : Given 3 1 and 1 3x y− < < < <
1) -2 < < 4x y+
2) 6 < < 0x y− −
3) 9 < < 3x y− ⋅
4) 3 < < 1
x
y
−
5) 2 2
0 < 9 ; 1 < < 9x y≤
6) 2 2
9 < < 8x y− −
Inequality solving
Example 7 : Solve inequality 5 7 2 11x≤ − ≤ .
SOLUTION 5 7 2 11x≤ − ≤
7 5 2 11 7x− + ≤ − ≤ −
2 2 4x− ≤ − ≤
( ) ( )
1 1
2 4
2 8
x
   
− − ≤ ≤ −   
   
-2 1x≤ ≤
Therefore solution set is { }2 1x x− ≤ ≤ or [ ]2,1− .
Example 8 : Solve inequality 9 2 < 4 3 6x x x− − ≤ + .
SOLUTION 9 2 < 4 3x x− − and 4 3 6x x− ≤ +
4 2 < 3 9x x− − − − 4 6 3x x− ≤ +
6 < 12x− − 3 9x ≤
( ) ( )
1 1
6 > 12
6 6
x
   
− − − −   
   
( )
1 1
3 9
3 3
x
   
≤   
   
> 2x 3x ≤
32
Therefore solution set is { }2 3x x< ≤ or ( ]2,3 .
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 24
Example 9 : Solve inequality 2
4 3 > 0x x− + .
SOLUTION 2
4 3 > 0x x− +
( )( )1 3 > 0x x− −
CASE 1 1 > 0x − and 3 > 0x − CASE 2 1 < 0x − and 3 < 0x −
> 1x and > 3x < 1x and < 0x
> 3x < 1x
Therefore solution set is { }1 or 3x x x< > or ( ) ( ),1 3,−∞ ∪ ∞ .
Example 10 : Solve inequality 2
2 5 3 0x x+ − ≤ .
SOLUTION 2
2 5 3 0x x+ − ≤
( )( )2 1 3 0x x− + ≤
CASE 1 2 1 0x − ≥ and 3 0x + ≤ CASE 2 2 1 0x − ≤ and 3 0x + ≥
1
2
x ≥ and 3x ≤ −
1
2
x ≤ and 3x ≥ −
No solution 1
3
2
x− ≤ ≤
Therefore solution set is 1
3
2
x x
 
− ≤ ≤ 
 
or 1
3,
2
 
− 
 
.
Example 11 : Solve inequality 2
2 5 > 0x x+ + .
SOLUTION 2
2 5 > 0x x+ +
( )2
2 1 +4 > 0x x+ +
( )
2
1 +4 > 0x + ; x R∈
Therefore solution set is R .
Example 12 : Solve inequality 2
6 5 < 0x x+ − .
SOLUTION 2
6 5 < 0x x+ −
( )2
6 9 14 < 0x x+ + −
( ) ( )
22
3 14 < 0x + −
( )( )3 14 3 14 < 0x x+ − + +
Therefore solution set is ( )3 14 , 3 14− − − + .
-+ +
-3+ 14-3- 14
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 25
Example 13 : Solve inequality 2
8 10 0x x− + ≥ .
SOLUTION 2
8 10 0x x− + ≥
( )2
8 16 6 0x x− + − ≥
( ) ( )
22
4 6 0x − − ≥
( )( )4 6 4 6 0x x− − − + ≥
Therefore solution set is ( ), 4 16 4 6 , −∞ − ∪ + ∞  .
Example 14 : Solve inequality 2
10 25 > 0x x+ + .
SOLUTION 2
10 25 > 0x x+ +
( )
2
5 > 0x +
and 5x R x∈ ≠ −
Therefore solution set is { }5x x ≠ − or { }5R − − .
Example 15 : Solve inequality 2
4 4 0x x− + ≤ .
SOLUTION 2
4 4 0x x− + ≤
( )
2
2 0x − ≤
2x =
Therefore solutionset is { }= 2x x or { }2 .
Example 16 : Solve inequality 2
10 25 < 0x x− + .
SOLUTION 2
10 25 < 0x x− +
( )
2
5 < 0x −
Therefore no solution .
Example 17 : solve the following inequality
1) ( )( )( )2 3 1 < 0x x x− − +
SOLUTION ( )( )( )2 3 1 < 0x x x− − +
( )( )( )2 3 1 < 0x x x− − +
-
2-1
-+ +
3
Solution set is ( ) ( ), 1 2,3−∞ − ∪ .
-+ +
4+ 64- 6
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 26
2) ( )( ) ( )
2
1 2 3 0x x x− − − ≥
SOLUTION ( )( ) ( )
2
1 2 3 0x x x− − − ≥
( )( ) ( )
2
1 2 3 0x x x− − − ≥
Times
( )
2
1
2x −
; ( )( )1 3 0x x− − ≥
2-1
-+ +
3
Solution set is ( ] { } [ ),1 2 3,−∞ ∪ ∪ ∞ .
3) ( ) ( ) ( )
( ) ( )
2 3 4
5 6
2 3 4
0
5 6
x x x
x x
− − −
≤
− −
SOLUTION ( ) ( ) ( )
( ) ( )
2 3 4
5 6
2 3 4
0
5 6
x x x
x x
− − −
≤
− −
Times ( ) ( )
( ) ( ) ( )
5 6
2 3 4
5 6
2 3 4
x x
x x x
− −
− − −
; ( )( )3 5 0x x− − ≤
542
-+ +
3
Solution set is { } [ )2 3,5∪ .
4) 2 1 2
3 4
x
x x
−
<
+ −
SOLUTION 2 1 2
< 0
3 4
x
x x
−
−
+ −
( )( ) ( )( )
( )( )
4 2 1 3 2
< 0
3 4
x x x
x x
− − − +
+ −
( )( )
2
2 9 4 2 6
< 0
3 4
x x x
x x
− + − −
+ −
( )( )
2
2 11 2
< 0
3 4
x x
x x
− −
+ −
( )( )
2 11
1
2 < 0
3 4
x x
x x
− −
+ −
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 27
( )( )
2 11 121 137
2 16 16
< 0
3 4
x x
x x
 
− + − 
 
+ −
( )( )
22
11 137
4 4
< 0
3 4
x
x x
  
− −  
   
+ −
( )( )
11 137 11 137
4 4 4 4
< 0
3 4
x x
x x
  
− + − −  
  
+ −
Solution set is 11 137 11 137
3, 4,
4 4
   − +
− ∪      
   
.
5) 5 2
3 2x x
≥
+ −
SOLUTION 5 2
0
3 2x x
− ≥
+ −
( ) ( )
( )( )
5 2 2 3
0
3 2
x x
x x
− − +
≥
+ −
( )( )
5 10 2 6
0
3 2
x x
x x
− − −
≥
+ −
( )( )
3 16
0
3 2
x
x x
−
≥
+ −
( )( )( )3 16 3 2 0x x x− + − ≥
Solution set is [ ]
16
3,2 ,
3
 
− ∪ ∞ 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 28
2.6 Absolute Value
When we want to talk about how “large” a number is without regard as to whether it is
positive or negative, we use the absolute value function. The absolute value of a number is the
distance from that number to the origin (zero) on the number line. That distance is always
given as a non-negative number.
• If a number is positive (or zero), the absolute value function does nothing to it:
• If a number is negative, the absolute value function makes it positive:
Definition ;
; 0
= 0 ; 0
; 0
x x
x x
x x
>

=
− <
3 = 3
5 = 5−
,
( )
5 = 5
4 = 4 = 4− − −
, 0 = 0
; 0
=
; 0
x x
x
x x
≥

− <
Absolute Value Property ;
1) =x x−
2) =x y y x− −
3) =xy x y
4) = ; 0
xx
y
y y
≠
5) 2 2
=x x
6) = 0 if and only if 0x x =
7) = ; 0 if and only if orx a a x a x a> = = −
8) 2 2
= if and only ifx y x y=
9) 2 2
< if and only ifx y x y<
10) x y x y+ ≤ +
11) = if and only if 0x y x y xy+ + ≥
12) < if and only if 0x y x y xy+ + <
13) x y x y− ≥ −
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 29
14) = if and only if 0x y x y xy− − ≥
15) > if and only if 0x y x y xy− − <
16) < ; 0 if and only ifx a a a x a> − < <
17) ; 0 if and only ifx a a a x a≤ > − ≤ ≤
18) > ; 0 if and only if orx a a x a x a> < − >
19) ; 0 if and only if orx a a x a x a≥ > ≤ − ≥
20)
1 ; 0
=
1 ; 0
xx
xx
>

− <
Example 1 : Solve the following equations
1) 2
6 = 0x x− −
SOLUTION 2
6 = 0x x− −
( )( )3 2 = 0x x− +
= 3 , 2x −
Solution set is { }3, 2− .
2) 2 3 = 15x −
SOLUTION 2 3 = 15x −
2 3 = 15 , 15x − −
2 = 18 , 12x −
= 9 , 6x −
Solution set is { }9, 6− .
3) 2 1 = 3x x− +
SOLUTION ( ) ( )
2 2
2 1 = 3x x− +
2 2
4 4 1 = 6 9x x x x− + + +
2
3 10 8 = 0x x− −
( )( )3 2 4 = 0x x+ −
2
= , 4
3
x −
Solution set is 2
,4
3
 
− 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 30
4) 2 1 = 2x x− +
SOLUTION ( ) ( )
2 2
2 1 = 2x x− +
2 2
4 4 1 = 4 4x x x x− + + +
2
3 8 3 = 0x x− −
( )( )3 1 3 = 0x x+ −
1
= , 3
3
x −
Solution set is 1
,3
3
 
− 
 
.
Example 2 : Solve the following equations
1) 2 2
2 15 = 2 15x x x x− − − −
SOLUTION 2
2 15 0x x− − ≥
( )( )5 3 0x x− + ≥
Solution set is ( ) [ ), 3 5,−∞ − ∪ ∞ .
2) 2 2
6 = 6x x x x− − + −
SOLUTION ( )2 2
6 = 6x x x x− − − − −
2
6 0x x− − ≤
( )( )3 2 0x x− + ≤
Solution set is [ ]2,3− .
3) = 1x x −
SOLUTION If 0 then 1x x x≥ = −
No solution
If 0 then - 1x x x< = −
1
= (F)
2
x
Solution set is φ .
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 31
4) = 1x x +
SOLUTION If 0 then 1x x x≥ = +
No solution
If 0 then - 1x x x< = +
1
= (T)
2
x −
Solution set is 1
2
 
− 
 
.
5) 2 = 3x x− +
SOLUTION If 2 0 then 2 3x x x− ≥ − = +
No solution
If 2 0 then 2 3x x x− < − + = +
1
= (T)
2
x −
Solution set is 1
2
 
− 
 
.
6) 2 1 = 3x x+ −
SOLUTION If 2 1 0 then 2 1 3x x x+ ≥ + = −
= 4 (F)x −
If 2 1 0 then 2 1 3x x x+ < − − = −
2
= (F)
3
x
Solution set is φ .
7) 1 + 2 = 10x x+ −
SOLUTION ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − ≥ + + − =
11
2 and (T)
2
x x≥ =
( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − < + − − =
No solution
( ) ( )If 1 0 and 2 0 then - 1 2 10x x x x+ < − ≥ + + − =
No solution
( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ < − < − + − − =
9
< 1 and (T)
2
x x− = −
Solution set is 11 9
,
2 2
 
− 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 32
2.7 Absolute Value Inequality
Example 1 : Solve the following inequality.
1) 2 1 3x x− ≤ +
SOLUTION 2 1 3x x− ≤ +
( ) ( )
2 2
2 1 3x x− ≤ +
2 2
4 4 1 6 9x x x x− + ≤ + +
2
3 10 8 0x x− − ≤
( )( )3 2 4 0x x+ − ≤
Solution set is 2
,4
3
 
− 
 
.
2) 3 2 < 2 3x x− +
SOLUTION If 3 2 0 then 3 2 2 3x x x− ≥ − < +
2
and 5
3
x x≥ <
2
< 5
3
x≤  (1)
If 3 2 0 then 3 2 2 3x x x− < − + < +
2 1
< and
3 5
x x > −
1 2
< <
5 3
x−  (2)
Solution set is 1 2 2 1
, ,5 = ,5
5 3 3 5
     
− ∪ −    
     
.
3) 2 1 + 3 > 10x x− +
SOLUTION ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + ≥ − + + >
1
and 3
2
x x≥ ≥ −
8
3
x >
8
>
3
x  (1)
( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + < − − + >
1
and 3
2
x x≥ < − Oppose
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 33
( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + ≥ − − + + >
1
< and 3
2
x x ≥ − 6x < −
No solution
( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + < − − − + >
1
< and 3
2
x x < − 4x < −
< 4x −  (2)
Solution set is ( )
8
, 4 ,
5
 
−∞ − ∪ ∞ 
 
.
4) 2 3 13x − ≤
SOLUTION 13 2 3 13x− ≤ − ≤
10 2 16x− ≤ ≤
5 8x− ≤ ≤
Solution set is [ ]5,8− .
5) 3 1 > 11x −
SOLUTION 3 1 11x − < − or 3 1 11x − >
3 < 10x − 3 > 12x
10
<
3
x − > 4x
Solution set is ( )
10
, 4,
3
 
−∞ − ∪ ∞ 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 34
English vocabulary for Mathematic
Addition Property = RgUONzกLMUVก Associative Property = RgUONzกLMpa_os[dTgXw
Cancallation Property = ก ก Closure Property for addition = RgUONza•PกLMUVก
Complex Numbers = ]SLdVdpjz^}ZQd Commutative Property = RgUONzกLMR_OUkos
Counting Numbers = ]SLdVddOU Decimal = kqdz[g
Distributive Property = RgUONzกLM]ก]^ Fraction = pqmRwVd
Identity = pQก_OกmY‚ Imaginary Number = ]SLdVd]zdN€Lf
Integer numbers = ]SLdVdpNyg Inverse = NOVuกuOd
Irrational Numbers = ]SLdVdNMMก[e multiplication = กLMWXY
Multiplication Property = RgUONzกLMWXY Natural Numbers = ]SLdVddOU
Periodic Decimal = kqdz[g}cSL Rational Numbers =]SLdVdNMMก[e
Reflexive Property = RgUONzกLMRekZQd Subtraction = กLM_U
Square = MXaRospT_os[g]ON`MOR Struction = hWM^RMZL^
Symetric Property = RgUONzกLMpkwLกOd therefore = PO^dOcd
Transitive Property = RgUONzกLMxwL[kQP Whole Number = ]SLdVdkOc^TgP

Mais conteúdo relacionado

Mais procurados

Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
indu psthakur
 
Add maths module form 4 & 5
Add maths module form 4 & 5Add maths module form 4 & 5
Add maths module form 4 & 5
smktsj2
 
Chapter 1 functions
Chapter 1  functionsChapter 1  functions
Chapter 1 functions
Umair Pearl
 
Chapter 3 quadratc functions
Chapter 3  quadratc functionsChapter 3  quadratc functions
Chapter 3 quadratc functions
atiqah ayie
 

Mais procurados (20)

Module of algelbra analyses 2
Module of algelbra analyses 2Module of algelbra analyses 2
Module of algelbra analyses 2
 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
 
Surds,
Surds,Surds,
Surds,
 
Add maths module form 4 & 5
Add maths module form 4 & 5Add maths module form 4 & 5
Add maths module form 4 & 5
 
Practice questions( calculus ) xii
Practice questions( calculus ) xiiPractice questions( calculus ) xii
Practice questions( calculus ) xii
 
Chapter 1 functions
Chapter 1  functionsChapter 1  functions
Chapter 1 functions
 
Appt and reasoning
Appt and reasoningAppt and reasoning
Appt and reasoning
 
101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]
 
Continuity and Uniform Continuity
Continuity and Uniform ContinuityContinuity and Uniform Continuity
Continuity and Uniform Continuity
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
1. functions
1. functions1. functions
1. functions
 
AP Calculus - Tutorial
AP Calculus - TutorialAP Calculus - Tutorial
AP Calculus - Tutorial
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)
 
Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
Chapter 3 quadratc functions
Chapter 3  quadratc functionsChapter 3  quadratc functions
Chapter 3 quadratc functions
 
Algebra formulas
Algebra formulas Algebra formulas
Algebra formulas
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Complex numbers
Complex numbersComplex numbers
Complex numbers
 

Destaque

ความรู้เบื้องต้นเกี่ยวกับจำนวนจริง
ความรู้เบื้องต้นเกี่ยวกับจำนวนจริงความรู้เบื้องต้นเกี่ยวกับจำนวนจริง
ความรู้เบื้องต้นเกี่ยวกับจำนวนจริง
Destiny Nooppynuchy
 
แบบทดสอบ เรื่องทฤษฎีจำนวนเบื้องต้น
แบบทดสอบ เรื่องทฤษฎีจำนวนเบื้องต้นแบบทดสอบ เรื่องทฤษฎีจำนวนเบื้องต้น
แบบทดสอบ เรื่องทฤษฎีจำนวนเบื้องต้น
ทับทิม เจริญตา
 
3 ระบบจำนวนจริง
3 ระบบจำนวนจริง3 ระบบจำนวนจริง
3 ระบบจำนวนจริง
Chwin Robkob
 
แบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐานแบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐาน
Nittaya Noinan
 
แบบฝึกหัดสำหรับทบทวนเนื้อหาเซตและการให้เหตุผล
แบบฝึกหัดสำหรับทบทวนเนื้อหาเซตและการให้เหตุผลแบบฝึกหัดสำหรับทบทวนเนื้อหาเซตและการให้เหตุผล
แบบฝึกหัดสำหรับทบทวนเนื้อหาเซตและการให้เหตุผล
krupatcharin
 
ตัวอย่างข้อสอบ Las 8คณิตศาสตร์ม.4
ตัวอย่างข้อสอบ Las 8คณิตศาสตร์ม.4ตัวอย่างข้อสอบ Las 8คณิตศาสตร์ม.4
ตัวอย่างข้อสอบ Las 8คณิตศาสตร์ม.4
ทับทิม เจริญตา
 
ม.1 เตรียมความพร้อมการให้เหตุผล
ม.1 เตรียมความพร้อมการให้เหตุผลม.1 เตรียมความพร้อมการให้เหตุผล
ม.1 เตรียมความพร้อมการให้เหตุผล
reaxe j
 
โจทย์ปัญหา
โจทย์ปัญหาโจทย์ปัญหา
โจทย์ปัญหา
Aon Narinchoti
 
แบบทดสอบ การให้เหตุผล
แบบทดสอบ การให้เหตุผลแบบทดสอบ การให้เหตุผล
แบบทดสอบ การให้เหตุผล
Aon Narinchoti
 
แบบทดสอบ พร้อมเฉลย ความสัมพันธ์และฟังก์ชัน
แบบทดสอบ พร้อมเฉลย ความสัมพันธ์และฟังก์ชันแบบทดสอบ พร้อมเฉลย ความสัมพันธ์และฟังก์ชัน
แบบทดสอบ พร้อมเฉลย ความสัมพันธ์และฟังก์ชัน
phaephae
 

Destaque (18)

สรุปเนื้อหาจำนวนจริง
สรุปเนื้อหาจำนวนจริงสรุปเนื้อหาจำนวนจริง
สรุปเนื้อหาจำนวนจริง
 
ระบบจำนวนจริง
ระบบจำนวนจริงระบบจำนวนจริง
ระบบจำนวนจริง
 
ความสัมพันธ์เชิงฟังก์ชัน
ความสัมพันธ์เชิงฟังก์ชันความสัมพันธ์เชิงฟังก์ชัน
ความสัมพันธ์เชิงฟังก์ชัน
 
Real Number(ระบบจำนวนจริง)
Real Number(ระบบจำนวนจริง)Real Number(ระบบจำนวนจริง)
Real Number(ระบบจำนวนจริง)
 
ความรู้เบื้องต้นเกี่ยวกับจำนวนจริง
ความรู้เบื้องต้นเกี่ยวกับจำนวนจริงความรู้เบื้องต้นเกี่ยวกับจำนวนจริง
ความรู้เบื้องต้นเกี่ยวกับจำนวนจริง
 
แบบทดสอบ เรื่องทฤษฎีจำนวนเบื้องต้น
แบบทดสอบ เรื่องทฤษฎีจำนวนเบื้องต้นแบบทดสอบ เรื่องทฤษฎีจำนวนเบื้องต้น
แบบทดสอบ เรื่องทฤษฎีจำนวนเบื้องต้น
 
3 ระบบจำนวนจริง
3 ระบบจำนวนจริง3 ระบบจำนวนจริง
3 ระบบจำนวนจริง
 
แบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐานแบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐาน
 
แบบฝึกหัดสำหรับทบทวนเนื้อหาเซตและการให้เหตุผล
แบบฝึกหัดสำหรับทบทวนเนื้อหาเซตและการให้เหตุผลแบบฝึกหัดสำหรับทบทวนเนื้อหาเซตและการให้เหตุผล
แบบฝึกหัดสำหรับทบทวนเนื้อหาเซตและการให้เหตุผล
 
ตัวอย่างข้อสอบ Las 8คณิตศาสตร์ม.4
ตัวอย่างข้อสอบ Las 8คณิตศาสตร์ม.4ตัวอย่างข้อสอบ Las 8คณิตศาสตร์ม.4
ตัวอย่างข้อสอบ Las 8คณิตศาสตร์ม.4
 
ข้อสอบจำนวนจริง
ข้อสอบจำนวนจริงข้อสอบจำนวนจริง
ข้อสอบจำนวนจริง
 
แบบทดสอบ เรื่อง จำนวนจริง
แบบทดสอบ เรื่อง จำนวนจริงแบบทดสอบ เรื่อง จำนวนจริง
แบบทดสอบ เรื่อง จำนวนจริง
 
ม.1 เตรียมความพร้อมการให้เหตุผล
ม.1 เตรียมความพร้อมการให้เหตุผลม.1 เตรียมความพร้อมการให้เหตุผล
ม.1 เตรียมความพร้อมการให้เหตุผล
 
Test of relation
Test of relationTest of relation
Test of relation
 
07 การให้เหตุผลและตรรกศาสตร์ ตอนที่1_การให้เหตุผล
07 การให้เหตุผลและตรรกศาสตร์ ตอนที่1_การให้เหตุผล07 การให้เหตุผลและตรรกศาสตร์ ตอนที่1_การให้เหตุผล
07 การให้เหตุผลและตรรกศาสตร์ ตอนที่1_การให้เหตุผล
 
โจทย์ปัญหา
โจทย์ปัญหาโจทย์ปัญหา
โจทย์ปัญหา
 
แบบทดสอบ การให้เหตุผล
แบบทดสอบ การให้เหตุผลแบบทดสอบ การให้เหตุผล
แบบทดสอบ การให้เหตุผล
 
แบบทดสอบ พร้อมเฉลย ความสัมพันธ์และฟังก์ชัน
แบบทดสอบ พร้อมเฉลย ความสัมพันธ์และฟังก์ชันแบบทดสอบ พร้อมเฉลย ความสัมพันธ์และฟังก์ชัน
แบบทดสอบ พร้อมเฉลย ความสัมพันธ์และฟังก์ชัน
 

Semelhante a Real number system full

Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
jennytuazon01630
 
DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..
KarthikeyaLanka1
 
Introduction to MatLab programming
Introduction to MatLab programmingIntroduction to MatLab programming
Introduction to MatLab programming
Damian T. Gordon
 
Determinants, Properties and IMT
Determinants, Properties and IMTDeterminants, Properties and IMT
Determinants, Properties and IMT
Prasanth George
 

Semelhante a Real number system full (20)

Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
 
2. Real numbers
2. Real numbers2. Real numbers
2. Real numbers
 
Lecture 01 reals number system
Lecture 01 reals number systemLecture 01 reals number system
Lecture 01 reals number system
 
Unit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptxUnit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptx
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Lesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersLesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbers
 
Number system
Number systemNumber system
Number system
 
Chapter0
Chapter0Chapter0
Chapter0
 
Annie
AnnieAnnie
Annie
 
Em01 ba
Em01 baEm01 ba
Em01 ba
 
Real-Number-System.pptx
Real-Number-System.pptxReal-Number-System.pptx
Real-Number-System.pptx
 
PEA 305.pdf
PEA 305.pdfPEA 305.pdf
PEA 305.pdf
 
Number System2.pptx
Number System2.pptxNumber System2.pptx
Number System2.pptx
 
DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..
 
Introduction to MatLab programming
Introduction to MatLab programmingIntroduction to MatLab programming
Introduction to MatLab programming
 
Determinants, Properties and IMT
Determinants, Properties and IMTDeterminants, Properties and IMT
Determinants, Properties and IMT
 
TABREZ KHAN.ppt
TABREZ KHAN.pptTABREZ KHAN.ppt
TABREZ KHAN.ppt
 
101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitude101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitude
 
Introduction to Logarithm
Introduction to LogarithmIntroduction to Logarithm
Introduction to Logarithm
 
Ratio and Proportion, Indices and Logarithm Part 4
Ratio and Proportion, Indices and Logarithm Part 4Ratio and Proportion, Indices and Logarithm Part 4
Ratio and Proportion, Indices and Logarithm Part 4
 

Mais de Aon Narinchoti

Mais de Aon Narinchoti (20)

บทคัดย่อ
บทคัดย่อบทคัดย่อ
บทคัดย่อ
 
Prob
ProbProb
Prob
 
Event
EventEvent
Event
 
Sample space
Sample spaceSample space
Sample space
 
Random experiment
Random experimentRandom experiment
Random experiment
 
His brob
His brobHis brob
His brob
 
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
 
Wordpress
WordpressWordpress
Wordpress
 
ส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธ
 
Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936
 
Know5
Know5Know5
Know5
 
ตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติ
 
Know4
Know4Know4
Know4
 
Know3
Know3Know3
Know3
 
Know2
Know2Know2
Know2
 
Know1
Know1Know1
Know1
 
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียงการใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
 
Climometer
ClimometerClimometer
Climometer
 
คำอธิบายรายวิชา
คำอธิบายรายวิชาคำอธิบายรายวิชา
คำอธิบายรายวิชา
 
อัตราส่วนคะแนน
อัตราส่วนคะแนนอัตราส่วนคะแนน
อัตราส่วนคะแนน
 

Último

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 

Último (20)

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 

Real number system full

  • 1. CHAPTER 2 :Real Number System The real number system evolved over time by expanding the notion of what we mean by the word “number.” At first, “number” meant something you could count, like how many sheep a farmer owns. These are called the natural numbers, or sometimes the counting numbers. 2.1 Real Number Counting Number / Natural Number N = { 1 , 2 , 3 , 4 , … } • The use of three dots at the end of the list is a common mathematical notation to indicate that the list keeps going forever. Whole Numbers • Natural Numbers together with “zero” W = { }0 , 1 , 2 , 3 , 4 , ... Integer Number (I) • Whole numbers plus negatives { }I ..., 3 , 2 , 1 , 0 , 1 , 2 , 3 ,...= − − − { }I 0 , 1 , 2 , 3 ,...= ± ± ± Rational Number (Q) a Q = x x = ; a I , b I and b 0 b   ∈ ∈ ≠    • All numbers of the form a b , where a and b are integers (but b cannot be zero) • Rational numbers include what we usually call fractions
  • 2. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 2 • Notice that the word “rational” contains the word “ratio,” which should remind you of fractions. • The bottom of the fraction is called the denominator. Think of it as the denomination—it tells you what size fraction we are talking about: fourths, fifths, etc. • The top of the fraction is called the numerator. It tells you how many fourths, fifths, or whatever. • RESTRICTION: The denominator cannot be zero! (But the numerator can) • Fractions can be numbers smaller than 1, like 1/2 or 3/4 (called proper fractions : In the numerator is smaller than the denominator) • Fractions can be numbers bigger than 1, like one-and-a-quarter, which we could also write as 5/4 (called improper fractions : the numerator is bigger than the denominator) • One way of expressing the improper fraction 5/4 is as the mixed number 1 1 4 , which is read as “one and one-fourth.” • The step for write Mixed Number to Improper Fraction ; 1. Multiply the integer part with the bottom of the fraction part. 2. Add the result to the top of the fraction. • The step for write Improper Fraction to Mixed Number 1. Do the division to get the integer part 2. Put the remainder over the old denominator to get the fractional part •••• Equivalent Fractions Equivalent fractions are fractions that have the same value, for example 1 2 3 4 2 4 6 8 = = = etc. • All integers can also be thought of as rational numbers, with a denominator of 1: for example 3 3 1 = , 5 5 1 − − = • This means that all the previous sets of numbers (natural numbers, whole numbers, and integers) are subsets of the rational numbers. Now it might seem as though the set of rational numbers would cover every possible case, but that is not so. There are numbers that cannot be expressed as a fraction, and these numbers are called irrational because they are not rational. • Integer 2 , 5, 0 , 3 , 7− − • Fraction 2 11 , 3 17
  • 3. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 3 • Periodic Decimal 0.2 , 0.3 , 0.47& Irrational Number (Q′ ) • Cannot be expressed as a ratio of integers. • As decimals they never repeat or terminate (rationals always do one or the other) Examples: Rational (terminates) 2 = 0.66666 3 & Rational (repeats) 5 = 0.45454545 11 & & Rational (repeats) 5 = 0.714285714285 7 & & Rational (repeats) Irrational (never repeats or terminates) Irrational (never repeats or terminates) The Real Numbers(R) •••• Rationals + Irrationals •••• All points on the number line • Or all possible distances on the number line When we put the irrational numbers together with the rational numbers, we finally have the complete set of real numbers. Any number that represents an amount of something, such as a weight, a volume, or the distance between two points, will always be a real number. The following diagram illustrates the relationships of the sets that make up the real numbers.
  • 4. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 4 Imaginary Number a+bi ; a,b R and b 0∈ ≠ 2+3i , 4 5i− , 1 3i− , 2i Union of Real Number and Imaginary Number called Complex Number. Properties for real number system 1) Reflexive Property ; • If a R∈ then a = a • Example ; 3 = 3 , 2 = 2π π , 2x = 2x , 1+2x = 1+2x etc. 2) Symetric Property ; • If a = b then b = a • Example ; If 5 2x= then 2x = 5 If 12 4 3x= − then 4 3x = 12− If 5 2 + 3= then 2 + 3 = 5 etc. 3) Transitive Property ; • If a = b and b = c then a = c • Example ; If 2x + 1 = 10 + 12 and 10 + 12 = 22 then 2x + 1 = 22 If 2x 5 = x + 1− and x + 1 = 7 then 2x 1 = 7− etc. 4) Addition by the equal number ; • If a = b then a + c = b + c • Example ; If a = 5 then a + 3 = 5 + 3 If ( ) ( ) ( )2x + 5 = 10 then 2x + 5 + 5 = 10 + 5− − etc.
  • 5. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 5 5) Multiplication by the equal number ; • If a = b then ac = bc • Example ; If a = 3 then a 2 = 3 2× × If ( ) ( )2x = 8 then 3 2x = 3 8 etc. 6) If a + c = b + c then a = b 7) If ac = bc and c 0≠ then a = b Addition Property for real number system 1) Closure Property • If Ra∈ , Rb∈ then Rba ∈+ 2) Commutative Property • If Ra∈ , Rb∈ then abba +=+ 3) Associative Property • If RcandRb,Ra ∈∈∈ then ( ) ( )cbacba ++=++ • Example ; 1. consider ( )532 ++ and ( ) 532 ++ Hence ( ) 1082532 =+=++ and ( ) 1055532 =+=++ so ( )532 ++ = ( ) 532 ++ etc. 4) Identity (0) • There is R0∈ for all Ra∈ such that a0aa0 =+=+ • Example ; 0 + 2 = 2 + 0 = 2 20220 =+=+ etc. 5) Inverse ( a− ) • For all Ra∈ there exists Ra ∈− such that ( ) ( ) 0aaaa =+−=−+ • Example ; 1. Consider addition inverse of 2 Hence ( ) ( ) 02222 =+−=−+ so addition inverse of 2 is 2− 2. Consider addition inverse of 5− Hence ( ) ( )( ) ( )( ) ( ) 05555 =−+−−=−−+− so addition inverse of 5− is ( )5−− , and ( ) 55 =−− etc. Cancallation Property ( ก ก)
  • 6. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 6 Multiplication Property for real number system 1) Closure Property • If Ra∈ , Rb∈ then Rab∈ 2) Commutative Property • If Ra∈ , Rb∈ then baab = 3) Associative Property • If RcandRb,Ra ∈∈∈ then ( ) ( )bcacab = 4) Identity (1) • There is R1∈ for all Ra∈ such that ( ) ( ) a1aa1 == • Example ; ( ) ( ) 21221 == ( ) ( )( ) 21221 == etc. 5) Inverse ( 1 a− ) • For all Ra∈ and 0a ≠ there exists Ra 1 ∈− such that ( ) ( ) 1aaaa 11 == −− • multiplication inverse of a is 1 a− and a 1 a 1 =− hence ( ) ( ) 1a a 1 a 1 a =      =      so multiplication inverse of a is a 1 • Example ; 1. Consider multiplication inverse of 2 hence ( ) ( ) 12 2 1 2 1 2 =      =      so multiplication inverse of 2 is 2 1 2. Consider addition inverse of 5 1 Hence ( ) ( ) 1 5 1 55 5 1 =      =      so multiplication inverse of 5 1 is 5 6) Distributive Property • If RcandRb,Ra ∈∈∈ then ( ) bcabcba +=+ and ( ) bcaccba +=+
  • 7. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 7 Example : Given a and b are real number a b = a + b 5⊕ − Find 1) Identity 2) Inverse of 10 Find Identity Let x is identity x a⊕ = a x + a 5− = a x = 5 Find Inverse of 10 Let y is Inverse of 10 y 10⊕ = 5 y + 10 − 5 = 5 y = 0 Example : Change the number to fraction 1. 0.252525... Let x = 0.252525...  (1) (1) × 100 ; 100x = 25.252525...  (2) (2) – (1) ; 99x = 25 x = 25 99 Therefore0.252525... = 25 99 2. 0.45326& & Let x = 0.45326326326  (1) (1)×100 ; 100x = 45.326326326  (2) (1)×100,000 ; 100,000x = 45326.326326326...  (3) (3) – (2) ; 99900x = 45326 45− 99900x = 45281 x = 45281 99900 Therefore0.45326326326... = 45281 99900
  • 8. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 8 3. 2.354& Let x = 2.35444...  (1) (1)×100 ; 100x = 235.444...  (2) (1)×1,000 ; 1,000x = 2354.444...  (3) (3) – (2) ; 900x = 2119 x = 2119 900 Therefore 2.354& = 2119 900 Example : Given a * b = a + b + 4 where a , b ∈ R. Find the property of operation * And find inverse of 5 1. Closure Property If a ∈ R and b ∈ R then a * b = a + b + 4 ∈ R 5 ∈ R and 7 ∈ R , 5 7∗ = 5 7 4+ + = 16 ∈ R 2. Commutative Property a * b = a + b + 4 = b + a + 4 = b * a 3. Associative Property (a * b) * c = (a + b + 4) * c a * (b * c) = a * (b + c + 4) = (a + b + 4) + c + 4 = a + (b + c + 4) +4 = a + b + 4 + c + 4 = a + b + c + 4 + 4 = a + b + c + 8 = a + b + c + 8 (a * b) * c = a * (b * c) 4. Identity Let x is identity x * a = a x + a + 4 = a x = 4− Therefore identity is 4−
  • 9. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 9 5. Inverse Let y is inverse of 5 y * 5 = 4− ( identity) y + 5 + 4 = 4− y = 13− Therefore inverse of 5 is 13− 2.2 Fundamental Theorem For Real Number System Theorem 2.2.1 ; cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก) Given a , b , c ∈ R (1) if a + c = b + c then a = b ( 2) If a + b = a + c then b = c Theorem 2.2.2 ; cancallation property for multiplication (กLMNOPQQกRSLTMOUกLMWXY) Given a , b , c ∈ R (1) if ac = bc and c ≠ 0 then a = b ( 2) If ab = ac and a ≠ 0 then b = c Theorem 2.2.3 ; multiplied by 0 (กLMWXYPZV[ 0) If a ∈ R then ( ) ( )= =a 0 0 a 0 Theorem 2.2.4 ; multiplied by −1 (กLMWXYPZV[ − 1) If a ∈ R then a(−1) = (−1)a = −a Theorem 2.2.5 ; 89:;<=>?@กBC 0 Given a , b∈R , If ab = 0 then a = 0 or b = 0 Theorem 2.2.6 ; Given a ∈R , If a ≠ 0 then 1 a− ≠ 0
  • 10. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 10 Theorem 2.2.7 ; ( inverse of the inverse ) (1) If a ∈R then ( ) aa =−− (2) If a ∈R and a ≠ 0 then ( ) aa 11 = −− Theorem 2.2.8 ; Given a , b ∈R , where a ≠ 0 and b ≠ 0 then ( ) 11111 baabab −−−−− == Theorem 2.2.9 ; Given a , b ∈R then ; (1) ( )ba− = ab− (2) ( )ba − = ab− (3) ( )( )ba −− = ab Subtraction And Division For Real Number Subtraction for real number Definetion ; Given a , b ∈ R then ( )− −a b = a + b Theorem 2.2.10 ; distributive property for subtraction (กLM]ก]^RSLTMOUกLM_U) Given a , b , c ∈R then ; (1) ( )−a b c = −ab ac (2) ( )−a b c = −ac bc (3) ( )( )− −a b c = −ab + ac Theorem 2.2.11 ; cancallation property for subtraction (กLMNOPQQกRSLTMOUกLM_U) Given a , b , c ∈ R (1) if − −a b = a c then b = c (2) If − −a b = c b then a = c
  • 11. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 11 Devision for real number Definetion ; Given a , b ∈ R , where b ≠ 0 then ( )−1a = a b b Theorem 2.2.12 ; Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then ( ) − − − −− = =1 1 1 11 ab b a a b Theorem 2.2.13 ; Given a , b , c ∈R , where b ≠ 0 and then ( )a ca c = b b Theorem 2.2.14 ; Given a , b ∈R , where b ≠ 0 then − − − a a a = = b b b Theorem 2.2.15 ; Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then ( )a ab = c bc Theorem 2.2.16 ; Given a , b , c , d ∈ R , where b ≠ 0 and d ≠ 0 then + a c ad + bc = b d bd Theorem 2.2.17 ; Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then − − a c ad bc = b d bd
  • 12. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 12 Theorem 2.2.18 ; Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then ( )( )a c ac = b d bd Theorem 2.2.19 ; Given a , b ∈R , where a ≠ 0 and b ≠ 0 then ( ) −1 a b = b a Theorem 2.2.20 ; Given a , b , c , d ∈R , where b ≠ 0 , c ≠ 0 and d ≠ 0 then ( ) ( ) a adb = c bc d Theorem 2.2.21 ; Given a , b , c ∈ R , where b ≠ 0 then (1) If a = c b then a = bc (2) If a = bc then a = c b Theorem 2.2.22 ; Given a , b , c ∈ R , where b ≠ 0 then a = c b if and only if a = bc Theorem 2.2.23 ; Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then ( ) a ac = b b c
  • 13. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 13 2.3 Solving polynomial equations of one variable polynomial equations of one variable is an equation of the form − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , where na , −n 1a , … , 1a , 0a are real numbers , which are constants , x is variable and n is an integer or zero. Solving equations by factorization(ก@GHกIJKก@GLMNก@GHNกOBPQGRกSC) Example 1 : Find the solution set of equation − − + =3 2 4x 3x 64x 48 0 Solution Since − − +3 2 4x 3x 64x 48 = 0 ( ) ( )− − −3 2 4x 3x 64x 48 = 0 ( ) ( )− − −2 x 4x 3 16 4x 3 = 0 ( )( )− −2 x 16 4x 3 = 0 ( )( )( )+ − −x 4 x 4 4x 3 = 0 So −x 4 = 0 or +x 4 = 0 or −4x 3 = 0 So x = 4 or x = −4 or x = 3 4 The solution set is { }− 3 4 , , 4 4 Solving equations by remainder theorem (ก@GHกIJKก@GLMN>TUVWC>=XU=Y9ZS) P(x) is polynomial − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , which n is a positive integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 . If division p(x) by −x c , which c is real number then remainder is equal to p(c) Example 2 : Find the remainder when division + −3 9x 4x 1 by − 1 x 2 Solution Given p(x) = + −3 9x 4x 1 By remainder theorem ; when division p(x) by − 1 x 2 then the remainder is p( )1 2
  • 14. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 14 p( )1 2 = ( ) ( )+ − 3 1 1 9 4 1 2 2 = 17 8 Therefore the remainder is 17 8 Factor Theorem (>TUVWC>OBPQGRกSC) P(x) is polynomial − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , which n is a positive integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 . −x c is factor of p(x) if and only if p(c) = 0 RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) hP[ijZklmnoUkpqmpT_rQidกMYodoc kSLPO^doc 1. TLNOVaMeกQU c bQ^ 0a koskSLiTZ p(c) = 0 2. dSL cx − taTLMfT`dLg p(x) u_TLM]epavdfT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x) Q[Xw 1 3. xZLu_TLMidbZQ 2 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoกกy[ก NOVaMeกQUNLgbOcdNQdidbZQ 1 _e 2 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU NLgkospMo[dgL_ZV Example 3 : Show that −x 2 is factor of − + +3 2 x 5x 2x 8 Solution Given p(x) = − + +3 2 x 5x 2x 8 p(2) = − + +3 2 2 5(2) 2(2) 8 = 8 20 4 8− + + = 0 So −x 2 is factor of − + +3 2 x 5x 2x 8 From the example , −x 2 is factor of − + +3 2 x 5x 2x 8. When divide − + +3 2 x 5x 2x 8 by −x 2 ,
  • 15. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 15 2 3 2 3 2 2 2 x 3x 4 x 2 x 5x 2x 8 x 2x 3x 2x 3x 6x 4x 8 4x 8 − − − − + + − − + − + − + − + So − + +3 2 x 5x 2x 8 = ( )( )2 x 2 x 3x 4− − − And 2 x 3x 4− − = ( )( )x 1 x 4+ − Therefore − + +3 2 x 5x 2x 8= ( )( )( )x 2 x 1 x 4− + − Rational Factor Theorem (>TUVWC>OBPQGRกSCOGGกNR) P(x) is polynomial − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , where n is a positive integer , na , −n 1a , … , 1a , 0a are integer , where na ≠ 0 . If m k x − is factor of p(x), where m and n are integer , where m ≠ 0 and gcd. of m and k is 1 then na divided by m perfect and 0a divided by k perfect . Note : gcd = greatest common divisor ( T.M.g. = TLMMwVggLก) RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) PO^doc 1. TL m k hP[fz]LMYL m _e k ]LกNOVaMeกQUbQ^ na _e 0a NLg_SLPOU _e T.M.g. bQ^ m _e k pkwLกOU 1 2. kPRQUVwL p( m k ) pkwLกOU 0 TMrQtgw xZL p( m k ) = 0 ]etPZ m k x − pavdNOVaMeกQU bQ^ p(x) idกMYokostgwgo m k koskSLiTZ p( m k ) = 0 RP^VwL fT`dLg p(x) tgwgo NOVaMeกQUkospavdfT`dLgPoกMoTd|s^idMXa m k x −
  • 16. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 16 3. dSL m k x − }|s^pavdNOVaMeกQUbQ^fT`dLg p(x) taTLMfT`dLg p(x) u_TLM]epavd fT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x) 4. xZLu_TLMidbZQ 3 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoก กy[กNOV aMeกQUNLgbOcdNQdidbZQ 1 , 2 _e 3 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU NLgkospMo[dgL_ZV Example 4 : Factorise of 35x16x12x 23 −−+ Solution Given p(x) = 35x16x12x 23 −−+ Since integers which divide 3− perfect are 1± , 3± (]SLdVdkosTLM 3− _^NOV) And integers which divide 12 perfect are 1± , 2± , 3± , 4± , 6± , 12± (]SLdVdkosTLM 12 _^NOV) So k m which p( m k ) = 0 is the number of the following numbers 1± , 3± , 1 2 ± , 3 2 ± , 1 3 ± , 1 4 ± , 3 4 ± , 1 6 ± , 1 12 ± ( ]SLdVdpT_wLdoc NOVpqm WrQ]SLdVdkospavdNOVaMeกQUbQ^ 3− _eNOVRwVd WrQ ]SLdVd kospavdNOVaMeกQUbQ^ 12 hP[kos T.M.g. bQ^NOVpqm_eNOVRwVd WrQ 1) Consider p( 1 2 ) = 3 21 1 1 12( ) 16( ) 5( ) 3 2 2 2 + − − = 12 16 5 3 8 4 2 + − − = 0 So 1 x 2 − is a factor of p(x) Devide 35x16x12x 23 −−+ by 1 x 2 − then quotient is 2 12x 22x 6+ + So 35x16x12x 23 −−+ = 21 (x )(12x 22x 6) 2 − + + = 21 (x )(2)(6x 11x 3) 2 − + + = 2 (2x 1)(6x 11x 3)− + + = (2x 1)(3x 1)(2x 3)− + +
  • 17. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 17 Example 5 : Solve the equation 35x16x12x 23 −−+ Solution Given p(x) = 35x16x12x 23 −−+ From example 4 ; 35x16x12x 23 −−+ = (2x 1)(3x 1)(2x 3)− + + Since 35x16x12x 23 −−+ = 0 (2x 1)(3x 1)(2x 3)− + + = 0 So 2x 1− = 0 or 3x 1+ = 0 or 2x 3+ = 0 x = 1 2 or x = 1 3 − or x = 3 2 − Example 6 : If 2 is real number .Prove that 2 is irrational number. Prove 2 is the solution of equation x = 2 So 2 is the solution of equation 2 x = 2 or 2 x 2 = 0−  (1) From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 2± } but 2 ∉ { 1± , 2± }. So 2 is not rational number. And since 2 is real number so 2 is irrational number. Example 7 : If 2 5+ is real number .Prove that 2 5+ is irrational number. Prove 2 5+ is the solution of x = 2 5+ So 2 5+ is the solution of x 2 = 5− Or 2 x 2 2 x 2 = 5− + ([กกSL_O^RQ^kOc^RQ^bZL^) 2 x 3 = 2 2x− 4 2 2 x 6x 9 = 8x− + ([กกSL_O^RQ^kOc^RQ^bZL^) 4 2 x 14x 9 = 0− +  (1) From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 3± , 9± } but 2 5+ ∉ { 1± , 3± , 9± }. So 2 5+ is not rational number. Since 2 5+ is real number so 2 5+ is irrational number.
  • 18. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 18 2.4 Inequality Definition ; 1) a > b if and only if −a b > 0 2) a < b if and only if −a b < 0 3) ≥a b means a > b or a = b 4) a b≤ means a < b or a = b 5) a < b < c means a < b and b < c 6) ≤ ≤a b c means ≤a b and ≤b c 7) < ≤a b c means <a b and ≤b c 8) ≤a b < c means ≤a b and b < c 9) ≠a b if and only if ( )− 2 a b > 0 Properties of inequality I1 : Trichotomy Property (RgUONztNMVz€LW) If a and b are real numbers then a = b , a < b and a > b , it is actually only one. I2 : Transitive Property (RgUONzกLMxwL[kQP) Given a , b and c are real numbers. (1) a < b and b < c then a < c (2) ≤a b and ≤b c then ≤a c (3) a > b and b > c then a > c (4) ≥a b and ≥b c then ≥a c I3 : property of number when compared with 0 (RgUONzbQ^]SLdVdpgrsQpaMo[Upko[UกOU 0) Given a is real number. (1) a is positive number if and only if a > 0. (2) a is negative number if and only if a < 0. (3) a is not positive number if and only if ≤a 0. (4) a is not negative number if and only if ≥a 0.
  • 19. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 19 I4 : RgUONzกMtgwpavd]SLdVd_U_eกLMpavd]SLdVdUVก (1) If a is real number then ≥2 a 0 (2) If a is real number and a ≠ 0 then >2 a 0 I5 : Addition by the equal number (RgUONzกLMUVกPZV[]SLdVdpkwLกOd) Given a , b and c are real numbers. (1) If a < b then a + c < b + c (2) If ≤a b then ≤a + c b + c (3) If a > b then a + c > b + c (4) If ≥a b then ≥a + c b + c I6 : cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก) Given a , b and c are real numbers. (1) If a + c < b + c then a < b (2) If ≤a + c b + c then ≤a b (3) If a + c > b + c then a > b (4) If ≥a + c b + c then ≥a b I7 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVdUVก Given a , b and c are real numbers. (1) If a < b and c > o then ac < bc (2) If ≤a b c > o then ≤ac bc (3) If a > b c > o then ac > bc (4) If ≥a b c > o then ≥ac bc I8 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVd_U Given a , b and c are real numbers. (1) If a < b and c < o then ac > bc (2) If ≤a b c < o then ≥ac bc (3) If a > b c < o then ac < bc (4) If ≥a b c < o then ≤ac bc
  • 20. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 20 I9 : RgUONzกLMNOPQQกbQ^]SLdVdUVกbQ^กLMWXY Given a , b and c are real numbers. (1) If ac < bc and c > o then a < b (2) If ≤ac bc c > o then ≤a b (3) If ac > bc c > o then a > b (4) If ≥ac bc c > o then ≥a b I10 : RgUONzกLMNOPQQกbQ^]SLdVd_UbQ^กLMWXY Given a , b and c are real numbers. (1) If ac < bc and c < o then a > b (2) If ≤ac bc c < o then ≥a b (3) If ac > bc c < o then a < b (4) If ≥ac bc c < o then ≤a b More Summaries 1) No Reflexive (tgwgoRgUONzกLMpkwLกOd) 2) No Symmetric (tgwgoRgUONzRggLNM) 3) If a b< and c d< then a c b d+ < + 4) If a b< and c d< then a d b c− < − 5) If 0 a b< < and 0 c d< < then ac bd< 6) 0a b< < and 0c d< < then ac bd> 7) If 0 a b< < and 0 c d< < then a b d c < 8) If 0a b< < and 0c d< < then a b d c > 9) If 0 a b< < then 2 2 a b< 10) If 0a b< < then 2 2 a b> 11) If 0 a b< < then 1 1 a b > 12) If 0a b< < then 1 1 a b > 13) If 0ab > and a b< then 1 1 a b >
  • 21. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 21 2.5 Interval Given a R∈ , b R∈ and a b< 1) ( ),a b = { }x a x b< < 2) [ ],a b = { }x a x b≤ ≤ 3) ( ],a b = { }x a x b< ≤ 4) [ ),a b = { }a x<bx ≤ 5) ( ),a ∞ = { }x x a> 6) [ ),a ∞ = { }x x a≥ 7) ( ),a−∞ = { }x x a< 8) ( ],a−∞ = { }x x a≤ 9) ( ),−∞ ∞ = R Example 1 : Given A = ( )1,7 , B = [ ]3,4− , C = [ )0,6 1) A B∪ = [ )3,7− 2) B C∪ = [ )3,6− 3) A B C∪ ∪ = [ )3,7− 4) A B∩ = ( ]1,4 5) B C∩ = [ ]0,4 6) A B C∩ ∩ = ( ]1,4 7) ( )A B C∪ ∩ = [ )0,6 8) ( )A B C∩ ∪ = ( )1,6 9) A B− = ( )4,7 10) B C− [ )3,0− 11) ( )A B C− − = [ )6,7 12) ( )A B C∪ − j [ ) [ )3,0 6,7− ∪ 0
  • 22. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 22 Example 2 : Given 1 ,2nA n n   = −    ; n I∈ . Find ( )1 2 3A A A∪ − ( ]1 = 1,2A − 2 1 = ,4 2 A   −    3 1 = ,6 3 A   −    Therefore ( )1 2 3 1 = 1, 3 A A A   ∪ − − −    . Example 3 : Given 2 ,3nA n n   = −    ; n I∈ . Find ( )3 5 2A A A∩ − ( ]1 = 1,6A − 2 2 = ,9 3 A   −    3 2 = ,15 5 A   −    Therefore ( ) [ ]3 5 2 = 6,9A A A∩ − . Example 4 : Given 5 10 and 3 8x y< < ≤ ≤ 1) 8 < < 18x y+ 2) 3 < < 7x y− − 3) 15 < < 80x y⋅ 4) 5 10 < < 8 3 x y
  • 23. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 23 Example 5 : Given 5 2 and -3 1x y− < < − ≤ ≤ − 1) 8 < < -3x y− + 2) 4 < < 1x y− − 3) 2 < < 15x y⋅ 4) 2 < < 5 3 x y Example 6 : Given 3 1 and 1 3x y− < < < < 1) -2 < < 4x y+ 2) 6 < < 0x y− − 3) 9 < < 3x y− ⋅ 4) 3 < < 1 x y − 5) 2 2 0 < 9 ; 1 < < 9x y≤ 6) 2 2 9 < < 8x y− − Inequality solving Example 7 : Solve inequality 5 7 2 11x≤ − ≤ . SOLUTION 5 7 2 11x≤ − ≤ 7 5 2 11 7x− + ≤ − ≤ − 2 2 4x− ≤ − ≤ ( ) ( ) 1 1 2 4 2 8 x     − − ≤ ≤ −        -2 1x≤ ≤ Therefore solution set is { }2 1x x− ≤ ≤ or [ ]2,1− . Example 8 : Solve inequality 9 2 < 4 3 6x x x− − ≤ + . SOLUTION 9 2 < 4 3x x− − and 4 3 6x x− ≤ + 4 2 < 3 9x x− − − − 4 6 3x x− ≤ + 6 < 12x− − 3 9x ≤ ( ) ( ) 1 1 6 > 12 6 6 x     − − − −        ( ) 1 1 3 9 3 3 x     ≤        > 2x 3x ≤ 32 Therefore solution set is { }2 3x x< ≤ or ( ]2,3 .
  • 24. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 24 Example 9 : Solve inequality 2 4 3 > 0x x− + . SOLUTION 2 4 3 > 0x x− + ( )( )1 3 > 0x x− − CASE 1 1 > 0x − and 3 > 0x − CASE 2 1 < 0x − and 3 < 0x − > 1x and > 3x < 1x and < 0x > 3x < 1x Therefore solution set is { }1 or 3x x x< > or ( ) ( ),1 3,−∞ ∪ ∞ . Example 10 : Solve inequality 2 2 5 3 0x x+ − ≤ . SOLUTION 2 2 5 3 0x x+ − ≤ ( )( )2 1 3 0x x− + ≤ CASE 1 2 1 0x − ≥ and 3 0x + ≤ CASE 2 2 1 0x − ≤ and 3 0x + ≥ 1 2 x ≥ and 3x ≤ − 1 2 x ≤ and 3x ≥ − No solution 1 3 2 x− ≤ ≤ Therefore solution set is 1 3 2 x x   − ≤ ≤    or 1 3, 2   −    . Example 11 : Solve inequality 2 2 5 > 0x x+ + . SOLUTION 2 2 5 > 0x x+ + ( )2 2 1 +4 > 0x x+ + ( ) 2 1 +4 > 0x + ; x R∈ Therefore solution set is R . Example 12 : Solve inequality 2 6 5 < 0x x+ − . SOLUTION 2 6 5 < 0x x+ − ( )2 6 9 14 < 0x x+ + − ( ) ( ) 22 3 14 < 0x + − ( )( )3 14 3 14 < 0x x+ − + + Therefore solution set is ( )3 14 , 3 14− − − + . -+ + -3+ 14-3- 14
  • 25. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 25 Example 13 : Solve inequality 2 8 10 0x x− + ≥ . SOLUTION 2 8 10 0x x− + ≥ ( )2 8 16 6 0x x− + − ≥ ( ) ( ) 22 4 6 0x − − ≥ ( )( )4 6 4 6 0x x− − − + ≥ Therefore solution set is ( ), 4 16 4 6 , −∞ − ∪ + ∞  . Example 14 : Solve inequality 2 10 25 > 0x x+ + . SOLUTION 2 10 25 > 0x x+ + ( ) 2 5 > 0x + and 5x R x∈ ≠ − Therefore solution set is { }5x x ≠ − or { }5R − − . Example 15 : Solve inequality 2 4 4 0x x− + ≤ . SOLUTION 2 4 4 0x x− + ≤ ( ) 2 2 0x − ≤ 2x = Therefore solutionset is { }= 2x x or { }2 . Example 16 : Solve inequality 2 10 25 < 0x x− + . SOLUTION 2 10 25 < 0x x− + ( ) 2 5 < 0x − Therefore no solution . Example 17 : solve the following inequality 1) ( )( )( )2 3 1 < 0x x x− − + SOLUTION ( )( )( )2 3 1 < 0x x x− − + ( )( )( )2 3 1 < 0x x x− − + - 2-1 -+ + 3 Solution set is ( ) ( ), 1 2,3−∞ − ∪ . -+ + 4+ 64- 6
  • 26. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 26 2) ( )( ) ( ) 2 1 2 3 0x x x− − − ≥ SOLUTION ( )( ) ( ) 2 1 2 3 0x x x− − − ≥ ( )( ) ( ) 2 1 2 3 0x x x− − − ≥ Times ( ) 2 1 2x − ; ( )( )1 3 0x x− − ≥ 2-1 -+ + 3 Solution set is ( ] { } [ ),1 2 3,−∞ ∪ ∪ ∞ . 3) ( ) ( ) ( ) ( ) ( ) 2 3 4 5 6 2 3 4 0 5 6 x x x x x − − − ≤ − − SOLUTION ( ) ( ) ( ) ( ) ( ) 2 3 4 5 6 2 3 4 0 5 6 x x x x x − − − ≤ − − Times ( ) ( ) ( ) ( ) ( ) 5 6 2 3 4 5 6 2 3 4 x x x x x − − − − − ; ( )( )3 5 0x x− − ≤ 542 -+ + 3 Solution set is { } [ )2 3,5∪ . 4) 2 1 2 3 4 x x x − < + − SOLUTION 2 1 2 < 0 3 4 x x x − − + − ( )( ) ( )( ) ( )( ) 4 2 1 3 2 < 0 3 4 x x x x x − − − + + − ( )( ) 2 2 9 4 2 6 < 0 3 4 x x x x x − + − − + − ( )( ) 2 2 11 2 < 0 3 4 x x x x − − + − ( )( ) 2 11 1 2 < 0 3 4 x x x x − − + −
  • 27. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 27 ( )( ) 2 11 121 137 2 16 16 < 0 3 4 x x x x   − + −    + − ( )( ) 22 11 137 4 4 < 0 3 4 x x x    − −       + − ( )( ) 11 137 11 137 4 4 4 4 < 0 3 4 x x x x    − + − −      + − Solution set is 11 137 11 137 3, 4, 4 4    − + − ∪           . 5) 5 2 3 2x x ≥ + − SOLUTION 5 2 0 3 2x x − ≥ + − ( ) ( ) ( )( ) 5 2 2 3 0 3 2 x x x x − − + ≥ + − ( )( ) 5 10 2 6 0 3 2 x x x x − − − ≥ + − ( )( ) 3 16 0 3 2 x x x − ≥ + − ( )( )( )3 16 3 2 0x x x− + − ≥ Solution set is [ ] 16 3,2 , 3   − ∪ ∞    .
  • 28. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 28 2.6 Absolute Value When we want to talk about how “large” a number is without regard as to whether it is positive or negative, we use the absolute value function. The absolute value of a number is the distance from that number to the origin (zero) on the number line. That distance is always given as a non-negative number. • If a number is positive (or zero), the absolute value function does nothing to it: • If a number is negative, the absolute value function makes it positive: Definition ; ; 0 = 0 ; 0 ; 0 x x x x x x >  = − < 3 = 3 5 = 5− , ( ) 5 = 5 4 = 4 = 4− − − , 0 = 0 ; 0 = ; 0 x x x x x ≥  − < Absolute Value Property ; 1) =x x− 2) =x y y x− − 3) =xy x y 4) = ; 0 xx y y y ≠ 5) 2 2 =x x 6) = 0 if and only if 0x x = 7) = ; 0 if and only if orx a a x a x a> = = − 8) 2 2 = if and only ifx y x y= 9) 2 2 < if and only ifx y x y< 10) x y x y+ ≤ + 11) = if and only if 0x y x y xy+ + ≥ 12) < if and only if 0x y x y xy+ + < 13) x y x y− ≥ −
  • 29. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 29 14) = if and only if 0x y x y xy− − ≥ 15) > if and only if 0x y x y xy− − < 16) < ; 0 if and only ifx a a a x a> − < < 17) ; 0 if and only ifx a a a x a≤ > − ≤ ≤ 18) > ; 0 if and only if orx a a x a x a> < − > 19) ; 0 if and only if orx a a x a x a≥ > ≤ − ≥ 20) 1 ; 0 = 1 ; 0 xx xx >  − < Example 1 : Solve the following equations 1) 2 6 = 0x x− − SOLUTION 2 6 = 0x x− − ( )( )3 2 = 0x x− + = 3 , 2x − Solution set is { }3, 2− . 2) 2 3 = 15x − SOLUTION 2 3 = 15x − 2 3 = 15 , 15x − − 2 = 18 , 12x − = 9 , 6x − Solution set is { }9, 6− . 3) 2 1 = 3x x− + SOLUTION ( ) ( ) 2 2 2 1 = 3x x− + 2 2 4 4 1 = 6 9x x x x− + + + 2 3 10 8 = 0x x− − ( )( )3 2 4 = 0x x+ − 2 = , 4 3 x − Solution set is 2 ,4 3   −    .
  • 30. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 30 4) 2 1 = 2x x− + SOLUTION ( ) ( ) 2 2 2 1 = 2x x− + 2 2 4 4 1 = 4 4x x x x− + + + 2 3 8 3 = 0x x− − ( )( )3 1 3 = 0x x+ − 1 = , 3 3 x − Solution set is 1 ,3 3   −    . Example 2 : Solve the following equations 1) 2 2 2 15 = 2 15x x x x− − − − SOLUTION 2 2 15 0x x− − ≥ ( )( )5 3 0x x− + ≥ Solution set is ( ) [ ), 3 5,−∞ − ∪ ∞ . 2) 2 2 6 = 6x x x x− − + − SOLUTION ( )2 2 6 = 6x x x x− − − − − 2 6 0x x− − ≤ ( )( )3 2 0x x− + ≤ Solution set is [ ]2,3− . 3) = 1x x − SOLUTION If 0 then 1x x x≥ = − No solution If 0 then - 1x x x< = − 1 = (F) 2 x Solution set is φ .
  • 31. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 31 4) = 1x x + SOLUTION If 0 then 1x x x≥ = + No solution If 0 then - 1x x x< = + 1 = (T) 2 x − Solution set is 1 2   −    . 5) 2 = 3x x− + SOLUTION If 2 0 then 2 3x x x− ≥ − = + No solution If 2 0 then 2 3x x x− < − + = + 1 = (T) 2 x − Solution set is 1 2   −    . 6) 2 1 = 3x x+ − SOLUTION If 2 1 0 then 2 1 3x x x+ ≥ + = − = 4 (F)x − If 2 1 0 then 2 1 3x x x+ < − − = − 2 = (F) 3 x Solution set is φ . 7) 1 + 2 = 10x x+ − SOLUTION ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − ≥ + + − = 11 2 and (T) 2 x x≥ = ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − < + − − = No solution ( ) ( )If 1 0 and 2 0 then - 1 2 10x x x x+ < − ≥ + + − = No solution ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ < − < − + − − = 9 < 1 and (T) 2 x x− = − Solution set is 11 9 , 2 2   −    .
  • 32. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 32 2.7 Absolute Value Inequality Example 1 : Solve the following inequality. 1) 2 1 3x x− ≤ + SOLUTION 2 1 3x x− ≤ + ( ) ( ) 2 2 2 1 3x x− ≤ + 2 2 4 4 1 6 9x x x x− + ≤ + + 2 3 10 8 0x x− − ≤ ( )( )3 2 4 0x x+ − ≤ Solution set is 2 ,4 3   −    . 2) 3 2 < 2 3x x− + SOLUTION If 3 2 0 then 3 2 2 3x x x− ≥ − < + 2 and 5 3 x x≥ < 2 < 5 3 x≤  (1) If 3 2 0 then 3 2 2 3x x x− < − + < + 2 1 < and 3 5 x x > − 1 2 < < 5 3 x−  (2) Solution set is 1 2 2 1 , ,5 = ,5 5 3 3 5       − ∪ −           . 3) 2 1 + 3 > 10x x− + SOLUTION ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + ≥ − + + > 1 and 3 2 x x≥ ≥ − 8 3 x > 8 > 3 x  (1) ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + < − − + > 1 and 3 2 x x≥ < − Oppose
  • 33. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 33 ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + ≥ − − + + > 1 < and 3 2 x x ≥ − 6x < − No solution ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + < − − − + > 1 < and 3 2 x x < − 4x < − < 4x −  (2) Solution set is ( ) 8 , 4 , 5   −∞ − ∪ ∞    . 4) 2 3 13x − ≤ SOLUTION 13 2 3 13x− ≤ − ≤ 10 2 16x− ≤ ≤ 5 8x− ≤ ≤ Solution set is [ ]5,8− . 5) 3 1 > 11x − SOLUTION 3 1 11x − < − or 3 1 11x − > 3 < 10x − 3 > 12x 10 < 3 x − > 4x Solution set is ( ) 10 , 4, 3   −∞ − ∪ ∞    .
  • 34. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 34 English vocabulary for Mathematic Addition Property = RgUONzกLMUVก Associative Property = RgUONzกLMpa_os[dTgXw Cancallation Property = ก ก Closure Property for addition = RgUONza•PกLMUVก Complex Numbers = ]SLdVdpjz^}ZQd Commutative Property = RgUONzกLMR_OUkos Counting Numbers = ]SLdVddOU Decimal = kqdz[g Distributive Property = RgUONzกLM]ก]^ Fraction = pqmRwVd Identity = pQก_OกmY‚ Imaginary Number = ]SLdVd]zdN€Lf Integer numbers = ]SLdVdpNyg Inverse = NOVuกuOd Irrational Numbers = ]SLdVdNMMก[e multiplication = กLMWXY Multiplication Property = RgUONzกLMWXY Natural Numbers = ]SLdVddOU Periodic Decimal = kqdz[g}cSL Rational Numbers =]SLdVdNMMก[e Reflexive Property = RgUONzกLMRekZQd Subtraction = กLM_U Square = MXaRospT_os[g]ON`MOR Struction = hWM^RMZL^ Symetric Property = RgUONzกLMpkwLกOd therefore = PO^dOcd Transitive Property = RgUONzกLMxwL[kQP Whole Number = ]SLdVdkOc^TgP